
FEEDBACK FRICTION: LLMs Struggle to
Fully Incorporate External Feedback

Dongwei Jiang∗† Alvin Zhang∗† Andrew Wang Nicholas Andrews Daniel Khashabi
djiang21@jhu.edu bzhang90@jh.edu

Johns Hopkins University
∗Equal contribution †Corresponding authors

Abstract

Recent studies have shown LLMs possess some ability to improve their responses
when given external feedback. However, it remains unclear how effectively and
thoroughly these models can incorporate extrinsic feedback. In an ideal scenario, if
LLMs receive near-perfect and complete feedback, we would expect them to fully
integrate the feedback and reach correct solutions. In this paper, we systematically
investigate LLMs’ ability to incorporate feedback by designing a controlled experi-
mental environment. For each problem, a solver model attempts a solution, then a
feedback generator with access to near-complete ground-truth answers produces
targeted feedback, after which the solver tries again. We evaluate this pipeline
across a diverse range of tasks, including math reasoning, knowledge reasoning,
scientific reasoning, and general multi-domain evaluations with state-of-the-art
language models including Claude 3.7 with extended thinking. Surprisingly, even
under these near-ideal conditions, solver models consistently show resistance to
feedback, a limitation that we term FEEDBACK FRICTION. To mitigate this limita-
tion, we experiment with sampling-based strategies like progressive temperature
increases and explicit rejection of previously attempted incorrect answers, which
yield improvements but still fail to help models achieve target performance. We
analyze FEEDBACK FRICTION and find that models’ confidence on specific ques-
tions, measured by semantic entropy, predicts feedback resistance: high-confidence
predictions remain resistant to external correction. We hope that highlighting this
issue in LLMs will help future research in self-improvement.

Models
Llama4-Maverick
Claude 3.7
Claude 3.7 Thinking

Error Categories
Feedback Resistance
Feedback Quality
Other

0 2 4 6 8 10
Iterations

20

40

60

80

100

Ac
cu

ra
cy

AIME

0 2 4 6 8 10
Iterations

70

80

90

100
TriviaQA

0 2 4 6 8 10
Iterations

60

70

80

90

100
GPQA

0 2 4 6 8 10
Iterations

60

80

100
MMLU Pro

100.0%
71.7%

28.3%

85.7%

14.3%

62.8%

30.8%

6.4%

Figure 1: Top: Accuracy of various solver models when iteratively exposed to feedback from a
feedback model (GPT-4.1 mini) with access to ground-truth answers. The horizontal dotted line
represents the target accuracy models could theoretically attain if they successfully incorporated all
valid feedback, excluding those with identified issues (details in §4.1). Despite receiving high-quality
feedback, solver models consistently plateau below their target accuracy. Bottom: Breakdown of
questions that remained unsolved by the strongest solver model (Claude 3.7 Thinking) after multiple
self-correction attempts. Feedback resistance is responsible for the majority of persistent errors.

39th Conference on Neural Information Processing Systems (NeurIPS 2025).

1 Introduction

The prospect of self-improving Large Language Models (LLMs) has sparked both excitement and
debate. Questions persist about LLMs’ inherent ability to self-improve without external guidance [1,
2], yet several studies have shown that LLMs can boost their performance when provided with
accurate external feedback during test time without any parameter updates or training [3–5]. However,
while prior studies establish the existence of performance gains from external feedback, the upper
bounds of such improvement remains largely unexplored. The extent of this improvement would
have far-reaching implications for applications such as scientific discovery [6–8] and complex
planning [9, 10], where repeated refinement cycles with feedback are critical for success. This raises
a critical question: can models fully incorporate correct feedback to self-improve and reach their
maximum potential?

Answering this question is not straightforward, as self-improvement performance depends on two
connected factors: feedback quality and the ability to incorporate feedback. To decouple these
two factors, we create a controlled experimental environment that provides near-optimal conditions
for feedback incorporation—one where models receive high-quality, targeted guidance based on
complete ground-truth information. Figure 2 demonstrates our setup. The solver model attempts
to solve problems iteratively, receives feedback from a strong feedback model on each incorrect
answer, and retries again for up to 10 consecutive iterations. The feedback generator has access to the
complete history of all previous attempts and responses, enabling targeted guidance that addresses
persistent errors.

While this controlled environment with high-quality feedback provides an ideal testing ground, the
effectiveness of feedback incorporation may depend significantly on the quality of the feedback.
To assess them, we implement three increasingly sophisticated feedback mechanisms to determine
how much feedback quality impacts model performance and whether any level of feedback enables
models to reach target accuracy. Binary Correctness Feedback (F1) provides simple indication of
correctness (e.g., “the answer is wrong”). Self-Generated Reflective Feedback (F2) has the model
itself analyze potential errors using correct answers and available solution steps (e.g., “you correctly
set up the equation but made an error when computing the derivative...”). Finally, Strong-Model
Reflective Feedback (F3) uses a more capable external model (GPT-4.1 mini) to generate feedback.
Details of our evaluation framework and feedback generation process can be found in §2.

We conduct a systematic study using all three forms of feedback across strong frontier models
including Llama-3.3-70B-Instruct, Llama-4-Scout-17B-16E-Instruct, Llama-4-Maverick-17B-128E-
Instruct-FP8, Claude 3.7 Sonnet, and Claude 3.7 Sonnet with Extended Thinking. We evaluate these
models across diverse tasks, including AIME 2024, MATH-500, TriviaQA, PopQA, MMLU, MMLU
Pro, GPQA, and two synthetic digit multiplication tasks. While higher-quality feedback does improve
self-improvement performance, a fundamental limitation persists. As shown in Figure 1, even with
our best feedback mechanism—Strong-Model Reflective Feedback (F3)—models consistently fall
short of the target accuracy (i.e., the accuracy of an ideal model if it successfully incorporated all the
given feedback). We name this weakness FEEDBACK FRICTION (§3.2).

Our analysis in §4 reveals several key insights into FEEDBACK FRICTION. First, we categorize errors
that persist after multiple feedback iterations and find that feedback resistance (i.e., models failing
to incorporate clear and accurate feedback) is the dominant failure mode across all tasks (§4.1).
Second, we attempt to mitigate it by avoiding repeated wrong answers through sampling strategies.
While performance improves across tasks, models still fall below their target accuracy (§4.2). Finally,
we investigate why models resist feedback (§4.3). Our investigations rule out several apparent
causes, including reasoning complexity, data familiarity, and whether specific questions consistently
challenge all models. However, we uncover two key findings: First, using semantic entropy to
measure confidence, we find that less confident models show greater relative improvements from
feedback, indicating confident models are more resistant to correction. Second, models consistently
claim to understand feedback and express willingness to update their beliefs (>95%) yet fail to actually
incorporate corrections—revealing a disconnect between stated intentions and actual behavior. In
summary, having shown that state-of-the-art LLMs consistently resist external feedback, we identify
important patterns in this resistance while ruling out several intuitive explanations.1

1Code for this work is available at: https://github.com/JHU-CLSP/Feedback-Friction

2

https://github.com/JHU-CLSP/Feedback-Friction

Michael had 58 golf
balls. On Tuesday, he
lost 23 golf balls. On
Wednesday, he lost 2
more. How many golf
balls did he have at
the end of
Wednesday?

Michael started with 58 golf balls. After
losing 23 on Tuesday, he had 58 - 23 = 35
golf balls. After losing 2 more on
Wednesday, he had 58 - 2 = 56 golf balls.
The final answer is 56.

Given the previous model response …

There is an error in sequential
subtraction: After getting 35 balls (58-23),
you should subtract 2 from 35, not 58.

Let’s answer the question again!

Answer
correct? Finish

Incorrect

Correct

Model Response

FeedbackQuestion

Solver LLM

Feedback
Generator LLM

Michael started with 58
golf balls. After losing 23
on Tuesday, he had 58 -
23 = 35 golf balls. After
losing 2 more on
Wednesday, he had 35 -
2 = 33 golf balls. The final
answer is 33.

Ground-Truth Solution

①

②

③

Figure 2: Iterative self-improvement loop. The process involves: 1⃝ a solver model generating an
answer, 2⃝ a feedback model generating feedback given incorrect responses and the ground-truth
correct answer, and 3⃝ the solver attempting again with this feedback. This cycle repeats for up to 10
iterations or until a correct answer is produced.

2 A controlled framework to surface FEEDBACK FRICTION

Our framework employs two key components: an iterative self-improvement loop that allows models
multiple opportunities to correct their mistakes (§2.1), and a spectrum of feedback mechanisms with
varying levels of detail and guidance (§2.2).

2.1 Setup for iterative self-improvement loop

Given a task T with evaluation dataset D = {(xi, yi)}mi=1 and evaluation metric f , we establish
an iterative improvement protocol with two distinct models: a solver model Msolver and a feedback
generator model Mfeedback.

For each input xi, the solver model produces an initial answer a1(xi) using the standard task prompt.
We evaluate the correctness of this answer using f

(
a1(xi), yi

)
, where yi is the ground truth. If the

answer is incorrect, the feedback generator Mfeedback creates targeted guidance g1 based on the current
answer and ground-truth information.

For iteration k ≥ 1, we construct the prompt pk+1(xi) = concat(xi, historyk), where historyk
contains all previous answers and feedback pairs {(a1, g1), (a2, g2), ..., (ak, gk)}. This process
repeats for up to k = 10 iterations or until the correct answer is generated. In our empirical
experiments, we observed that performance improvements tend to plateau within 10 iterations,
suggesting a practical upper limit for the iterative refinement process.

The overall accuracy for the dataset at iteration k is measured as the fraction of all problems solved
correctly: Acck = 1

m

∑m
i=1 1[f

(
ak(xi), yi

)
= 1], where 1[·] is the indicator function.

By construction, since we iterate over the incorrect responses only, the accuracy sequence
{Acc1,Acc2, ...,AccK} is monotonically non-decreasing, as we retain correct answers across itera-
tions and only modify incorrect ones. This protocol, illustrated in Figure 2, provides a controlled
environment for measuring how effectively models incorporate feedback while maintaining consistent
evaluation criteria throughout the improvement process.

2.2 Designing different feedback mechanisms for iterative self-improvement

We investigate three distinct feedback mechanisms for the self-improvement process, each offering
progressively greater guidance and error specificity. All mechanisms are designed to identify errors
without directly revealing the correct answer, ensuring a fair evaluation of the model’s ability to
incorporate feedback.

Binary Correctness Feedback (F1). The simplest form provides only correctness information:

F binary
1 (xi, yi) = “The answer is wrong!” if f

(
a(xi), yi

)
= 0

3

where a(xi) is the solver model’s answer and f is the evaluation function.

Self-Generated Reflective Feedback (F2). In this approach, the solver model analyzes its own
response using available information:

F self
2 (xi, yi) = Msolver

(
concat(xi, a(xi), yi, si, pprompt)

)
where pprompt is the instruction: “Please give me feedback on which solution step is wrong and how to
get to the correct answer without revealing the answer.” Here, si represents the ground-truth solution
process when available. For datasets without detailed solutions, only the answer yi is provided.

Strong-Model Reflective Feedback (F3). We employ a more capable external model with access
to the same information:

F strong
3 (xi, yi) = Mstrong

(
concat(xi, a(xi), yi, si, pprompt)

)
where Mstrong represents a more powerful model than Msolver in providing feedback.

Examples illustrating the various feedback types can be found in Appendix A).

3 Experimental results

In this section, we present comprehensive experimental results evaluating FEEDBACK FRICTION.
We first describe our experimental setup, including tasks, prompts, inference setups, and model
configurations (§3.1). We then demonstrate how models consistently plateau below target performance
regardless of the feedback mechanisms employed (§3.2).

3.1 Experimental setup

Tasks and metrics. We employ nine diverse tasks for evaluation, deliberately choosing objective
tasks with clear ground-truth answers to ensure reliable evaluation of feedback incorporation.2 Our
tasks include: AIME 2024 [11] and MATH-500 [12] for mathematical problem-solving, TriviaQA
[13] and PopQA [14] for knowledge reasoning, MMLU [15] and MMLU Pro [16] for multi-domain
evaluation, GPQA [17] for complex scientific reasoning, and two synthetic digit multiplication tasks.
The first synthetic task involves 5-digit multiplication (e.g., 78934 × 62851), while the second task
applies hexadecimal multiplication rules to decimal numbers (i.e., first mapping 0-9 to themselves
and 10-15 to their hexadecimal digits (10 → A, ..., 15 → F), then performing the arithmetic as
if operating in base-16—creating a counterfactual [18] arithmetic setting that challenges models’
learned numerical reasoning patterns. For both tasks, ground-truth solutions are generated using
deterministic templates that break down the multiplication into smaller multiplication and addition
operations. We include these synthetic tasks specifically to remove potential confounding variables
from semantic context (more details about these tasks can be found in Appendix D).

Other than the two synthetic tasks, AIME 2024, GPQA, and MATH-500 include complete solutions,
while the others provide only final answers. For MMLU and MMLU Pro, the multiple-choice format
raises concerns about whether models might solve problems through simple elimination strategies
rather than genuine reasoning (e.g., selecting A in the first iteration, B in the second, C in the third,
etc). However, our analysis reveals that models exhibit surprising choice persistence even when
provided with corrective feedback. Rather than systematically eliminating options or switching
between choices, models often remain anchored to their initial selections (typically one or two
specific answer choices) across multiple feedback iterations, even when that choice is demonstrably
incorrect. We use the same prompts, few-shot demonstrations, answer parsing mechanism, and metrics
from lm-evaluation-harness and llama-evaluate where applicable to maintain established
evaluation practices and enable fair comparison with prior work. For MMLU, MMLU Pro, PopQA,
and TriviaQA, we sample 10% of the total data points, as running the full dataset through our 10-
iteration improvement process would be prohibitively time-consuming. Our preliminary experiments
confirmed that this subset yields performance metrics nearly identical to those obtained from the
complete dataset.

Prompt design and experimental controls. Our experimental framework employs carefully
structured prompts to ensure consistent feedback delivery across iterations. For the solver model,

2Using another LLM to evaluate more subjective tasks like instruction following or translation could lead to
issues like reward hacking and unreliable assessments.

4

we use task-specific system prompts (detailed in Appendix B) and construct iterative prompts that
include complete interaction history. We investigate whether prompt structure and organization
affect feedback incorporation by comparing our standard single-prompt approach against a multi-turn
conversation format that structures the same information across multiple dialogue exchanges. In the
conversation format, we reformatted the iterative improvement process to mimic natural dialogue,
with alternating turns between solver attempts (as user) and feedback responses (as assistant). Results
showed marginal differences compared to single-prompt formatting, suggesting that FEEDBACK
FRICTION persists regardless of interaction structure.

Beyond the feedback mechanisms discussed in §2.2, to maintain evaluation integrity while preserving
feedback quality, we implement comprehensive answer masking to prevent feedback from directly
revealing ground truth solutions. We use “[masked]” as the replacement token for filtered content,
applying targeted masking that preserves intermediate steps and reasoning guidance while preventing
direct answer revelation. For example, we replace numerical answers with “[masked]” (e.g., “The
final answer is [masked]” instead of “The final answer is 42”) while preserving solution steps.3

Models and inference. As for solver models, we employs strong models including LLaMA-3.3
70B Instruct [19], Llama-4-Scout-17B-16E, Llama-4-Maverick-17B-128E-Instruct-FP8 [20], Claude
3.7 Sonnet and Claude 3.7 Sonnet with extended thinking [21]. Claude 3.7 with extended thinking is
a variant that employs an extended reasoning before generating final responses, allowing the model
to engage in more deliberate problem-solving through explicit step-by-step thinking. All models are
instruction-tuned versions of their respective base models, specifically optimized for handling natural
language instructions and maintaining consistent output formatting.

For the Llama models, during inference, we use temperature 0 to ensure deterministic outputs and
conduct inference using vLLM [22] with each model’s corresponding chat template. All inference is
performed on a single H100 instance equipped with eight 80GB GPUs. For Claude models, we access
them through Anthropic’s API. For Claude 3.7, we use temperature 0 to ensure deterministic outputs,
while for Claude 3.7 with extended thinking, we use temperature 1 as suggested by Claude. We also
explore the effects of varying these temperature settings in our experiments to mitigate FEEDBACK
FRICTION (§4.2).

For feedback models, we use different models depending on the feedback type. For Strong-Model
Reflective Feedback (F3), we utilize GPT-4.1 mini [23] as the feedback generation model. From our
internal testing, GPT-4.1 mini’s feedback performance is on-par with Claude 3.7. Due to the higher
cost of Claude 3.7, we use GPT-4.1 mini for generating the strongest feedback. We also considered
o4-mini [24] as the feedback generator model due to its reportedly superior reasoning capabilities,
but our experiments showed it delivered comparable feedback quality while incurring substantially
higher computational costs, leading us to proceed exclusively with GPT-4.1 mini.

3.2 Main findings

FEEDBACK FRICTION persists across model scales and tasks. Figure 3 shows results using
our strongest feedback mechanism (Strong-Model Reflective Feedback (F3)) across all datasets and
all models. Our results reveal a striking pattern: Despite receiving high-quality feedback, all solver
models consistently plateau below their target accuracy, which is the accuracy of an ideal model if it
successfully incorporates all the given feedback (see §4.1 for calculation details). Claude 3.7 Thinking
achieves the highest initial accuracy on several tasks (AIME, TriviaQA, GPQA, and MATH-500),
while Claude 3.7 shows competitive performance across most benchmarks. However, both Claude
variants exhibit the same fundamental plateauing behavior as the Llama models. The performance
typically improves rapidly through the first 2-4 iterations before significantly slowing down. This
FEEDBACK FRICTION is particularly pronounced on complex reasoning tasks like AIME and GPQA,
where even the best-performing models remain 15-25% and 3-8% below their respective theoretical
ceilings despite 10 correction opportunities. The synthetic tasks reveal particularly interesting patterns
across model families. In the standard 5-Digit Multiplication task, both Claude models reach near-
perfect accuracy after significant initial improvement, outperforming the Llama models. However,
the Hexadecimal-5-Digit-Multiplication task reveals extreme difficulty with feedback incorporation

3We verified that models do not attempt to predict the “[masked]” token during inference

5

0 2 4 6 8 10
Iterations

20

40

60

80

100

Ac
cu

ra
cy

AIME-2024

0 2 4 6 8 10
Iterations

70

80

90

100

Ac
cu

ra
cy

TriviaQA

0 2 4 6 8 10
Iterations

40

60

80

100

Ac
cu

ra
cy

GPQA

0 2 4 6 8 10
Iterations

60

80

100

Ac
cu

ra
cy

MMLU_Pro

0 2 4 6 8 10
Iterations

80

85

90

95

100

Ac
cu

ra
cy

MMLU

0 2 4 6 8 10
Iterations

70

80

90

100

Ac
cu

ra
cy

MATH-500

0 2 4 6 8 10
Iterations

0

20

40

60

80

100

Ac
cu

ra
cy

5-Digit Multiplication

0 2 4 6 8 10
Iterations

20

40

60

80

100

Ac
cu

ra
cy

PopQA

0 2 4 6 8 10
Iterations

0

20

40

60

80

100

Ac
cu

ra
cy

Hexadecimal 5-Digit Multiplication

Llama-3.3 Llama-4-Scout Llama-4-Maverick Claude 3.7 Claude 3.7 Thinking

Figure 3: The performance of frontier models we tested with Strong-Model Reflective Feedback (F3)
across nine different tasks. Models are given multiple attempts with feedback that incorporates both
the final answer and complete solution (when available). The dotted line represents the target
accuracy that models could theoretically achieve if they fully incorporated all feedback (details in
§4.1). Results demonstrate that despite strong feedback, models consistently plateau below
their target accuracy across all tasks.

across all models—no model exceeds 20% accuracy even after 10 iterations, highlighting severe
limitations in feedback integration for counterfactual arithmetic systems.4

While feedback quality determines the achievable performance ceiling, the extent of its impact
is task dependent. Figure 4 illustrates how different feedback mechanisms affect performance
across models and tasks. Due to the cost of running extensive experiments with Claude models, we
focus the feedback quality analysis on the Llama model families. All tasks show clear benefits from
increasingly sophisticated feedback.

The impact of high-quality feedback is most pronounced on complex reasoning tasks. For AIME,
MMLU Pro, and GPQA, Strong-Model Reflective Feedback (F3) outperforms binary feedback by
significant margins across all models. Llama-4-Maverick shows the strongest overall performance,
achieving 73.3% accuracy on AIME and 96.5% on GPQA with Strong-Model Reflective Feedback
(F3)—-improvements of +26.7% and +10.6% over binary feedback, respectively. Llama-4-Scout
demonstrates the largest relative gains, particularly on AIME (+33.3%) and GPQA (+13.1%), com-
pared to Llama-3.3 which shows more modest improvements (+26.7% on AIME, +6.6% on GPQA).
Nevertheless, despite these substantial improvements, all models still plateau significantly below their
theoretical performance ceiling.

4While it is true that models’ imperfect understanding of hexadecimal arithmetic leads to imperfect feedback
quality, this is reflected in the lower theoretical ceiling shown in the figure. Even accounting for this limitation,
models still fall short of what they could achieve if they fully incorporated the available feedback.

6

AIME-2
02

4
GPQ

A

Triv
iaQ

A

MMLU
_Pr

o
MMLU

0

20

40

60

80

100

Ac
cu

ra
cy

Llama-3.3-70B-Instruct

AIME-2
02

4
GPQ

A

Triv
iaQ

A

MMLU
_Pr

o
MMLU

0

20

40

60

80

100

Ac
cu

ra
cy

Llama-4-Scout-17B-16E-Instruct

AIME-2
02

4
GPQ

A

Triv
iaQ

A

MMLU
_Pr

o
MMLU

0

20

40

60

80

100

Ac
cu

ra
cy

Llama-4-Maverick-17B-128E-Instruct-FP8

Binary Correctness Self-Generated Reflective Feedback Strong-Model Reflective Feedback

Figure 4: Performance comparison across benchmark datasets using different feedback mechanisms
with Llama-3.3, Llama-4-Scout and Llama-4-Maverick. Model performance progressively im-
proves as feedback quality increases from Binary Correctness Feedback (F1) to Strong-Model
Reflective Feedback (F3).

4 Analysis of FEEDBACK FRICTION

We conduct a deeper analysis to better understand FEEDBACK FRICTION. We first categorize different
cases where models fail to correct their mistakes despite multiple rounds of feedback (§4.1), then
examine the extent to which we can alleviate this problem with sampling strategies (§4.2), and finally,
we present several hypotheses and the experiments to understand FEEDBACK FRICTION (§4.3).

4.1 Feedback integration failures dominate persistent self-improvement errors

Error category development. We manually examine cases where LLMs fail to improve despite
receiving high-quality feedback and identifies three main categories of error: (1) Most critically
for our analysis, feedback resistance failures represent cases where models fail to accurately
incorporate feedback despite multiple iterations. (2) Feedback quality issues encompass cases where
the provided feedback is incorrect, ambiguous, or fails to address the key problematic steps in the
solution. This can still occur because the generated feedback might miss crucial conceptual errors
or introduce new inaccuracies, even though ground-truth is provided to the feedback generator. (3)
We maintain an “Other” category for cases that don’t clearly fit into either of the above categories.
From our initial examination, this includes cases where the problem itself contains ambiguities or
the solution is conceptually correct but fails due to style or formalization issues (e.g., providing the
correct information but not in the expected format required by the evaluation metric).

Table 1: Distribution of error categories (%) of unsolved
problems after 10 iterations of self-improvement classified
by o4-mini. FR: Feedback Resistance, FQ: Feedback Quality,
OTH: other issues.

Dataset Solver Model FR FQ OTH

MMLU Pro Claude 3.7 64.6 28.0 7.4
Claude 3.7 Thinking 62.8 30.8 6.4

GPQA Claude 3.7 100.0 0.0 0.0
Claude 3.7 Thinking 85.7 14.3 0.0

TriviaQA Claude 3.7 72.4 25.0 2.6
Claude 3.7 Thinking 71.7 28.3 0.0

AIME 2024 Claude 3.7 100.0 0.0 0.0
Claude 3.7 Thinking 100.0 0.0 0.0

Automated error categorization
and validation. To systematically
categorize errors at scale, we used
OpenAI o4-mini as an automated
annotator to classify complete self-
improvement trajectories from Claude
3.7 and Claude 3.7 Thinking accord-
ing to these predefined categories. To
validate this automated approach, we
conducted rigorous manual verifica-
tion by randomly sampling 50 errors
from each task and having two human
annotators independently label them
according to our defined categories.
Our verification showed 96% agreement between human annotators and o4-mini’s classifications,
significantly higher than the 78% agreement rate achieved with GPT-4.1 mini on the same samples.
This confirms o4-mini’s reliability for this analysis task.

Feedback resistance dominates error patterns. Table 1 presents the distribution of error cate-
gories across different tasks, as classified by o4-mini. Feedback resistance is consistently the dominant
category across all tasks, accounting for 62.8-100% of errors. This finding suggests that the core
challenge in achieving perfect performance lies not in the quality of feedback or problem complexity,
but in fundamental limitations of how models process and incorporate corrective feedback. Detailed
examples of each error category are provided in Appendix C.

7

4.2 Mitigating FEEDBACK FRICTION with sampling strategies

Given the persistent plateau in performance we observed across models and tasks, a natural question
arises: can we mitigate FEEDBACK FRICTION through existing strategies? We explore sampling
techniques as a potential solution to help models overcome their apparent resistance to feedback.

Progressive temperature increases show modest effectiveness. We first explore temperature-
based sampling strategies where the sampling temperature increases with the iterations: 0.0 for
iteration 0, 0.15 for iteration 1, 0.3 for iteration 2, and so forth. While other schedules (e.g.,
exponential increase, fixed higher temperature) could be explored, we chose this linear progression
as a simple baseline that gradually introduces diversity while preserving early deterministic behavior.
We hypothesize that progressive temperature increases would help models generate more diverse
outputs, allowing them to escape from local optima in their output distributions and become more
receptive to feedback.

Due to the cost of running extensive experiments with Claude models, we focus the feedback quality
analysis on Llama-4-Scout and Llama-4-Maverick. As shown in Figure 5, this approach alone
produced minimal improvements compared to the baseline in Figure 3. Analysis of logs revealed that
while increased temperature successfully diversified model outputs, the additional exploration often
failed to converge on correct answers due to the vast search space of possible responses.

2 4 6 8 10
Iterations

45.0

50.0

55.0

60.0

65.0

70.0

75.0

Ac
cu

ra
cy

 (
%

)

AIME-2024

2 4 6 8 10
Iterations

85.0

90.0

95.0

100.0 TriviaQA

2 4 6 8 10
Iterations

80.0

85.0

90.0

95.0

100.0 GPQA

2 4 6 8 10
Iterations

85.0

90.0

95.0

100.0 MMLU_Pro

Llama-Scout (Increasing Temperature) Llama-Scout (+ Rejection Sampling) Llama-Maverick (Increasing Temperature) Llama-Maverick (+ Rejection Sampling)

Figure 5: Results of using progressively increasing temperature and rejection sampling with Llama-4-
Scout and Llama-4-Maverick. Rejection sampling can provide additional improvements over
temperature-based sampling alone across both multiple-choice and non-multiple-choice tasks.

Combining temperature increases with rejection sampling yields better results. To enhance
performance further, we implement a more targeted approach that combines increased temperature
with rejection sampling. This method explicitly forces the model to explore new solution paths while
avoiding previous attempts. Specifically, we instruct the model to generate 25 answers, and remove
final answers that occurred in previous iterations (which by construction is incorrect, since we only
continue iterating on problems that remain unsolved). If no answer remains after this filtering process,
we randomly select one from those 25 answers. Otherwise, we randomly select one of the remaining
novel answers as the final prediction.

As shown in Figure 5, the combined strategy yields substantive performance gains across both
multiple-choice datasets and non-multiple-choice datasets compared to the baseline that only increases
the temperature. While the magnitude of these improvements varied, the consistent pattern suggests
that forcing models to explore new solution paths by rejecting previously used answers is beneficial.
Despite these gains, we observed that all datasets still fall short of the target accuracy, indicating that
sampling strategies alone cannot fully resolve model resistance to feedback.

4.3 Understanding FEEDBACK FRICTION

Our sampling strategies (§4.2), though promising, did not eliminate FEEDBACK FRICTION entirely.
Developing more effective interventions requires a deeper understanding of the fundamental causes.
In this section, we investigate several hypotheses for why models resist incorporating feedback
despite multiple correction opportunities. Throughout our analyses, we provide error bars. They
represent the standard error of a binomial proportion, calculated as

√
acc · (1− acc)/n, where n is

the number of samples in each evaluated group.

Model confidence vs. FEEDBACK FRICTION. Could excessive model confidence explain
resistance to feedback in FEEDBACK FRICTION? To test this, we measure confidence using semantic
entropy [25], a method that captures uncertainty at the meaning level rather than surface form

8

Figure 6: Relationship between semantic entropy and feedback incorporation across three benchmark
tasks (MATH, MMLU-Pro, GPQA) for Llama-3.3-70B and Llama-4-Scout models. Semantic entropy
(x-axis) measures model uncertainty, with lower values indicating higher confidence. Three metrics
are shown: initial accuracy before any feedback (blue), final accuracy after iterative feedback (orange),
and absolute improvement rate calculated as (Final − Initial)/(1 − Initial) (green). Numbers
in boxes indicate sample sizes per bucket. The absolute improvement rate generally increases with
semantic entropy across all tasks and models, indicating that models with lower initial confidence
(higher entropy) show greater relative improvements from feedback.

variations. Unlike token-level probability measures, semantic entropy accounts for the fact that
models can express the same meaning in multiple ways, providing a more robust measure of true
uncertainty.

To compute semantic entropy for each model response, we first generate multiple outputs
{s1, s2, . . . , sn} by sampling the model n = 50 times with temperature 0.7, where each si represents
a complete answer given the feedback. We then cluster these outputs using final answers, which we
find to have similar results as semantic equivalence grouping using bidirectional entailment. For each
semantic cluster Ci, we estimate its probability as P̂ (Ci|x) =

∑
s∈Ci

P (s|x)/
∑K

j=1

∑
s∈Cj

P (s|x),
where x represents the input (question, previous answer, and feedback), and compute semantic en-
tropy as H = −

∑
i P̂ (Ci|x) log P̂ (Ci|x). Lower entropy indicates the model consistently generates

semantically equivalent answers (high confidence), while higher entropy suggests diverse semantic
meanings (low confidence).

We conduct this analysis across 5 digits multiplication, GPQA, MATH, MMLU-Pro, and TriviaQA
using semantic entropy with bucket size 0.2. Figure 6 shows some of the results (full results in
Appendix J) and reveals a consistent pattern: absolute improvement rate (the green trends) increases
with semantic entropy, rising from near-zero at low entropy (high confidence) to 0.4-0.8 at higher
entropy levels (low confidence). These results suggest that models with lower confidence (higher
semantic entropy) have both more room for improvement and greater receptiveness to feedback, while
highly confident models show minimal improvement despite receiving the same quality feedback.

Model self-perception versus actual behavior. To probe deeper into FEEDBACK FRICTION mech-
anisms, we directly asked solver models about their understanding of feedback and willingness
to incorporate it. After receiving feedback, we prompt models with: (1) “Do you understand this
feedback?” and (2) “Will you update your belief or understanding about this problem?”

Surprisingly, across all models and tasks, solver models consistently claimed to understand the
feedback (> 95% “yes” responses) and expressed willingness to update their beliefs (> 96% “yes”
responses). However, in subsequent iterations, these same models failed to actually incorporate the
feedback. This disconnect between stated intention and actual behavior reveals a fundamental issue:
models exhibit self-assessment failure where they believe they are incorporating feedback while
demonstrably failing to do so (the prompts used for probing and example conversations can be found
in Appendix I). This disconnect between stated intention and actual behavior reveals a fundamental
implementation failure: models express both understanding and willingness to change but fail to
execute these changes in practice.

9

1 3 5 7 9 11 13 15 17 19
o_pop frequency (x10^4)

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

Initial Accuracy Final Accuracy

1 3 5 7 9 11 13 15 17 19
s_pop frequency (x10^4)

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

Figure 7: Accuracy of Llama3.3 on
PopQA with respect to s_pop and o_pop

Data familiarity and FEEDBACK FRICTION Prior
work [14, 26] suggests that language models perform bet-
ter with familiar entities and topics encountered frequently
during training. Are these models more resistant to feed-
back about familiar entities? We investigated whether
this familiarity bias contributes to FEEDBACK FRICTION
using PopQA’s popularity metrics as proxies for entity
familiarity. This dataset includes monthly Wikipedia page
views for subject entities sprop and object entities oprop. We
then analyzed how accuracy changes during iterative self-
improvement correlate with the popularity of the subject
(s_prop) and object (o_prop) entities.

We use Llama-3.3 for this experiment since it was released
closer to the publication date of PopQA. These popularity
metrics provide a particularly relevant measure of poten-
tial training data frequency for this model. As shown in
Figure 7, we found no consistent pattern between entity
popularity and accuracy. We provide further supporting
evidence in Appendix F with additional statistical testing
and alternative popularity metrics.

Further analyses. We conducted additional analyses to investigate whether problem complexity or
inherent question characteristics correlate with feedback integration failure. Both hypotheses yielded
negative results. Complete details are provided in Appendix G and Appendix H.

5 Related Work

Self-Improvement with LLMs. Self-improvement in AI has roots in early work using GANs for
self-generated feedback [27, 28]. LLMs have expanded these capabilities across code generation
[29], reasoning [30? , 31], instruction following [32–34], and other domains [35–37]. Approaches
vary between training time improvements through self-correction [38] or data generation [39, 40],
and inference time improvements via feedback [3, 30] or other models [41]. While studies question
intrinsic self-improvement without external feedback [1, 2], consensus exists that LLMs can self-
improve with ground-truth feedback [5, 42]. In this work, we probe these limits and investigate
barriers to full feedback integration.

The elasticity–plasticity tension. LLMs face a trade-off between retaining prior knowledge and
integrating new information. In continual learning, they exhibit catastrophic forgetting when updates
conflict with existing beliefs [43–45]. In model editing, extensive edits distort broader knowledge
networks [46, 47]. Alignment techniques like RLHF instill desired behaviors but models remain tied
to pre-trained distributions or revert via adversarial prompts [48, 49]. In agentic settings, LLMs fail
to adapt when encountering external failures [50]. Conversely, they show excessive plasticity through
sycophantic behavior in conversations [51]. We revisit this dilemma through feedback integration
during self-improvement and unveil controlling factors.

Feedback for LLMs. Feedback mechanisms include intrinsic self-evaluation [52–55] and extrinsic
feedback via tools [56–58], information sources [59, 60], or ground-truth answers [3, 61]. While
correct feedback is key [5, 62], LLMs struggle to incorporate it when contradicting prior knowledge
[63], handling refutations [64], assessing uncertainty [65], or facing misleading feedback [66, 67].
Different from previous work, in this paper, we focus on high-quality feedback, investigating why
LLMs fail to fully incorporate it.

6 Conclusion

Our study reveals a fundamental limitation in LLMs’ ability to incorporate external feedback. Despite
receiving high-quality feedback over multiple iterations, models consistently plateau below their
theoretical performance ceiling across diverse reasoning tasks. Despite extensive analysis, the
precise mechanisms underlying feedback resistance remain elusive, which we leave to future work.
Understanding and addressing these limitations remain essential for developing more adaptable AI
systems capable of genuine and sustained self-improvement.

10

Limitations

Better understanding of FEEDBACK FRICTION While our study identifies key insights into
FEEDBACK FRICTION—including the correlation between semantic entropy and feedback resistance
and the disconnect between models’ stated understanding and actual behavior, we lack a definitive
mechanistic explanation for why models resist incorporating feedback. A better understanding
of FEEDBACK FRICTION likely involves complex interactions between feedback understanding,
instruction following, and belief updating. Future work would benefit from more sophisticated
mechanistic interpretability techniques, such as causal intervention methods and circuit analysis
[68, 69], to understand the specific computational pathways through which feedback resistance
emerges and persists across model architectures.

Limited mitigation strategies Despite extensive experimentation with sampling strategies, our
attempts to fully mitigate feedback friction yields only modest improvements. Recent work has
explored techniques to enhance diversity in LLM outputs through reinforcement learning [70] and
training-free prompting strategies [71], which may help models generate more varied responses to
feedback. Another promising approach is to perform supervised fine-tuning or reinforcement learning
that could (1) enhance the solver model’s receptiveness to feedback incorporation, and (2) improve
the feedback generator’s ability to provide more effective guidance [72]. However, the computational
constraints of our experimental setup, particularly the large model sizes we tested (including 70B+
parameter models like Claude 3.7 and Llama-4-Maverick) and the associated computational costs,
prevented us from conducting fine-tuning experiments that might meaningfully address feedback
resistance. We leave that exploartion to future work.

Acknowledgment

This work is supported by ONR grant (N00014-241-2089). The GPUs were provided by the DSAI
and ARCH clusters. We sincerely thank Yuqing Yang, Zhengping Jiang, and the broader JHU
community for discussions and feedback.

References

[1] Jie Huang, Xinyun Chen, Swaroop Mishra, Huaixiu Steven Zheng, Adams Wei Yu, Xinying
Song, and Denny Zhou. Large language models cannot self-correct reasoning yet, 2023. URL
https://arxiv.org/abs/2310.01798.

[2] Dongwei Jiang, Jingyu Zhang, Orion Weller, Nathaniel Weir, Benjamin Van Durme, and Daniel
Khashabi. Self-[in]correct: Llms struggle with discriminating self-generated responses, 2024.
URL https://arxiv.org/abs/2404.04298.

[3] Noah Shinn, Beck Labash, and Ashwin Gopinath. Reflexion: an autonomous agent with
dynamic memory and self-reflection. In NeuralPS, 2023. URL https://arxiv.org/abs/
2303.11366.

[4] Guanzhi Wang, Yuqi Xie, Yunfan Jiang, Ajay Mandlekar, Chaowei Xiao, Yuke Zhu, Linxi Fan,
and Anima Anandkumar. Voyager: An open-ended embodied agent with large language models,
2023. URL https://voyager.minedojo.org/assets/documents/voyager.pdf.

[5] Gladys Tyen, Hassan Mansoor, Peter Chen, Tony Mak, and Victor Carbune. Llms cannot find
reasoning errors, but can correct them! CoRR, 2023. URL https://arxiv.org/abs/2310.
01798.

[6] Chenglei Si, Diyi Yang, and Tatsunori Hashimoto. Can llms generate novel research ideas? a
large-scale human study with 100+ nlp researchers, 2024. URL https://arxiv.org/abs/
2409.04109.

[7] Akari Asai, Jacqueline He, Rulin Shao, Weijia Shi, Amanpreet Singh, Joseph Chee Chang,
Kyle Lo, Luca Soldaini, Sergey Feldman, Mike D’arcy, David Wadden, Matt Latzke, Minyang
Tian, Pan Ji, Shengyan Liu, Hao Tong, Bohao Wu, Yanyu Xiong, Luke Zettlemoyer, Graham
Neubig, Dan Weld, Doug Downey, Wen tau Yih, Pang Wei Koh, and Hannaneh Hajishirzi.
Openscholar: Synthesizing scientific literature with retrieval-augmented lms, 2024. URL
https://arxiv.org/abs/2411.14199.

11

https://arxiv.org/abs/2310.01798
https://arxiv.org/abs/2404.04298
https://arxiv.org/abs/2303.11366
https://arxiv.org/abs/2303.11366
https://voyager.minedojo.org/assets/documents/voyager.pdf
https://arxiv.org/abs/2310.01798
https://arxiv.org/abs/2310.01798
https://arxiv.org/abs/2409.04109
https://arxiv.org/abs/2409.04109
https://arxiv.org/abs/2411.14199

[8] Chris Lu, Cong Lu, Robert Tjarko Lange, Jakob Foerster, Jeff Clune, and David Ha. The
ai scientist: Towards fully automated open-ended scientific discovery, 2024. URL https:
//arxiv.org/abs/2408.06292.

[9] Zhehua Zhou, Jiayang Song, Kunpeng Yao, Zhan Shu, and Lei Ma. Isr-llm: Iterative self-
refined large language model for long-horizon sequential task planning, 2023. URL https:
//arxiv.org/abs/2308.13724.

[10] Jian Xie, Kai Zhang, Jiangjie Chen, Tinghui Zhu, Renze Lou, Yuandong Tian, Yanghua Xiao,
and Yu Su. Travelplanner: A benchmark for real-world planning with language agents, 2024.
URL https://arxiv.org/abs/2402.01622.

[11] HuggingFaceH4. Aime 2024 dataset. https://huggingface.co/datasets/
HuggingFaceH4/aime_2024, 2024.

[12] Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul Arora, Steven Basart, Eric Tang, Dawn
Song, and Jacob Steinhardt. Measuring mathematical problem solving with the math dataset,
2021. URL https://arxiv.org/abs/2103.03874.

[13] Mandar Joshi, Eunsol Choi, Daniel S. Weld, and Luke Zettlemoyer. Triviaqa: A large scale
distantly supervised challenge dataset for reading comprehension. In ACL, 2017. URL https:
//arxiv.org/abs/1705.03551.

[14] Alex Mallen, Akari Asai, Victor Zhong, Rajarshi Das, Daniel Khashabi, and Hannaneh Ha-
jishirzi. When not to trust language models: Investigating effectiveness and limitations of
parametric and non-parametric memories. In Annual Meeting of the Association for Computa-
tional Linguistics (ACL), 2023. URL https://arxiv.org/abs/2212.10511.

[15] Dan Hendrycks, Collin Burns, Steven Basart, Andy Zou, Mantas Mazeika, Dawn Song, and
Jacob Steinhardt. Measuring massive multitask language understanding, 2020.

[16] Yubo Wang, Xueguang Ma, Ge Zhang, Yuansheng Ni, Abhranil Chandra, Shiguang Guo,
Weiming Ren, Aaran Arulraj, Xuan He, Ziyan Jiang, Tianle Li, Max Ku, Kai Wang, Alex
Zhuang, Rongqi Fan, Xiang Yue, and Wenhu Chen. Mmlu-pro: A more robust and challenging
multi-task language understanding benchmark, 2024. URL https://arxiv.org/abs/2406.
01574.

[17] David Rein, Betty Li Hou, Asa Cooper Stickland, Jackson Petty, Richard Yuanzhe Pang, Julien
Dirani, Julian Michael, and Samuel R. Bowman. Gpqa: A graduate-level google-proof q&a
benchmark, 2023. URL https://arxiv.org/abs/2311.12022.

[18] Zhaofeng Wu, Linlu Qiu, Alexis Ross, Ekin Akyürek, Boyuan Chen, Bailin Wang, Najoung
Kim, Jacob Andreas, and Yoon Kim. Reasoning or reciting? exploring the capabilities and
limitations of language models through counterfactual tasks, 2024. URL https://arxiv.
org/abs/2307.02477.

[19] Meta AI. Llama 3. https://www.llama.com/models/llama-3/, 2024.

[20] Meta AI. The llama 4 herd: The beginning of a new era of natively multimodal ai innovation.
https://ai.meta.com/blog/llama-4-multimodal-intelligence/, 2025.

[21] Anthropic. Claude 3.7 sonnet and claude code. https://www.anthropic.com/news/
claude-3-7-sonnet/, 2024.

[22] Woosuk Kwon, Zhuohan Li, Siyuan Zhuang, Ying Sheng, Lianmin Zheng, Cody Hao Yu,
Joseph E. Gonzalez, Hao Zhang, and Ion Stoica. Efficient memory management for large
language model serving with pagedattention, 2023. URL https://arxiv.org/abs/2309.
06180.

[23] OpenAI. Introducing gpt-4.1 in the api. https://openai.com/index/gpt-4-1/, 2024.

[24] OpenAI. Introducing openai o3 and o4-mini. https://openai.com/index/
introducing-o3-and-o4-mini/, 2024.

12

https://arxiv.org/abs/2408.06292
https://arxiv.org/abs/2408.06292
https://arxiv.org/abs/2308.13724
https://arxiv.org/abs/2308.13724
https://arxiv.org/abs/2402.01622
https://huggingface.co/datasets/HuggingFaceH4/aime_2024
https://huggingface.co/datasets/HuggingFaceH4/aime_2024
https://arxiv.org/abs/2103.03874
https://arxiv.org/abs/1705.03551
https://arxiv.org/abs/1705.03551
https://arxiv.org/abs/2212.10511
https://arxiv.org/abs/2406.01574
https://arxiv.org/abs/2406.01574
https://arxiv.org/abs/2311.12022
https://arxiv.org/abs/2307.02477
https://arxiv.org/abs/2307.02477
https://www.llama.com/models/llama-3/
https://ai.meta.com/blog/llama-4-multimodal-intelligence/
https://www.anthropic.com/news/claude-3-7-sonnet/
https://www.anthropic.com/news/claude-3-7-sonnet/
https://arxiv.org/abs/2309.06180
https://arxiv.org/abs/2309.06180
https://openai.com/index/gpt-4-1/
https://openai.com/index/introducing-o3-and-o4-mini/
https://openai.com/index/introducing-o3-and-o4-mini/

[25] Sebastian Farquhar, Jannik Kossen, Lorenz Kuhn, and Yarin Gal. Detecting hallucinations in
large language models using semantic entropy. Nature, 630, 2024.

[26] R. Thomas McCoy, Shunyu Yao, Dan Friedman, Matthew Hardy, and Thomas L. Griffiths.
Embers of autoregression: Understanding large language models through the problem they are
trained to solve. CoRR, 2023. URL https://arxiv.org/abs/2309.13638.

[27] Sandeep Subramanian, Sai Rajeswar, Francis Dutil, Chris Pal, and Aaron Courville. Adversarial
generation of natural language. In Proceedings of the 2nd Workshop on Representation Learning
for NLP, pages 241–251. Association for Computational Linguistics, 2017. URL https:
//aclanthology.org/W17-2629/.

[28] Lantao Yu, Weinan Zhang, Jun Wang, and Yong Yu. Seqgan: Sequence generative adversarial
nets with policy gradient. arXiv preprint arXiv:1609.05473, 2017. URL https://arxiv.
org/abs/1609.05473.

[29] Eric Zelikman, Eliana Lorch, Lester Mackey, and Adam Tauman Kalai. Self-taught optimizer
(stop): Recursively self-improving code generation, 2024. URL https://arxiv.org/abs/
2310.02304.

[30] Aman Madaan, Niket Tandon, Prakhar Gupta, Skyler Hallinan, Luyu Gao, Sarah Wiegreffe,
Uri Alon, Nouha Dziri, Shrimai Prabhumoye, Yiming Yang, Sean Welleck, Bodhisattwa Prasad
Majumder, Shashank Gupta, Amir Yazdanbakhsh, and Peter Clark. Self-refine: Iterative
refinement with self-feedback. CoRR, 2023. URL https://arxiv.org/abs/2303.17651.

[31] Deepak Nathani, David Wang, Liangming Pan, and William Yang Wang. Maf: Multi-aspect
feedback for improving reasoning in large language models, 2023. URL https://arxiv.
org/abs/2310.12426.

[32] Yizhong Wang, Yeganeh Kordi, Swaroop Mishra, Alisa Liu, Noah A. Smith, Daniel Khashabi,
and Hannaneh Hajishirzi. Self-Instruct: Aligning Language Model with Self Generated Instruc-
tions. In Annual Meeting of the Association for Computational Linguistics (ACL), 2023. URL
https://arxiv.org/abs/2212.10560.

[33] Seonghyeon Ye, Yongrae Jo, Doyoung Kim, Sungdong Kim, Hyeonbin Hwang, and Minjoon
Seo. Selfee: Iterative self-revising llm empowered by self-feedback generation. Blog post, May
2023. URL https://kaistai.github.io/SelFee/.

[34] Dongwei Jiang, Guoxuan Wang, Yining Lu, Andrew Wang, Jingyu Zhang, Chuyu Liu, Ben-
jamin Van Durme, and Daniel Khashabi. Rationalyst: Mining implicit rationales for process
supervision of reasoning, 2025. URL https://arxiv.org/abs/2410.01044.

[35] Pinzhen Chen, Zhicheng Guo, Barry Haddow, and Kenneth Heafield. Iterative translation
refinement with large language models, 2024. URL https://arxiv.org/abs/2306.03856.

[36] Reid Pryzant, Dan Iter, Jerry Li, Yin Tat Lee, Chenguang Zhu, and Michael Zeng. Automatic
prompt optimization with "gradient descent" and beam search, 2023. URL https://arxiv.
org/abs/2305.03495.

[37] Shukang Yin, Chaoyou Fu, Sirui Zhao, Tong Xu, Hao Wang, Dianbo Sui, Yunhang Shen,
Ke Li, Xing Sun, and Enhong Chen. Woodpecker: hallucination correction for multi-
modal large language models. Science China Information Sciences, 67(12), December 2024.
ISSN 1869-1919. doi: 10.1007/s11432-024-4251-x. URL http://dx.doi.org/10.1007/
s11432-024-4251-x.

[38] Aviral Kumar, Vincent Zhuang, Rishabh Agarwal, Yi Su, John D Co-Reyes, Avi Singh, Kate
Baumli, Shariq Iqbal, Colton Bishop, Rebecca Roelofs, Lei M Zhang, Kay McKinney, Disha
Shrivastava, Cosmin Paduraru, George Tucker, Doina Precup, Feryal Behbahani, and Aleksandra
Faust. Training language models to self-correct via reinforcement learning, 2024. URL
https://arxiv.org/abs/2409.12917.

[39] Zixiang Chen, Yihe Deng, Huizhuo Yuan, Kaixuan Ji, and Quanquan Gu. Self-play fine-
tuning converts weak language models to strong language models. CoRR, 2024. URL https:
//arxiv.org/abs/2401.01335.

13

https://arxiv.org/abs/2309.13638
https://aclanthology.org/W17-2629/
https://aclanthology.org/W17-2629/
https://arxiv.org/abs/1609.05473
https://arxiv.org/abs/1609.05473
https://arxiv.org/abs/2310.02304
https://arxiv.org/abs/2310.02304
https://arxiv.org/abs/2303.17651
https://arxiv.org/abs/2310.12426
https://arxiv.org/abs/2310.12426
https://arxiv.org/abs/2212.10560
https://kaistai.github.io/SelFee/
https://arxiv.org/abs/2410.01044
https://arxiv.org/abs/2306.03856
https://arxiv.org/abs/2305.03495
https://arxiv.org/abs/2305.03495
http://dx.doi.org/10.1007/s11432-024-4251-x
http://dx.doi.org/10.1007/s11432-024-4251-x
https://arxiv.org/abs/2409.12917
https://arxiv.org/abs/2401.01335
https://arxiv.org/abs/2401.01335

[40] Weizhe Yuan, Richard Yuanzhe Pang, Kyunghyun Cho, Sainbayar Sukhbaatar, Jing Xu, and
Jason Weston. Self-rewarding language models. CoRR, 2024. URL https://arxiv.org/
abs/2401.10020.

[41] Sean Welleck, Ximing Lu, Peter West, Faeze Brahman, Tianxiao Shen, Daniel Khashabi, and
Yejin Choi. Generating sequences by learning to self-correct. In International Conference on
Learning Representations (ICLR), 2023. URL https://arxiv.org/abs/2211.00053.

[42] Liangming Pan, Michael Saxon, Wenda Xu, Deepak Nathani, Xinyi Wang, and William Yang
Wang. Automatically correcting large language models: Surveying the landscape of diverse
self-correction strategies, 2023. URL https://arxiv.org/abs/2308.03188.

[43] Simone Clemente, Zied Ben Houidi, Alexis Huet, Dario Rossi, Giulio Franzese, and Pietro
Michiardi. In praise of stubbornness: The case for cognitive-dissonance-aware knowledge
updates in llms. arXiv preprint arXiv:2502.04390, 2025.

[44] Yun Luo, Zhen Yang, Fandong Meng, Yafu Li, Jie Zhou, and Yue Zhang. An empirical study of
catastrophic forgetting in large language models during continual fine-tuning. arXiv preprint
arXiv:2308.08747, 2023.

[45] Yifei Ming, Senthil Purushwalkam, Shrey Pandit, Zixuan Ke, Xuan-Phi Nguyen, Caiming
Xiong, and Shafiq Joty. Faitheval: Can your language model stay faithful to context, even if
"the moon is made of marshmallows", 2025. URL https://arxiv.org/abs/2410.03727.

[46] Qi Li, Xiang Liu, Zhenheng Tang, Peijie Dong, Zeyu Li, Xinglin Pan, and Xiaowen Chu. Should
we really edit language models? on the evaluation of edited language models. In Advances in
Neural Information Processing Systems (NeurIPS), 2024.

[47] Eric Mitchell, Charles Lin, Antoine Bosselut, Christopher D. Manning, and Chelsea Finn.
Memory-based model editing at scale. In International Conference on Machine Learning
(ICML), 2022.

[48] Jiaming Ji, Kaile Wang, Tianyi Qiu, Boyuan Chen, Jiayi Zhou, Changye Li, Hantao Lou, Josef
Dai, Yunhuai Liu, and Yaodong Yang. Language models resist alignment: Evidence from data
compression. arXiv preprint arXiv:2406.06144, 2024.

[49] Andy Zou, Zifan Wang, Nicholas Carlini, Milad Nasr, J. Zico Kolter, and Matt Fredrikson.
Universal and transferable adversarial attacks on aligned language models. arXiv preprint
arXiv:2307.15043, 2023.

[50] Andrew Wang, Sophia Hager, Adi Asija, Daniel Khashabi, and Nicholas Andrews. Hell or high
water: Evaluating agentic recovery from external failures, 2025. URL https://arxiv.org/
abs/2508.11027.

[51] Sungwon Kim and Daniel Khashabi. Challenging the evaluator: Llm sycophancy under user
rebuttal, 2025. URL https://arxiv.org/abs/2509.16533.

[52] Aman Madaan, Niket Tandon, Prakhar Gupta, Gabriel Ilharco, Siddharth Singh, Tushar Khot,
Hannaneh Hajishirzi, Wen-tau Yih, and Yih Tau. Self-refine: Iterative refinement with self-
feedback. arXiv preprint arXiv:2303.17651, 2023.

[53] Shehzaad Dhuliawala, Tushar Khot, Ashish Sabharwal, and Peter Clark. Chain of verifi-
cation: How large language models perform reasoning with external tools. arXiv preprint
arXiv:2305.00053, 2024.

[54] Zhenyu Wu, Qingkai Zeng, Zhihan Zhang, Zhaoxuan Tan, Chao Shen, and Meng Jiang. Large
language models can self-correct with key condition verification, 2024. URL https://arxiv.
org/abs/2405.14092.

[55] Neeraj Varshney, Wenlin Yao, Hongming Zhang, Jianshu Chen, and Dong Yu. A stitch in
time saves nine: Detecting and mitigating hallucinations of llms by validating low-confidence
generation, 2023. URL https://arxiv.org/abs/2307.03987.

14

https://arxiv.org/abs/2401.10020
https://arxiv.org/abs/2401.10020
https://arxiv.org/abs/2211.00053
https://arxiv.org/abs/2308.03188
https://arxiv.org/abs/2410.03727
https://arxiv.org/abs/2508.11027
https://arxiv.org/abs/2508.11027
https://arxiv.org/abs/2509.16533
https://arxiv.org/abs/2405.14092
https://arxiv.org/abs/2405.14092
https://arxiv.org/abs/2307.03987

[56] Zhibin Gou, Zhihong Shao, Yeyun Gong, Yelong Shen, Yujiu Yang, Nan Duan, and Weizhu
Chen. Critic: Large language models can self-correct with tool-interactive critiquing, 2024.
URL https://arxiv.org/abs/2305.11738.

[57] Shuyang Jiang, Yuhao Wang, and Yu Wang. Selfevolve: A code evolution framework via large
language models, 2023. URL https://arxiv.org/abs/2306.02907.

[58] Xinyun Chen, Maxwell Lin, Nathanael Schärli, and Denny Zhou. Teaching large language
models to self-debug, 2023. URL https://arxiv.org/abs/2304.05128.

[59] Ruochen Zhao, Xingxuan Li, Shafiq Joty, Chengwei Qin, and Lidong Bing. Verify-and-edit:
A knowledge-enhanced chain-of-thought framework. In Anna Rogers, Jordan Boyd-Graber,
and Naoaki Okazaki, editors, Proceedings of the 61st Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers), pages 5823–5840, Toronto, Canada, July
2023. Association for Computational Linguistics. doi: 10.18653/v1/2023.acl-long.320. URL
https://aclanthology.org/2023.acl-long.320/.

[60] Wenhao Yu, Zhihan Zhang, Zhenwen Liang, Meng Jiang, and Ashish Sabharwal. Improving
language models via plug-and-play retrieval feedback, 2023. URL https://arxiv.org/abs/
2305.14002.

[61] Geunwoo Kim, Pierre Baldi, and Stephen McAleer. Language models can solve computer tasks,
2023. URL https://arxiv.org/abs/2303.17491.

[62] Ryo Kamoi, Yusen Zhang, Nan Zhang, Jiawei Han, and Rui Zhang. When can llms actually
correct their own mistakes? a critical survey of self-correction of llms, 2024. URL https:
//arxiv.org/abs/2406.01297.

[63] Kevin Wu, Eric Wu, and James Zou. Clasheval: Quantifying the tug-of-war between an llm’s
internal prior and external evidence, 2024. URL https://arxiv.org/abs/2404.10198.

[64] Jianhao Yan, Yun Luo, and Yue Zhang. Refutebench: Evaluating refuting instruction-following
for large language models, 2024. URL https://arxiv.org/abs/2402.13463.

[65] Sophia Hager, David Mueller, Kevin Duh, and Nicholas Andrews. Uncertainty distillation:
Teaching language models to express semantic confidence, 2025. URL https://arxiv.org/
abs/2503.14749.

[66] Rongwu Xu, Brian S. Lin, Shujian Yang, Tianqi Zhang, Weiyan Shi, Tianwei Zhang, Zhixuan
Fang, Wei Xu, and Han Qiu. The earth is flat because...: Investigating llms’ belief towards
misinformation via persuasive conversation, 2024. URL https://arxiv.org/abs/2312.
09085.

[67] Boshi Wang, Xiang Yue, and Huan Sun. Can chatgpt defend its belief in truth? evaluating llm
reasoning via debate, 2023. URL https://arxiv.org/abs/2305.13160.

[68] Yuqing Yang and Robin Jia. When do llms admit their mistakes? understanding the role of
model belief in retraction, 2025. URL https://arxiv.org/abs/2505.16170.

[69] Kevin Meng, David Bau, Alex Andonian, and Yonatan Belinkov. Locating and editing factual
associations in gpt, 2023. URL https://arxiv.org/abs/2202.05262.

[70] Tianjian Li, Yiming Zhang, Ping Yu, Swarnadeep Saha, Daniel Khashabi, Jason Weston, Jack
Lanchantin, and Tianlu Wang. Jointly reinforcing diversity and quality in language model
generations, 2025.

[71] Jiayi Zhang, Simon Yu, Derek Chong, Anthony Sicilia, Michael R. Tomz, Christopher D.
Manning, and Weiyan Shi. Verbalized sampling: How to mitigate mode collapse and unlock
llm diversity, 2025.

[72] Weiran Yao, Shelby Heinecke, Juan Carlos Niebles, Zhiwei Liu, Yihao Feng, Le Xue, Rithesh
Murthy, Zeyuan Chen, Jianguo Zhang, Devansh Arpit, Ran Xu, Phil Mui, Huan Wang, Caiming
Xiong, and Silvio Savarese. Retroformer: Retrospective large language agents with policy
gradient optimization, 2024. URL https://arxiv.org/abs/2308.02151.

15

https://arxiv.org/abs/2305.11738
https://arxiv.org/abs/2306.02907
https://arxiv.org/abs/2304.05128
https://aclanthology.org/2023.acl-long.320/
https://arxiv.org/abs/2305.14002
https://arxiv.org/abs/2305.14002
https://arxiv.org/abs/2303.17491
https://arxiv.org/abs/2406.01297
https://arxiv.org/abs/2406.01297
https://arxiv.org/abs/2404.10198
https://arxiv.org/abs/2402.13463
https://arxiv.org/abs/2503.14749
https://arxiv.org/abs/2503.14749
https://arxiv.org/abs/2312.09085
https://arxiv.org/abs/2312.09085
https://arxiv.org/abs/2305.13160
https://arxiv.org/abs/2505.16170
https://arxiv.org/abs/2202.05262
https://arxiv.org/abs/2308.02151

[73] Lianmin Zheng, Wei-Lin Chiang, Ying Sheng, Siyuan Zhuang, Zhanghao Wu, Yonghao Zhuang,
Zi Lin, Zhuohan Li, Dacheng Li, Eric P. Xing, Hao Zhang, Joseph E. Gonzalez, and Ion
Stoica. Judging llm-as-a-judge with mt-bench and chatbot arena. CoRR, 2023. URL https:
//arxiv.org/abs/2306.05685.

16

https://arxiv.org/abs/2306.05685
https://arxiv.org/abs/2306.05685

A Examples of different feedback types

We provide a complete worked example illustrating the feedback types differences in our study in
Figure 8. The problem (AIME 2024-I-10) involves finding a segment length in a circle with tangent
lines. The solver incorrectly assumes the triangle is right-angled and applies an unjustified formula.

F2 identifies two specific formula errors: using cos A instead of sin A, and using angle (A+C) instead
of B in the Law of Cosines. F3 provides six numbered issues with extensive explanations and a
step-by-step correction roadmap.
Original Question:
Let ABC be a triangle inscribed in circle ω. Let the tangents to ω at B and C intersect at point D, and let AD intersect ω at P.
If AB=5, BC=9, and AC=10, AP can be written as m/n, where m and n are relatively prime integers. Find m + n.

Solver Model’s Attempt:
Step 1: We need to find the length of AP, where AD intersects ω at P. We should utilize properties of inscribed angles, tangents
to circles, and similar triangles.
Step 2: Recall that the tangent to a circle is perpendicular to the radius drawn to the point of tangency. By using the properties
of tangents, we can relate the lengths of segments BD, CD, and AD.
Step 3: Apply the power of a point theorem. For point D, we have DB · DC = DA · DP.
Step 4: To find DB and DC, use the fact that DB and DC are tangents to the circle and BC is a chord. Let x = BD = CD and use the
given side lengths AB = 5, BC = 9, and AC = 10.
Step 5: Given AB = 5, BC = 9, and AC = 10, we notice that 5² + 9² = 10², which means △ABC is a right-angled triangle with ∠BCA =
90°.
Step 6: With △ABC being a right triangle, we can find the radius R of circle ω using R = abc/(4Δ), where Δ is the area. The area Δ
= (1/2) · 5 · 9 = 45/2, and R = (5 · 9 · 10)/(4 · 45/2) = 5.
Step 7: Since the triangle is right-angled at C, we focus on using BC, AC, and AB to find AP through areas and similar triangles.
Step 8: By Power of a Point from D, DB · DC = DA · DP. Also, note that DA = DP + AP.
Step 9: We can use the fact that △ABD and △ACD are similar to △PBD and △PCD respectively, or directly apply Power of a Point and
similarity to find AP.
Step 10: For a right-angled triangle inscribed in a circle, the mean proportional theorem can be applied. Using AB · AC = AD · AP
or similar relations, we compute AP.
Step 11: Direct computation of AP using AB = 5, BC = 9, AC = 10. From the relation, AP = (AB · AC)/(AB + AC) = (5 · 10)/(5 + 10) =
50/15 = 10/3.
Step 12: To get the sum m + n where AP = m/n, we have m = 10 and n = 3, so m + n = 10 + 3 = 13.

The final answer is: 13

Binary Correctness Feedback (F1):
The answer is wrong!

Self-Generated Reflective Feedback (F2) Using the Solver Model Itself:
Here are the critical errors in your reasoning:

1 **Expression for CD**
You set CD = (BC⁄2) / cos A. In fact, in isosceles ΔBDC (with base BC and base‐angles A), BC = 2·CD·sin A, so CD = BC⁄(2 sin A),
not BC⁄(2 cos A).
2 **Law of Cosines on ΔACD**
You wrote AD² = AC² + CD² – 2·AC·CD·cos(A + C). But ∠ACD is not A + C. By the alternate‐segment theorem (or inscribed‐angle
chase) one finds ∠ACD = ∠ABC = B.
Hence the correct relation is AD² = AC² + CD² – 2·AC·CD·cos B.

These two mis‐steps propagate through your arithmetic for AD, DP and then AP. Once you replace BC/(2 cos A) with BC/(2 sin A) to
find CD, and use ∠ACD = B in the LoC for AD, the subsequent power‐of‐a‐point calculation DP = CD²/AD and then AP = |DP – AD|
will fall into line and yield the true rational value of AP.

Strong-Model Reflective Feedback (F3) Using GPT-4.1:
Thank you for sharing the solution and your reasoning! Here's some feedback identifying the issues in the previous approach and
guidance on the steps to correct:
1 **Step 5 and 6 (Right triangle and radius):** The claim that the triangle is right angled because 5² + 9² = 10² is actually
incorrect in this problem. Since 5² + 9² = 25 + 81 = 106 which is not equal to 10² = 100, the triangle is **not** right angled.
This means the calculations that follow assuming a right angle, including the radius computation based on right triangle
properties, cannot be used.
2. **Step 7 (Using incorrect triangle configuration):** The reasoning in Step 7 mistakenly treats the triangle as right angled and
misapplies the Pythagorean theorem to find lengths related to points B,D,C. So, lengths BD, DC, etc., cannot be simplified as done
there.
3. **Step 11 (Formula for AP):** The step that writes AP = (AB · AC)/(AB + AC) is not a known or justified direct formula and
comes without proof or reference. Without the triangle being right angled or a direct similarity/proportionality argument, such a
formula does not hold here.
4. **Ignoring the angle relationships from tangent lines:** The most crucial fact is that the intersection point D of the tangents
at B and C satisfies ∠BDC = ∠BAC (the tangents form an angle equal to the arc they subtend). This fact is a cornerstone to
finding exact expressions for lengths AD, CD, and ultimately AP.
5. **Missing Law of Cosines computations to find AD and CD:** To correctly solve the problem, use the Law of Cosines in △ACD and
△BCD, incorporating the angle relationships from the tangents and arcs to express AD and CD in terms of known sides and cosines of
angles like ∠A and ∠B.
6. **Power of a Point at D:** Applying the power of a point theorem at D is key, but DP × AD = DB × DC. Since DB = DC (both are
tangent lengths from point D to the circle), this relation helps you solve for DP. Then AP = AD - DP.

These corrections will lead to the proper final expression for AP.

Figure 8: Examples of different feedback types.

17

B Prompts and evaluation details for problem solving and feedback
generation

B.1 Prompts used for the solver model

We developed different prompting strategies for the solver model to incorporate feedback and generate
new solutions across iterations. The system prompts in Figure 9 were used for the solver model
across different tasks:

Math-500 and AIME 2024:
You are a smart assistant that solves math problems. Please think step by step to solve the problem. If you think you're ready
to output the answer, you can wrap your answer with \\boxed{}. Please follow this format

TriviaQA:
You are a smart assistant that solves trivia questions. If you think you're ready to output the answer, you can just output an
answer.

MMLU and MMLU Pro:
The following are multiple-choice questions about {category}. Let's think step by step. Please explain your reasoning clearly as
you work toward the answer. When you're ready, conclude your answer with the phrase: \"The answer is (X)\" where X is the
correct letter choice. Make sure to always include parentheses around the letter.

GPQA:
The following are multiple-choice questions. Let's think step by step. Please explain your reasoning clearly as you work toward
the answer. When you're ready, please finish your answer with \"The answer is (X)\" where X is the correct letter choice. Make
sure to always include parentheses around the letter.

PopQA:
You are a smart assistant that answers fact-based questions. If you think you're ready to output the answer, you can just output
an answer.

5-Digit Multiplication:
You are a smart assistant in solving multiplication questions. Please think step by step. If you think you're ready to output
the answer, you can wrap your answer with \\boxed{}. Please follow this format.

Hexadecimal 5-Digit Multiplication:
You are a smart assistant in solving hexadecimal multiplication questions. Please think step by step. If you think you're ready
to output the answer, you can wrap your answer with \\boxed{}. Please follow this format.

Figure 9: System prompts used for the solver model across all tasks.

At the initial generation round, we directly use the question as the prompt for the solver model.
For multiple-choice questions, we format the question by concatenating the question and answer
choices with their corresponding labels (i.e., A to D for MMLU and GPQA, A to J for MMLU
Pro). In subsequent rounds, we provide the solver model with its complete previous history and
the corresponding feedback from the feedback generator model. We clearly label each iteration so
the solver model can track all its previous attempts. The general template for the iterative prompt
structure is provided in Figure 10.

Question:
[Original Question]

Prompt for Generation after the Initial Round:
You are given the full history of your previous attempts and the feedback provided for each attempt.
History:

Attempt at (iteration 1) and the corresponding feedback:

Answer: [answer1] Feedback: [Feedback 1 Depends on Feedback Strategy].

Attempt at (iteration 2) and the corresponding feedback:

Answer: [answer2] Feedback: [Feedback 2 Depends on Feedback Strategy].

Question: [Original Question]. Please answer the question again.

* [answer1] and [answer2] corresponds to the model’s first two failed attempts. [Original Question] refers to the initial question the
model attempts to answer.

Figure 10: Prompt used for iterative self-improvement

B.2 Evaluation details for problem solving

We employ few-shot prompting across all tasks to provide consistent context for the solver model. For
TriviaQA and PopQA, we randomly sample 5 questions without replacement as few-shot examples.
For MMLU and MMLU Pro, we similarly sample 5 questions from the corresponding question
category to ensure domain-relevant examples.

18

For PopQA, we employ an LLM-as-a-judge approach [73] to assess answer correctness. This is
necessary because PopQA provides limited answer aliases (extensive alternative phrasings for exact
string matching) compared to TriviaQA. Without this approach, models would be penalized for minor
formatting differences rather than genuine comprehension errors, leading to an underestimation
of their true problem-solving capabilities. For other tasks, we follow the same evaluation metrics
provided by lm-eval-harness.

B.3 Prompts used for feedback generation

We implement three distinct feedback generation strategies as described in §2.2. For Binary Correct-
ness Feedback (F1), we provide minimal information: “Your answer was incorrect. Please answer
the question again.”

For Self-Generated Reflective Feedback (F2) and Strong-Model Reflective Feedback (F3), we employ
identical prompt templates that differ only in the model used for generation. The feedback generator
receives the complete interaction history, including all previous solver attempts and corresponding
feedback. When available, we provide the feedback model with detailed solution explanations
that justify the correct answer; for datasets lacking such explanations, we provide only the ground
truth answer. This approach ensures the feedback model has sufficient context to generate targeted,
informative guidance while maintaining consistency across feedback types, and its template is shown
in Figure 11.

Prompt for Generating the Feedback:
There was a mistake in answering the following question:

[Original Question]

You are provided with the full history of previous attempts made by a separate model, along with corresponding feedback.
History:
Attempt at (iteration 1) and the corresponding feedback:

Answer: [answer1] Feedback: [Feedback 1 Depends on Feedback Strategy].

Attempt at (iteration 2) and the corresponding feedback:

Answer: [answer2] Feedback: [Feedback 2 Depends on Feedback Strategy].

Most Recent Answer: [answer3]

The correct final answer is: [Ground Truth Answer]
The correct reasoning process that leads to this answer is: [Solution with Process for this Question]

Please provide feedback identifying which step(s) were incorrect or how to get to the correct answer WITHOUT revealing
the correct final answer or the content of the correct option.

* [answer1] [answer2] [answer3] refer to all previous attempts the model had. [answer3] is the most recent attempt.
[Ground Truth Answer] is the answer for this question. [Solution with Process for this Question] is the detailed solution
provided for the question in the dataset.

Figure 11: Prompt used for generating the feedback.

B.4 Answer masking in feedback

To ensure fair evaluation, we implement comprehensive answer masking to prevent feedback from
directly revealing ground truth solutions while preserving feedback quality. Our approach allows
feedback to contain detailed solution steps and guidance but strictly prohibits explicit disclosure of
final answers. We use “[masked]” as the replacement token for filtered content.

Multiple-choice questions. We mask all possible representations of the correct choice letter. For
example, if the correct answer is A, we filter variants including (A), \boxed{A}, **A**, etc.

Open-ended questions. For TriviaQA, we filter all terms matching the words in “aliases” and
“normalized aliases” answer fields. For PopQA, we mask entries from the “possible answers” answer
field. For mathematical tasks (5-digit multiplication and MATH-500), we mask standalone numerical
answers and those in \boxed{} notation. Hexadecimal multiplication follows similar patterns. For
multiplication tasks, we additionally mask intermediate partial products to prevent reduction to simple
addition problems (detailed in Appendix D).

19

B.5 Error Categorization Prompt

The prompt template used for categorizing persistent model errors after 9 iterations is shown in
Figure 12.

System Prompt:
You are an error categorizer specialized in analyzing why Language Learning Models (LLMs) "
fail to self-improve when solving problems. When provided with an LLM's prediction trajectory and the feedback it receives,
you will categorize the errors into one of six categories:
1. Problem is Impossible to Solve
 - The problem itself is fundamentally flawed
 - External tools are required (e.g., calculator for complex calculations, search engine for obscure facts)
2. Problem is Too Complicated
 - The problem exceeds the model's knowledge scope
 - Example: A level 5 math problem beyond the model's training
3. Feedback is Wrong
 - The feedback generator model provides incorrect guidance
 - The feedback fails to identify actual mistakes in the model's response
 - The feedback is too vague or generic to be helpful
4. Model is Not Following Feedback
 - The model fails to incorporate feedback properly
5. Style or Formalization Issue
 - Logical correctness but formatting or notation problems
6. Unknown
 - Cannot categorize the failure into above categories
End your response with exactly: 'The error is: [category]' where category is one of:\n- impossible to solve\n- too
complicated\n- feedback is wrong\n- model is not following the feedback\n- style or formalization issue\n- unknown

User Prompt:
The question and the interaction between the agent model and the feedback model is: {question}
The process answer is: {process_answer}
Please categorize the error. End your response with:\n'The error is: [category]

* {question} is the first 5 iterations of the answer-feedback pairs; {process_answer} is the best ground truth solution we can
provide from the dataset to the model.

Figure 12: Error Categorization

C Error categorization examples from iterative self-improvement

This section presents representative examples of persistent errors that prevent models from achieving
correct solutions despite multiple feedback iterations. We illustrate the main error categories identified
in our analysis: feedback resistance (where models fail to incorporate valid corrections, see Figure 13)
and feedback quality issues (where the provided guidance is incorrect or misleading, see Figure 14).

Question:
Which crop began the Third Agricultural Revolution?
Choices:
(A) Rice
(B) Wheat
(C) Barley
(D) Millet

Model Answer:
The Third Agricultural Revolution, also known as the Green Revolution, involved the development and introduction of high-yielding
varieties of wheat, as well as other crops like maize and rice. However, among the given options, wheat is specifically notable
for being one of the initial crops that sparked this revolution, particularly with the work of Norman Borlaug.The answer is (B)

Feedback:
The reasoning in the answer focused correctly on the importance of a certain crop during the Third Agricultural Revolution and
mentioned high-yielding varieties and Norman Borlaug's work. However, the key misstep was in associating that revolutionary
agricultural development specifically with one crop among the options without fully considering the initial crop that triggered
the Green Revolution. While multiple crops were involved later, the revolution is generally attributed to breakthroughs related
to a specific cereal that was first targeted for increasing yields in the early stages.To improve the answer, it would be
important to pinpoint which crop was actually the catalyst for the Green Revolution by reviewing the historical timeline and the
initial crop that demonstrated dramatic yield improvements through the introduction of new agricultural techniques and varieties.
This would help identify the earliest crop connected to sparking the Third Agricultural Revolution rather than focusing solely on
one widely known crop associated with it later.

Model Revised Answer:
The Third Agricultural Revolution, also known as the Green Revolution, is often attributed to the development of high-yielding
varieties of crops. Among the given options, wheat is specifically notable for being one of the initial crops that sparked this
revolution, particularly with the work of Norman Borlaug. His development of high-yielding, disease-resistant wheat varieties led
to significant increases in food production and is considered a catalyst for the Green Revolution.The answer is (B)

Figure 13: Llama-4-Scout resisting feedback from GPT-4.1 mini in MMLU

20

Question:
A homeowner entered into a contract with an insurance company to purchase a fire insurance policy for her new home. The policy
provided that the insurance company promised to pay up to $500,000 if the said house was destroyed by fire or fire-related
explosion, while the homeowner promised to pay a quarterly premium of $400. The homeowner failed to make the last two quarterly
payments before her house burned to the ground. The insurance company refused to pay the homeowner for the loss because of her
failure to make the last premium payments. In an action by the homeowner against the insurance company to recover for the loss of
her house, the homeowner's best theory of recovery is that
Choices:
(A) although she failed to make the last two premium payments, there was a bargained-for exchange.
(B) the insurance company's duty to pay was not expressly conditioned on the homeowner's duty to make the payments.
(C) the insurance company was under an independent duty to pay for the loss.
(D) the homeowner did not receive notice of cancellation.

Model Answer:
The answer is (D)

Feedback:
The primary error in the previous reasoning was focusing on the homeowner's lack of notice of cancellation rather than examining
the nature of the contractual obligations and the conditional duties within the insurance policy.\n\nIn analyzing this scenario,
it's important to understand that insurance contracts often contain conditions precedent\u2014the insurer's duty to pay is
typically contingent upon the insured's fulfillment of certain obligations, such as timely payment of premiums.
The mistake was not sufficiently weighing how failure to pay premiums affects the insurer's duty to perform under the contract.
The key is to assess whether the insurance company's obligation is dependent upon the homeowner's premium payment, and if that
obligation exists independently or is conditioned on such payment.
Therefore, the analysis should have involved a closer look at the contractual terms and the interdependence of duties, rather
than focusing chiefly on issues related to cancellation notices.

O4-mini’s judgement:
The feedback repeatedly mischaracterized the contract\u2019s structure by insisting the insurer\u2019s duty was a condition
precedent on timely premium payments, thereby directing the model away from the correct theory that the insurer owed an
independent duty to pay. In other words, the guidance itself was incorrect and prevented the model from reaching the right
answer. The error is: feedback is wrong

Figure 14: Wrong feedback provided by GPT-4.1 mini judged by o4-mini

D Synthetic digit multiplication task details

D.1 5-digit multiplication

We construct a controlled arithmetic dataset consisting of 450 5-digit multiplication problems follow-
ing the template: “Calculate the following question: 19365 × 12534.”

Feedback generation We employ a deterministic, human-designed template based on the dis-
tributive property to generate ground truth solutions. This template systematically decomposes each
multiplication into partial products, providing a clear step-by-step solution pathway. Our template-
based approach serves two key purposes: (1) demonstrating structured problem decomposition
strategies for complex arithmetic, and (2) ensuring feedback correctness and interoperability. In
Figure 15, we illustrate an example template solution, which serves as the reference for feedback
generation. The feedback model compares solver outputs against this structured breakdown to identify
specific computational errors.

Answer masking strategy To maintain task difficulty, we also mask intermediate partial answers
before providing feedback to the solver model. The final feedback combines the masked template
solution with model-generated guidance tailored to the specific errors observed.

Question:
Calculate the following question: 32183 * 40672.

Manually Generated Feedback:
The original question is:
Calculate the following question: 19365 * 12534.
Step1: After breaking down the numbers: 19365 = 19000 + 365, 12534 = 12000 + 534
Stwp2: Then we apply the distributive property:
19365 x 12534 = (19000 + 365) x (12000 + 534)
Compute partial products:
Step3: 19000 x 12000 = 228000000
Step4: 19000 x 534 = 10146000
Step5: 365 x 12000 = 4380000
Step6: 365 x 534 = 194910
Step7: Sum all partial products we have the answer: 242579910
Total: 228000000 + 10146000 + 4380000 + 194910 = 242579910

Figure 15: Templates for 5-digit multiplication solution.

D.2 Hexadecimal 5-Digit Multiplication

We also extend our synthetic arithmetic evaluation to hexadecimal multiplication, creating problems
that challenge models’ ability to work with non-standard number systems. The question tem-

21

Question:
Calculate the following question, where each number is represented in base 16: 69837 * 17635.

Manually Generated Feedback:
Multiplying 69837 by 17635 in base 16:
Step 1: Multiply 69837 by '5' \u2192 Partial product: 20F913, Shifted: 20F913, Intermediate Sum: 20F913
Step 2: Multiply 69837 by '3' \u2192 Partial product: 13C8A5, Shifted: 13C8A50, Intermediate Sum: 15D8363
Step 3: Multiply 69837 by '6' \u2192 Partial product: 27914A, Shifted: 27914A00, Intermediate Sum: 28EECD63
Step 4: Multiply 69837 by '7' \u2192 Partial product: 2E2981, Shifted: 2E2981000, Intermediate Sum: 30B86DD63
Step 5: Multiply 69837 by '1' \u2192 Partial product: 69837, Shifted: 698370000, Intermediate Sum: 9A3BDDD63
Final Product (hex) = 9A3BDDD63

Figure 16: Hexadecimal 5-Digit Multiplication process solution.

plate follows the format: “Calculate the following question, where each number is
represented in base 16: 69837 × 17635.” All answers are expected in base-16 format.

Template-based feedback. Similar to decimal multiplication, we generate feedback using deter-
ministic step-by-step templates. The multiplication process involves sequentially multiplying the
first operand by each digit of the second operand (interpreting digits in base-16), then summing the
resulting partial products with appropriate positional shifts. Figure 16 demonstrates an example
template solution. We validate solution correctness by verifying that partial product summation
matches results from standard base-16 calculators.

Masking strategy for hexadecimal multiplication. Given the increased computational complexity
of hexadecimal arithmetic, we employ a more permissive masking approach. We mask only the
final summation step while preserving intermediate partial products. This design balances providing
sufficient guidance with maintaining the core challenge of hexadecimal computation.

E Analysis of model confidence and FEEDBACK FRICTION

Figure 17 presents confidence-accuracy relationships across four datasets: GPQA, MMLU, MMLU
Pro, and TriviaQA. Each plot displays three metrics: initial accuracy at iteration 0, final accuracy
after iterative feedback, and the improvement delta between them.

We define a model’s initial confidence in its generated answer as the exponential of the average
log-probability per token in the answer sequence:

Initial Confidence = exp

(
1

T

T∑
t=1

log p(at | a<t, q)

)

where:

• T is the number of tokens in the generated answer (with EOS excluded),

• at is the t-th token in the answer,

• a<t denotes the prefix of the answer up to (but not including) position t,

• q is the input question,

• p(at | a<t, q) is the model’s probability of generating token at given the previous tokens
and the input.

This corresponds to the geometric mean of the per-token probabilities assigned by the model, and
serves as a quantitative measure of the model’s confidence in its complete answer.

We find that initial confidence strongly predicts initial accuracy across all datasets. Higher
confidence bins consistently correspond to higher initial performance (Figures 17a–17d), confirming
that the model’s confidence is a good predictor of its initial accuracy.

However, confidence poorly predicts improvement potential. The relationship between initial
confidence and accuracy gains varies substantially:

• GPQA shows peak improvements at moderate confidence levels, with diminishing returns at
higher confidence

22

• MMLU and MMLU Pro exhibit relatively flat improvement patterns with the less confident
questions getting more improvements. Nevertheless, this may caused by the low initial
accuracy.

• TriviaQA demonstrates erratic improvement fluctuations regardless of initial confidence

0.9
1

0.9
2

0.9
3

0.9
4

0.9
5

0.9
6

0.9
7

0.9
8

0.9
9

Initial Confidence

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

Final Accuracy Accuracy Initial Accuracy

(a) GPQA confidence vs. accuracy

0.8
6

0.8
8

0.8
9

0.9
0

0.9
1

0.9
2

0.9
3

0.9
4

0.9
5

0.9
6

0.9
7

0.9
8

0.9
9

1.0
0

Initial Confidence

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

Final Accuracy Accuracy Initial Accuracy

(b) MMLU confidence vs. accuracy

0.8
1

0.8
2

0.8
4

0.8
5

0.8
6

0.8
7

0.8
8

0.8
9

0.9
0

0.9
1

0.9
2

0.9
3

0.9
4

0.9
5

0.9
6

0.9
7

0.9
8

0.9
9

Initial Confidence

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

Final Accuracy Accuracy Initial Accuracy

(c) MMLU Pro confidence vs. accuracy

0.7
1

0.7
3

0.7
9

0.8
2
0.8

3
0.8

5
0.8

6
0.8

7
0.9

0
0.9

1
0.9

2
0.9

3
0.9

4
0.9

5
0.9

6
0.9

7
0.9

8
0.9

9
1.0

0

Initial Confidence

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

Final Accuracy Accuracy Initial Accuracy

(d) TriviaQA confidence vs. accuracy

Figure 17: Confidence vs. accuracy across different datasets using GPT-4.1 mini as feedback model
and Llama-4-Scout as the solver.

F Analysis of data familiarity and RIGID THINKING

After analyzing data familiarity using answer frequency in the PopQA dataset, we found no clear
correlation between model performance and frequency of answer words in the training data. However,
surface-level frequency may not fully capture a model’s true familiarity with content, as it fails to
account for context quality, semantic relationships, and other factors affecting knowledge acquisition
during pre-training.

To better capture actual familiarity, we examine a more direct behavioral signal called in-domain
performance: the model’s accuracy in answering questions, measured using 100 generations per
question with Llama-3.3. This behavioral familiarity metric reflects the cumulative effect of all
factors contributing to the model’s internalized knowledge.

Figure 18 illustrates the in-domain performance of Llama-3.3 across four benchmarks—GPQA,
TriviaQA, 5-digit multiplication, and MMLU Pro. We bucket questions based on the model’s initial
accuracy and report both initial and final accuracy after iterative feedback. While the model shows
improvement across all buckets, questions with higher behavioral familiarity (higher initial accuracy)
consistently achieve higher final accuracy as well. This suggests that behavioral familiarity is a more
informative predictor of both current performance and improvement potential than answer frequency
alone. Nevertheless, we still cannot obverse any consistent patterns across all these datasets in the
initial vs. final accuracy.

23

0-10 10-20 20-30 30-40 40-50 50-60 60-70 70-80 80-90 90-100
Initial Percentage Correct (Bucket)

0

20

40

60

80

100

Pe
rc

en
ta

ge

58

12 9 12
3

11 10 10 10

63

3.4%

81.0%

16.7%

66.7%

44.4%

100.0%

33.3%

100.0% 100.0%100.0%

54.5%

81.8%

90.0%

100.0%

80.0%

90.0%

80.0%

100.0% 98.4%100.0%
Bucketed Accuracy Improvement with Feedback

Initial Accuracy (%)
Final Accuracy (%)
Question Distribution (%)

(a) GPQA in-domain performance

0-10 10-20 20-30 30-40 40-50 50-60 60-70 70-80 80-90 90-100
Initial Percentage Correct (Bucket)

0

20

40

60

80

100

Pe
rc

en
ta

ge

122

9 2 4 1 2 3 6

650

4.1%

75.4%

33.3%

77.8%

50.0%50.0% 50.0%

100.0% 100.0%100.0%

50.0%

100.0%

66.7%

100.0%

66.7%

100.0% 99.1%99.7%

Bucketed Accuracy Improvement with Feedback
Initial Accuracy (%)
Final Accuracy (%)
Question Distribution (%)

(b) TriviaQA in-domain performance

0-10 10-20 20-30 30-40 40-50 50-60 60-70 70-80 80-90 90-100
Initial Percentage Correct (Bucket)

0

20

40

60

80

100

Pe
rc

en
ta

ge

360

21
5 7 4 7 6 4 10

265.0%

73.1%

23.8%

85.7%

20.0%

60.0%
57.1%

100.0%

75.0%

100.0%

57.1%

85.7%

66.7%

100.0%

50.0%

75.0%

50.0%

100.0%

57.7%

84.6%

Bucketed Accuracy Improvement with Feedback
Initial Accuracy (%)
Final Accuracy (%)
Question Distribution (%)

(c) 5-digit multiplication in-domain

0-10 10-20 20-30 30-40 40-50 50-60 60-70 70-80 80-90 90-100
Initial Percentage Correct (Bucket)

0

20

40

60

80

100

Pe
rc

en
ta

ge

257

45 39 32 45 39 46 46 70

570

8.6%

69.6%

24.4%

80.0%

46.2%

89.7%

43.8%

90.6%

66.7%

91.1%

66.7%

92.3%

71.7%

100.0%

84.8%

97.8%

85.7%

98.6% 97.7%
100.0%

Bucketed Accuracy Improvement with Feedback
Initial Accuracy (%)
Final Accuracy (%)
Question Distribution (%)

(d) MMLU Pro in-domain performance

Figure 18: In-domain accuracy of Llama-3.3 across four benchmark tasks.

G Analysis of reasoning complexity and FEEDBACK FRICTION

To investigate whether the model’s improvement over iterations correlates with question difficulty
or the reasoning complexity, we compare the performance of Llama-4-Scout on two synthesized
multiplication tasks: 5-digit and 6-digit problems. Unlike prior datasets, which lack clear separability
in difficulty levels, these tasks were manually constructed with 450 questions each to ensure a
well-defined difference in complexity.

The initial accuracy of Llama-4-Scout is 2.2% on 5-digit multiplication and 0.889% on 6-digit
multiplication. Interestingly, while the 6-digit task is objectively more difficult, we observe greater
improvement across iterations compared to the 5-digit task. One possible explanation is that more
difficult tasks offer more room for feedback-driven correction because solver model has less initial
knowledge about how to solve them. However, we also observe cases where simpler questions
yield higher final accuracy, suggesting that the relationship between task complexity and feedback
effectiveness is non-monotonic and influenced by additional factors.

H Analysis of model type and FEEDBACK FRICTION

To better understand the overlap in failure cases among Llama-3.3, Llama-4-Scout, and Llama-4-
Maverick, we compared their incorrect predictions across several benchmark datasets. Specifically,
we report the number of shared mistakes between each pair of models, the number of questions all
three models got wrong, the total number of unique mistakes (union), and the Overlap Ratio, defined
as the proportion of all-three common errors to the total number of distinct errors.

The Overlap Ratio offers a normalized measure of agreement in model failures. As shown in Table 2,
AIME shows the highest overlap (35.7%), suggesting a subset of examples that all three models
consistently struggle with. Conversely, datasets such as GPQA and 5-digit Multiplication exhibit
minimal overlap (6.9% and 0.7%, respectively), indicating that the models tend to fail on different
questions.

These findings suggest that model failures are often idiosyncratic rather than being concentrated
around a universally difficult subset of examples. The relatively low overlap across datasets highlights
the challenge of achieving robust self-correction: errors are not easily attributable to a common set of
pitfalls, but rather reflect distinct weaknesses in each model’s reasoning and generalization.

24

0 1 2 3 4 5 6 7 8 9
Iteration

0

20

40

60

80

Ac
cu

ra
cy

 (%
)

Accuracy Improvement Over Iterations
6-digit
5-digit

Figure 19: Comparison of the Improvement for 5-digit and 6-digit multiplication with GPT-4.1 mini
as feedback model

Dataset L3.3–Scout L3.3–Maverick Scout–Maverick All-Three Union Overlap Ratio

AIME 8 9 5 5 14 0.357
TriviaQA 22 16 28 14 105 0.133
MATH-500 18 14 11 9 64 0.141
MMLU 15 12 19 11 55 0.200
MMLU Pro 49 40 43 30 163 0.184
GPQA 3 5 2 2 29 0.069
5-digit Mult. 21 3 1 1 141 0.007

Table 2: Pairwise and three-way common failure cases among Llama-3.3, Llama-4-Scout, and Llama-
4-Maverick across datasets. Overlap Ratio is computed as the number of questions all three models
failed on divided by the union of all distinct failures.

I Details of testing model’s self-perception of FEEDBACK FRICTION

Figure 20 shows the prompts we used to probe whether the model understand the given feedback and
whether it’s willing to change its belief.

Feedback Understanding Prompt:

Question: {original_question}

Your previous answer: {previous_response}

Feedback received: '{previous_feedback}'

Do you understand this feedback? Please answer with 'Yes' or 'No' and briefly explain why.

Belief Update Prompt:

Question: {original_question}

Your previous answer: {previous_response}

Feedback received: '{previous_feedback}'

Have you updated your belief or understanding about this problem? Please answer with 'Yes' or 'No' and briefly explain what

changed.

Figure 20: An example of Llama-4-Scout explicitly acknowledging changing its belief while still
making the same mistake in the next attempt.

Figure 21 shows an example where Llama-4-Scout explicitly acknowledges that “the actual boundary
is defined by the perpendicular bisectors of the segments connecting O to the vertices, which can
result in an oblique line” and claims its approach has been updated. Yet in its second attempt, it still
describes the region as forming “a square with side length 1/2 min(AB, AD)” and arrives at the same
incorrect answer of 1/4. This demonstrates the model can articulate understanding of the feedback
while its actual problem-solving behavior remains unchanged. The correct answer is 1/2.

25

Original Question:
Rectangle ABCD has center O and AB/AD=k. A point is randomly chosen from the interior of rectangle ABCD. What is the probability
that it is closer to O than to any of the four vertices?

Model’s First Attempt:
The region closer to O than to any vertex is a smaller rectangle with side lengths 1/2 AB and 1/2 AD. This smaller rectangle has
an area of 1/2 AB × 1/2 AD = 1/4 AB × AD. The area of the entire rectangle ABCD is AB × AD. Thus, the probability is 1/4 AB × AD /
AB × AD = 1/4. The final answer is: 1/4

Feedback Provided:
The original solution assumes that the region closer to the center O than to any of the vertices forms a smaller rectangle aligned
with the original rectangle, with side lengths exactly half of the original. However, the locus of points closer to O than to a
particular vertex is not a straight boundary parallel to the sides; rather, it is defined by the perpendicular bisector of the
segment connecting O and that vertex, which is generally an oblique line. The assumption that the smaller region is exactly
one-quarter of the whole area because it is a rectangle of half the original sides is not correct.

Model's Statement on Belief Update:
Yes. My understanding of the problem has changed based on the feedback provided. Initially, I incorrectly assumed the region
closer to the center O than to any vertex formed a smaller rectangle with sides exactly half the lengths of the original
rectangle. However, the feedback highlighted that this assumption is incorrect and that the actual boundary is defined by the
perpendicular bisectors of the segments connecting O to the vertices, which can result in an oblique line. This realization,
combined with the importance of considering symmetry, transformations, and a more nuanced geometric partitioning of the rectangle,
has updated my approach to solving the problem.

Model’s Second Attempt:
By drawing these perpendicular bisectors, we can see that the region closer to O than to any vertex in this smaller rectangle
forms a square with side length 1/2 min(AB, AD). The area of this smaller rectangle is 1/4 AB × AD, and the area of the region
closer to O is 1/2 min(AB, AD) × 1/2 min(AB, AD). However, considering the setup and focusing on the probability aspect, we should
approach it by understanding that the division of the rectangle into regions closer to O or the vertices is based on the
perpendicular bisectors, which effectively creates a smaller square (when considering the closest region to O) within each of the
four smaller rectangles. Given the symmetry and the nature of the division, the probability simplifies to the ratio of the area
where points are closer to O than to any vertex, over the total area of the rectangle. This simplification leads to recognizing
that the probability does not depend on the aspect ratio k but rather on the geometric properties of the rectangle and its
division. The final answer is: 1/4

Figure 21: An example of Llama-4-Scout explicitly acknowledging changing its belief while still
making the same mistake in the next attempt.

J Full results of semantic entropy

Figure 22 presents the complete self-correction analysis across all five benchmark tasks (5 digits
multiplication, GPQA, MATH, MMLU-Pro, and TriviaQA) for both Llama-3.3-70B and Llama-4-
Scout. Each subplot shows initial accuracy (blue), final accuracy (orange), and absolute improvement
rate (green) as functions of semantic entropy with bucket size 0.2. Regions with fewer than 10
samples are marked with red shading and dashed boundaries to indicate unreliable data, with sample
counts displayed in boxes above each plot.

Figure 22: Full results of semantic entropy over five benchmark tasks and two models.

26

NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The abstract and introduction (pages 1-2) clearly state the paper’s main claims,
including the identification of a phenomenon called FEEDBACK FRICTION where LLMs
show resistance to incorporating external feedback despite multiple iterations. The claims
match the experimental results shown in the paper, particularly in Figures 1 and 3, which
demonstrate models consistently plateauing below their theoretical accuracy ceiling. The
limitations are also mentioned, as they note that even with their best strategies, models still
fail to reach target accuracy.

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: The paper discusses limitations of their work in several places. The authors
acknowledge that their sampling strategies only mitigate but do not eliminate FEEDBACK
FRICTION (p.7, lines 249-252). They also note that despite investigating various hypotheses,
they couldn’t fully explain the causes of model stubbornness (p.8, lines 284-284). The
synthetic tasks section (p.4) acknowledges limitations in task selection by explaining their
choice of objective tasks over subjective ones to ensure reliable evaluation.

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

27

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [NA]

Justification: The paper is primarily empirical and does not include formal theoretical results
or proofs that would require mathematical verification. While they develop the concept
of FEEDBACK FRICTION, this is demonstrated through experimental evidence rather than
mathematical theorems.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: The paper provides sufficient detail to reproduce the main experimental results.
Section 3.1 (p.4-5) describes the experimental setup, including tasks, metrics, models,
and inference settings. The authors explain their continual self-improvement framework
(p.3), feedback mechanisms (p.3-4), and sampling strategies (p.7). They specify using
temperature 0 for deterministic outputs, vllm for inference, and GPT-4.1 mini for generating
strong-model feedback.

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

28

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [Yes]
Justification: The author mentioned they will share the code and data used for this paper
upon paper acceptance, and they’ve shared an anonymized repo.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: The paper specifies the experimental details needed to understand the results.
Section 3.1 (p.4-5) describes the tasks used (AIME 2024, MATH-500, TriviaQA, PopQA,
MMLU, MMLU Pro, GPQA, and two synthetic tasks), the models tested (LLaMA-3.3
70B Instruct, Llama-4-Scout-17B-16E, Llama-4-Maverick-17B-128E-Instruct-FP8), and
inference settings (temperature 0, vllm, chat templates). They also explain how they sample
10% of data for certain datasets and why this is representative.

29

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

Guidelines:
• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: The paper reports error bars in the analysis section.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: The paper provides information about the compute resources used in the
experimental setup section, where they mentioned all their experiments are done on a single
H100 with 8 GPUs.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

30

https://neurips.cc/public/EthicsGuidelines

Answer: [Yes]

Justification: The research in this paper appears to conform with the NeurIPS Code of Ethics.
The paper studies LLMs’ ability to incorporate feedback, which is foundational research
without apparent ethical concerns. The authors use publicly available models and benchmark
datasets, and their experimental methodology doesn’t involve deception, harmful content
generation, or human subjects that would raise ethical issues.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: The paper discusses the broader societal impacts of the work in the introduction
and conclusion.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: The paper does not release new models, datasets, or tools that would pose
risks for misuse. The research uses existing LLMs and benchmark datasets to study their
feedback incorporation capabilities. The authors don’t create or release content that would
require safeguards against misuse.

• The answer NA means that the paper poses no such risks.

31

• Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [NA]
Justification: The paper references the original sources of the models (such as Meta AI
for Llama models and OpenAI for GPT-4.1 mini). Since these models and the benchmark
have permissive licenses and terms of use that easily allow for third-party implementation,
explicit mention of licensing details is unnecessary.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [Yes]
Justification: The paper introduces two synthetic digit multiplication tasks, and details will
be provided in the appendix on those two new tasks.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

32

paperswithcode.com/datasets

Answer: [NA]
Justification: The paper does not involve crowdsourcing or research with human subjects.
The experimental methodology is entirely computational, using LLMs and benchmark
datasets without human participants or annotations.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: The paper does not involve human subjects research that would require IRB
approval. All experiments are conducted using computational models and pre-existing
datasets, with no human participants involved in the study.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [Yes]
Justification: The paper appropriately describes the LLMs used in the research, which are
central to the study’s methodology. Section 3.1 (p.4-5) provides details about the models
used (LLaMA-3.3 70B Instruct, Llama-4-Scout-17B-16E, Llama-4-Maverick-17B-128E-
Instruct-FP8, and GPT-4.1 mini). Since studying LLMs’ ability to incorporate feedback is the
core focus of the paper, these models and their configurations are thoroughly documented.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.

33

https://neurips.cc/Conferences/2025/LLM

	Introduction
	 A controlled framework to surface Feedback Friction
	Setup for iterative self-improvement loop
	Designing different feedback mechanisms for iterative self-improvement

	Experimental results
	Experimental setup
	Main findings

	Analysis of Feedback Friction
	Feedback integration failures dominate persistent self-improvement errors
	Mitigating Feedback Friction with sampling strategies
	Understanding Feedback Friction

	Related Work
	Conclusion
	Examples of different feedback types
	Prompts and evaluation details for problem solving and feedback generation
	Prompts used for the solver model
	Evaluation details for problem solving
	Prompts used for feedback generation
	Answer masking in feedback
	Error Categorization Prompt

	Error categorization examples from iterative self-improvement
	Synthetic digit multiplication task details
	5-digit multiplication
	Hexadecimal 5-Digit Multiplication

	Analysis of model confidence and Feedback Friction
	Analysis of data familiarity and Rigid Thinking
	Analysis of reasoning complexity and Feedback Friction
	Analysis of model type and Feedback Friction
	Details of testing model's self-perception of Feedback Friction
	Full results of semantic entropy

