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Abstract

The convergence of online learning algorithms in games under self-play is a fun-
damental question in game theory and machine learning. Among various notions
of convergence, last-iterate convergence is particularly desirable, as it reflects
the actual decisions made by the learners and captures the day-to-day behavior
of the learning dynamics. While many algorithms are known to converge in the
average-iterate, achieving last-iterate convergence typically requires considerably
more effort in both the design and the analysis of the algorithm. Somewhat sur-
prisingly, we show in this paper that for a large family of games, there exists a
simple black-box reduction that transforms the average iterates of an uncoupled
learning dynamics into the last iterates of a new uncoupled learning dynamics,
thus also providing a reduction from last-iterate convergence to average-iterate
convergence. Our reduction applies to games where each player’s utility is linear in
both their own strategy and the joint strategy of all opponents. This family includes
two-player bimatrix games and generalizations such as multi-player polymatrix
games. By applying our reduction to the Optimistic Multiplicative Weights Up-
date algorithm, we obtain new state-of-the-art last-iterate convergence rates for
uncoupled learning dynamics in multi-player zero-sum polymatrix games: (1) an
O( log d

T ) last-iterate convergence rate under gradient feedback, representing an
exponential improvement in the dependence on the dimension d (i.e., the maximum
number of actions available to either player); and (2) an Õ(d

1
5T− 1

5 ) last-iterate
convergence rate under bandit feedback, improving upon the previous best rates of
Õ(
√
dT− 1

8 ) and Õ(
√
dT− 1

6 ).

1 Introduction

The convergence of online learning algorithms in games under self-play is a fundamental question
in both game theory and machine learning. Self-play methods for computing Nash equilibria have
enabled the development of superhuman AI agents in competitive games such as Go [Sil+17],
Poker [Bow+15; BS18; BS19], Stratego [Per+22], and Diplomacy [FAI+22]. More recently, self-play
learning algorithms have also been applied to large language model (LLM) alignment with human
feedback, which can be modeled as a two-player zero-sum game [Mun+23; Swa+24; Ye+24; Wu+24;
Liu+24; Liu+25]. From a game-theoretic perspective, understanding the convergence behavior of
self-play dynamics provides predictive insights into strategic multi-agent interactions and informs the
design of more effective mechanisms.

∗Authors are ordered alphabetically.
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Among various notions of convergence, last-iterate convergence is particularly desirable, as it reflects
the actual decisions made by the learners and captures the day-to-day behavior of the learning
dynamics. Formally, we say an algorithm has a last-iterate convergence rate of f(T ) to Nash
equilibria (where f(T ) is a decreasing function with limT→+∞ f(T ) = 0) if the generated sequence
of strategy profiles {xt} satisfies that, for any T ≥ 1, the iterate xT is an f(T )-approximate Nash
equilibrium. This notion of anytime last-iterate convergence is stronger than those considered in
some prior works, which do not provide the same guarantee for every T , but instead require knowing
the time horizon in advance. See Section 1.1 for a detailed discussion.

Despite its importance, classical results on the convergence of self-play dynamics primarily concern
average-iterate convergence. It is well known that when both players in a two-player zero-sum game
employ no-regret online learning algorithms, the time-average of their strategies converges to a Nash
equilibrium [FS99]. In contrast, a large class of online learning algorithms—including Mirror Descent
(MD) and Follow-the-Regularized-Leader (FTRL)—fails to achieve last-iterate convergence in such
settings. Worse yet, the sequence of actual decisions made by the learners can diverge, exhibiting
cyclic or even chaotic behavior [MPP18; BP18; DP18].

Aside from last-iterate convergence, another desirable property of self-play learning dynamics with
multiple self-interested agents is uncoupledness [DDK11]. In uncoupled learning dynamics, each
player refines their strategies with minimal information about the game, while avoiding extensive inter-
player coordination (e.g., shared randomness) and communication. Uncoupled learning dynamics
are also studied under the names of independent or decentralized learning dynamics [OSZ21]. They
are particularly appealing in large-scale games, where either the game is high-dimensional and full
information is hard to obtain, or there are many players and coordination is difficult to enforce.

Due to their importance in large-scale games, designing and analyzing uncoupled learning dynamics
with last-iterate convergence rates has received extensive attention recently due to its importance
both in theory and practice. We will review this long line of work in Section 1.1, and only point out
here that achieving last-iterate convergence typically requires considerably more effort in both the
design and analysis of algorithms. On the design side, techniques such as optimism and regularization
are often applied to ensure convergence of algorithms like OMD and FTRL. On the analysis side,
establishing last-iterate convergence rates often demands problem-specific Lyapunov functions
combined with tailored arguments. This stands in stark contrast to average-iterate convergence in
two-player zero-sum games, which follows directly from the no-regret property of the algorithms.

Our contribution Somewhat surprisingly, we show in this paper that for a large family of games,
there exists a simple black-box reduction, A2L (Algorithm 1), that transforms the average iterates
of an uncoupled learning dynamic into the last iterates of another uncoupled learning dynamic,
thereby providing a reduction from last-iterate convergence to average-iterate convergence. Our
reduction applies to games where each player’s utility is linear in both their own strategy and the joint
strategy of all opponents. This family includes two-player bimatrix games and generalizations such
as multi-player polymatrix games. Our reduction also works for games with nonlinear utilities but
special structures such as the proportional response dynamics in Fisher markets (Appendix B).

Aside from its conceptual contribution, our reduction also yields concrete improvements for uncoupled
learning in multi-player zero-sum polymatrix games (which include two-player zero-sum games as
special cases) and leads to new state-of-the-art last-iterate convergence rates. Let d be the maximum
number of actions available to each player. We apply our reduction to the Optimistic Multiplicative
Weights Update (OMWU) algorithm [RS13; Syr+15], which is known to achieve an O(log d/T )
average-iterate convergence rate in multi-player zero-sum polymatrix games under gradient feedback.
As a result, our reduction yields uncoupled learning dynamics, A2L-OMWU, that enjoys an O(log d/T )
last-iterate convergence rate under gradient feedback. This represents an exponential improvement
in the dependence on d compared to the best previously known O(poly(d)/T ) rate [CZ23b]. As an
additional consequence, each player using A2L-OMWU incurs only O(log d log T ) dynamic regret.

We further extend our reduction to the more challenging setting where only bandit feedback, rather
than full gradient feedback, is available. To this end, we design a new algorithm, A2L-OMWU-Bandit
(Algorithm 2), which augments the reduction with a utility estimation procedure. We show that
A2L-OMWU-Bandit achieves a Õ(T−1/5) last-iterate convergence rate with high probability. This
result improves upon the previously best known rates of Õ(T−1/8) (high probability) and Õ(T−1/6)
(in expectation) established in [Cai+23] for the special case of two-player zero-sum games.

2



1.1 Related Works

There is a vast literature on the regret guarantee and last-iterate convergence of learning algorithms in
games. Here, we mainly review results applicable to two-player zero-sum games. For convergence
under other conditions, such as strict equilibria and strong monotonicity, we refer readers to [GVM21;
JLZ24; Ba+25] and the references therein.

Individual Regret Guarantee for Learning in Games While Θ(
√
T ) regret is fundamental for

online learning against adversarial loss sequences, improved regret is possible for multi-agent
learning in games. Starting from the pioneer work of [DDK11], a long line of works propose
uncoupled learning dynamics with O(1) regret in zero-sum games [RS13] and more generally
variationally stable games [HAM21], and O(poly(log T )) (swap) regret even in general-sum normal-
form games [DFG21; Ana+22a; Ana+22b; SPF25] and Markov games [Cai+24b; Mao+24]. However,
guarantees for the stronger (worst-case) dynamic regret remain underexplored. It is worth noting that
in the adversarial setting, achieving even sublinear dynamic regret is impossible. As a corollary of
our O(log d · T−1) last-iterate convergence rate, A2L-OMWU guarantees that each player suffers only
O(log d · log T ) dynamic regret, an exponential improvement on the dependence on d [CZ23b].

Last-Iterate Convergence with Gradient Feedback Two classic methods that exhibit last-iterate
convergence are the Extra Gradient (EG) algorithm [Kor76] and the Optimistic Gradient (OG)
algorithm [Pop80], which are optimistic variants of vanilla gradient descent. Both algorithms are
known to converge asymptotically in the last iterate, but their convergence rates remained open until
recently, highlighting the challenge of analyzing last-iterate convergence rates. [Wei+21] established
problem-dependent linear convergence rates for OG. Tight O(1/

√
T ) last-iterate convergence rates

for both EG and OG were subsequently established by [COZ22; GTG22], matching the lower bounds
from [Gol+20; GPD20].

Although the O(1/
√
T ) rate is tight for EG and OG, these algorithms are not optimal among

first-order methods. By leveraging anchoring-based acceleration techniques from the optimization
literature [Hal67], accelerated versions of EG and OG have been proposed to achieve an O(1/T )
last-iterate convergence rate [Dia20; YR21; CZ23b; CZ23a; COZ24]. This matches the lower bounds
for all first-order methods [OX21; YR21]. We note that all these results incur a poly(d) dependence.
In contrast, our algorithm achieves exponentially better dependence on d.

In addition to optimism, regularization is another effective technique for achieving last-iterate
convergence. By adding a regularization term, the original game becomes strongly monotone,
enabling standard gradient-based algorithms to achieve linear last-iterate convergence—albeit on
the modified game. Setting the regularization strength to O(ε) yields an iteration complexity of
O(log(1/ε)/ε) for computing an ε-approximate Nash equilibrium [CWC21; CWC24], corresponding
to an O(log T/T ) convergence rate. However, this approach has key limitations: it requires calibrating
the regularization strength based on the total number of iterations T , and the resulting convergence
guarantee applies only to the final iteration. It does not satisfy the stronger criterion of anytime last-
iterate convergence. This distinction is crucial: without the anytime guarantee, a trivial workaround
exists—one can run any no-regret algorithm for T − 1 steps and output the average iterate at step T .
Moreover, only anytime guarantees give individual dynamic regret guarantees.

While a diminishing regularization schedule does yield anytime last-iterate convergence, it leads to a
slower convergence rate Õ(T−1/4) rate [PZO23]. With an additional assumption on the regularized
Nash equilibrium, [ZDR22] obtained a O(T−1/3) last-iterate convergence rate. One might wonder
whether more aggressive schedules, such as the doubling trick, could improve this. However,
it remains unclear whether such methods guarantee true anytime convergence.2 In contrast, our
algorithm achieves anytime last-iterate convergence without requiring prior knowledge of the time
horizon, and it attains the optimal O(1/T ) rate, eliminating the extra logarithmic factor.

We also remark that there is a line of work on last-iterate convergence under noisy gradient feed-
back [Hsi+22]. [ASI22; Abe+23; Wu+25] design algorithms based on perturbation and show
last-iterate convergence to a stationary point near a Nash equilibrium in both gradient and noisy

2[Liu+23] uses the doubling trick to establish a Õ(T−1) last-iterate convergence rate for the output policy of
the algorithm (which generally differs from the day-to-day policy the players use to interact with each other).
This is a weaker notion of last-iterate convergence than the one considered in this paper, which concerns the
convergence of the day-to-day policy.
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gradient feedback. [Abe+23] also show asymptotic convergence to an exact Nash equilibrium by
adaptively adjusting the perturbation. For non-asymptotic convergence rates, [Abe+24] establish a
Õ(T−1/10) last-iterate convergence rate, which is improved to Õ(T−1/7) by [Abe+25] recently.

Last-Iterate Convergence with Bandit Feedback Compared to gradient feedback, achieving
last-iterate convergence under bandit feedback (i.e., payoff-based feedback) is significantly more
challenging and remains less understood. [Cai+23] provides the first set of last-iterate convergence
results for uncoupled learning dynamics in two-player zero-sum (Markov) games. They propose
mirror-descent-based algorithms that achieve a high-probability convergence rate of Õ(T−1/8) and a
rate of Õ(T−1/6) in expectation. Concurrently, [Che+23; Che+24] introduce best-response-based
algorithms with an expected Õ(T−1/8) last-iterate convergence rate. A follow-up work [DWY24]
presents extensions to general monotone games. Our work improves upon these results by achieving a
high-probability Õ(T−1/5) rate, and our guarantees extend to the more general setting of multi-player
zero-sum polymatrix games.

Last-Iterate Convergence of OMWU The Optimistic Multiplicative Weights Update (OMWU) algo-
rithm [RS13; Syr+15] is a fundamental algorithm for learning in games. It achieves an O(1/T )
average-iterate convergence rate in two-player zero-sum games and guarantees O(log T ) individ-
ual regret even in general-sum games [DFG21; Ana+22a; SPF25]. For last-iterate convergence
in two-player zero-sum games, [DP19; HAM21] establish asymptotic convergence of OMWU, and
[Wei+21] proves a problem-dependent linear convergence rate under the assumption of a unique
Nash equilibrium. However, for worst-case uniform last-iterate convergence—without relying on
problem-dependent constants—[Cai+24a] recently proved an Ω(1) lower bound, showing that OMWU’s
last-iterate convergence can be arbitrarily slow.

2 Preliminaries

Notations We denote the d-dimensional probability simplex as ∆d := {x ∈ Rd : 0 ≤ xi ≤
1,
∑d

i=1 xi = 1}. The uniform distribution in ∆d is denoted as Uniform(d).

2.1 Games

An n-player game G = ([n], {Xi}, {ui}) consists of n players indexed by [n] := {1, 2, . . . , n}. Each
player i selects a strategy xi from a closed convex set Xi ⊆ Rdi . We refer to d := maxi∈[n] di
as the dimensionality of the game. Given a strategy profile x = (xi, x−i), player i receives utility
ui(x) ∈ [0, 1]. A game is in normal-form if each player i has a finite number of di actions and given
an action profile a = (ai, a−i), the utility for player i is ui(a). In normal-form games, the strategy
set for each player u is the probability simplex Xi = ∆di , and given a strategy profile x, the expected
utility for player i is E∀i∈[n],ai∼xi

[ui(a1, . . . , an)].

We focus on games with linear utilities.
Assumption 1. A game G has linear utilities if for each player i,

• the utility function ui(xi, x−i) is linear in xi ∈ Xi

• the utility function ui(xi, x−i) is linear in x−i ∈ ×j ̸=iXj .

For such games, we define ui(·, x−i) ∈ Rdi to be the unique vector such that ui(x) = ⟨xi, ui(·, x−i)⟩.
We remark that Assumption 1 is weaker than assuming ui(x) is linear in the whole strategy profile
x ∈ ×iXi. As an example, the bilinear function u(x1, x2) = x⊤

1 Ax2 satisfies Assumption 1 since it
is linear in x1 and also linear in x2, but it is not linear in (x1, x2). This structure includes several
important game classes:
Example 1 (Two-Player Bimatrix Games). There are two players: the x-player chooses a mixed
strategy x ∈ ∆d1 , and the y-player chooses y ∈ ∆d2 . Let A,B ∈ Rd1×d2 be the payoff matrices. The
x-player’s utility is ux(x, y) = x⊤Ay, and the y-player’s utility is uy(x, y) = x⊤By. Two-player
bimatrix games satisfy Assumption 1 due to the bilinear structure of the utilities. A two-player
zero-sum game is a special case where A+B = 0.
Example 2 (Multi-Player Polymatrix Games). Polymatrix games [Jan68; How72] generalize bimatrix
games to multiple players by introducing networked interactions. The n players form the vertices of
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a graph G = ([n], E), where each edge (i, j) ∈ E represents a two-player bimatrix game between
players i and j with payoff matrices Ai,j and Aj,i. Each player i selects a strategy from ∆di and
plays the same strategy against all neighbors. Given a strategy profile x ∈ ×i∆

di , player i’s utility
is defined as

∑
j:(i,j)∈E x⊤

i Ai,jxj . A zero-sum polymatrix game [CD11; Cai+16] is a special case
where the total utility sums to zero, i.e.,

∑n
i=1 ui(x) = 0 for any strategy profile x.

Nash Equilibrium and Total Gap An ε-approximate Nash equilibrium of G is a strategy profile
x ∈ ×iXi such that no player i can deviate from xi and improve her utility by more than ε > 0,

ui(xi, x−i) ≥ ui(x
′
i, x−i)− ε, ∀i ∈ [n],∀x′

i ∈ Xi.

When ε = 0, the strategy profile is a Nash equilibrium. We note that games with linear
utilities have at least one Nash equilibrium [Nas50]. Given a strategy profile x, we use the
total gap to evaluate its proximity to Nash equilibria. Specifically, we define TGAP(x) :=∑n

i=1 (maxx′
i∈Xi

ui(x
′
i, x−i)− ui(x)). We note that by definition, if TGAP(x) ≤ ε, then x is

an ε-approximate Nash equilibrium. In two-player zero-sum games, the total gap is also known as
the duality gap.

2.2 Online Learning

Online Learning and Regret In an online learning problem, a learner repeatedly interacts with the
environment. At each time t ≥ 1, the learner chooses an action xt from a closed convex set X , while
the environment simultaneously selects a linear utility function. The learner then receives a reward
ut(xt) := ⟨ut, xt⟩ and observes some feedback. We focus on the gradient feedback setting, where
the learner observes ut; the more restricted bandit feedback setting is studied in Section 5.

The goal of the learner is to minimize the (external) regret, the difference between the cu-
mulative utility and the utility of the best fixed action in hindsight, defined as Reg(T ) :=

maxx∈X
∑T

t=1 u
t(x)−

∑T
t=1 u

t(xt). An online learning algorithm is no-regret if its regret is sub-
linear in T , that is, Reg(T ) = o(T ). We note that classic results show that Reg(T ) = O(

√
T ) can

be achieved and cannot be improved when utilities are chosen adversarially.

A stronger notion of regret is the (worst-case) dynamic regret [Zin03], which competes with the
utility achieved by the best actions in each iteration, defined as DReg(T ) :=

∑T
t=1 maxx∈X ut(x)−∑T

t=1 u
t(xt). We remark that when utilities are chosen adversarially, it is impossible to achieve

sublinear dynamic regret, that is, DReg(T ) = Ω(T ).

Convergence of Learning Dynamics For multi-agent learning dynamics in games, each player uses
an online learning algorithm to repeatedly interact with other players. At each time t, player i chooses
strategy xt

i, gets utility ui(x
t
i, x

t
−i), and receives the utility vector ut

i := ui(·, xt
−i) as feedback. For

any T ≥ 1, we denote the average iterate as xT := (xT
1 , . . . , x

T
n ) where xT

i = 1
T

∑T
t=1 x

t
i, and each

player i’s individual regret as Regi(T ). We show that the average iterate xT = 1
T

∑T
t=1 x

t has a total
gap bounded by 1

T

∑n
i=1 Regi(T ) for zero-sum polymatrix games (a generalization of the classic

result of [FS99] for zero-sum bimatrix games). Thus, as long as each player has sublinear regret,
average-iterate convergence to Nash equilibria is guaranteed. The proof is in Appendix A.
Lemma 1 (Average-Iterate Convergence by Bounding Regret). Let {xt} be the iterates of an online
learning dynamics in a zero-sum polymatrix game. Define xT = 1

T

∑T
t=1 x

t to be the average iterate
for all T ≥ 1. Then the total gap of the average iterate xT for any T ≥ 1 is

TGAP(xT ) := max
x∈×∆di

n∑
i=1

ui(xi, x
T
−i)− ui(x

T ) =
1

T

n∑
i=1

Regi(T ).

However, the convergence of the average-iterate sequence {xt} does not imply the convergence of the
last-iterate {xt}, which is the real strategy played by the agents. Even worse, many online learning
algorithms diverge and exhibit cycling or chaotic behavior even in simple two-player zero-sum
games [MPP18; BP18; DP18].

Optimistic Multiplicative Weights Update (OMWU) The OMWU algorithm [RS13; Syr+15] is
an optimistic variant of the classic Multiplicative Weights Update (MWU) algorithm [AHK12] with
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the only modification that the most recent utility observation is counted twice. In each time t ≥ 1,
OMWU with steps size η > 0 chooses the strategy xt ∈ ∆d to be

xt = argmax
x∈∆d

{〈
x,
∑
k<t

uk + ut−1

〉
− 1

η
ϕ(x)

}
,

where we define u0 := 0 and ϕ is the negative entropy regularizer. The OMWU updates also admits
a closed-form expression:

xt[i] =
exp (η(

∑
k<t u

k[i] + ut−1[i]))∑d
j=1 exp (η(

∑
k<t u

k[j] + ut−1[j]))
,∀i ∈ [d].

OMWU has been extensively studied in the online learning and game theory literature [RS13; Syr+15;
Das+18; CP20; Wei+21; DFG21; Cai+24a; SPF25], with state-of-the-art individual regret guarantees
in zero-sum games and general-sum games. We will use the regret bounded by variation in utility
(RVU) property of OMWU throughout the paper.
Theorem 1 (Proposition 7 of [Syr+15]). The regret of OMWU for a sequence of utilities {ut} satisfies

Reg(T ) = max
x∈∆d

T∑
t=1

〈
ut, x− xt

〉
≤ log d

η
+ η

T∑
t=1

∥∥ut − ut−1
∥∥2
∞ −

1

4η

T∑
t=1

∥∥xt − xt−1
∥∥2
1
.

Lemma 2 (Adapted from Theorem 4 of [Syr+15]). In a n-player normal-form game, let x and x′ be
two strategy profiles. Then

∑n
i=1 ∥ui(·, x−i)− ui(·, x′

−i)∥
2

∞ ≤ (n− 1)2
∑n

i=1 ∥xi − x′
i∥

2
1.

3 A Reduction From Last-Iterate to Average-Iterate

In this section, we introduce a black-box reduction that transforms any online learning algorithm into
a new one such that, when employed in a game with linear utilities (Assumption 1), the produced
iterates exactly match the averaged iterates produced by the original algorithm.

Specifically, consider an n-player game G, where each player i employs an online learning algorithm
Ri and generate iterates {x̂t}. We propose a reduction, A2L (Algorithm 1), and let each player i
employs A2L(Ri), generating a new sequence {xt}. We show that for any t ≥ 1, xt = 1

k

∑t
k=1 x̂

k;
that is, the last iterate of {xt} equals the running average of {x̂t}.
The intuition of the reduction is as follows. Given any algorithmR, A2L(R) runsR as a subroutine
and gets a strategy xt in every iteration t. We note that the sequence {xt} is produced internally in
the reduction and not played by the players. A2L(R) plays the averaged strategy xt = 1

t

∑t
k=1 x

k

and gets the gradient feedback ut. To show that the last iterate of {xt} equals the running average of
{x̂t}, it suffices to prove that x̂t = xt. The next step is the key observation: when all players employ
this reduction and play the running average, they can recover/extract the unseen utility vector ut =
ui(·, xt) under strategy xt (which is not played) by the identity ut = tut − (t− 1)ut−1, which holds
due to the linearity of the utility (Assumption 1). Then A2L(R) forwards this recovered utility toR.
SinceR receives the same utilities when played alone or as a subroutine in A2L(R), we can conclude
that the iterates {x̂t} equal the internal iterates of {xt}. Thus xt = 1

t

∑t
k=1 x

k = 1
t

∑t
k=1 x̂

k. A
formal proof using induction is provided later in this section. We also provide an illustration of the
A2L reduction for a two-player zero-sum game maxx miny xAy (Example 1) below, where we use
the subscripts x and y to denote the corresponding quantities for the two players.

ut−1
x

ut−1
y

Rx
xt

Average x̄t

Ry

yt
Average

ȳt A ut
y = −A⊤x̄t

ut
x = Aȳt

Extract

Extract

ut
x Rx

xt+1

ut
y
Ry

yt+1 · · ·· · ·

A2L: Black Box

A key feature of this reduction is that it preserves uncoupledness: each player only observes their
own utility, without access to other players’ strategies, or any form of communication or shared
randomness.
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Algorithm 1: A2L: Black-Box Reduction from Average to Last-Iterate
Input: An online learning algorithmR

1 for t = 1, 2, . . . , do
2 Get xt fromR
3 Play x̄t = 1

t

∑t
k=1 x

k and receive ut ▷ Play the running average iterates

4 Compute ut = t · ut −
∑t−1

k=1 u
k ▷ Recover the unseen utility

5 Forward utility ut toR

Theorem 2. Consider any n-player game G that satisfies Assumption 1). Let {x̂t
i : i ∈ [n], t ∈ [T ]}

be the iterates generated by each player i runningRi, and let {x̄t
i : i ∈ [n], t ∈ [T ]} be the iterates

generated by running A2L (Ri). Then for all i ∈ [n] and t ∈ [T ], we have x̄t
i =

1
t

∑t
k=1 x̂

k
i .

Proof of Theorem 2. Note that A2L (Ri) uses Ri as a subroutine. Let {xt
i} denote the strategies

produced by Ri during the execution of A2L (Ri). By Line 3, we have x̄t
i = 1

t

∑t
k=1 x

k
i ,∀i ∈

[n], t ∈ [T ]. Hence, it suffices to show that xt
i = x̂t

i for all i ∈ [n], t ∈ [T ].

We prove this by induction on t. Let the induction hypothesis be: for all k ≤ t and all i ∈ [n], we
have xk

i = x̂k
i and uk

i = ui(·, xk
−i).

Base Case: t = 1. Initialization ensures x1
i = x̂1

i for all i ∈ [n]. By Lines 3 and 4, we also have
u1
i = u1

i = ui(·, x1
−i) = ui(·, x1

−i) = ui(·, x̂1
−i).

Induction Step: Suppose the hypothesis holds for t. Then for all k ≤ t and i ∈ [n], we have
uk
i = ui(·, xk

−i) = ui(·, x̂k
−i). Since Ri’s output at time t + 1 depends only on the sequence

{uk
i }1≤k≤t, we get xt+1

i = x̂t+1
i for all i.

At time t+ 1, each player i in A2L (Ri) plays x̄t+1
i = 1

t+1

∑t+1
k=1 x

k
i . Then each player i receives

the utility vector

ut+1
i = ui

(
·, 1

t+ 1

t+1∑
k=1

xk
−i

)
=

1

t+ 1

t+1∑
k=1

ui(·, xk
−i), (by linearity of ui (Assumption 1)).

Then, ut+1
i = (t+1) ·ut+1

i −
∑t

k=1 u
k
i =

∑t+1
k=1 ui(·, xk

−i)−
∑t

k=1 ui(·, xk
−i) = ui(·, xt+1

−i ). Thus,
the induction hypothesis holds for t+ 1.

By induction, xt
i = x̂t

i for all i and t, and so x̄t
i =

1
t

∑t
k=1 x

k
i = 1

t

∑t
k=1 x̂

k
i .

Discussion on Limitations We discuss some limitations of our reduction compared to existing
algorithms with last-iterate convergence guarantees, such as Extra Gradient (EG), Optimistic Gradient
(OG), and their variants. Our reduction relies on the linear utility assumption (Assumption 1), which
includes important classes of games such as multi-player polymatrix games, but does not extend
to settings with concave utilities—such as convex-concave min-max optimization—where EG and
OG are known to achieve last-iterate convergence [COZ22]. Moreover, since our approach reduces
last-iterate convergence to average-iterate convergence, it inherently requires computing the running
average of iterates. In contrast, algorithms like EG and OG do not involve such averaging procedures.
Nonetheless, our reduction offers a simple and broadly applicable method for achieving last-iterate
convergence in games with linear utilities, and it yields state-of-the-art convergence rates under both
gradient and bandit feedback settings (see Sections 4 and 5).

Extension to Games with Nonlinear Utilities The core idea of A2L reduction lies in extracting
the unseen feedback of ut from the observed feedback ut, for which Assumption 1 is sufficient but
not necessary. For example, in Appendix B, we show that A2L is also applicable to Proportional
Response Dynamics (PRD) in Fisher markets where Assumption 1 does not hold. We obtain O(1/T )
last-iterate convergence rate for PRD in markets with Gross Substitutes utilities, improving [CCT25]
which only shows an average-iterate convergence. We defer a detailed background on Fisher market
and discussion on why A2L works to Appendix B. We believe that there are other similar examples
where A2L applies even without Assumption 1.
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Comparision with [Cut19] Our work is related to [Cut19], which proposes a reduction called
anytime online-to-batch (AO2B) and achieves last-iterate convergence in offline convex optimization.
While our A2L reduction and the AO2B reduction share the idea of playing the average of previous
iterates, they differ significantly in several key aspects:

• Problem setting: AO2B is designed for static optimization, where the loss function remains fixed
across rounds. A2L, on the other hand, applies to a dynamic multi-agent game setting, where each
player’s loss function changes over time due to the changing actions of other players.

• Objective: AO2B aims to solve a single offline optimization problem with improved convergence
rates and does not guarantee equivalence between the last iterate of the new learning algorithm
and the average iterate of the original algorithm (since the gradient feedbacks are different). In
contrast, A2L aims to establish the equivalence between the last iterate of the new dynamics and
the averaged iterate of the original dynamics.

• Use of gradient: In AO2B, the learner updates directly using the gradient at the average iterate
xt = 1

t

∑t
k=1 x

k. In contrast, A2L requires post-processing the gradient feedback to recover the
true gradient at the original iterate xt, as shown in Line 4 of Algorithm 1.

Weighted Version of A2L The A2L reduction naturally extends to the weighted averaging setting,
provided all players agree on the weights {αt} in advance and incorporate them into the reduction.
More specifically, in each iteration t, each player plays the weighted average of their past iterates
xt
i =

1∑t
k=1 αk

∑t
k=1 αkx

k
i . Due to the linearity of utilities, the gradient feedback can still be used to

recover the gradient corresponding to the original iterate xk, and the A2L reduction in Algorithm 1
is the special case of {αt = 1}. As a result, the last iterate of the new dynamics corresponds to the
weighted average in the original dynamics. The correctness follows the same steps as in Theorem 2.
This weighted version of A2L provides additional flexibility and can be beneficial in practice. For
example, for regret matching [Tam14], an algorithm widely used for solving large-scale games like
poker [BS18; BS19], linear averaging (i.e., αt = t) often empirically outperforms uniform averaging,
despite having the same theoretical rate.

4 Learning in Zero-Sum Games with Gradient Feedback

In this section, we show that our reduction gives uncoupled learning dynamics with improved
last-iterate convergence rates in two-player zero-sum games and zero-sum polymatrix games.

We apply our reduction to the Optimistic Multiplicative Weights Update (OMWU) algorithm, which
has been extensively studied in the literature [RS13; Syr+15; Das+18; CP20; Wei+21; DFG21;
Cai+24a; SPF25]. For d-dimensional two-player zero-sum games, while a recent result [Cai+24a]
shows that OMWU’s last-iterate convergence can be arbitrarily slow, it is well-known that OMWU
achieves an O( log d

T ) average-iterate convergence rate [RS13]. Now let us denote the algorithm
after A2L reduction as A2L-OMWU. By Theorem 2 and Lemma 1, we get O(log d · T−1) last-iterate
convergence rate result of A2L-OMWU (Theorem 3). As a corollary of our fast last-iterate convergence
rates, A2L-OMWU also guarantees that each player’s individual dynamic regret is only O(log d log T ).
Missing proofs in this section are in Appendix C.
Theorem 3. Let {xt} be the iterates of A2L-OMWU learning dynamics in an n-player zero-sum
polymatrix game with step size η ≤ 1

2(n−1) . Then for any T ≥ 1, xT is an (
∑n

i=1 log di

ηT )-approximate
Nash equilibrium.

Corollary 1. In the same setup as Theorem 3, for any player i ∈ [n], DRegTi = O(
∑n

i=1 log di

η log T ).

To our knowledge, our results give the fastest last-iterate convergence rates for learning in zero-
sum games. Compared to the accelerated optimistic gradient (AOG) algorithm [CZ23b] which has
O(poly(d)T ) last-iterate convergence rates, our results achieves the same optimal 1

T dependence while
improve exponentially on the dependence on the dimension d. Compared to the entropy regularized
extragradient algorithm [CWC21; CWC24], which achieves O( log d log T

T ) last-iterate convergence
rate, our results do not require regularization and shave the log T factor. Moreover, our results and
those of [CZ23b] are stronger anytime convergence results that holds for every iterate T ≥ 1, while
results in [CWC21; CWC24] hold only for the final iterations and require knowing the total number
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of iterations T in advance for tuning the regularization parameter (as mentioned in Section 1.1, a
trivial solution exists for such weaker guarantees), thus with no dynamic regret guarantee.

Robustness against Adversaries In the case where other players are adversarial and may not
follow the A2L-OMWU algorithm, a simple modification can ensure sublinear regret for the player.
Specifically, the player can track their cumulative utilities and regret up to time T , and if the regret
exceeds Ω(log T )—which cannot happen if all players follow A2L-OMWU —they can switch to a
standard no-regret algorithm that guarantees O(

√
T ) regret in the worst case.

5 Learning in Zero-Sum Games with Bandit Feedback

In this section, we show the application of our reduction for uncoupled learning dynamics in zero-sum
games with bandit feedback. Unlike the gradient feedback setting, where each player observes the
utility of every action, the bandit feedback setting is more realistic and much harder. Specifically, we
consider the following uncoupled interaction protocol: in each iteration t

• Each player i maintains a mixed strategy xt
i ∈ ∆di and plays an action ati ∼ xt

i;
• Each player i then receives a number ui(a

t) as feedback.

Importantly, a player only observes the utility of one action but not the whole utility vector. Also, a
player does not observe the actions/strategies of other players.

Algorithm Design Ideally, we would like to have a bandit learning dynamics whose last iterates
are the average iterates of another bandit learning dynamics. This would give a O(T− 1

2 ) last-iterate
convergence rate since bandit algorithms have O(

√
T ) regret. However, the lack of utility vector

feedback prevents us from directly applying A2L reduction since we can no longer use the linearity to
recover the original utility when other players use the averaged strategies. To overcome this challenge,
we design A2L-OMWU-Bandit (Algorithm 2), where in addition to A2L, we add a new component
for estimating the utility vector from bandit feedback. With a sufficiently accurate estimation of the
utility vector, we can then use A2L as in the gradient feedback setting.

Algorithm 2: A2L-OMWU-Bandit: OMWU with bandit feedback and A2L reduction (for player
i)

1 Parameters: Step size η > 0, {Bt ≥ t4}, {εt = t−1}
2 Initialization: x1

i ← Uniform(di)); Û0
i = 0.

3 for t = 1, 2, . . . , do
4 xt

i ← 1
t

∑t
k=1 x

k
i

5 xt
i,ε ← (1− εt)x

t
i + εtUniform(di)

6 Sample actions from xt
i,ε for Bt rounds and compute Û t

i,ε as an estimate of ut
i,ε based on (1)

7 Computed estimated utility ût
i,ε ← t · Û t

i,ε − (t− 1) · Û t−1
i,ε

8 Update using OMWU: xt+1
i ← argmaxx∈∆di

{
⟨x,
∑

k≤t û
k
i,ε + ût

i,ε⟩ − 1
ηϕ(x)

}
.

Estimation To estimate the utility vector when each player only observes the reward after taking an
action, we let the each player use their current strategy to interact with each other for a sequence of
Bt rounds and then use the bandit feedback to calculate an estimated utility (Line 6). Let us denote
the sampled actions over the Bt rounds as {a1, . . . , aBt} and the corresponding bandit feedback as
{r1, . . . , rBT }. We use the following simple estimator for the utility vector:

Û t
i,ε[a] =

∑Bt

k=1 r
k · I[ak = a]∑Bt

k=1 I[ak = a]
,∀a. (1)

To encourage exploration, we also mix the strategy with εt amount of uniform distribution (Line 5) to
ensure that every action receives sufficient samples in each epoch.

Last-Iterate Convergence Rate In Algorithm 2, each iterate {xt
ε} is repeated Bt times within epoch

t. We will show that this sequence {xt
ε} enjoys a Õ(t−1) last-iterate convergence rate. Let {yk}
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denote the actual iterates executed by the players in every round k, which remains the same in each
epoch. When Bt = d · t4, we get the following Õ(d

1
5 k−

1
5 ) last-iterate rate of {yk}. If the maximal

number of actions d is unknown to the players in a fully uncoupled setting, we can choose Bt = t4

and get an Õ(dk−
1
5 ) convergence rate.

Theorem 4. Consider an n-player zero-sum polymatrix game and denote d := maxi∈[n] di. Let
{yk} be the iterates generated by all players running A2L-OMWU-Bandit with η ≤ 1

6n , then for
any δ ∈ (0, 1), with probability at least 1−O(nd3δ), for any k ≥ 1, yk is an βk-approximate Nash
equilibrium with

βk = O

(
n log2(dkδ )

η
· d 1

5 k−
1
5

)
when Bt = d · t4 or βk = O

(
n log2(dkδ )

η
· dk− 1

5

)
when Bt = t4.

To our knowledge, Õ(T− 1
5 ) is the fastest last-iterate convergence rate of uncoupled learning dynamics

in zero-sum polymatrix games, improving the previous Õ(T− 1
8 ) (high-probability) and Õ(T− 1

6 )
(expectation) rates for two-player zero-sum games [Cai+23].

Technical highlight The main challenge in analyzing the last-iterate convergence rate of Algorithm 2
lies in handling the estimation error. Let ∆t

i = Û t
i,ε − ut

i,ε denote the estimation error from Line 6. A
naive analysis leads to a summation of first-order error terms, O(

∑T
t=1 ∥t∆t

i∥), which results in a
suboptimal Õ(T−1/7) rate. To improve this, we introduce a refined analysis that carefully balances
the error terms with the negative terms in the RVU inequality (Theorem 1), resulting in a summation
of second-order error terms, O(

∑T
t=1 ∥t∆t

i∥2) (see Lemma 3). This sharper analysis ultimately
yields an improved Õ(T−1/5) convergence rate. The full proof is provided in Appendix D.

Discussion Our results also reveal an intriguing distinction between the gradient and bandit feedback
settings. In the gradient feedback case, while our reduction improves the dependence on the dimension
d, it achieves the same O(T−1) convergence rate as existing algorithms such as the accelerated
optimistic gradient (AOG) algorithm [CZ23b]. This might suggest that applying a similar utility
estimation procedure to AOG would also yield an Õ(T−1/5) rate under bandit feedback. However,
the analyses of these two types of algorithms diverge significantly in the presence of estimation error:

For AOG, establishing last-iterate convergence requires proving the (approximate) monotonicity
of a carefully designed potential function at every iteration. This sensitivity to estimation error
leads to error propagation and ultimately a slower rate: we did not manage to get a rate faster
than Õ(T−1/8) [Cai+23]. In contrast, our reduction—by transforming last-iterate convergence into
average-iterate convergence—only requires analysis on the regret, which is simpler, less sensitive,
and gives the improved Õ(T−1/5) rate. This suggests an advantage of our A2L reduction over
existing algorithms in the bandit feedback setting. Nevertheless, it remains an interesting open
question whether one can design uncoupled learning dynamics with fast convergence rates in the
bandit feedback setting using existing algorithms like AOG without relying on the A2L reduction.

Robustness against Adversaries When facing possibly adversarial opponents who may not follow
Algorithm 2, the player could still guarantee sublinear regret by running Algorithm 2 with an
additional regret estimation procedure. Whenever the player detects that her regret is Ω(T

4
5 )—which

can not happen when all the players employ Algorithm 2—she can switch to a standard bandit
algorithm with optimal regret. This modification guarantees Õ(T

4
5 ) regret in the worst-case. We

present the regret estimation procedure and the proof in Appendix E.

6 Conclusion

In this paper, we give a simple black-box reduction, A2L, that transforms the average iterates of an
uncoupled learning dynamics to the last iterates of a new uncoupled learning dynamics. By A2L
reduction, we present improved last-iterate convergence rates of uncoupled learning dynamics in
zero-sum polymatrix games: (1) O(log d · T−1) rate under gradient feedback, and (2) Õ(d

1
5T− 1

5 )
rate under bandit feedback. It is an interesting future direction to explore further applications of
the A2L reduction for learning in games. Other directions include designing uncoupled learning
dynamics for more general games like Markov games and time-varying games with faster last-iterate
convergence rates under bandit feedback.
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A Proof of Lemma 1

Proof. By the zero-sum property and the linearity of the utility, we have

max
x∈×∆di

n∑
i=1

ui(xi, x
T
−i)− ui(x

T )

=

n∑
i=1

max
xi∈∆di

ui(xi, x
T
−i) (

∑n
i=1 ui(x

T ) = 0)

=
1

T

n∑
i=1

max
xi∈∆di

T∑
t=1

ui(xi, x
t
−i) (Linearity of ui and xT

−i =
1
T

∑T
t=1 x

t
−i)

=
1

T

n∑
i=1

(
max

xi∈∆di

T∑
t=1

ui(xi, x
t
−i)−

T∑
t=1

ui(x
t)

)
(
∑n

i=1 ui(x
t) = 0 for all t)

=
1

T

n∑
i=1

Regi(T ).

This completes the proof.

B A2L Reduction for Proportional Response Dynamics in Fisher Markets

The Fisher market is a classic model of allocating divisible goods, a special case of the Arrow-Debreu
market. In a Fisher market, there are m agents and n divisible goods. Each agent i ∈ [n] has a
budget Bi > 0 and each good j ∈ [m] has a unit supply. Each agent i also has a utility function
ui : Rm

≥0 → R such that ui(xi) is her utility of receiving the bundle xi ∈ Rm
≥0 where xij ≥ 0 is the

amount of good j. Here we do not assume ui is linear.

A price vector p ∈ Rm
≥0 specifies a price pj > 0 for each good j. A Competitive Equilibrium (CE)

of a Fisher market is a pair of price vector and personalized allocations (p, {xi}) that satisfies the
following properties:

1. Budget Feasible: ⟨p, xi⟩ ≤ Bi for each agent i.

2. Utility Maximizing: ui(xi) = maxyi∈Rm
≥0

:⟨p,yi⟩≤ei ui(yi) for each agent i.

3. Market Clears:
∑

i xij ≤ 1 for each good j and
∑

i xij = 1 if pj > 0.

The proportional response dynamics (PRD) is a distributed, independent dynamics leading to a CE in
Fisher market. PRD works as follows:

• Budget Spending: each agent i decides the allocation of her budget bti, where btij is her
spending on good j. It must hold that

∑
j b

t
ij = ei.

• Goods allocation: the amount of good j allocated to agent i is proportional to their spending:

xt
ij =

btij∑
i b

t
ij

. Moreover, the price of each good j is defined as the sum of agents’ spending

ptj =
∑

i′ b
t
i′j .

• Update: Based on the allocation xt
i, each agent i then updates their spending of budget bt+1

i
in the next round using the following rule:

btij = Bi

xt
ij∇jui(x

t
i)∑

j′ x
t
ij′∇j′ui(xt

i)
.

Although it has been shown that the price vector {pt} converges to a Market equilibrium price
vector for Fisher markets in many settings including linear utilities [WZ07; BDX11], PRD for Fisher
markets with Gross Substitutes utilities has a O(1/T ) convergence rate only in terms of the average
price { 1t

∑t
k=1 p

k}, but not the last iterate price {pt} [CCT25].
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A2L-PRD for Last-Iterate Convergence We note that in PRD, the only feedback needed for their

update is her allocation xt
i, where good j’s allocation xt

ij =
btij∑
i′ b

t
i′j

is proportional according to every

agent’s spending. Here, the key observation is that the feedback in PRD, xt
i, has a nice proportional

structure with the spending bti despite each player having nonlinear utilities. We can then apply our
A2L reduction. We just let each agent spend their averaged budget allocation b̄ti =

1
t

∑t
k=1 b

k
i and

observe the induced allocation x̄t
i. Due to the proportional structure, each agent can recover the

original iterate {bti}i∈[n]’s allocation and then update according to the original PRD [CCT25]. In this
way, we get a modified A2L-PRD whose last-iterate price vectors is equivalent to the averaged price
vectors in the original PRD. The A2L-PRD enjoys O(1/T ) last-iterate convergence rate in the price
vectors.

C Last-Iterate Convergence with Gradient Feedback

C.1 Proof of Theorem 3

Proof. Let {xt} be the iterates of OMWU dynamics with η. Recall that we denote ut
i := ui(·, xt

−i).
By Theorem 1, we have

n∑
i=1

Regi(T ) ≤
∑n

i=1 log di
η

+

n∑
i=1

T∑
t=1

(
η
∥∥ut

i − ut−1
i

∥∥2
∞ −

1

4η

∥∥xt
i − xt−1

i

∥∥2
1

)
≤
∑n

i=1 log di
η

,

where we use Lemma 2 and η ≤ 1
2(n−1) in the last inequalty. Invoking Lemma 1, the average-iterate

has total gap bounded by TGAP(xT ) ≤
∑n

i=1 log di

ηT for all T . By the A2L reduction guarantee in
Theorem 2, we conclude the proof.

C.2 Proof of Corollary 1

Proof. By Theorem 3, we know xt is an
∑n

i=1 log di

ηt -approximate Nash equilibrium for any t ≥ 1.
Thus, the dynamic regret of any player i ∈ [n] is bounded by

DRegTi =

T∑
t=1

(
max

xi∈∆di

ui(xi, x
t
−i)− ui(x

t)

)
≤

T∑
t=1

∑n
i=1 log di
ηt

= O

(∑n
i=1 log di

η
log T

)
.

This completes the proof.

D Last-Iterate Convergence with Bandit Feedback

D.1 Analysis of Regret with Estimation Error

We first analyze the sequence {xt} generated in the subroutine (Line 8) of Algorithm 2, which is
updated according to OMWU with the estimated utility sequence {ût

ε}.

We define ∆t
i := Û t

i,ε − ut
i,ε as the error of estimation in Line 6. The error of estimation for ut

i,
denoted as δti := ût

i,ε − ut
i, can be bounded as follows.

Proposition 1. For any t ≥ 1 and i, ∥δti∥∞ ≤ ∥t∆t
i∥+ ∥(t− 1)∆t−1

i ∥+ 2εt. This further implies

∥δti∥
2
∞ ≤ 3∥t∆t

i∥
2
+ 3∥(t− 1)∆t−1

i ∥2 + 12ε2t .

Proof. Let us define ui,unif := ui(·,U−i) the utility vector of i when other players use the uniform
strategy. Since the utility ui(xi, x−i) is linear in x−i, we have

ut
i,ε = ui(·, xt

−i,ε) = (1− εt)u
t
−i + εtui,unif ,∀t.
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Using the above equality and the definition of ∆t
i and δti , as well as εt = t−1, we have

t∆t
i − (t− 1)∆t−1

i

= t · Û t
i,ε − (t− 1) · Û t−1

i,ε − t · ut
i,ε + (t− 1) · ut−1

i,ε

= ût
i,ε − t ·

(
(1− εt)u

t
i + εtui,unif

)
+ (t− 1) ·

(
(1− εt−1)u

t−1
i + εt−1ui,unif

)
= ût

i,ε − (1− εt)

t∑
k=1

uk
i + (1− εt−1)

t−1∑
k=1

uk
i

= ût
i,ε − ut

i + εtu
t
i + (εt − εt−1)

t−1∑
k=1

uk
i

= δti + εtu
t
i + (εt − εt−1)

t−1∑
k=1

uk
i . (2)

Since ∥uk
i ∥∞ ≤ 1 for all k, the above equality implies∥∥δti∥∥∞ ≤ ∥∥t∆t

i

∥∥+ ∥∥(t− 1)∆t−1
i

∥∥+ εt + (t− 1)(εt − εt−1)

=
∥∥t∆t

i

∥∥+ ∥∥(t− 1)∆t−1
i

∥∥+ 2εt.

We then apply the basic inequality (a+ b+ c)2 ≤ 3(a2 + b2 + c2) to bound ∥δti∥
2
∞. This completes

the proof.

In the following, we show that the regret against the original utility sequence {ut} can be bounded
by RVU terms with an additional summation of second-order error terms. We remark that a naive
analysis would lead to a summation of first-order terms, which gives a suboptimal convergence rate.
Lemma 3. Let {xt

i} be the iterates of OMWU with step size η > 0 and utilities {ût
i}, we have

max
xi∈∆di

T∑
t=1

〈
ut
i, x

t
i − xi

〉
≤ log di

η
+ 4η

T∑
t=1

∥∥ut
i − ut−1

i

∥∥2
∞ −

1

8η

T∑
t=1

∥∥xt
i − xt−1

i

∥∥2
1

+ 2
∥∥T∆T

i

∥∥
∞ + 26η

T−1∑
t=1

∥∥t∆t
i

∥∥2
∞ + 2

T∑
t=1

εt + 16π2η.

Proof. Analysis By RVU property of OMWU (Theorem 1), we can bound the regret for the estimated
utilities {ût

i,ε}: ∀x ∈ ∆di ,

T∑
t=1

〈
ût
i,ε, xi − xt

i

〉
≤ log di

η
+ η

T∑
t=1

∥∥ût
i,ε − ût−1

i,ε

∥∥2
∞ −

1

4η

T∑
t=1

∥∥xt
i − xt−1

i

∥∥2
1

Then by definition of ût
i,ε = ut

i + δti , we can bound the regret for the true utilities {ut
i} by

T∑
t=1

〈
ut
i, xi − xt

i

〉
≤ log di

η
+ 4η

T∑
t=1

∥∥ut
i − ut−1

i

∥∥2
∞ −

1

4η

T∑
t=1

∥∥xt
i − xt−1

i

∥∥2
1

+

T∑
t=1

〈
δti , x

t
i − xi

〉
︸ ︷︷ ︸

I

+4η

T∑
t=1

(∥∥δti∥∥2∞ +
∥∥δt−1

i

∥∥2
∞

)
︸ ︷︷ ︸

II

. (3)

We note that the first three terms are standard terms in the RVU bound [Syr+15]. We focus on the
error terms I and II. The term II is a summation of second-order terms in ∥δti∥

2
∞ and we can bound

it using Proposition 1 and
∑∞

t=1 ε
2
t =

∑∞
t=1

1
t2 = π2

6 :

II = 4η

T∑
t=1

(∥∥δti∥∥2∞ +
∥∥δt−1

i

∥∥2
∞

)
≤ 24η

T∑
t=1

∥∥t∆t
i

∥∥2
∞ + 96η

T∑
t=1

ε2t ≤ 24η

T∑
t=1

∥∥t∆t
i

∥∥2
∞ + 16π2η.

(4)
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However, a naive analysis of term I leads to a summation of first-order terms: by Cauchy-Schwarz,
we have I ≤

∑T
t=1 ∥δti∥∞∥xt

i − xi∥1 ≤ 2
∑T

t=1 ∥δti∥∞ ≤ O(
∑T

t=1 ∥t∆t
i∥∞) + O(

∑T
t=1 εt). If

we tune the parameters optimally, the existence of the first-order error term O(
∑T

t=1 ∥t∆t
i∥∞) would

result in an O(T− 1
7 ) rate, worse than the claimed O(T− 1

5 ) rate.

Improved Analysis of Term I In the following, we give an improved analysis that bounds
term I by second-order error terms. The key is to rewrite term I and use the negative term
−
∑T

t=1 ∥xt
i − xt−1

i ∥21.

By (2), we have

δti = ût
i,ε − ut

i = t∆t
i − (t− 1)∆t−1

i − εtu
t
i − (εt − εt−1)

t−1∑
k=1

uk
i .

We note that ∥εtut
i − (εt − εt−1)

∑t−1
k=1 u

k
i ∥∞ ≤ 2εt as the utility is bounded in [0, 1]. This implies

I =

T∑
t=1

〈
δti , x

t
i − xi

〉
≤

T∑
t=1

〈
t∆t

i − (t− 1)∆t−1
i , xt

i − xi

〉
+

T∑
t=1

∥∥∥∥∥εtut
i − (εt − εt−1)

t−1∑
k=1

uk
i

∥∥∥∥∥
∞

·
∥∥xt

i − xi

∥∥
1
.

≤
〈
T∆T

i , x
T
i − xi

〉
+

T−1∑
t=1

〈
t∆t

i, x
t
i − xt+1

i

〉
+ 4

T∑
t=1

εt

≤ 2
∥∥T∆T

i

∥∥
∞ +

T−1∑
t=1

∥∥t∆t
i

∥∥
∞

∥∥xt
i − xt+1

i

∥∥
1
+ 4

T∑
t=1

εt.

As a result, we can combine − 1
8η

∑T
t=1 ∥xt

i − xt−1
i ∥21 and using basic inequality ⟨a, b⟩ − ∥b∥2 ≤

1
4∥a∥

2 to get

I− 1

8η

T∑
t=1

∥∥xt
i − xt−1

i

∥∥2
1
≤ 2
∥∥T∆T

i

∥∥
∞ +

T−1∑
t=1

∥∥t∆t
i

∥∥
∞

∥∥xt
i − xt+1

i

∥∥
1
− 1

8η

T∑
t=1

∥∥xt
i − xt−1

i

∥∥2
1
+ 4

T∑
t=1

εt

≤ 2
∥∥T∆T

i

∥∥
∞ + 2η

T−1∑
t=1

∥∥t∆t
i

∥∥2
∞ + 4

T∑
t=1

εt. (5)

Combining (3), (4), and (5), we get

max
xi∈∆di

T∑
t=1

〈
ut
i, x

t
i − xi

〉
≤ log di

η
+ 4η

T∑
t=1

∥∥ut
i − ut−1

i

∥∥2
∞ −

1

8η

T∑
t=1

∥∥xt
i − xt−1

i

∥∥2
1

+ 2
∥∥T∆T

i

∥∥
∞ + 26η

T−1∑
t=1

∥∥t∆t
i

∥∥2
∞ + 4

T∑
t=1

εt + 16π2η.

This completes the proof.
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D.2 Proof of Theorem 4

Recall that d = maxi∈[n] di. By Lemma 3, we can bound the social regret of all players with respect
to the iterates {xt} and utilities {ut} by

n∑
i=1

Regi(T, {xt
i}, {ut

i}) ≤
n log d

η
+

n∑
i=1

T∑
t=1

(
4η
∥∥ut

i − ut−1
i

∥∥2
∞ −

1

8η

∥∥xt
i − xt−1

i

∥∥2
1

)
︸ ︷︷ ︸

I

+

n∑
i=1

(
2
∥∥T∆T

i

∥∥
∞ + 26η

T−1∑
t=1

∥∥t∆t
i

∥∥2
∞

)
︸ ︷︷ ︸

II

+4n

T∑
t=1

εt + 16nπ2η. (6)

By Lemma 2 and the fact that η ≤ 1
6n , we have I ≤ 0.

In the following, we analyze term II and conclude the last-iterate convergence rate of Algorithm 2 for
{εt = t−1} and different choices of {Bt}. All these choices give an O(k−

1
5 ) last-iterate convergence

rate. The difference is that the choices {Bt = dt4} lead to better dependence on d or δ but require
knowledge about d or δ, while the choice of {Bt = t4} is fully uncoupled as each player does not
need to know even an upper bound of d.

Case 1: Bt = d · t4 We note that for T = O(log( 1δ )), it trivially holds that∑n
i=1 Regi(T, {xt

i}, {ut
i}) ≤ nT = O(n log( 1δ )). Thus x̄T is an O(

n log( 1
δ )

T )-approximate Nash
equilibrium for all T = O(log 1

δ ). In the following, we focus on T ≥ log( 1δ ).

By Lemma 5, we have with probability 1−O(nd3δ),

max
i∈[n]

∥∥∆t
i

∥∥
∞ ≤ 2

√
d log (Btt2

δ )

Btεt
,∀t ≥ log

(
1

δ

)
.

For t ≤ d log( 1δ ), we can use the trivial bound of ∥∆t
i∥∞ ≤ 1. Then we can bound term II by

II ≤ 4nT

√
d log (BTT 2

δ )

BT εT
+ 104nη

T−1∑
t=1

t2 · d log (Btt
2

δ )

Btεt
+ 26η log

(
1

δ

)
. (7)

Combining (6) and (7), and Bt = d · t4 and εt = t−1, we get
n∑

i=1

Regi(T, {xt
i}, {ut

i})

≤ n log d

η
+ 4nT

√
d log (BTT 2

δ )

BT εT
+ 104nη

T−1∑
t=1

t2 · d log (Btt
2

δ )

Btεt
+ 26η log

(
1

δ

)
+ 4n

T∑
t=1

εt + 16nπ2η

= O

(
n log2(dTδ )

η

)
.

By Lemma 1, we have the average iterate xT := 1
T

∑T
t=1 x

t is an O(
n log2( dT

δ )

ηT )-approximate Nash
equilibrium. Since εT = 1

T , then we know xT
ε := (1− εT )x

T + εT · ⊗n
i=1Uniform(di) is also an

O(
n log2( dT

δ )

ηT )-approximate Nash equilibrium for any T ≥ 1.

By the choice of the epoch length Bt = d · t4 , we have that the actual sequence {yk} generated by
A2L-OMWU-Bandit satisfies ykε = xtk

ε where tk = Θ(d−
1
5 k

1
5 ). Thus we can conclude that with

probability at least 1−O(nd3δ), it holds for all k ≥ 1 that yk is a βk-approximate Nash equilibrium
with

βk = O

(
n log2(kdδ )

η
· d 1

5 k−
1
5

)
.

This completes the proof.
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Case 2: Bt = t4 The proof is very similar to case 1. We note that for T = O(log( 1δ )), it

trivially holds that
∑n

i=1 Regi(T, {xt
i}, {ut

i}) ≤ nT = O(n log( 1δ )). Thus x̄T is an O(
n log( 1

δ )

T )-
approximate Nash equilibrium for all T = O(log 1

δ ). In the following, we focus on T ≥ log( 1δ ). By
item 2 in Lemma 5, with probability 1−O(nd3δ), for all t ≥ d log( 1δ ),

max
i∈[n]

∥∥∆t
i

∥∥
∞ ≤ 2

√
d log (Btt2

δ )

Btεt
.

For t ≤ log( 1δ ), we can use the trivial bound of ∥∆t
i∥∞ ≤ 1. These gives

II ≤ 4nT

√
d log (BTT 2

δ )

BT εT
+ 104nη

T−1∑
t=1

t2 · d log (Btt
2

δ )

Btεt
+ 26η log(

1

δ
). (8)

Now can combine (6) and (8) with Bt = t4 and εt = t−1 and get
n∑

i=1

Regi(T, {xt
i}, {ut

i})

≤ n log d

η
+ 4nT

√
d log (BTT 2

δ )

BT εT
+ 104nη

T−1∑
t=1

t2 · d log (Btt
2

δ )

Btεt
+ 26η log(

1

δ
) + 4n

T∑
t=1

εt + 16nπ2η

= O

(
nd log2(dTδ )

η

)
.

Compared to case 1, this regret bound has an additional d dependence.

Similar to the analysis in the former case, we have x̄T
ε is an O(

nd log2( dT
δ )

η )-approximate Nash
equilibrium for all T ≥ 1. By the choice of Bt = t4, we have that the actual sequence {yk} generated
by A2L-OMWU-Bandit satisfies ykε = xtk

ε where tk = Θ(k
1
5 ). Thus we can conclude that with

probability at least 1−O(nd3δ), it holds for all k ≥ 1 that yk is a βk-approximate Nash equilibrium
with

βk = O

(
n log2(dkδ )

η
· dk− 1

5

)
.

This completes the proof.

D.3 Estimation

In this subsection, we analyze the estimation error ∆t
i := Û t

i,ε − ut
i,ε for any i ∈ [n]. Recall that

d := maxi∈[n] di. Within the epoch of length Bt, with high probability, each action receives at least

Ω(Btεt
d ) samples. We have with high probability that |(Û t

i,ε − ut
i,ε)[a]| ≤ Õ(

√
d√

Btεt
) for all action a,

which implies ∥∆t
i∥∞ ≤ Õ(

√
d

Btεt
). The formal guarantees are as follows.

Lemma 4. In Algorithm 2, with probability 1− dδ
t2 − d exp (−Btε

2
t

2d2 ), we have

∥∥∆t
i,ε

∥∥
∞ =

∥∥∥Û t
i − ut

i

∥∥∥
∞
≤ 2

√
d log (Btt2

δ )

Btεt
.

Proof. Define N t
a :=

∑Bt

k=1 I[ak = a] to be the number of samples for action a. Since Pr[ak =

a] ≥ εt
di
≥ εt

d , we have E[N t
a] ≥ Btεt

d . By Hoeffding’s inequality, we have

Pr

[
N t

a ≤
Btεt
2d

]
≤ exp

(
−Btε

2
t

2d2

)
.

21



Thus with probability 1 − d exp (−Btε
2
t

2d2 ), every action has been sampled at least Btεt
2d times, i.e.,

N t
a ≥ Btεt

2d .

Note that the number of samples N t
a for action a is a random variable, so we can not directly use

Azuma-Hoeffding’s inequality to argue |Û t
i,ε[a] − ut

i,ε[a]| ≤
√

d log(1/δ)
Btεt

with probability 1 − δ.

We define a sequence of random variables where ak−i ∼ xt
−i,ε and rk = ui(a, a

k
−i), and define

Û t
m[a] := 1

m

∑m
k=1 r

k. Thus Û t
m is an unbiased estimator for ut

i,ε[a] for all m ∈ [1, Bt]. Then we
can use Azuma-Hoeffding’s inequality to get that

Pr

|Û t
i,ε[a]− ut

i,ε[a]| ≥

√
2 log (Btt2

δ )

N t
a


≤ Pr

∃m ∈ [Bt], |Û t
m[a]− ut

i,ε[a]| ≥

√
2 log (Btt2

δ )

m


≤

Bt∑
m=1

Pr

|Û t
m[a]− ut

i,ε[a]| ≥

√
2 log (Btt2

δ )

m


≤

Bt∑
m=1

δ

Btt2
=

δ

t2
.

Recall that with probability 1− d exp (−Btε
2
t

2d2 ), N t
a ≥ Btεt

2d for all a. By a union bound over actions,

we get with probability 1− dδ
t2 − d exp (−Btε

2
t

2d2 ),∥∥∥Û t
i,ε − ut

i,ε

∥∥∥
∞
≤ 2

√
d log (Btt2

δ )

Btεt
.

This completes the proof.

Using a union bound over all players i ∈ [n] and epoch t ≥ 1, we have the following guarantee.
Lemma 5. Consider a polymatrix game in which each player has at most d actions. Let {∆t

i =
U t
i,ε − ut

i,ε}t≥1 denote the estimation error vector produced by Algorithm 2 for player i at round t.
Suppose every player runs Algorithm 2 with Bt ≥ t4 and εt = t−1. Then, with probability at least
1−O(nd3δ), simultaneously for all players i ∈ [n] and all rounds t ≥ log( 1δ ),∥∥∆t

i

∥∥
∞ ≤ 2

√
d log (Btt2

δ )

Btεt
.

Proof. By Lemma 4, for each fixed player i ∈ [n] and round t ≥ 1, we have

Pr

∥∥∆t
i

∥∥
∞ > 2

√
d log (Btt2

δ )

Btεt

 ≤ dδ

t2
+ d exp

(
−Btε

2
t

2d2

)
.

Applying a union bound over all players i ∈ [n] and all rounds t ≥ log( 1δ ) gives that the claim holds
with probability at least

1− ndδ

∞∑
t=1

1

t2
− nd

∞∑
t=log( 1

δ )

exp

(
−Btε

2
t

2d2

)
.

We have
∑∞

t=1
1
t2 = O(1). With εt = t−1 and Bt ≥ t4, we have Btε

2
t ≥ t2, so the second

summation is bounded by

nd

∞∑
t=log( 1

δ )

exp

(
− t2

2d2

)
≤ ndδ

∞∑
t=1

exp

(
− t

2d2

)
≤ O(nd3δ).

So the overall failure probability is at most O(nd3δ). This completes the proof.
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E Robustness against Adversaries in the Bandit Setting

Consider the following utility estimation subroutine equipped with Algorithm 2. Here, we no longer
assume the other players employ the same algorithm, and they might behave adversarially. To this
end, in each epoch t, we denote the true utility vectors for player i as {ut,j

i ∈ [0, 1]di}j∈[Bt] and the
true accumulated utility within epoch t as

U t
i =

Bt∑
j=1

ut,j
i

In each epoch t, the player plays actions {at,j ∼ xt
i,ε} for j ∈ [Bt] and receives {rt,j =

ut,j
i [aj ]}j∈[Bt], it also maintains an importance weighted estimator of the accumulated utility within

epoch Bt:

ũt,j
i [b] =

rj · 1[b = aj ]

xt
i,ε[b]

,∀b ∈ [di], Ũ t
i =

Bt∑
j=1

ũt,j
i .

Denote Tt =
∑t

k=1 Bt, the player maintains estimated regret

R̃eg
Tt

= max
x∈∆di

t∑
k=1

〈
Ũk
i , x

〉
−

t∑
k=1

〈
Ũk
i , x

k
i,ε

〉
,

while the true regret is

RegT = max
x∈∆di

t∑
k=1

〈
Uk
i , x

〉
−

t∑
k=1

〈
Uk
i , x

t
i,ε

〉
.

Then we have the following

Proposition 2. Fix any δ > 0. With probability at least 1− δ, for any t ≥ 1 and Tt =
∑t

k=1 Bt, we
have

RegTt ∈

R̃egTt − 4di

√√√√ t∑
k=1

(k2Bk) log

(
π2dit

2

3δ

)
, R̃eg

Tt

+ 4di

√√√√ t∑
k=1

(k2Bk) log

(
π2dit

2

3δ

)
Proof. The importance weighed estimator is unbiased as E[ũt,j

i [b]] = ut,j
i [b] for all b ∈ [di]. More-

over, since xt
i,ε[b] ≥ 1

dit
, we have −1 ≤ ũt,j

i [b]− ut,j
i [b] ≤ dit. By Azuma-Hoeffdind inequality, we

have for any t ≥ 1 and b ∈ [di],

Pr

∣∣∣∣∣
t∑

k=1

(Ũk
i [b]− Uk

i [b])

∣∣∣∣∣ ≤ 2di

√√√√ t∑
k=1

(k2Bk) log

(
π2dit

2

3δ

) ≥ 1− 6δ

π2dit2
.

Using a union bound over t ≥ 1 and b ∈ [di] gives

Pr

∀t ≥ 1,

∥∥∥∥∥
t∑

k=1

(Ũk
i − Uk

i )

∥∥∥∥∥
∞

≤ 2di

√√√√ t∑
k=1

(k2Bk) log

(
π2dit

2

3δ

) ≥ 1− δ.

Since the |max v −max v′| ≤ ∥v − v∥∞, we can bound the error in regret estimation as

R̃eg
T
− 2

∥∥∥∥∥
t∑

k=1

(Ũk
i − Uk

i )

∥∥∥∥∥
∞

≤ RegT ≤ R̃eg
T
+ 2

∥∥∥∥∥
t∑

k=1

(Ũk
i − Uk

i )

∥∥∥∥∥
∞

.

This implies with probability at least 1− δ, for all t ≥ 1 and Tt =
∑t

k=1 Bk, we have

RegTt ∈

R̃egT − 4di

√√√√ t∑
k=1

(k2Bk) log

(
π2dit

2

3δ

)
, R̃eg

T
+ 4di

√√√√ t∑
k=1

(k2Bk) log

(
π2dit

2

3δ

).
This completes the proof.
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Choosing Bt = t4, we have Tt =
∑t

k=1 Bk = θ(t5) and t = Θ(T
1
5
t ). We have, with probability

1− δ, for all T ,

RegTt = R̃eg
Tt ±Θ

(
dit

3.5 log

(
dit

δ

))
= R̃eg

Tt ±Θ

(
diT

7
10
t log

(
diTt

δ

))
.

We note that for general T ∈ [Tt, Tt+1] (denote T0 = 1), we have Bt+1 = (t+ 1)4 = Θ(T
4
5
t )

RegT := max
x∈∆di

 t∑
k=1

〈
Uk
i , x

〉
+

T−Tt∑
j=1

〈
ut+1,j
i , x

〉−
 t∑

k=1

〈
Uk
i , x

k
i,ε

〉
+

T−Tt∑
j=1

〈
ut+1,j
i , xt+1

i,ε

〉
≤ RegTt +Bt+1

= R̃eg
Tt

+max

{
Θ
(
T

4
5
t

)
,Θ

(
diT

7
10
t log

(
diTt

δ

))}
= R̃eg

Tt

+max

{
Θ
(
T

4
5

)
,Θ

(
diT

7
10 log

(
diT

δ

))}
.

Thus whenever R̃eg
Tt

= O(T
4
5
t ), we have RegT = O(T

4
5 ) for all iterations T ∈ [Tt, Tt+1].

Robustness in Adversarial Setting The player could run Algorithm 2 and track its regret using

the above estimation R̃eg
Tt

at the end of each epoch t. Whenever she detects that R̃eg
Tt

= Ω(T
4
5
t ),

which cannot happen if all the players employ Algorithm 2, she can switch to a standard no-regret
bandit algorithm with worst-case optimal regret. This procedure guarantees a worst-case Õ(T

4
5 )

regret.
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Answer: [Yes]
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feedback. See the contribution paragraph in the introduction for details.
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• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We discuss the limitations of our reduction in Section 3.
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• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
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should reflect on how these assumptions might be violated in practice and what the
implications would be.
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address problems of privacy and fairness.
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will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
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Answer: [Yes]
Justification: We provide the full set of assumptions in the preliminaries and the statement
of each theoretical result. The compltete proofs of the theoretical results are in the main
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• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if
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• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.
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4. Experimental result reproducibility
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perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [NA]
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• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived
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whether the code and data are provided or not.
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to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

26
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• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
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• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [NA]
Justification: This paper does not include experiments.
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• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
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material.
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• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.
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• The answer NA means that the paper does not include experiments.
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or cloud provider, including relevant memory and storage.
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• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
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• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
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not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [NA]

Justification: This paper does not use existing assets.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the package

should be provided. For popular datasets, paperswithcode.com/datasets has
curated licenses for some datasets. Their licensing guide can help determine the license
of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
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• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: This paper does not release new assets.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: This paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: This paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
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Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: The core method development in this research does not involve LLMs as any
important, original, or non-standard components.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/
LLM) for what should or should not be described.

31

https://neurips.cc/Conferences/2025/LLM
https://neurips.cc/Conferences/2025/LLM

	Introduction
	Related Works

	Preliminaries
	Games
	Online Learning

	A Reduction From Last-Iterate to Average-Iterate
	Learning in Zero-Sum Games with Gradient Feedback
	Learning in Zero-Sum Games with Bandit Feedback
	Conclusion
	Proof of lemma:average-iterate
	A2L Reduction for Proportional Response Dynamics in Fisher Markets
	Last-Iterate Convergence with Gradient Feedback
	Proof of thm:last-gradient
	Proof of corollary:dynamic

	Last-Iterate Convergence with Bandit Feedback
	Analysis of Regret with Estimation Error
	Proof of thm:last-bandit
	Estimation

	Robustness against Adversaries in the Bandit Setting

