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Abstract

Combining large language models during train-001
ing or at inference time has shown substan-002
tial performance gain over component LLMs.003
This paper presents LLM-TOPLA, a diversity-004
optimized LLM ensemble method with three005
unique properties: (i) We introduce the fo-006
cal diversity metric to capture the diversity-007
performance correlation among component008
LLMs of an ensemble. (ii) We develop a009
diversity-optimized ensemble pruning algo-010
rithm to select the top-k sub-ensembles from011
a pool of N base LLMs. Our pruning method012
recommends top-performing LLM subensem-013
bles of size S, often much smaller than N .014
(iii) We generate new output for each prompt015
query by utilizing a learn-to-ensemble ap-016
proach, which learns to detect and resolve017
the output inconsistency among all compo-018
nent LLMs of an ensemble. Extensive eval-019
uation on four different benchmarks shows020
good performance gain over the best LLM021
ensemble methods: (i) In constrained solu-022
tion set problems, LLM-TOPLA outperforms023
the best-performing ensemble (Mixtral) by024
3.5% in accuracy on MMLU and the best-025
performing LLM ensemble (MoreAgent) on026
GSM8k by 2.1%. (ii) In generative tasks,027
LLM-TOPLA outperforms the top-2 perform-028
ers (Llama70b/Mixtral) on SearchQA by 3.9x029
in F1, and on XSum by more than 38 in030
ROUGE-1. Our code and dataset, which con-031
tains outputs of 8 modern LLMs on 4 bench-032
marks is available at https://anonymous.033
4open.science/r/llm_topla-891B034

1 Introduction035

Modern Large Language Models (Achiam et al.,036

2023; Jiang et al., 2024; Touvron et al., 2023; Team037

et al., 2024) are characterized by architectures with038

billions of parameters, massive training datasets,039

and remarkable performance across many zero and040

one-shot tasks. Recently, there has been a myr-041

iad of open-sourced models, aiming for improving042

generalizability in a subset of tasks e.g., question 043

answering, code generation, and summarization, 044

with smaller sizes (1b to 70b), and yet perform- 045

ing equally or better compared to larger sizes on 046

that particular task (Zhao et al., 2023). This en- 047

ables LLM consumers to access many open-source 048

LLMs of small-mid-large sizes and choose to run 049

them locally or via an API from an LLM infer- 050

ence service provider. A widely recognized chal- 051

lenge is how to select among the large collection 052

of open/close-sourced LLMs the best model com- 053

bination, and how to combine possibly conflicting 054

output answers from multiple LLMs to reach the 055

best generative output for the target learning task. 056

We argue that a practical LLM ensemble method 057

should provide an efficient solution approach to an- 058

swer both of the above questions. To this end, first, 059

we introduce LLM-TOPLA, a diversity-optimized 060

LLM ensemble method with three unique proper- 061

ties: (i) a focal diversity metric to capture the error 062

diversity and the diversity-performance correlation 063

among component LLMs of an ensemble; (ii) a 064

diversity-optimized ensemble pruning algorithm to 065

identify and select the top-k sub-ensembles from a 066

pool of N base LLMs, which shows equal or bet- 067

ter performance compared to the ensemble of N 068

models; (iii) a learn-to-combine approach, which 069

learns to detect and resolve the output inconsistency 070

among all component LLMs of an ensemble, and 071

generate the LLM-TOPLA output for each prompt 072

query. 073

Related Work. We broadly categorize the re- 074

lated work in achieving better generalization perfor- 075

mance of LLMs into two threads: ensemble with 076

unsupervised or supervised learning. For unsuper- 077

vised approaches, prompt engineering, represented 078

by the Chain of Thought (CoT) (Wang et al., 2022) 079

prompts the creation of multiple output passes in 080

the solution space to ensemble the final output with 081

majority voting. The downside of majority vot- 082

ing is the definition of equality between divergent 083
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answers. Compared to math problems or multiple-084

choice problems, consensus-based approaches like085

weighted majority voting may do poorly for gen-086

erative queries. Recently, two threads of research087

to further improve CoT. One advocates integrating088

more agents (models) from different LLM produc-089

ers (Li et al., 2024) and utilizing the BLEU score090

as the heuristic to compare answers. Another is091

to enhance the BLEU score-based answer combi-092

nation method by either assigning weights (Yao093

et al., 2024) or by creating a debate environment094

(Wan et al., 2024). One caveat in common for095

these unsupervised methods is that they require096

lengthy and complex prompt strategies. Several097

supervised LLM ensemble methods are proposed:098

LLM-Blender (Jiang et al., 2023) performing two099

steps of training; one for model selection and one100

for generation. Yet, the proposed ranking model101

requires pairwise comparison of models in the pool102

and the ensemble method has a limited context103

window with the high cost of training. Alterna-104

tively, a distillation strategy is proposed in (Wan105

et al., 2024) by performing a token alignment on106

the probability distributions of the models. In ad-107

dition to the high computational cost, this paper108

only ensembles LLama-2 architectures. Regarding109

the model selection, (Chen et al., 2023) reduced110

the cost of inference by performing prompt adap-111

tation, caching, and model tuning to choose the112

strongest model in the pool. We extensively evalu-113

ate on multiple-choice, open-ended, and generative114

question benchmarks to show that the proposed115

LLM-TOPLA outperforms the best LLM ensem-116

ble methods on MMLU, GSM8k, SearchQA and117

XSum.118

2 Problem Definition119

Let x denote an input query for task T under an120

LLM M and y represent the desired output. We121

assume a dataset D to be the collection of samples122

for task T , such that (x, y) ∈ D. For a pool of123

LLMs with the size N , denoted as M1, . . . ,MN ,124

we utilize D to find the optimal ensemble func-125

tion. This function takes outputs of each LLM126

and yields one final answer, denoted as ỹ, given127

by f(M1(x), . . . ,MN (x)) = ỹ, such that the dif-128

ference between desired output is minimized, mea-129

sured by the loss function L(ỹ, y). However, based130

on whether the task T , the desired output y can131

represent different solution spaces. Here, we define132

three different types of solution spaces.133

In the first type, y(1) ∈ {1, . . . ,m} represents 134

the choices in a multiple-choice question (MCQ), 135

where m is typically a small integer, such as 4. 136

The second type of outputs represents the type of 137

open-ended question (OEQ), such as an answer 138

to a multi-step descriptive math problem where 139

the expected answer is a real number and denoted 140

as y(2) ∈ R or the expected answer can be a 141

word representing the short answer to a trivia ques- 142

tion denoted as y(2) ∈ {w1, . . . , w|V |}, where |V | 143

is the size of the vocabulary. Lastly, the third 144

type represents the outputs of generative question 145

(GQ) tasks such as machine translation, summariza- 146

tion, and open question-answering. The solution 147

space consists of a sequence of words, given by 148

y(3) = {w1, . . . , wt}. The key difference between 149

all three types of solution sets is that the third solu- 150

tion type is a sequence of words whereas the sec- 151

ond solution set consists exact word or a number. 152

Next, we describe how our proposed methodology 153

addresses all the solution sets by introducing en- 154

semble learning functions for each type of problem. 155

3 Ensemble Learning Functions 156

We propose two learn-to-ensemble methods. The 157

first method, TOPLA-WEIGHTED, is lightweight 158

and applicable only to the first two types of out- 159

puts y(1) and y(2). The second method, TOPLA- 160

SUMMARY, applies to all three types at a higher 161

cost of complexity. 162

3.1 LLM-TOPLA-Weighted 163

An autoregressive language model predicts the next 164

token, wt, based on the probability mass condi- 165

tioned on the input query, x, and the formerly gen- 166

erated tokens, w<t, i.e. it models: 167

p(wt|x,w<t) =
exp(ct−1)∑|V |
j=1 exp(cj)

, (1) 168

where c represents the final linear layer output of 169
the language model. For an MC question, as pro- 170

posed in (Hendrycks et al., 2020), the probabilities 171

assigned to choices are obtained by calculating the 172

probability of the choice’s token using equation 1. 173

For instance, p(wt = A|x,w<t) is calculated for 174

choice A. However, a more popular methodology 175

proposed by (Gao et al., 2023) is used by the Hug- 176

gingFace Leader Board (Beeching et al., 2023) and 177

also in our paper. We aggregate the probabilities 178

of the tokens creating the whole choice to compute 179

the probability of an answer. After repeating the 180
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Figure 1: We present the different types of tasks with their solution spaces.

procedure for all the choices, we obtain the prob-181

ability distribution over the choices, denoted by182

q = [q1, . . . , qm], where q represents the probabil-183

ity of a choice and m is the number of choices.184

As shown by(Holtzman et al., 2021), the high-185

est probability answer may not lead to a correct186

decision, and the probabilities assigned to other187

choices carry equal significance. Furthermore, we188

defend that the probability distribution of a model189

defines its characteristics and multiple models can190

be leveraged to reach the correct answer. To this191

end, we aim for the most robust way to combine192

N different probability distributions, denoted by193

Mi(x) = qi where i = 1, . . . , N to generate the194

ensemble output, ỹ, against the query x sampled195

from a dataset D. Our goal is to maximize the196

probability of the correct choice conditioned on the197

probabilities of base models:198

max
∑

(x,y)∈D

p(y|M1(x), . . . ,MN (x)). (2)199

We approximate this likelihood using an ensemble200

learner parameterized by θ: f(q1, . . . ,qN ; θ) = ỹ.201

This ensemble learner can be a machine learn-202

ing model such as decision trees, or a neural net-203

work. In this paper, we use a Multi-layer Percep-204

tron (MLP) containing multiple layers of fully con-205

nected weights with sigmoid activation functions.206

At the final layer, the model performs softmax to207

produce the output probability:208

ỹ = softmax(WH(. . . σ(W1[q1, . . . ,qN ]) . . . )),
(3)209

where H is the number of layers. The first layer210

takes the concatenation of the probabilities as the211

input, i.e., W1 ∈ R(mN)×d where d is the input212

dimension of the second layer. We want to find the213

best parameters θ = (W1, . . . ,WH) to maximize214

the likelihood, which can be reduced to minimize215

the cross-entropy loss on a dataset which is the col-216

lection of probabilities for each component model.217

Thus, we split the dataset into train, validation, and218

test and use the training set to train the ensemble219

model, the validation set to stop the training, and220

finally, we use the test set to calculate the perfor-221

mance. In each iteration of training, the parameters222

are updated by minimizing the loss function:223

θbest = argmin
θ

∑
x,y∈Dtrain

Lvote(y, ỹ),

ỹ = f(M1(x), . . . ,MN (x); θ),

Lvote(y, ỹ) = −
m∑
i=1

yi log(ỹi).

(4) 224

We use SGD to perform updates on the parame- 225
ters for every iteration. The ensemble learner an- 226

alyzes the probabilities assigned by each model 227

and their confidence level. Thus, we train the 228

learn-to-ensemble model to learn how to efficiently 229

recognize the patterns among the predictions of 230

each component model. This allows the ensemble 231

learner to learn to make the correct choice even in 232

the absence of consensus, instead of blindly relying 233

on consensus voting algorithms, such as majority 234

or plurality voting. 235

Generalizing the formulation for y(2): Con- 236

sidering the size of the solution set for y(2) can be 237

large, concatenating probabilities for each token is 238

impractical, especially since an answer may com- 239

prise a long sequence of tokens. It is essential to 240

reduce the size of the solution set. Inspired by the 241

Chain-of-Thought (CoT) prompting (Wang et al., 242

2022), we consider two scenarios: (i) If a model is 243

certain of its answer, multiple passes of the same 244

query would result in the same reasoning paths 245

with the same answers. (ii) When a model is uncer- 246

tain, the decision is dispersed into multiple paths 247

with different answers. Hence, we need a mech- 248

anism to find the correct output when the model 249

is uncertain. To address both problems, we iterate 250

the input query K times with CoT prompting and 251

count the occurrences of answers and divide by K 252

indicating the probability distribution of the model 253

for that query. The answers sampled from a model 254

create its solution set. For N number of models, 255

we can have at most K ×N different answers. Let 256

Yj = {ŷ1, . . . , ŷK} represent the solution set of 257

jth model where ŷi is the ith answer of the model. 258

We define a counting function to count the occur- 259

rence of an answer in the solution set denoted by 260

g(ŷi, Yj) =
∑

y∈Yj
1(ŷi = y). However, each 261

model can have its own solution set that is different 262

than the others. By selecting the top-K answers 263

in all of the solution sets, we create one final so- 264
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lution set, denoted by Y final. Next, we compute265

the probability distribution for the final solution set266

generated by each model. This is done by dividing267

the frequency of each answer in the solution set of268

the model by the total number of passes, given by:269

qj = [q1, . . . , qK ], j = 1, . . . , N

qi =
g(ŷi, Yj)

K
, ŷi ∈ Y final,

(5)270

where qj is the probability distribution of the jth271
model on the solution set. By obtaining the proba-272

bilities, we use the same ensemble learner in Equa-273

tion3 to learn the correct answer, leveraging the274

confidences of models for the input query.275

3.2 LLM-TOPLA-Summary276

We design the LLM-TOPLA learn-to-ensemble by277

summarization (LLM-TOPLA-Summary for short)278

with two objectives in mind. First, considering279

certain generative tasks, such as machine transla-280

tion, and question-answering, the LLM-TOPLA-281

Weighted is not applicable without relaxing the282

definition of equality between different solutions.283

Even if the definition is relaxed by using compari-284

son metrics such as BLEU score or distance metrics285

on the vector representation of the outputs, the use286

of TOPLA-weighted will select one of the answers287

generated by the best component model of the en-288

semble to create a TOPLA solution set. This may289

fail to produce the best generative output, even by290

utilizing heuristics on the relaxed definition. Sec-291

ond, our goal with TOPLA-Summary is to create292

an ensemble learner that applies to all types of tasks293

and generates its own output.294

LLM-TOPLA-summary performs learn to en-295

semble as follows. First, we employ another lan-296

guage model to generate a summary of the outputs297

produced by each model. Next, we use a sequence-298

to-sequence (seq2seq) model with encoder-decoder299

architecture (Jiang et al., 2023) by concatenating300

the outputs of the component models of a chosen301

ensemble of S base models with the input query302

and generating the final output of LLM-TOPLA.303

The fitness of the solution is limited by constraints304

such as context length, computation complexity,305

and training complexity. When the input length306

is short, it limits the number of models that can307

be fused and forces truncation on the outputs of308

component models. Also the self-attention mech-309

anisms in encoder-decoder models have quadratic310

complexity (Beltagy et al., 2020). In response to311

these limitations, we implement sparse attention312

and global attention such that we can increase the 313

context length up to 16396 tokens with 149 mil- 314

lion parameters, and utilize a small training dataset. 315

Recall, y(3) = {w1, . . . , wT }, where T is the se- 316

quence length of the desired output. Each model in 317

the pool generates the predicted sequence denoted 318

by Mi(x) = {ŵ1, . . . , ŵTi} = zi and Ti is the 319

sequence length of the ith model output which can 320

be different than T . Let h be the seq2seq model 321

with ϕ parameters, and Z = {z1, . . . , zN} be the 322

collection of candidates. Our goal is to approxi- 323

mate the desired sequence probability conditioned 324

on the input query and the model outputs, given by: 325

326
p(y|x,Z) ≈ h(x,Z;ϕ). (6) 327

We give the input sequence, xs, to the seq2seq 328

model in the format of xs = concat(x, z1, . . . , zN ) 329

and use special tokens as separators to indicate the 330

beginning and end of the question or an answer. 331

Consider an ensemble from 3 base models, the 332

input below is sent to the TOPLA-summary model: 333

334
xs = < boq >x< eoq >< boc1 >z1< eoc1 >

< boc2 >z2< eoc2 >< boc3 >z3< eoc3 >.
(7) 335

We use distinct tokens to indicate which model each 336

candidate belongs to. As the number of models 337

in an ensemble increases, the length of the input 338

sequence to the seq2seq model, ℓ, grows, resulting 339

in a high computational cost in self-attention: 340

Attention(Q,K, V ) = softmax(
QKT

√
dk

)V (8) 341

where the operations are performed in each layer 342

of the Transformer model architecture (Vaswani 343

et al., 2017) and Q, K, and V contain query, key, 344

and value vectors for all the tokens. The result 345

of the softmax function produces scores for each 346

token. These scores are then multiplied by V , scor- 347

ing each token in the input sentence against every 348

other token. This process results in the complexity 349

of O(ℓ2× d), where d is the embedding dimension. 350

To reduce the complexity and increase the con- 351

text length, we employ the sliding window attention 352

pattern by (Beltagy et al., 2020). A fixed-sized win- 353

dow slides through tokens in each layer increasing 354

the receptive field towards the top layers. For a win- 355

dow of size a, each token attends to the surrounding 356

tokens within a range of a/2. This reduces the com- 357

putation complexity to O(ℓ× d× a) which scales 358

linearly with the input sequence. 359

Finally, the TOPLA ensemble learner evaluates 360

the relation between the question and the answer 361
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given by each model to decide which answer suits362

the best. To stress the relation between the question363

and each candidate’s answer, we employ selective364

global attention on the tokens of x of the input365

question. The global attention is the standard self-366

attention by scoring each token against every other367

token. With the sliding and global attention mech-368

anism, we increase the context window length, re-369

duce the computational complexity, and improve370

the performance.371

Overall, LLM-TOPLA-summary is optimized by372

finding the best model parameter ϕ that will max-373

imize the joint distribution over the target tokens374

p(y|x, z1, . . . , zN ;ϕ). It performs auto-regressive375

generation using the following cross-entropy loss376

for a target summary y = {w1, . . . , wT }:377

Lsum = −
T∑
t=1

log p(wt|w<t−1, x,Z;ϕ) (9)378

We use SGD to perform updates on the parameters379

in each iteration. As the LLM-TOPLA-Summary380

model is trained, it learns to generate the correct381

token sequence by utilizing the information pro-382

vided by each candidate answer and the TOPLA-383

summary evaluation results.384

4 Focal Diversity and Ensemble Pruning385

Given a pool of base LLMs as an ensemble, LLM-386

TOPLA first performs the focal diversity-based en-387

semble pruning for two reasons: First, the diversity388

among base models improves the ensemble perfor-389

mance (Breiman, 1996; Dietterich, 2000). Second,390

as we add more models to the ensemble pool, it be-391

comes more expensive to prompt each model, and392

the input length of the ensemble model increases.393

Thus, the model selection for an ensemble set is394

essential. Consider a pool of N base models, the395

total number of possible ensemble teams with size396

S (2 ≤ S ≤ N ) is 2N −N−1 (Wu et al., 2021). A397

key question is how to perform ensemble pruning398

efficiently. We argue that the smaller ensemble size399

and the higher ensemble diversity, the better the400

generation performance of the ensemble.401

Focal Negative Correlation & Focal Diversity.402

The focal negative correlation metric, ρfocal is used403

to quantify the level of error diversity among the404

component models of an ensemble concerning each405

model within the ensemble. The focal diversity406

metric λfocal is used to quantify the general error407

diversity of the ensemble by taking into account408

all focal negative correlation scores of an ensem- 409

ble. Let ES denote an LLM ensemble composed 410

of S models: {M1, . . . ,MS}, we choose one of 411

the S base models each time as the focal model to 412

compute the focal negative correlation score of this 413

ensemble, denoted as ρfocal(ES ;Mi). We define 414

the focal diversity of this ensemble team by the 415

average of the s focal negative correlation scores. 416

The procedure of computing the focal negative cor- 417

relation score of ρfocal is as follows: (i) select a 418

base model among the set of S base models as the 419

focal model, (ii) take all the validation episodes that 420

the focal model has failed and calculate the focal 421

negative correlation score, (iii) repeat the previous 422

steps until all S focal negative correlation scores 423

are obtained. {ρfocal1 , . . . , ρfocalS }, and (iv) com- 424

pute the average over the scores to obtain the focal 425

diversity of ensemble ES , denoted by λfocal(ES): 426

λfocal(ES) =
1

S

∑
ES∈Mi

ρfocal(ES ;Mi)

ρfocal(ES ;Mi) = 1− P (2)

P (1)

P (2) =

S∑
j=1

j(j − 1)

S(S − 1)
pj , P (1) =

S∑
j=1

j

M
pj

(10) 427

Here pi is the probability that i number of mod- 428

els fail together on a randomly chosen episode. We 429

calculate as pi = ni/L
val where ni is the total 430

number of episodes that i number of models failed 431

together on the validation set and Lval is the to- 432

tal number of validation episodes. The term P (2) 433

represents the probability of two randomly cho- 434

sen models simultaneously failing on an episode, 435

while the denominator, P (1), represents the proba- 436

bility of one randomly chosen model failing on an 437

episode. The terms beneath pj values are the proba- 438

bility of the chosen model being one of the failures. 439

For example, when S = 3, there are three cases 440

of model failures; one, two, or three models can 441

fail simultaneously. If one model fails, the chance 442

of selecting the failed model is 1/3. Similarly, for 443

two models, it is 2/3, and for three models, it is 1. 444

In the case of minimum diversity, the probability 445

of two randomly chosen models failing together 446

comes down to the probability of one of them fail- 447

ing, which makes the fraction term equal to 1 and 448

ρfocal = 0. Similarly, in the case of maximum di- 449

versity, there are no simultaneous failures. Hence, 450

the nominator equals 0 and ρfocal = 1. The defini- 451

tion of error changes according to the type of task 452

and its solution set y. For the MCQs and OEQs, 453
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Figure 2: An overview of TOPLA-Framework.

the errors are inequality between the prediction of454

the model and the label, for the GQs, the errors455

are missed 1-grams between the prediction and the456

label. Thus, the focal diversity captures member457

models that are not correlated solely by their error458

diversity.459

Figure 3: For each task, all candidate ensemble teams
from the base model pools are plotted with their focal
diversity scores and their performance metrics. The col-
ors represent the size of each team, and the dotted line
represents the best-performing individual model in the
pool. We also plot the best-fit line with Pearson’s Cor-
relation Coefficient ρ to show the correlation between
performance and the focal diversity.

Ensemble Pruning Optimization. Figure 3460

shows the focal diversity scores for a given pool461

of N = 8 base models with GSM8k (Cobbe et al.,462

2021) and XSum (Dunn et al., 2017) respectively463

(N = 6 and see Appendix-B for the base models464

trained on other datasets). For GSM8k, we get 247465

candidate ensemble teams from the pool of N = 8466

base models. For XSum, we get 57 candidate teams467

from the pool of N = 6 base LLMs.468

We make three observations: (i) the focal-469

diversity metric is correlated with the model perfor-470

mance, (ii) there are multiple sub-ensemble teams471

of size 2-4 that outperform the largest ensemble472

of size 8, and (iii) a majority of the smaller en-473

semble teams also outperform the best-performing474

individual model in the base model pool.475

To perform focal diversity-based ensemble prun-476

ing, we need to compute the focal diversity scores477

for all 2N −N−1 sub-ensemble teams when given 478

a pool of N base models. The brute force (BF) ap- 479

proach requires computing the focal diversity for 480

each candidate ensemble of size S (2 ≤ S ≤ N ). 481

For N = 20, we need to compute the focal diver- 482

sity score for all 1, 048, 555 candidate ensemble 483

teams. To speed up this process, we leverage the 484

Genetic Algorithm (GA) (Mirjalili and Mirjalili, 485

2019), which takes significantly less time to reach 486

the best combination. Table 1 shows a comparison. 487

For a pool of N = 15 base models, we complete 488

the focal diversity-based ensemble pruning in under 489

a minute, achieving 5 orders of magnitude speed 490

up (see Appendix C for further illustration and de- 491

tails). 492

# Base
Models

Time(s)
BF GA Gain%

5 9.4 9.9 -5.50
10 228.2 24.5 828
15 508.99 41.8 1116

Table 1: Brute Force (BF) and GA pruning comparison.

5 LLM-TOPLA Framework 493

The framework for LLM-TOPLA is shown in Fig- 494

ure 2. The user inputs the training data, which 495

includes queries with the desired outputs and a list 496

of N LLMs available in the pool. TOPLA will first 497

send α% of the queries to each LLM and generate 498

N outputs for each query. Each question and multi- 499

ple answer pairs are stored to create Dtrain. In the 500

second step, the focal diversity ensemble pruning 501

module selects the best ensemble set combination 502

to decrease pool size from N to S number of mod- 503

els, where S < N . It performs the Genetic Algo- 504

rithm boosted diversity pruning algorithm and out- 505

puts top-k ensemble sets. Among top-k candidates, 506

an ensemble set is selected randomly. Then, Dtrain 507

is updated based on the new S model selection. At 508

this point, the dataset can be populated with more 509

samples if α < 100%, yet our experiments show 510

that a small-sized dataset is enough to train a per- 511
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formant ensemble learner. According to the task512

type, TOPLA-framework will match the generated513

train data with either TOPLA-Summary or TOPLA-514

Weighted ensemble learner. After the training, the515

framework outputs LLM-TOPLA model which can516

be directly used by the user during inference time.517

6 Experiments518

We validate the effectiveness of LLM-TOPLA519

through extensive evaluations on MCQ, OEQ, and520

GQ benchmarks. We show that LLM-TOPLA out-521

performs the state-of-the-art LLM ensemble meth-522

ods. Due to the space constraint, we include the523

details on the datasets and experimental setups in524

Appendix D.525

6.1 Performance of LLM-TOPLA526

Table 2 shows experiments on MMLU and GSM8k527

datasets, where we compare scores of each base528

model in the pool with the ensemble learners529

TOPLA-Weighted and Summary. The Model IDs530

of TOPLA denote the models in the ensemble set531

which is selected by focal diversity pruning. The532

inference time is the average response latency for a533

sample by each model in the pool. TOPLA frame-534

work sends each response in a parallel process,535

thus, the bottleneck is the slowest model, Llama-536

70b. In the MMLU dataset, TOPLA-Weighted537

reaches the best performance by surpassing the538

best-performing model Mixtral-8x7b by 2%. Since539

the HF leaderboard provides only the probabil-540

ity distribution of choices, we could only use the541

TOPLA-Weighted model. Thus, we used Together-542

AI API for both models. However, the performance543

improvement on the best base model is marginal544

< 1%. We observe that the returned outputs do545

not change across multiple passes (K > 1), thus546

preventing the ensemble model from considering547

alternative thoughts. In the GSM8k dataset, we548

provide scores when K = 1 and K = 10, where549

the outputs have high variation. While the TOPLA-550

Weighted model can improve the best-performing551

model by up to 6 − 8%, TOPLA-Summary im-552

proves 4 − 5%. As K increases, the number of553

outputs leading to wrong thoughts rises, affecting554

the TOPLA-Summary model to reach the wrong555

conclusion, however, this effect is minimized by556

the frequency-based probability generation in the557

TOPLA-Weighted model. The full effect of K on558

the performance is shown in Figure 4.559

Table 3 shows experiments on SearchQA and560

XSum datasets, where the TOPLA-Summary561

model ensembles the base models selected by fo- 562

cal diversity pruning. In the SearchQA dataset, 563

TOPLA largely improves the best-performing 564

model by up to > 30% in the F1 score. When we 565

look at the outputs generated by the models and the 566

ensemble model as shown in Table 7 in Appendix 567

F, we observe that the base models can gather re- 568

lated information about the question but the ex- 569

act term is missing or either model is wordy and 570

provides lots of unrelated information. TOPLA- 571

Summary successfully detects the asked informa- 572

tion gathered by each base model and generates 573

the correct output. Each model has its expertise 574

due to its training dataset’s coverage and its learn- 575

ing capability. TOPLA can summarize and detect 576

the asked information by exploiting the wisdom 577

of models. Similarly, TOPLA-Summary surpasses 578

the best-performing base model, Gemma-7b, by up 579

to > 30% in ROGUE-L score. By looking at the 580

examples shown in Table 8 in Appendix F, TOPLA- 581

Summary provides a dense answer covering all the 582

base model outputs and removing the redundancy. 583

Using multiple base models allows the ensemble 584

model to reach more-grained details on the sample 585

document. 586

Table 4 shows the performance comparison be- 587

tween LLM-TOPLA and other ensemble methods 588

in the literature where More Agents is the previous 589

SOTA. Moreover, we also add the majority voting 590

method as a baseline to our approach. Secondly, 591

Table 5 shows that LLM-TOPLA outperforms the 592

SOTA on XSum dataset in all measures. 593

6.2 Ablation Studies 594

To further observe the effect of the pruning and at- 595

tention mechanisms, we execute two ablation stud- 596

ies in Figure 4. First, we ensemble all the models 597

in the pool and compare their performances with 598

the ensemble model selected by the pruning mech- 599

anism. As shown in the first two figures, pruning 600

improves the TOPLA-Weighted and -Summary in 601

MMLU and GSM8k tasks and keeps the perfor- 602

mance in SearchQA and XSum tasks. Although 603

there is no improvement in the last two tasks, the 604

pruned ensemble set is reaching the equivalent per- 605

formance with fewer models. Second, we show 606

the effect of the Seq2seq model, BART(Lewis 607

et al., 2019), sliding window attention, and selec- 608

tive global attention in the third figure by removing 609

them in order and observing the resulting model 610

performance in every dataset. In all of the tasks, all 611

three combinations show the best performance. 612
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Model Name Model ID Inf. Time (s)↓ MMLU* test split (Acc %)↑ GSM8k† (Acc %) ↑
MMLU GSM8k HuggingFace LB Together-AI K = 1 K = 10

Phi-2 1 - 1.29 56.530.91 - 51.09 65.93
Gemma-2b 2 0.72 0.82 40.780.57 31.410.56 9.92 19.56
Gemma-7b 3 1.44 0.87 65.260.35 47.560.53 53.50 70.63
Llama-7b 4 4.82 1.58 42.620.88 25.050.60 8.08 10.87
Mistral-7b 5 0.87 2.11 58.700.86 40.040.64 40.22 54.02
Llama-13b 6 12.46 2.80 53.770.53 44.400.48 13.73 19.02
Llama-70b 7 7.74 3.15 69.390.96 51.600.58 49.04 56.52
Mixtral-8x7b 8 1.25 1.55 70.530.95 64.820.54 60.83 71.16

LLM-TOPLA-Summary 378*| 138 † 13.76 4.21 - 65.440.96 65.40 75.57
LLM-TOPLA-Weighted 378*| 138 † 12.46 4.05 72.771.18 65.750.93 66.82 79.01

Table 2: LLMTopla performance in MMLU and GSM8k dataset. We create the ensemble sets using focal-diversity
on * MMLU and † GSM8k

Model Name Model ID Inf. Time (s)↓ SearchQA* XSum†

SearchQA XSum BLEU-1↑ EM (%)↑ F1↑ ROUGE-1↑ ROUGE-2↑ ROUGE-L↑
Gemma-7b 3 0.41 0.83 10.60 4.43 12.39 26.43 7.43 20.13
Mistral-7b 5 0.36 1.59 4.12 0.47 5.15 22.4 5.49 15.72
Llama-13b 6 0.39 1.97 8.77 0.63 10.6 22.99 6.25 15.85
Llama-70b 7 0.32 1.64 13.97 5.55 15.95 26.46 7.70 19.21
Mixtral-8x7b 8 0.38 1.21 13.13 2.20 16.04 19.29 5.47 14.28

LLM-TOPLA-Summary 378*| 3678 † 0.43 2.01 47.24 33.64 48.13 54.32 27.29 51.87

Table 3: LLMTopla performance in SearchQA and XSum dataset. We create the ensemble sets using focal-diversity
on * SearchQA and † XSum

Figure 4: The effect of Focal-diversity Pruning is shown in the first two figures, and the effect of sliding window
and selective global attention is shown in the third plot. Lastly, we show the effect of K on TOPLA-Summary, and
Weighted models in the GSM8k dataset.

Method Model ID MMLU (Acc%) * GSM8k (Acc%) †

More Agents 6 51.09 61.00
More Agents 7 60.05 77.00
LLM-Blender 12345678 44.01 40.41
Majority Voting 12345678 68.06 72.31
Mixtral-8x7b 8 69.26 71.16

LLM-TOPLA 378*|138† 72.77 79.01

Table 4: We compare our approach with the other en-
semble methods in the literature.

Method
XSum

ROUGE-1↑ ROUGE-2↑ ROUGE-L↑
Pegasus 2B + SLiC 49.77 27.09 42.08
BRIO 49.07 25.59 40.40
LLM-TOPLA 54.32 27.29 51.87

Table 5: We compare our approach with previous SOTA
methods of XSum, (Zhao et al., 2022) and (Liu et al.,
2022).

7 Conclusion613

In this paper, we tackled the problem of ensem-614

bling modern LLMs from a wide perspective. The615

problem was defined as a mapping from three types616

of solution sets into the correct solution, and we617

introduced two different models. First, TOPLA- 618

Weighted, the model attends weights to each base 619

model output based on their confidence, and in 620

the second type, we introduce a Seq2seq model, 621

TOPLA-Summary, to perform summarization on 622

concatenated outputs and generate one final an- 623

swer. To stress the diversity, we created our en- 624

semble set with the most diverse selection within 625

seconds by Genetic Algorithm. The seq2seq model 626

is further improved by employing sliding window 627

attention to increase the context length and selec- 628

tive global attention to stress the relation between 629

questions and answers. Our evaluation on 4 dif- 630

ferent benchmarks and 8 different modern LLMs 631

shows that LLM-TOPLA framework outperforms 632

the compared models and reaches SOTA. 633

Additionally, we provide a benchmark dataset 634

that includes answers to MMLU, GSM8k, 635

SearchQA, and Xsum, generated by the most pop- 636

ular large language models. This comprehensive 637

dataset serves as a valuable resource for evaluating 638

and comparing ensemble methods. 639
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Figure 5: The effect of training data size to the performance.

8 Limitations640

The limitations of our study can be listed as the641

computational complexity and number of obser-642

vational examples Dtrain. First, the main source643

of complexity is the cost of using multiple LLMs.644

In terms of user perspective, this burden is trans-645

ferred to servers by the available inference services.646

The user can access each LLM with an API re-647

quest. However, this aggregates the communica-648

tion latency to the whole system. Therefore, we649

implement our framework in parallel so that the650

bottleneck is the slowest model. Second, we target651

the complexity of the pruning algorithm by em-652

ploying the Genetic Algorithm, which allowed us653

to speed up the search by > 100×. Third, the com-654

plexity of the Seq2seq model is reduced by using a655

million-sized model, and we reduce the complex-656

ity coming from long input sequences by sliding657

window attention.658

On the other hand, we assume an observational659

data Dtrain which requires labeled samples. To in-660

vestigate the effect of the training data size, we plot661

the effect of training data against performance in662

Figure 5. The x-axis shows the percentage of train-663

ing data we used from our dataset, e.g. in a total664

of 40,000 XSum samples and we used 5% of them665

(8,000) to train and test it on the full portion of666

the test samples. The results demonstrate that even667

with a small ratio, the ensemble model enhances668

the performance of the best base model. However,669

as more data is used, the performance improves670

significantly. As a future direction, we will inves-671

tigate the usage of synthetic data to decrease the672

dependency on labeled samples.673
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A Appendix 805

B Reproducibility Statement 806

We make the following effort to enhance the reproducibility of our results. 807

• For LLM-TOPLA implementation, a link to an anonymous downloadable source is included in our 808

abstract. The link also includes the dataset of LLM outputs for each subtask. 809

• Our experiment details are given in Appendix D, containing selected hyperparameters. 810

• We also show the example outputs and prompts used in our paper in Appendix F. 811

C Speeding-up Ensemble Pruning with Genetic Algorithm 812

The Genetic algorithm requires (i) the representation of a candidate solution, α, and (ii) a fitness function, 813

r, to evaluate the solutions. We represent each solution as a binary vector, where each index represents 814

the presence of the base model in the ensemble set. For the fitness function, we create a focal pruning 815

score metric on the validation dataset, by taking the convex combination of the focal diversity and other 816

metrics such as the validation accuracy of each ensemble set (validation accuracy is applicable only for 817

MCQ and OEQ, thus we used only focal-diversity score in GQ) or cost of models. 818

The pruning score calculation is given by, r(αi) = w1λi+w2ai, where ai is the validation accuracy, w1 819

and w2 are the significance of each metric for pruning score such that w1 + w2 = 1 and w1, w2 ∈ [0, 1]. 820

The initial population contains randomly created candidate solutions. During selection, the most fitted 821

solutions survive to the next population. As the last step, we reproduce new solutions by performing 822

a cross-over among the best-fitted solutions. The procedure is repeated until we reach a plateau or a 823

predetermined fitness function value. 824

Figure 6: For MMLU and SearchQA tasks, we show all ensemble teams with their focal diversity scores and their
performance metrics. The colors represent the size of each team, and the dotted line represents the best-performing
individual model in the pool. We also plot the best-fit line with Pearson’s Correlation Coefficient ρ to show the
correlation between performance and the focal diversity.

D Datasets and Solution Spaces. 825

The experiments contains three different datasets targeting each type of solution spaces. For y(1), we use 826

MMLU (Hendrycks et al., 2020) which contains MCQs covering 57 subjects from STEM to social sciences 827

with varying difficulties and total 14,042 samples. Our experiments on this dataset coming from two 828

sources. The first is HuggingFace leader board (Beeching et al., 2023) providing probability distribution 829

of choices for each test sample. We also mimic a user who has only access to open-source LLMs through 830

an API such as Together-AI (TogetherAI, 2023) or DeepInfra (DeepInfra, 2023). However, currently, 831

these APIs do not support next token probability distribution. Therefore, we performed regular expression 832

parsing, plus, the highest BLUE-1 score between model output and the choices to find the output choice 833

of the model. Performing multiple passes (K > 1) allows us to obtain probability distribution for each 834

sample, as we shown in equation 5. The dataset does not contain training samples; therefore, we perform 835

a train-test split with a 70% to 30% ratio, repeat the procedure 20 times, and report the mean test score 836

and standard deviation. 837
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For y(2) type of solution spaces, we use GSM8k (Cobbe et al., 2021). The GSM8k dataset contains838

7,472 training samples and 1,318 test samples, each with open-ended mathematical questions and multi-839

step solutions. Following (Wang et al., 2022), we perform CoT prompting on the base models up to840

K = 10.841

Lastly, for y(3), we measure the performance on generative tasks by employing SearchQA (Dunn et al.,842

2017) and XSum (Narayan et al., 2018) datasets. The SearchQA dataset contains 172,908 train and 43,228843

test samples where each sample is question-answer pairs with contexts. The questions are fromJeopardy!844

and answers are 1-4 words length. We remove the contexts and performed closed-book prompting (see845

Appendix for examples and prompts). We used only 20,000 samples from train dataset to train our models846

and all the test samples to measure performance. On the other hand, the XSum contains 204,045 train847

and 11,334 test samples. Each sample includes a news article and one sentence summary. We used only848

40,000 samples from train dataset to train our models and all the test samples to measure performance.849

Evaluation. We use accuracy to evaluate MMLU and GSM8k datasets. In SearchQA, we use BLUE-1,850

Exact Match (EM), and F1 scores, while in XSum, we use ROGUE-(1, 2, L) scores for evaluation of851

models.852

Model Pool. In our model pool selection, we aim for three elements and their effect on performance:853

(i) size of the model, (ii) model variety, and (iii) being open-source.854

Fusion Model. LLM-TOPLA-Weighted model contains two fully-connected hidden layers with 100855

neurons and sigmoid activations between the layers. The model weights starts from Xavier initialization856

and converges in 200 epochs optimized by Adam. To implement LLM-TOPLA-Summary, we employ857

Longformer-Encoder-Decoder (Beltagy et al., 2020) model which is initialized from BART weights858

(Lewis et al., 2019).859

Ensemble Pruning. We selected w1 = 0.6 and w2 = 0.4 while scoring a candidate ensemble set to860

give more importance to the diversity in MMLU and GSM8k datasets. In SearchQA and XSum datasets,861

only focal diversity is used for pruning. The genetic algorithm stops when the fitness function does not862

change for 100 consecutive generations.863

E Improvement by the Ensemble864

Method
MMLU GSM8k SearchQA XSum

Accuracy↑ Accuracy↑ BLEU-1↑ EM (%)↑ F1↑ ROUGE-1↑ ROUGE-2↑ ROUGE-L↑
Longformer-Encoder-Decoder 54.27 3.34 15.92 4.04 16.39 51.36 24.05 48.56
LLM-TOPLA-Summary 65.44 75.57 47.24 33.64 48.13 54.32 27.29 51.87

Table 6: To analyze the improvement coming from the base models, we perform experiments on the Seq2Seq model,
Longformer-Encoder-Decoder, by removing outputs of base LLM in the pool.

Table 6 shows the results of an experiment on the effect of base models on performance. In each task,865

we remove the outputs of each base LLM from the input sequence of the Seq2seq ensemble learner,866

Longformer-Encoder-Decoder model. and fine-tune it purely by using the questions and their answers867

or documents and their summaries. As shown in the results, LLM-TOPLA outperforms in every task868

including summarization. This indicates that the ensemble learner can exploit the information gathered by869

the base LLMs and provide correct results.870
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Prompt: "Answer very briefly by using at most 4 words."
Question: In devising the periodic table, Mendeleev laid out the elements in rows & columns to show
the different relationships when read each way; he’s said to have been inspired by a version of this card
game.
Ground Truth: solitaire
Mixtral-8x7B: Solitaire, rearranging cards.
Gemma-7b: "Sure, here is the answer: The answer is "Uno".
Llama-2-70b: The periodic table was inspired by a version of the game Uno."
LLM-TOPLA: solitare

Table 7: A sample Jeopardy! question taken from the SearchQA dataset is shown with the ground truth, each base
LLM answer according to the prompt, and the answer of LLM-TOPLA.

F Samples from SearchQA and XSUM 871

Table 7 shows an example output by each model and TOPLA-summary for a question taken from the 872

SearchQA dataset. While the majority of the models give incorrect answers, TOPLA agrees with the 873

minority and produces the correct output. 874

Table 8 shows an example summarization task performed by each base model and the TOPLA-summary. 875

While every model produces the expected information in the ground truth, LLM-TOPLA produces the 876

most dense and similar to the ground truth. 877
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Prompt: "Try your best to summarize the main content of the given document.
And generate a short summary in 1 sentence only. Summary:"
Document: "A judge had made the request because efforts to get them through "political channels"
had failed, the lawyer said. France, the former colonial power, has not yet commented on the request.
Mr Sankara’s widow and supporters have repeatedly accused France of masterminding his 1987 killing
because he was a Marxist revolutionary. He was killed by soldiers in a hail of bullets shortly before
a meeting of his cabinet in Burkina Faso’s capital, Ouagadougou. Mr Sankara’s assassination led to
his second-in-command, Blaise Compaore, seizing power in a coup. Mr Compaore steered Burkina
Faso into a strong alliance with France, which retains close political, security and economic ties with
many of its former colonies in Africa. Burkina Faso opened an investigation into the killing after he
was ousted from power in 2014. Speaking at a press conference in Ouagadougou, the family lawyer,
Benewende Stanislas Sankara, said an investigating judge had formally asked French authorities to
declassify military documents to see whether France had played a role in the assassination. A request
had also been made to interview French officials who were involved in Burkina Faso’s affairs at the
time, the lawyer added. Burkina Faso issued an arrest warrant for Mr Compaore in 2015, accusing
him of involvement in Mr Sankara’s killing. He has repeatedly denied the allegation, but has refused
to return to Burkina Faso to stand trial. Mr Compaore is exiled in Ivory Coast, also a former French
colony."
Ground Truth: "Burkina Faso has asked France to declassify documents documents related the
assassination of former-President Thomas Sankara, a lawyer has the family has said. "
Mixtral-8x7b: " A lawyer for the family of Thomas Sankara, the former president of Burkina Faso who
was assassinated in 1987, has asked French authorities to declassify military documents and interview
French officials as part of an investigation into Sankara’s death, accusing France of playing a role in
the assassination."
Gemma-7b: **Summary:** Burkina Faso has requested that France declassify military documents
and interview officials regarding the 1987 assassination of its former president, Thomas Sankara. "
Llama-2-13b: Sure! Here is a summary of the given document in one sentence: A lawyer for the family
of former Burkina Faso President Thomas Sankara has requested that French authorities declassify
military documents to investigate whether France was involved in Sankara’s 1987 assassination, which
led to the coup by his successor Blaise Compaore, who has denied any involvement but is exiled in
Ivory Coast." Burkina Faso has requested that France declassify military documents and interview
French officials regarding the 1987 assassination of the country’s former president, Thomas Sankara,
amid allegations that France was involved in the killing. "
Llama-2-70b: Burkina Faso has requested that France declassify military documents and interview
French officials regarding the 1987 assassination of the country’s former president, Thomas Sankara,
amid allegations that France was involved in the killing.
LLM-TOPLA-Summary: Burkina Faso has asked France to declassify military documents about the
killing of ex-president Thomas Sankara, a lawyer for his family has said.

Table 8: A sample document taken from XSum dataset is shown with the ground truth, each base LLM summarization
according to the prompt, and the answer of LLM-TOPLA.
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