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Abstract

The meaning conveyed by a sentence often de-
pends on the context in which it appears. De-
spite the progress of sentence embedding meth-
ods, it remains unclear as how to best modify a
sentence embedding conditioned on its context.
To address this problem, we propose Condition-
Aware Sentence Embeddings (CASE), an effi-
cient and accurate method to create an embed-
ding for a sentence under a given condition.
First, CASE creates an embedding for the con-
dition using an Large Language Model (LLM),
where the sentence influences the attention
scores computed for the tokens in the condi-
tion during pooling. Next, a supervised non-
linear projection is learnt to reduce the dimen-
sionality of the LLM-based text embeddings.
We show that CASE significantly outperforms
previously proposed Conditional Semantic Tex-
tual Similarity (C-STS) methods on an exist-
ing standard benchmark dataset. We find that
subtracting the condition embedding will con-
sistently improve the C-STS performance of
LLM-based text embeddings. Moreover, we
propose a supervised dimensionality reduction
method that not only reduces the dimension-
ality of the LLM-based embeddings, but also
significantly improves their performance.

1 Introduction

Representing the meaning of a given sentence using
a vector embedding is a fundamental task required
by many Natural Language Processing (NLP) ap-
plications (Conneau et al., 2017; Reimers and
Gurevych, 2019; Gao et al., 2021; Xu et al., 2023;
Chen et al., 2023). Sentence embeddings are used
to measure the Semantic Textual Similarity (STS)
between two sentences (Agirre et al., 2012, 2015,
2016).

Despite its importance, measuring STS between
two sentences is a non-trivial task for humans,
which is conditioned on what is being compared
between the two sentences. For example, for the
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Figure 1: The two conditions focus on different informa-
tion described in the two sentences. Human annotators
rate the two sentences 1-5, indicating a high-level (5)
of semantic textual similarity under condition 2 than
condition 1 (1). Our proposed condition-aware sentence
embedding (CASE) method reports similarity scores
that are well-aligned with the human similarity ratings.

two sentences shown in Figure 1, human annotators
would assign different similarity ratings, depending
on what they are asked to compare (i.e., given con-
ditions 1 and 2). Existing STS benchmarks do not
specify the conditions under which two sentences
must be compared for their semantic similarity. To
address this limitation, Deshpande et al. (2023)
proposed the C-STS task and a dataset, where the
similarity between two sentences s; and ss is mea-
sured under two different conditions cjoy and cpigh,
which focus on different aspects of semantics in
the two sentences, resulting in different similarity
ratings. Many real-world applications can be seen
as C-STS tasks such as ranking a set of documents
retrieved for the same query in Information Re-
trieval (IR) (Manning et al., 2008), comparing two
answers for the same question in Question Answer-
ing (QA) (Risch et al., 2021), or measuring the
strength of a semantic relation between two enti-
ties in Knowledge Graph Completion (KGC) (Yoo
et al., 2024; Lin et al., 2024).

We propose CASE, a method for learning
Condition-Aware Sentence Embeddings, for a
given input sentence considering another sentence.



Specifically, CASE creates an embedding for the
condition sentence using an LLM with a prompt
that includes the target sentence (e.g. Sentences
1/2 in Figure 1), where the latter is not encoded
explicitly in the embedding but influences the at-
tention scores used during token pooling. Com-
pared to Masked Language Models (MLMs) that
have been used extensively in prior work on C-STS,
LLM:s contain billions of parameters and are typi-
cally trained on much larger datasets for a longer
period of time. Consequently, LLM-based embed-
ding models have consistently ranked at the top
in leaderboards evaluating text embedding mod-
els (Muennighoff et al., 2022). Therefore, by lever-
aging LLM-based embeddings, CASE is able to
benefit from the rich world knowledge contained in
LLMs. However, the optimal method to use LLMs
for C-STS remains elusive as reported by Lin et al.
(2024) who showed that decoder-only LL.Ms often
underperform MLM-based embeddings in C-STS
benchmarks. Interestingly, we find that encod-
ing the condition given the sentence often outper-
forms the reverse setting in C-STS benchmarks.
Moreover, we find that subtracting the embedding
of the condition in a post-processing step further
improves the performance across multiple LLM-
based embedding models.

One disadvantage of using LLM-based embed-
dings compared to their MLLM-based counterparts
is the high dimensionality of the LLM-based em-
beddings. For example, embeddings produced
by state-of-the-art (SoTA) LLM encoders such
as NV-embed-v2 (Lee et al., 2024) are 4096 di-
mensional, whereas MLM embeddings such as
RoBERTa-base (Liu et al., 2019) SimCSE (Gao
et al., 2021) embeddings are 768 dimensional.
High dimensional embeddings are problematic
both due to their high storage requirements and the
high inner-product computation cost. Moreover,
the embeddings obtained from LLMs are not nec-
essarily aligned to the C-STS task because they are
not fine-tuned on such tasks. To address these issue,
we propose a supervised dimensionality reduction
method that accurately projects LLM-based embed-
dings to low dimensional vector spaces, while also
improving their performance in the C-STS task. We
find that although popular unsupervised dimension-
ality reduction methods such as Principal Compo-
nent Analysis (PCA) and Independent Component
Analysis (ICA) are effective at reducing the dimen-
sionality of the embedding space, they underper-
form our proposed supervised projection learning

method. Further investigations into individual ex-
amples show that CASE increases the similarity
between a sentence and the information empha-
sized by a given condition, while decreasing the
same for information irrelevant to the condition as
expected. We have submitted the source code and
pre-processed data for reproducing our findings for
anonymous reviewing, which will later be publicly
released upon paper acceptance.

2 Related Work

Conditional Semantic Textual Similarity:
Deshpande et al. (2023) proposed the C-STS
task for measuring the similarity between two
sentences under a given condition. They created
a human-annotated dataset containing 18,908 in-
stances where the semantic similarity between two
sentences s; and ss is rated under two conditions
Chigh and cjoy resulting in respectively high vs. low
similarity between the two sentences. Moreover,
they proposed cross-, bi- and tri-encoder baselines.
Given a triplet (s1, S2, ¢) a cross-encoder considers
all interactions among tokens in s;, s2 and c.
Although the cross-encoder setting benefits from
having access to both s; and so at the same
time, it is computationally costly due to the large
number of token interactions required for longer
sentences and conditions. Moreover, it does not
pre-compute conditional embeddings for the
individual sentences, which is problematic when
computing all pairwise similarities between the
sentences in a large set.

Bi-encoders overcome the limitations of cross-
encoders by creating a condition-aware embedding
for each sentence, and then compute C-STS using
an efficient operation such as the inner-product.
Tri-encoders separately encode s1, s2 and ¢, and
then apply some late interactions between the con-
dition’s and each sentence’s embeddings to com-
pute C-STS. Despite the computational bene-
fits gained by pre-encoding sentences and condi-
tions separately, late interaction mechanisms for
tri-encoders remain complex and under-perform in
C-STS benchmarks.

Tu et al. (2024) found that the C-STS dataset cre-
ated by Deshpande et al. (2023) contain ill-defined
conditions and annotation errors, resulting in a sig-
nificant discrepancy among the annotators for over
half of the dataset. To address this, Tu et al. (2024)
re-annotated the validation split from the original
C-STS dataset. Moreover, they proposed a method



to solve C-STS by first converting each condition
into a question, and then using GPT-3.5 to extract
the corresponding answers from the two sentences.
Finally, C-STS is estimated as the cosine similarity
between the SimCSE embeddings for the two an-
swers. Although this QA formulation consistently
improves the performance of all baseline encoders,
it depends on multiple decoupled components such
as converting conditions into questions, requiring a
decoder LLM to extract the answer from each ques-
tion, and using a separate encoder to compare the
extracted answers, which increases the possibility
of error propagation across components.

Yoo et al. (2024) proposed Hyper-CL, a con-
trastively learnt hypernetwork (Ha et al., 2017) to
selectively project the embeddings of s; and sg
according to c. Hyper-CL follows a tri-encoder
setting where s1, s2 and c are first encoded sepa-
rately using a sentence encoder. Next, a hypernet-
work is trained to produce a linear transformation
matrix conditioned on c. Finally, the embeddings
of s; and sy are projected using this transforma-
tion matrix and their inner-product is computed.
Hyper-CL improves the performance of tri-encoder
models, but still under-performs bi-encoders for
C-STS. Moreover, hypernetworks introduce an ex-
ternal parameter set that is three times larger than
the SImCSE model used to encode each sentence,
resulting in an excessively large memory space.

Lin et al. (2024) proposed a tri-encoder-based
C-STS method where they used routers and heavy-
light attention (Ainslie et al., 2023) to select the
relevant tokens to a given condition. Specifically,
they used the query vector of the [CLS] token of
the condition to compute attention scores for the to-
kens in the sentence, which are subsequently used
to compute a sentence embedding. Their method
outperforms Hyper-CL for the tri-encoder setting.
Liu et al. (2025) proposed a conditional contrastive
learning method for C-STS, introducing weighted
contrastive losses with a sample augmentation strat-
egy. Although it improved performance for both bi-
and tri-encoders, the former outperforms the latter.

Li et al. (2024a) proposed a cross-encoder ap-
proach which predicts C-STS scores, without creat-
ing conditional embeddings. Prior work on C-STS
has shown cross-encoders to perform poorly de-
spite having access to both sentences simultane-
ously. Li et al. (2024a) showed that this is due to
the irrelevant information in the two sentences to
the condition and proposed a token re-weighting
strategy, inspired by object detection in computer

vision (Shi et al., 2023; Jaegle et al., 2021). Con-
cretely, they compute two cross-attention matri-
ces between (s1, $2) and ¢, which are subsequently
used to compute the correlations for the sentence or
condition tokens. Although their method improves
the performance of cross-encoder-based C-STS
measurement, it still underperforms bi-encoders.

Text Embeddings from LLMs: MLMs use a bi-
directional attention (Devlin et al., 2018), where
the information from tokens appearing in positions
both before and after the current token are used to
predict the embedding for the current target token
in the sequence that must be encoded. In contrast,
decoder-only LLMs are trained with a causal atten-
tion mask (Vaswani et al., 2017), which prevents
information leakage from future tokens by allow-
ing the decoder to attend only to previous positions
during auto-regressive text generation. Although
this makes sense for decoders, it is sub-optimal
when using LLMs for encoding a given sequence
as evident from the poor performance of GPT mod-
els (Lin et al., 2024) compared to similar-sized
BERT (Devlin et al., 2018) or T5 (Chung et al.,
2024) models on various natural language under-
standing benchmarks (Wang et al., 2019).

BehnamGhader et al. (2024) proposed a post-
processing method for obtaining text embeddings
from decoder-only LLMs following three steps:
(a) enable bidirectional attention to overcome the
restrictions due to causal attention, (b) train the
model to predict the masked next token using bi-
directional attention, and (c) use unsupervised con-
trastive learning to compute better sequence rep-
resentations. Finally, a pooling method is applied
on the token embedding sequence to create a fixed-
dimensional embedding for the input text such as
the embedding of the last token in the sequence (i.e.
last token pooling) (Meng et al., 2024; Li et al.,
2023) or the average over all token embeddings
(i.e. mean pooling) (Wang et al., 2024). Moreover,
Lee et al. (2024) proposed a latent attention layer
where they compute the cross attention between
the last hidden layer from the decoder and a train-
able latent array to compute a weighted pooling
mechanism.

3 Condition-Aware Sentence Embeddings

An overview of our proposed method is shown in
Figure 2, which consists of two-steps. In the first
step (§3.1), we create two separate embeddings for
the condition considering each of the two sentences,
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Figure 2: Overview of CASE. An LLM is prompted with I(s) to obtain two separate embeddings f(c; I(s1))
and f(c; I(s2)) for the condition ¢ for two sentences s; and so. The unconditional embedding f(c; I()) is then
computed using the prompt 7((}) and subtracted from each of those embeddings. Finally, the embeddings are
projected to a lower-dimensional space using a learnt projection g and their cosine similarity is computed.

one at a time, in the instruction prompt shown to
an LLM. Note that it is the condition that is being
encoded and the tokens in the sentence (similar
to all other tokens in the instruction) are simply
modifying the attention scores computed for the
tokens in the condition. Intuitively, it can be seen
as each sentence filling some missing information
asked in the condition.

Embeddings obtained from LLMs are typically
high dimensional and not necessarily fine-tuned
for the C-STS task. Therefore, in the second step
(§3.2), we learn a supervised projection using the
training split from the C-STS dataset to project
each of the two condition embeddings to a lower-
dimensional vector space. Finally, the C-STS be-
tween two sentences is computed as the cosine
similarity between the corresponding projected em-
beddings.

3.1 Extracting Embeddings from LLMs

Given an LLM-based encoder, f, we create a d-
dimensional embedding f(c; I(s)) € R? for a con-
dition ¢, given the sentence s. Here, [ is an in-
struction template that takes c as an argument. We
use the following prompt template as I(s) — Re-
trieve semantically similar texts to the Condition,
given the Sentence : [SENTENCE], where we sub-
stitute s in the placeholder [SENTENCE]. Next,
we provide c as the input text to be encoded by
the LLM following the instruction I(s). Finally,
the token embeddings of ¢ are aggregated accord-
ing to one of the pooling methods described pre-
viously to create f(c;I(s)). Although our focus
here is to create condition-aware embeddings, it is
noteworthy that we can also obtain unconditional

embeddings for a sentence by dropping the con-
dition in the above prompt. Specifically, we use
the prompt I(()) Retrieve semantically similar texts
to a given Sentence for this purpose, and denote
this unconditional embedding of ¢ by f(c; I(0)).
As we see later in our experiments, by subtracting
f(e; 1(0)) from f(c;I(s)), we can reduce the ef-
fect of tokens in the condition that are irrelevant to
the sentence, thereby consistently improving accu-
racy of the condition-aware embeddings. This first
step is fully unsupervised and a zero-shot prompt
template is used as 1.

Recall that both s and c are text strings, and
it is possible to swap the sentence and condition
in the above formulation to obtain an embedding
f(s;I(c)) for the sentence, given the condition.
However, as shown later in our experiments, com-
paring the embedding for c created under s; and so
results in better performance on the C-STS bench-
mark for all LLM encoders. This is because s;
and sy contain many irrelevant information to c,
which will affect the cosine similarity computed
between f(s1;(c)) and f(s2;I(c)). On the other
hand, the cosine similarity between f(c;I(s1))
and f(c; I(s2)) is a more accurate estimate of the
C-STS between s; and sy under ¢ because it is
purely based on the meaning alterations to ¢ under
s1 and sg separately.

3.2 Supervised Projection Learning

The LLM-based embeddings computed in §3.1 has
two main drawbacks. First, relative to MLMs-
based sentence embeddings, LLMs produce much
higher dimensional embeddings, which can be
problematic due to their memory requirements (es-



pecially when operating on a limited GPU mem-
ory) and the computational cost involved in inner-
product computations. In tasks such as dense re-
trieval, we must compare millions of documents
against a query to find the nearest neighbours under
strict latency requirements, and low-dimensional
embeddings are preferable. Second, although
LLMs are typically trained on massive text collec-
tions and instruction-tuned for diverse tasks (Muen-
nighoff et al., 2022), their performance on C-STS
tasks have been poor (Lin et al., 2024). As seen
from our condition-aware prompt template, an
LLM must be able to separately handle a variable
condition statement and a fixed instruction. This
setup is different from most tasks on which LLMs
are typically trained on, where the instruction re-
mains fixed across all inputs. Therefore, it is im-
portant to perform a supervised fine-tuning step to
LLM embeddings before they are used for C-STS.

To address the above-mentioned drawbacks, we
propose a supervised projection learning method.
Specifically, we freeze the model parameters of
the LLM and use an Multi-layer Perception (MLP)
layer that takes f(c; I(s)) as the input and returns a
k-dimensional (k < d) embedding g(f(c; I(s);0),
where 0 denotes the learnable parameters of the
MLP. Finally, we define CASE(s, ¢), as the pro-
jection of the offset between the conditional and
the unconditional embeddings of c under s, given

by (1).
CASE(s,c) = g(f(c; I(s1)) — f(c; 1(0));0) (1)

We use the human similarity ratings = in the C-STS
train instances D to learn 6. Specifically, we min-
imise the squared error between the human ratings
and the cosine similarity computed using the corre-
sponding CASE as given by (2).

> (cos(CASE(s1,c), CASE(s2,¢)) — 1) (2)

(s1,82,¢,7)€D

Here, cos denotes the cosine similarity between
the projected embeddings. We use Adam opti-
miser (Kingma and Ba, 2014) to find the optimal
0 that minimises the loss given by (2). Recall that
only the MLP parameters are updated during this
projection learning step, while keeping the param-
eters of the LLM fixed, which makes it extremely
efficient. For example, it takes less than 5 minutes
to learn this projection even for the largest (4096 di-
mensional) embedding spaces using the train split
of the C-STS dataset. Using the learnt projection,
we compute the C-STS between s; and s3 under ¢

as the cosine similarity between CASE(sy, ¢) and
CASE(s2, ).

4 Experiments and Results

To evaluate the effectiveness of the LLM-based
and MLM-based sentence embeddings as described
in §3, we apply six sentence encoders, out
of which three are LLM-based: NV-Embed-v2
(4096 dimensional NV), SFR-Embedding-Mistral
(4096 dimensional SFR), gte-Owen2-7B-instruct
(3584 dimensional GTE) and three are MLM-
based: Multilingual-E5-large-instruct (1024 di-
mensional ES), sup-simcse-roberta-large (1024 di-
mensional SimCSE_large), and sup-simcse-bert-
base-uncased (768 dimensional SimCSE_base).
Further details provided in Appendix A.

We evaluate model performance on different
pooling methods, prompt settings, and sentence
constructions. Moreover, we evaluate the di-
mensionality reduction methods under supervised
and unsupervised settings to learn the projection
for CASE (PCA, ICA, and linear and non-linear
MLPs). Both the linear and non-linear MLPs
are Siamese bi-encoders with weight-sharing. As
explained in § 3.2, they take f(c;I(s1)) and
f(e;1(s2)) as the input embeddings, and re-
turn the projected embeddings CASE(sy, c¢) and
CASE(s2, ¢) as the outputs, which can be com-
pared using a similarity metric such as cosine.

Linear MLP performs a linear transformation:

z = Dropout (We) 3)

where W € R% %4 i the learned projection matrix.
A dropout layer is applied to reduce any overfit-
ting (Hinton et al., 2012).
Our non-linear MLP is a two-layer MLP:
h = Dropout (ReLU (W;e)) 4)
z = Dropout (ReLU (Wzh)) )

Hyperparameters are tuned on a held-out valida-
tion set. We select a learning rate of 1073 and a
batch size of 512. The dropout rate is set to 20%
for the linear MLP and 15% for non-linear MLP.

To address annotation errors in the original

C-STS dataset such as ambiguous and invalid con-
ditions, Tu et al. (2024) re-annotated the original
validation set. To conduct a more accurate and re-
liable evaluation, we use the original C-STS train
set and re-annotated validation set. A 70-30 split
is used for the re-annotated validation set, with
randomly selected 70% of the data allocated for
validation and the remaining 30% for testing. We



use a single p3.24x1 EC2 instance (8x V100 GPUs)
for learning sentence embeddings, and a separate
NVIDIA RTX A6000 GPU for supervised projec-
tion learning. Scikit-learn 1.3.0 is used for PCA
and ICA. Pytorch 2.0.1 with cuda 11.7 is used for
MLP proejction. These settings are fixed across all
experiments. For reducing 4096-dimensional LLM-
based sentence embeddings to 512-dimensional,
training a linear MLP for CASE takes approxi-
mately 1.5 minutes, whereas a non-linear MLP
requires about 5 minutes (wall-clock time).

4.1 Evaluation Metrics

We evaluate the performance of sentence embed-
ding models on two metrics: Spearman Rank cor-
relation and Accuracy.

Spearman Rank Correlation: We compute
Spearman’s rank correlation between the similar-
ity scores by CASE and the re-annotated human
ratings on the test set.

Accuracy Spearman correlation is highly sensi-
tive to small variations in similarity scores, which
can be affected by the noise in human annotations.
Given the subjectivity and ambiguity of human
ratings, we introduce Accuracy as a more robust
alternative to assess whether the model correctly
captures the relative impact of conditions on seman-
tic similarity. Different from Spearman correlation,
which considers actual similarity values, accuracy
only evaluates whether the predicted similarity un-
der the higher-rated condition cy;g, is greater than
that under the lower-rated condition cjqy,.

For each sentence pair (s1, $2), there exist two
conditions ¢; and co with corresponding human
labelled similarity scores y; and 2, where y; > yo.

Cosine similarity is computed between CASE
under the same condition for the similarity score

simg, = cos (CASE(s1,c1), CASE(s2,c1))  (6)
simg, = cos (CASE(s1,c2), CASE(s2,¢c2))  (7)
A prediction is considered correct if
(sime; —sime, ) (y1 —y2) >0, (®)
which evaluates whether the model’s predicted sim-

ilarity ranking aligns with the human annotations.
Then, the accuracy is given by (9)

Zf.v:l 1 [(Simgil) — simg;) (ygl) — yé“) > O]
N )

(C)]

where N is the total number of test instances, and
1[-] is the indicator function.

4.2 C-STS Measurement

To generate CASE, we apply different ways to
construct the prompt for LLM-based embeddings
and to concatenate the condition and sentence for
MLM-based embeddings. For LLM-based models,
we have two main settings: (a) cond = f(c; I(s)),
where we encode the condition given the sentence,
and (b) sent = f(s;I(c)), where we encode the
sentence given the condition as explained in §3.1.
For MLM-based models, we evaluate the two set-
tings: (a) CONC(c + s), where we concatenate
sentence after the condition, and (b) CONC(s+c¢),
where we concatenate condition after the sentence.
For each setting, we evaluate the effect of subtract-
ing the condition embedding, ¢ = f(c; I(0)).

The test performance for different settings and
models are shown in Table 1. For LLM-based em-
beddings, cond consistently reports higher Spear-
man correlation than sent, suggesting that embed-
ding the condition given the sentence is more effec-
tive for C-STS measurement than embedding the
sentence given the condition. Moreover, we see that
subtracting ¢ further improves performance both in
terms of Spearman correlation and accuracy across
all settings, except for accuracy in SFR. The for-
mer approach reduces the noise due to the tokens
in a sentence, which are irrelevant to the given con-
dition. For MLM-based embeddings, subtracting ¢
also improves performance. It reduces condition-
specific information that are not altered by the sen-
tence, thus allowing CASE to focus on the infor-
mation that varies between the two sentences being
compared. Moreover, we discovered that subtract-
ing c in a post-processing step improves isotropy
of the embeddings as shown in Appendix B. This
is in-line with prior work reporting a correlation
between isotropy and improved performance in em-
bedding models (Rajaee and Pilehvar, 2022; Su
et al., 2021). The effect of pooling method on
performance is discussed in Appendix C, where
we find the latent pooling in NV to perform best.
Therefore, we use the (cond —c) setting (which
reports the best performance) for the six sentence
encoders to conduct the subsequent experiments.

We show the training curves for our supervised
MLPs in Figure 3. Overall, the non-linear MLPs
achieve significantly higher Spearman correlation
than the linear MLPs, except for NV, where the
linear MLP performs slightly better than the non-
linear MLP. Moreover, non-linear MLPs converge
faster, typically reaching their peak performance
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Figure 3: Spearman correlation on test set for different models over training steps with dimensionality 512. The
y-axes of both subfigures are aligned, facilitating a direct comparison of the Spearman correlation coefficients across
the two line charts, with the same colour for the same model. Best viewed in colour.

Model sent/cond? Spear. Acc.
NV sent - ¢ 16.98 52.24
sent 22.07 59.89
cond - ¢ 3132 6491
cond 27.02  48.02
SFR sent - ¢ 19.54 57.52
sent 11.89  43.01
cond - ¢ 20.38 52.51
cond 18.32  46.44
GTE sent - ¢ 7.16 42.48
sent 7.16 37.20
cond - ¢ 20.40 54.08
cond 16.58 45.12
E5S sent - ¢ 11.08 42.21
sent 3.77 33.77
cond - ¢ 12.01 42.74
cond 6.18 37.47
SimCSE_large CONC(s + ¢) 5.59 37.46
CONC(c+ s) 4.00 35.09
CONC(s+c¢)-c 832 3456
CONC(c+s)-c 858  48.02
SimCSE_base CONC(s + ¢) 4.37 39.81
CONC(c + s) 1.25 34.82
CONC(s+c¢)-c¢ 17.05 42.74
CONC(c+s)-¢c  6.00 36.67

Table 1: Spearman and accuracy scores for different
sentence embedding models and encoding settings.
within 20 epochs, after which the performance de-
clines due to overfitting. The performance of the
linear MLPs, gradually increases and eventually
converges as the training progresses. NV consis-
tently performs the best for both linear and non-
linear MLPs.

To explore the relationship between test perfor-
mance and dimensionality, we use NV to evaluate
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Figure 4: Spearman correlation coefficients of the four
dimensionality reduction methods on the test set for NV-
Embed-v2 (NV) over different dimensionalities.

Model Non-linear MLP Linear MLP PCA ICA
NV 69.30 69.95 32.04 19.13
SFR 62.85 59.22 19.86 -1.99
GTE 64.16 56.10 22.82 7.26
ES5 62.12 47.03 11.43 -0.17
SimCSE_large 56.67 45.96 822 -4.89
SimCSE_base 56.60 39.54 6.19 -1.66

Table 2: Spearman correlation of embedding models
based on supervised and unsupervised dimensionality
reduction methods with reduced dimensionality 512.

our supervised dimensionality reduction methods
(MLPs) as well as the unsupervised methods (PCA
and ICA), as shown in Figure 4. Overall, the super-
vised MLPs achieve much higher Spearman cor-
relations while significantly reducing the dimen-
sionality. Their performance stabilises at relatively
high levels as the dimensionality exceeds 200 and
peaks around 500. In this way, we achieve an 8 x
compression of the sentence embeddings (original
dimensionality 4096) while maintaining high per-



s1: Young woman in orange dress about to serve in tennis game, on blue court with green sides.
s2: A girl playing tennis wears a gray uniform and holds her black racket behind her.

cos(sl,s2) 0.5006 — 0.9016
Condition 1: The color of the dress.
cos(sl,s2;cl) 0.4757 — 0.2522

Rating: 1

Condition 2: The name of the game.
cos(sl, s2;¢2) 0.6233 — 0.9660

Rating: 5

s1: Two snow skiers with ski poles and snow skis, standing on top of a snow covered mountain with other skiers around them.
s2: A skier stands alone at the top of a snowy slope with blue skies and mountains in the distance.

cos(sl,s2) 0.6318 — 0.7702
Condition 1: The number of person.
cos(sl, s2; cl) 0.6358 — 0.2788

Rating: 1

Condition 2: The type of job.
cos(sl, s2;¢2) 0.7502 — 0.9539

Rating: 5

s1: A bunch of people standing around at the beach with a kite in the air.
s2: a beach scene with a beach chair decorated with the Canadian Flag and surfers walking by with their surfboards

cos(sl,s2) 0.3988 — 0.5350
Condition 1: The type of hobby.
cos(sl,s2;cl) 0.4386 — 0.4886

Rating: 1

Condition 2: The type of location.
cos(sl, s2; ¢2) 0.4825 — 0.8582

Rating: 5

Table 3: Cosine similarity scores (cos) for two sentences under different conditions are computed using NV
embeddings (shown on the left side of the arrows) vs. using MLP projected 512 embeddings (i.e. CASE embeddings
given by (1)) (shown on the right side of the arrows). Compared to the unconditional similarity between the
two sentences, conditional similarity scores computed using NV embeddings align well with the human ratings.
Moreover, the conditional similarities are further appropriately amplified by the supervised projection. Further

qualitative evaluations shown in Appendix E.

formance. In contrast, unsupervised PCA and ICA
do not effectively capture the conditional semantics
in sentence embeddings. While PCA preserves the
performance of the original sentence embeddings,
it does not improve the performance on the C-STS
task. ICA, on the other hand, performs even worse,
showing a consistent decline in performance as di-
mensionality increases, which could be attributable
to the lack of sufficiently independent components
in sentence embeddings.

We compare sentence encoders in Table 2 for
a fixed (i.e. 512) dimensional projection from
their original embeddings. NV obtains the highest
Spearman coefficient across all sentence encoders
and dimensionality reduction methods. GTE and
SFR also achieve high Spearman coefficients un-
der the non-linear MLPs. SimCSE_large and
SimCSE_base have the lowest Spearman coeffi-
cients, regardless of the dimensionality reduction
method being used. Overall, we see that LLM-
based embeddings perform better than the MLM-
based embeddings on the C-STS task. Note that
direct comparison between our method and other
C-STS approaches is challenging due to differences
in the train/test sets used in prior work. Never-
theless, we present our results alongside previous
methods in Appendix D for completeness, which
shows its superior performance.

Similarity scores computed for three sentence
pairs are shown in Table 3 for the original high-
dimensional LLM-based embeddings and low-
dimensional projected CASE. By comparing the

similarity scores with and without the supervised
projection, we can evaluate the ability of CASE to
focus on the condition-related information. Com-
pared to the unconditional similarity between the
two sentences, conditional similarities scores com-
puted using NV embeddings align well with the
human ratings. For example, in the top row in
Table 3, we see that the unconditional similarity
between the two sentences reduces from 0.5006 to
0.4747 under c;, while increasing to 0.6233 under
co. Moreover, the conditional similarities are fur-
ther appropriately amplified by CASE using the su-
pervised projection (i.e. decreasing to 0.2522 under
c1, while increasing to 0.9660 under cz2). Specifi-
cally, CASE reduces the similarity between the two
sentences under the lower-rated condition, while
increasing the same under the high-rated condition.
This demonstrates that CASE is able to effectively
capture the shift in conditional meaning between
sentences under different conditions.

5 Conclusion

We propose CASE, which encodes the condition
under sentence by subtracting the condition in a
post-processing step when measuring C-STS. Our
findings show that LLM-based sentence embed-
dings consistently outperform MLM-based embed-
dings for C-STS. Moreover, we introduce an ef-
ficient supervised projection learning method to
reduce the dimensionality of LLM-based embed-
dings, while improving the performance in C-STS.



6 Limitations

We use the original C-STS training set and the re-
annotated validation set in this paper. The dataset,
especially the training set, includes annotation er-
rors, such as invalid conditions and subjective hu-
man annotations. These disadvantages hurt the
model’s ability to capture the semantics and per-
form the C-STS task. This further introduces am-
biguity and inaccuracy to CASE. Manually re-
annotating the training set, which contains 11342
instances, is costly and is deferred to future work.

Our evaluations cover only English, which is a
morphologically limited language. To the best of
our knowledge, C-STS datasets have not been an-
notated for languages other than English, which
has limited all prior work on C-STS to conduct ex-
periments using only English data. However, the
sentence encoders we used in our experiments sup-
port multiple languages. Therefore, we consider
it to be an important future research direction to
create multilingual datasets for C-STS and eval-
uate the effectiveness of our proposed method in
multilingual settings.

There is a large number of sentence en-
coders (over 240 models as at March 2025 eval-
uated on Massive Text Embedding Benchmark
(MTEB) (Muennighoff et al., 2023) leaderboard!).
However, due to computational limitations, we had
to select a subset covering the best performing (top
ranked on MTEB at the time of writing) models for
our evaluations. We will release our source code
and the evaluation framework such that the research
community can evaluate our proposed method with
any sentence encoder for C-STS.

7 Ethical Concerns

We did not collect or annotate any datasets in this
project. Instead, we use existing C-STS datasets
annotated and made available by Deshpande et al.
(2023) and Tu et al. (2024). To the best of our
knowledge, no ethical issues have been raised re-
garding those datasets.

We use multiple pre-trained and publicly
available MLM- and LLM-based sentence en-
coders (Kaneko and Bollegala, 2021). Both MLMs
and LLMs are known to encode unfair social biases
such as gender or racial biases. We have not evalu-
ated how such social biases would be influenced by
the CASE learning method proposed in this work.

1https://huggingface.co/spaces/mteb/
leaderboard

Therefore, we consider it would be important to
measure the social biases in CASE created in this
work before they are deployed in real-world appli-
cations.
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Supplementary Materials
A Models

To evaluate the effectiveness of the LLM-based
and MLM-based sentence embeddings as described
in §3, we apply six sentence encoders, out of
which three are LLM-based: NV-Embed-v2 (4096
dimensional and uses latent pooling) (NV)?, SFR-
Embedding-Mistral (4096 dimensional and uses
average pooling) (SFR)?, gte-Qwen2-7B-instruct
(3584 dimensional and uses last token pooling)
(GTE)* and three are MLM-based: Multilingual-
E5-large-instruct (1024 dimensional and uses av-
erage pooling) (E5)°, sup-simcse-roberta-large
(1024 dimensional and uses last token pool-
ing) (SimCSE_large)®, and sup-simcse-bert-base-
uncased (786 dimensional and uses last token pool-
ing) (SimCSE_base)’.

B Isotropy for Embeddings

We first use the embedding-to-mean cosine simi-
larity distribution to measure the isotropy of the
embeddings. Given a set of embeddings S =
{x1,®2,...,x,}, we first compute the mean em-
bedding vector pp = % >, ;. Then, for each
embedding x; € S, we compute its cosine simi-
larity with the mean vector p, i.e., cos(x;, p) =
% The distribution of these embedding-
to-mean cosine similarities is then analysed to
characterise the embedding space — a distribution
sharply peaked near 1 indicates anisotropy, whereas
a broader, more uniform distribution suggests a
more isotropic geometry.

From Table 4, Figure 5, and Figure 6, we see
that the embeddings after subtracting ¢ have a
lower mean cosine similarity to the mean vector
and a higher standard deviation, indicating that
they are more spread out in the embedding space.
In contrast, the embeddings without subtracting
¢ are more clustered around a central direction
(higher mean, lower standard deviation), reflecting
anisotropy, a tendency for vectors to concentrate

2https://huggingface.co/nvidia/NV-Embed-v2
*https://huggingface.co/Salesforce/
SFR-Embedding-Mistral
*https://huggingface.co/Alibaba-NLP/
gte-Qwen2-7B-instruct
5https://huggingface.co/intfloat/
multilingual-e5-large-instruct
6https://huggingface.co/princeton—nlp/
sup-simcse-roberta-large
7https://huggingface.co/princeton—nlp/
sup-simcse-bert-base-uncased
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Model Embedding Type Mean Std
NV cond - ¢ 0.407 0.084
cond 0.492 0.067
SFR cond - ¢ 0.537 0.055
cond 0.708 0.021
GTE cond - ¢ 0.489 0.067
cond 0.696 0.036
ES cond - ¢ 0.542  0.056
cond 0.897 0.010
SimCSE_base CONC(c+s)-c 0254 0.095
CONC(c + s) 0.347 0.088
SimCSE_large CONC(c+s)-c 0.248 0.110
CONC(c + s) 0.333 0.085

Table 4: Cosine similarity to mean vector: comparing
mean and standard deviation of two embedding types
across three LLM-based and three MLM-based models.

in a narrow region. Therefore, embeddings after
subtracting c tend to be more isotropic, indicating
better distributional diversity.

Another method to measure the isotropy is
Principle Components (IPC) (Mu et al., 2018).
To address the numerical instability issues when
using PCA for isotropy measurement in high-
dimensional embedding spaces, we use an approxi-
mation method for computing the IPC.

Given a normalized embedding matrix £ &
R™*? where each row represents a unit vector, in-
stead of computing the eigenvectors of the covari-
ance matrix, we randomly sample & unit vectors
W1, U, ..., w), from the unit hypersphere S*!. For
each sampled direction u;, we compute the func-
tion F'(u;) = > 0, exp(e; ' u;), where e; repre-
sents the j-th embedding vector. The approximated
IPC is then defined as the ratio between the mini-
mum and maximum values of F', given by (10).

minger g F(u;)

IPCapprox = (10)

max;e1,... i F(u;)

If the approximated IPC value is close to 1,
it means that the embedding space shows high
isotropy where vectors are uniformly distributed
across all directions in the high-dimensional space
instead of clustering in some dominant directions.
Conversely, when the IPC value approaches 0, it
means significant anisotropy in the embedding
space. We use k& = 1000 random directions to
compute the approximation of IPC. Table 5 shows
that the post-processing step of subtracting the con-
dition c gives higher approximated IPC values, in-
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Model IPC (-¢) IPC

NV 0.9611 0.9471
SFR 0.9463  0.9266
GTE 0.9490 0.9310
ES 0.8906  0.8368
SimCSE_base  0.9461  0.9297
SimCSE_large  0.9499  0.9406

Table 5: Approximated IPC values for each model. The
left column of IPC (-c) lists values with post-processing
step of subtracting the condition c.

dicating the improvement of isotropy.

C Full Results for all Models

Each LLM encoder has its own preferred pooling
method, recommended by the original authors of
those models. From Table 6 we see that the perfor-
mance varies significantly depending on the pool-
ing method being used, while the latent attention
pooling used in NV reporting the best results. Note
that NV does not support last or average pooling,
while latent pooling is not supported by the other
models.

D Comparisons against Prior work

In Table 7, we compare our proposed method
(CASE) against the best performances reported by
the previously published C-STS methods. We re-
port the results directly from their original publi-
cations and do not reproduce those methods in our
comparisons. Moreover, when there are multiple
encoder settings (e.g. bi-encoder, tri-encoder or
cross-encoder) considered in prior work, we report
the result for the best setting. The methods shown
in the first four rows in Table 7 (Deshpande et al.
(2023), Liu et al. (2025), Li et al. (2024b) and Yoo
et al. (2024)) use the same training, validation and
test sets from Deshpande et al. (2023). The penul-
timate method (Tu et al. (2024)) re-annotates the
validation dataset from Deshpande et al. (2023) and
further split it into a train/test (70% vs. 30%). They
then use this train split for training their method
and evaluate the performance on their test split.
Our proposed CASE method uses the same re-
annotated dataset by Tu et al. (2024), but with a
different random split of 70-30 for train and test
purposes because Tu et al. (2024) did not released
their train/test random split. Due to the differences
in encoder settings and train/test data splits used in
prior work, direct comparisons of Spearman cor-
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Figure 5: Embeddings-to-mean cosine similarity distributions across three LLM-based models. Each row compares

cond - c and cond representations.

relation coefficients is difficult. However, despite
these discrepancies, we see that Tu et al. (2024)
and CASE report significantly higher Spearman
correlations compared to the rest of the methods.

E Additional Qualitative Analysis

We briefly show an example of our method in Ta-
ble 8. We treat the conditions as questions for
sentences and extract the relevant information as
answers to compare whether CASE can focus on
the condition-related information. The overall simi-
larity trend is consistent with the actual ratings. For
all sentence and answer pairs, the similarity scores
increase after supervised projection. This demon-
strates that the embeddings effectively capture the
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conditional meaning shift with higher condition-
dependent similarity.
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Model Pooling sent/cond? Spear.  Acc.

NV latent sent - ¢ 16.98  52.24
latent sent 22.07  59.89
latent cond-c 31.32 6491
latent cond 27.02  48.02
SFR last sent - ¢ 11.88  46.97
last sent -0.18  33.77
last cond - ¢ 19.28  50.66
last cond 13.00 4433
average sent-c 19.54 57.52
average  sent 11.89  43.01
average cond-c 20.38 5251
average cond 18.32  46.44
average sent-c 19.54 5752
average  sent 11.89  43.01
average cond-c 20.38 52.51
average  cond 18.32  46.44
GTE last sent - ¢ 7.16 42.48
last sent 7.16 37.20 Method Spearman
last  cond-c 2040 54.08 Deshpande et al. (2023) (bi-encoder) 415
last  cond 1658 45.12 Liu et al. (2025) (bi-encoder) 48.1
average  sent-c 13.01 4248 Li et al. (2024b) (cross-encoder) 43.8
average  sent 11.34  36.67 Yoo et al. (2024) (tri-encoder) 39.6
average cond-c 17.87 4222 Tu et al. (2024) (bi-encoder) 75.9
average  cond 18.42  42.22 Our CASE (bi-encoder) 70.0
ES Zzz:iz zzﬁt ¢ 131.‘7078 ggg; Table 7: Spearman correlation of previously proposed
average cond - ¢ 1201 4274 methods and ours (CASE). We report the best perform-
average  cond 6.18 3747  ingencoder setting (shown in brackets) from each pub-
last sent - ¢ 928 41.69 lished paper.
last sent 0.49 31.13
last cond -c 8.90 39.84
last cond 3.05 34.56
SimCSE_large CONC(s +c¢) 5.59 3746
CONC(c+ s) 400  35.09

CONC(s+c¢)-c 832  34.56
CONC(c+s)-c 858  48.02

SimCSE_base CONC(s+¢) 437  39.81
CONC(c + s) 1.25 34.82
CONC(s+c¢)-¢ 7.05 4274
CONC(c+s)-c 6.00  36.67

Table 6: Spearman and accuracy scores for sentence
embedding models. The original dimensionality of each
model is indicated in parentheses. latent denotes latent
attention pooling for NV, whereas last and average
correspond to last token pooling and average pooling,
respectively.
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s1: Young woman in dress about to serve in tennis game, on blue court with green sides.
s2: A girl playing tennis wears a gray uniform and holds her black racket behind her.
cos(sl,s2) 0.5006 — 0.9016

Condition 1: The color of the dress. Condition 2: The name of the game.
Answer 1: Answer 2: gray Rating: 1 Answer 1: tennis  Answer 2: tennis  Rating: 5
cos(sl,s2;cl) 0.4757 — 0.2522 cos(sl, s2;¢2) 0.6233 — 0.9660
cos(sl, orange; c1)  0.1986 — 0.3551 cos(sl, tennis; c2)  0.1135 — 0.6448
cos(s2, gray; c1)  0.0559 — 0.6061 cos(s2, tennis; ¢2)  0.0983 — 0.6426
sl: snow skiers with ski poles and snow skis, standing on top of a snow covered mountain with other skiers around them.

s2: A skier stands alone at the top of a snowy slope with blue skies and mountains in the distance.
cos(sl,s2) 0.6318 — 0.7702

Condition 1: The number of person. Condition 2: The type of job.

Answer 1: Answer 2: one  Rating: 1 Answer 1: skier Answer 2: skier Rating: 5
cos(sl,s2;cl) 0.6358 — 0.2788 cos(sl, s2;¢2) 0.7502 — 0.9539

cos(sl, two; c1) —0.0970 — 0.7014 cos(sl, skier; ¢2)  0.2488 — 0.8016
cos(s2,one; cl)  0.0227 — 0.7953 cos(s2, skier; ¢2)  0.3409 — 0.8032

s1: A bunch of people standing around at the beach with a in the air.
s2: a beach scene with a beach chair decorated with the Canadian Flag and surfers walking by with their surfboards
cos(sl,s2) 0.3988 — 0.5350

Condition 1: The type of hobby. Condition 2: The type of location.

Answer 1: Answer 2: surf  Rating: 1 Answer 1: beach Answer 2: beach  Rating: 5
cos(sl,s2;cl) 0.4386 — 0.4886 cos(sl, s2;¢2) 0.4825 — 0.8582

cos(s1, kite flying; c1)  0.3457 — 0.7717 cos(s1, beach; c2) 0.2254 — 0.7281

cos(s2, surf; ¢c1)  0.1034 — 0.6665 cos(s2, beach; ¢2) 0.1129 — 0.6703

Table 8: Example of similarity scores for two conditions applied to the same sentence pair, based on linear MLP with
dimensionality 512 on NV. The table shows how supervised MLP projection improves the CASE for C-STS task.
cos(+, -) denotes cosine similarity. Answer 1 and Answer 2 refer to the corresponding answers for Sentence 1 and
Sentence 2 under conditions, respectively. The predicted similarity scores before and after applying supervised MLP
are listed on the left and right of the arrow. That is, the similarity score for original high-dimensional LLM-based
embeddings is on the left of the arrow, while the similarity score for CASE is on the right.
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