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Abstract

The meaning conveyed by a sentence often de-001
pends on the context in which it appears. De-002
spite the progress of sentence embedding meth-003
ods, it remains unclear as how to best modify a004
sentence embedding conditioned on its context.005
To address this problem, we propose Condition-006
Aware Sentence Embeddings (CASE), an effi-007
cient and accurate method to create an embed-008
ding for a sentence under a given condition.009
First, CASE creates an embedding for the con-010
dition using an Large Language Model (LLM),011
where the sentence influences the attention012
scores computed for the tokens in the condi-013
tion during pooling. Next, a supervised non-014
linear projection is learnt to reduce the dimen-015
sionality of the LLM-based text embeddings.016
We show that CASE significantly outperforms017
previously proposed Conditional Semantic Tex-018
tual Similarity (C-STS) methods on an exist-019
ing standard benchmark dataset. We find that020
subtracting the condition embedding will con-021
sistently improve the C-STS performance of022
LLM-based text embeddings. Moreover, we023
propose a supervised dimensionality reduction024
method that not only reduces the dimension-025
ality of the LLM-based embeddings, but also026
significantly improves their performance.027

1 Introduction028

Representing the meaning of a given sentence using029

a vector embedding is a fundamental task required030

by many Natural Language Processing (NLP) ap-031

plications (Conneau et al., 2017; Reimers and032

Gurevych, 2019; Gao et al., 2021; Xu et al., 2023;033

Chen et al., 2023). Sentence embeddings are used034

to measure the Semantic Textual Similarity (STS)035

between two sentences (Agirre et al., 2012, 2015,036

2016).037

Despite its importance, measuring STS between038

two sentences is a non-trivial task for humans,039

which is conditioned on what is being compared040

between the two sentences. For example, for the041

Figure 1: The two conditions focus on different informa-
tion described in the two sentences. Human annotators
rate the two sentences 1–5, indicating a high-level (5)
of semantic textual similarity under condition 2 than
condition 1 (1). Our proposed condition-aware sentence
embedding (CASE) method reports similarity scores
that are well-aligned with the human similarity ratings.

two sentences shown in Figure 1, human annotators 042

would assign different similarity ratings, depending 043

on what they are asked to compare (i.e., given con- 044

ditions 1 and 2). Existing STS benchmarks do not 045

specify the conditions under which two sentences 046

must be compared for their semantic similarity. To 047

address this limitation, Deshpande et al. (2023) 048

proposed the C-STS task and a dataset, where the 049

similarity between two sentences s1 and s2 is mea- 050

sured under two different conditions clow and chigh, 051

which focus on different aspects of semantics in 052

the two sentences, resulting in different similarity 053

ratings. Many real-world applications can be seen 054

as C-STS tasks such as ranking a set of documents 055

retrieved for the same query in Information Re- 056

trieval (IR) (Manning et al., 2008), comparing two 057

answers for the same question in Question Answer- 058

ing (QA) (Risch et al., 2021), or measuring the 059

strength of a semantic relation between two enti- 060

ties in Knowledge Graph Completion (KGC) (Yoo 061

et al., 2024; Lin et al., 2024). 062

We propose CASE, a method for learning 063

Condition-Aware Sentence Embeddings, for a 064

given input sentence considering another sentence. 065
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Specifically, CASE creates an embedding for the066

condition sentence using an LLM with a prompt067

that includes the target sentence (e.g. Sentences068

1/2 in Figure 1), where the latter is not encoded069

explicitly in the embedding but influences the at-070

tention scores used during token pooling. Com-071

pared to Masked Language Models (MLMs) that072

have been used extensively in prior work on C-STS,073

LLMs contain billions of parameters and are typi-074

cally trained on much larger datasets for a longer075

period of time. Consequently, LLM-based embed-076

ding models have consistently ranked at the top077

in leaderboards evaluating text embedding mod-078

els (Muennighoff et al., 2022). Therefore, by lever-079

aging LLM-based embeddings, CASE is able to080

benefit from the rich world knowledge contained in081

LLMs. However, the optimal method to use LLMs082

for C-STS remains elusive as reported by Lin et al.083

(2024) who showed that decoder-only LLMs often084

underperform MLM-based embeddings in C-STS085

benchmarks. Interestingly, we find that encod-086

ing the condition given the sentence often outper-087

forms the reverse setting in C-STS benchmarks.088

Moreover, we find that subtracting the embedding089

of the condition in a post-processing step further090

improves the performance across multiple LLM-091

based embedding models.092

One disadvantage of using LLM-based embed-093

dings compared to their MLM-based counterparts094

is the high dimensionality of the LLM-based em-095

beddings. For example, embeddings produced096

by state-of-the-art (SoTA) LLM encoders such097

as NV-embed-v2 (Lee et al., 2024) are 4096 di-098

mensional, whereas MLM embeddings such as099

RoBERTa-base (Liu et al., 2019) SimCSE (Gao100

et al., 2021) embeddings are 768 dimensional.101

High dimensional embeddings are problematic102

both due to their high storage requirements and the103

high inner-product computation cost. Moreover,104

the embeddings obtained from LLMs are not nec-105

essarily aligned to the C-STS task because they are106

not fine-tuned on such tasks. To address these issue,107

we propose a supervised dimensionality reduction108

method that accurately projects LLM-based embed-109

dings to low dimensional vector spaces, while also110

improving their performance in the C-STS task. We111

find that although popular unsupervised dimension-112

ality reduction methods such as Principal Compo-113

nent Analysis (PCA) and Independent Component114

Analysis (ICA) are effective at reducing the dimen-115

sionality of the embedding space, they underper-116

form our proposed supervised projection learning117

method. Further investigations into individual ex- 118

amples show that CASE increases the similarity 119

between a sentence and the information empha- 120

sized by a given condition, while decreasing the 121

same for information irrelevant to the condition as 122

expected. We have submitted the source code and 123

pre-processed data for reproducing our findings for 124

anonymous reviewing, which will later be publicly 125

released upon paper acceptance. 126

2 Related Work 127

Conditional Semantic Textual Similarity: 128

Deshpande et al. (2023) proposed the C-STS 129

task for measuring the similarity between two 130

sentences under a given condition. They created 131

a human-annotated dataset containing 18,908 in- 132

stances where the semantic similarity between two 133

sentences s1 and s2 is rated under two conditions 134

chigh and clow resulting in respectively high vs. low 135

similarity between the two sentences. Moreover, 136

they proposed cross-, bi- and tri-encoder baselines. 137

Given a triplet (s1, s2, c) a cross-encoder considers 138

all interactions among tokens in s1, s2 and c. 139

Although the cross-encoder setting benefits from 140

having access to both s1 and s2 at the same 141

time, it is computationally costly due to the large 142

number of token interactions required for longer 143

sentences and conditions. Moreover, it does not 144

pre-compute conditional embeddings for the 145

individual sentences, which is problematic when 146

computing all pairwise similarities between the 147

sentences in a large set. 148

Bi-encoders overcome the limitations of cross- 149

encoders by creating a condition-aware embedding 150

for each sentence, and then compute C-STS using 151

an efficient operation such as the inner-product. 152

Tri-encoders separately encode s1, s2 and c, and 153

then apply some late interactions between the con- 154

dition’s and each sentence’s embeddings to com- 155

pute C-STS. Despite the computational bene- 156

fits gained by pre-encoding sentences and condi- 157

tions separately, late interaction mechanisms for 158

tri-encoders remain complex and under-perform in 159

C-STS benchmarks. 160

Tu et al. (2024) found that the C-STS dataset cre- 161

ated by Deshpande et al. (2023) contain ill-defined 162

conditions and annotation errors, resulting in a sig- 163

nificant discrepancy among the annotators for over 164

half of the dataset. To address this, Tu et al. (2024) 165

re-annotated the validation split from the original 166

C-STS dataset. Moreover, they proposed a method 167
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to solve C-STS by first converting each condition168

into a question, and then using GPT-3.5 to extract169

the corresponding answers from the two sentences.170

Finally, C-STS is estimated as the cosine similarity171

between the SimCSE embeddings for the two an-172

swers. Although this QA formulation consistently173

improves the performance of all baseline encoders,174

it depends on multiple decoupled components such175

as converting conditions into questions, requiring a176

decoder LLM to extract the answer from each ques-177

tion, and using a separate encoder to compare the178

extracted answers, which increases the possibility179

of error propagation across components.180

Yoo et al. (2024) proposed Hyper-CL, a con-181

trastively learnt hypernetwork (Ha et al., 2017) to182

selectively project the embeddings of s1 and s2183

according to c. Hyper-CL follows a tri-encoder184

setting where s1, s2 and c are first encoded sepa-185

rately using a sentence encoder. Next, a hypernet-186

work is trained to produce a linear transformation187

matrix conditioned on c. Finally, the embeddings188

of s1 and s2 are projected using this transforma-189

tion matrix and their inner-product is computed.190

Hyper-CL improves the performance of tri-encoder191

models, but still under-performs bi-encoders for192

C-STS. Moreover, hypernetworks introduce an ex-193

ternal parameter set that is three times larger than194

the SimCSE model used to encode each sentence,195

resulting in an excessively large memory space.196

Lin et al. (2024) proposed a tri-encoder-based197

C-STS method where they used routers and heavy-198

light attention (Ainslie et al., 2023) to select the199

relevant tokens to a given condition. Specifically,200

they used the query vector of the [CLS] token of201

the condition to compute attention scores for the to-202

kens in the sentence, which are subsequently used203

to compute a sentence embedding. Their method204

outperforms Hyper-CL for the tri-encoder setting.205

Liu et al. (2025) proposed a conditional contrastive206

learning method for C-STS, introducing weighted207

contrastive losses with a sample augmentation strat-208

egy. Although it improved performance for both bi-209

and tri-encoders, the former outperforms the latter.210

Li et al. (2024a) proposed a cross-encoder ap-211

proach which predicts C-STS scores, without creat-212

ing conditional embeddings. Prior work on C-STS213

has shown cross-encoders to perform poorly de-214

spite having access to both sentences simultane-215

ously. Li et al. (2024a) showed that this is due to216

the irrelevant information in the two sentences to217

the condition and proposed a token re-weighting218

strategy, inspired by object detection in computer219

vision (Shi et al., 2023; Jaegle et al., 2021). Con- 220

cretely, they compute two cross-attention matri- 221

ces between (s1, s2) and c, which are subsequently 222

used to compute the correlations for the sentence or 223

condition tokens. Although their method improves 224

the performance of cross-encoder-based C-STS 225

measurement, it still underperforms bi-encoders. 226

Text Embeddings from LLMs: MLMs use a bi- 227

directional attention (Devlin et al., 2018), where 228

the information from tokens appearing in positions 229

both before and after the current token are used to 230

predict the embedding for the current target token 231

in the sequence that must be encoded. In contrast, 232

decoder-only LLMs are trained with a causal atten- 233

tion mask (Vaswani et al., 2017), which prevents 234

information leakage from future tokens by allow- 235

ing the decoder to attend only to previous positions 236

during auto-regressive text generation. Although 237

this makes sense for decoders, it is sub-optimal 238

when using LLMs for encoding a given sequence 239

as evident from the poor performance of GPT mod- 240

els (Lin et al., 2024) compared to similar-sized 241

BERT (Devlin et al., 2018) or T5 (Chung et al., 242

2024) models on various natural language under- 243

standing benchmarks (Wang et al., 2019). 244

BehnamGhader et al. (2024) proposed a post- 245

processing method for obtaining text embeddings 246

from decoder-only LLMs following three steps: 247

(a) enable bidirectional attention to overcome the 248

restrictions due to causal attention, (b) train the 249

model to predict the masked next token using bi- 250

directional attention, and (c) use unsupervised con- 251

trastive learning to compute better sequence rep- 252

resentations. Finally, a pooling method is applied 253

on the token embedding sequence to create a fixed- 254

dimensional embedding for the input text such as 255

the embedding of the last token in the sequence (i.e. 256

last token pooling) (Meng et al., 2024; Li et al., 257

2023) or the average over all token embeddings 258

(i.e. mean pooling) (Wang et al., 2024). Moreover, 259

Lee et al. (2024) proposed a latent attention layer 260

where they compute the cross attention between 261

the last hidden layer from the decoder and a train- 262

able latent array to compute a weighted pooling 263

mechanism. 264

3 Condition-Aware Sentence Embeddings 265

An overview of our proposed method is shown in 266

Figure 2, which consists of two-steps. In the first 267

step (§3.1), we create two separate embeddings for 268

the condition considering each of the two sentences, 269
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Figure 2: Overview of CASE. An LLM is prompted with I(s) to obtain two separate embeddings f(c; I(s1))
and f(c; I(s2)) for the condition c for two sentences s1 and s2. The unconditional embedding f(c; I(∅)) is then
computed using the prompt I(∅) and subtracted from each of those embeddings. Finally, the embeddings are
projected to a lower-dimensional space using a learnt projection g and their cosine similarity is computed.

one at a time, in the instruction prompt shown to270

an LLM. Note that it is the condition that is being271

encoded and the tokens in the sentence (similar272

to all other tokens in the instruction) are simply273

modifying the attention scores computed for the274

tokens in the condition. Intuitively, it can be seen275

as each sentence filling some missing information276

asked in the condition.277

Embeddings obtained from LLMs are typically278

high dimensional and not necessarily fine-tuned279

for the C-STS task. Therefore, in the second step280

(§3.2), we learn a supervised projection using the281

training split from the C-STS dataset to project282

each of the two condition embeddings to a lower-283

dimensional vector space. Finally, the C-STS be-284

tween two sentences is computed as the cosine285

similarity between the corresponding projected em-286

beddings.287

3.1 Extracting Embeddings from LLMs288

Given an LLM-based encoder, f , we create a d-289

dimensional embedding f(c; I(s)) ∈ Rd for a con-290

dition c, given the sentence s. Here, I is an in-291

struction template that takes c as an argument. We292

use the following prompt template as I(s) — Re-293

trieve semantically similar texts to the Condition,294

given the Sentence : [SENTENCE], where we sub-295

stitute s in the placeholder [SENTENCE]. Next,296

we provide c as the input text to be encoded by297

the LLM following the instruction I(s). Finally,298

the token embeddings of c are aggregated accord-299

ing to one of the pooling methods described pre-300

viously to create f(c; I(s)). Although our focus301

here is to create condition-aware embeddings, it is302

noteworthy that we can also obtain unconditional303

embeddings for a sentence by dropping the con- 304

dition in the above prompt. Specifically, we use 305

the prompt I(∅) Retrieve semantically similar texts 306

to a given Sentence for this purpose, and denote 307

this unconditional embedding of c by f(c; I(∅)). 308

As we see later in our experiments, by subtracting 309

f(c; I(∅)) from f(c; I(s)), we can reduce the ef- 310

fect of tokens in the condition that are irrelevant to 311

the sentence, thereby consistently improving accu- 312

racy of the condition-aware embeddings. This first 313

step is fully unsupervised and a zero-shot prompt 314

template is used as I . 315

Recall that both s and c are text strings, and 316

it is possible to swap the sentence and condition 317

in the above formulation to obtain an embedding 318

f(s; I(c)) for the sentence, given the condition. 319

However, as shown later in our experiments, com- 320

paring the embedding for c created under s1 and s2 321

results in better performance on the C-STS bench- 322

mark for all LLM encoders. This is because s1 323

and s2 contain many irrelevant information to c, 324

which will affect the cosine similarity computed 325

between f(s1; I(c)) and f(s2; I(c)). On the other 326

hand, the cosine similarity between f(c; I(s1)) 327

and f(c; I(s2)) is a more accurate estimate of the 328

C-STS between s1 and s2 under c because it is 329

purely based on the meaning alterations to c under 330

s1 and s2 separately. 331

3.2 Supervised Projection Learning 332

The LLM-based embeddings computed in §3.1 has 333

two main drawbacks. First, relative to MLMs- 334

based sentence embeddings, LLMs produce much 335

higher dimensional embeddings, which can be 336

problematic due to their memory requirements (es- 337
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pecially when operating on a limited GPU mem-338

ory) and the computational cost involved in inner-339

product computations. In tasks such as dense re-340

trieval, we must compare millions of documents341

against a query to find the nearest neighbours under342

strict latency requirements, and low-dimensional343

embeddings are preferable. Second, although344

LLMs are typically trained on massive text collec-345

tions and instruction-tuned for diverse tasks (Muen-346

nighoff et al., 2022), their performance on C-STS347

tasks have been poor (Lin et al., 2024). As seen348

from our condition-aware prompt template, an349

LLM must be able to separately handle a variable350

condition statement and a fixed instruction. This351

setup is different from most tasks on which LLMs352

are typically trained on, where the instruction re-353

mains fixed across all inputs. Therefore, it is im-354

portant to perform a supervised fine-tuning step to355

LLM embeddings before they are used for C-STS.356

To address the above-mentioned drawbacks, we357

propose a supervised projection learning method.358

Specifically, we freeze the model parameters of359

the LLM and use an Multi-layer Perception (MLP)360

layer that takes f(c; I(s)) as the input and returns a361

k-dimensional (k ≤ d) embedding g(f(c; I(s); θ),362

where θ denotes the learnable parameters of the363

MLP. Finally, we define CASE(s, c), as the pro-364

jection of the offset between the conditional and365

the unconditional embeddings of c under s, given366

by (1).367

CASE(s, c) = g(f(c; I(s1))− f(c; I(∅)); θ) (1)368

We use the human similarity ratings r in the C-STS369

train instances D to learn θ. Specifically, we min-370

imise the squared error between the human ratings371

and the cosine similarity computed using the corre-372

sponding CASE as given by (2).373 ∑
(s1,s2,c,r)∈D

(cos(CASE(s1, c),CASE(s2, c))− r)2 (2)374

Here, cos denotes the cosine similarity between375

the projected embeddings. We use Adam opti-376

miser (Kingma and Ba, 2014) to find the optimal377

θ that minimises the loss given by (2). Recall that378

only the MLP parameters are updated during this379

projection learning step, while keeping the param-380

eters of the LLM fixed, which makes it extremely381

efficient. For example, it takes less than 5 minutes382

to learn this projection even for the largest (4096 di-383

mensional) embedding spaces using the train split384

of the C-STS dataset. Using the learnt projection,385

we compute the C-STS between s1 and s2 under c386

as the cosine similarity between CASE(s1, c) and 387

CASE(s2, c). 388

4 Experiments and Results 389

To evaluate the effectiveness of the LLM-based 390

and MLM-based sentence embeddings as described 391

in § 3, we apply six sentence encoders, out 392

of which three are LLM-based: NV-Embed-v2 393

(4096 dimensional NV), SFR-Embedding-Mistral 394

(4096 dimensional SFR), gte-Qwen2-7B-instruct 395

(3584 dimensional GTE) and three are MLM- 396

based: Multilingual-E5-large-instruct (1024 di- 397

mensional E5), sup-simcse-roberta-large (1024 di- 398

mensional SimCSE_large), and sup-simcse-bert- 399

base-uncased (768 dimensional SimCSE_base). 400

Further details provided in Appendix A. 401

We evaluate model performance on different 402

pooling methods, prompt settings, and sentence 403

constructions. Moreover, we evaluate the di- 404

mensionality reduction methods under supervised 405

and unsupervised settings to learn the projection 406

for CASE (PCA, ICA, and linear and non-linear 407

MLPs). Both the linear and non-linear MLPs 408

are Siamese bi-encoders with weight-sharing. As 409

explained in § 3.2, they take f(c; I(s1)) and 410

f(c; I(s2)) as the input embeddings, and re- 411

turn the projected embeddings CASE(s1, c) and 412

CASE(s2, c) as the outputs, which can be com- 413

pared using a similarity metric such as cosine. 414

Linear MLP performs a linear transformation: 415

z = Dropout (We) (3) 416

where W ∈ Rd′×d is the learned projection matrix. 417

A dropout layer is applied to reduce any overfit- 418

ting (Hinton et al., 2012). 419

Our non-linear MLP is a two-layer MLP: 420

h = Dropout (ReLU (W1e)) (4) 421

z = Dropout (ReLU (W2h)) (5) 422

Hyperparameters are tuned on a held-out valida- 423

tion set. We select a learning rate of 10−3 and a 424

batch size of 512. The dropout rate is set to 20% 425

for the linear MLP and 15% for non-linear MLP. 426

To address annotation errors in the original 427

C-STS dataset such as ambiguous and invalid con- 428

ditions, Tu et al. (2024) re-annotated the original 429

validation set. To conduct a more accurate and re- 430

liable evaluation, we use the original C-STS train 431

set and re-annotated validation set. A 70-30 split 432

is used for the re-annotated validation set, with 433

randomly selected 70% of the data allocated for 434

validation and the remaining 30% for testing. We 435
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use a single p3.24xl EC2 instance (8x V100 GPUs)436

for learning sentence embeddings, and a separate437

NVIDIA RTX A6000 GPU for supervised projec-438

tion learning. Scikit-learn 1.3.0 is used for PCA439

and ICA. Pytorch 2.0.1 with cuda 11.7 is used for440

MLP proejction. These settings are fixed across all441

experiments. For reducing 4096-dimensional LLM-442

based sentence embeddings to 512-dimensional,443

training a linear MLP for CASE takes approxi-444

mately 1.5 minutes, whereas a non-linear MLP445

requires about 5 minutes (wall-clock time).446

4.1 Evaluation Metrics447

We evaluate the performance of sentence embed-448

ding models on two metrics: Spearman Rank cor-449

relation and Accuracy.450

Spearman Rank Correlation: We compute451

Spearman’s rank correlation between the similar-452

ity scores by CASE and the re-annotated human453

ratings on the test set.454

Accuracy Spearman correlation is highly sensi-455

tive to small variations in similarity scores, which456

can be affected by the noise in human annotations.457

Given the subjectivity and ambiguity of human458

ratings, we introduce Accuracy as a more robust459

alternative to assess whether the model correctly460

captures the relative impact of conditions on seman-461

tic similarity. Different from Spearman correlation,462

which considers actual similarity values, accuracy463

only evaluates whether the predicted similarity un-464

der the higher-rated condition chigh is greater than465

that under the lower-rated condition clow.466

For each sentence pair (s1, s2), there exist two467

conditions c1 and c2 with corresponding human468

labelled similarity scores y1 and y2, where y1 > y2.469

Cosine similarity is computed between CASE470

under the same condition for the similarity score471

simc1 = cos (CASE(s1, c1),CASE(s2, c1)) (6)472

simc2 = cos (CASE(s1, c2),CASE(s2, c2)) (7)473

A prediction is considered correct if474

(simc1 − simc2) (y1 − y2) > 0, (8)475

which evaluates whether the model’s predicted sim-476

ilarity ranking aligns with the human annotations.477

Then, the accuracy is given by (9)478 ∑N
i=1 1

[(
sim

(i)
c1 − sim

(i)
c2

)(
y
(i)
1 − y

(i)
2

)
> 0

]
N

, (9)479

where N is the total number of test instances, and480

1[·] is the indicator function.481

4.2 C-STS Measurement 482

To generate CASE, we apply different ways to 483

construct the prompt for LLM-based embeddings 484

and to concatenate the condition and sentence for 485

MLM-based embeddings. For LLM-based models, 486

we have two main settings: (a) cond = f(c; I(s)), 487

where we encode the condition given the sentence, 488

and (b) sent = f(s; I(c)), where we encode the 489

sentence given the condition as explained in §3.1. 490

For MLM-based models, we evaluate the two set- 491

tings: (a) CONC(c + s), where we concatenate 492

sentence after the condition, and (b) CONC(s+c), 493

where we concatenate condition after the sentence. 494

For each setting, we evaluate the effect of subtract- 495

ing the condition embedding, c = f(c; I(∅)). 496

The test performance for different settings and 497

models are shown in Table 1. For LLM-based em- 498

beddings, cond consistently reports higher Spear- 499

man correlation than sent, suggesting that embed- 500

ding the condition given the sentence is more effec- 501

tive for C-STS measurement than embedding the 502

sentence given the condition. Moreover, we see that 503

subtracting c further improves performance both in 504

terms of Spearman correlation and accuracy across 505

all settings, except for accuracy in SFR. The for- 506

mer approach reduces the noise due to the tokens 507

in a sentence, which are irrelevant to the given con- 508

dition. For MLM-based embeddings, subtracting c 509

also improves performance. It reduces condition- 510

specific information that are not altered by the sen- 511

tence, thus allowing CASE to focus on the infor- 512

mation that varies between the two sentences being 513

compared. Moreover, we discovered that subtract- 514

ing c in a post-processing step improves isotropy 515

of the embeddings as shown in Appendix B. This 516

is in-line with prior work reporting a correlation 517

between isotropy and improved performance in em- 518

bedding models (Rajaee and Pilehvar, 2022; Su 519

et al., 2021). The effect of pooling method on 520

performance is discussed in Appendix C, where 521

we find the latent pooling in NV to perform best. 522

Therefore, we use the (cond−c) setting (which 523

reports the best performance) for the six sentence 524

encoders to conduct the subsequent experiments. 525

We show the training curves for our supervised 526

MLPs in Figure 3. Overall, the non-linear MLPs 527

achieve significantly higher Spearman correlation 528

than the linear MLPs, except for NV, where the 529

linear MLP performs slightly better than the non- 530

linear MLP. Moreover, non-linear MLPs converge 531

faster, typically reaching their peak performance 532
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(a) Test Spearman for linear MLP (b) Test Spearman for non-linear MLP

Figure 3: Spearman correlation on test set for different models over training steps with dimensionality 512. The
y-axes of both subfigures are aligned, facilitating a direct comparison of the Spearman correlation coefficients across
the two line charts, with the same colour for the same model. Best viewed in colour.

Model sent/cond? Spear. Acc.

NV sent - c 16.98 52.24
sent 22.07 59.89
cond - c 31.32 64.91
cond 27.02 48.02

SFR sent - c 19.54 57.52
sent 11.89 43.01
cond - c 20.38 52.51
cond 18.32 46.44

GTE sent - c 7.16 42.48
sent 7.16 37.20
cond - c 20.40 54.08
cond 16.58 45.12

E5 sent - c 11.08 42.21
sent 3.77 33.77
cond - c 12.01 42.74
cond 6.18 37.47

SimCSE_large CONC(s+ c) 5.59 37.46
CONC(c+ s) 4.00 35.09
CONC(s+ c) - c 8.32 34.56
CONC(c+ s) - c 8.58 48.02

SimCSE_base CONC(s+ c) 4.37 39.81
CONC(c+ s) 1.25 34.82
CONC(s+ c) - c 7.05 42.74
CONC(c+ s) - c 6.00 36.67

Table 1: Spearman and accuracy scores for different
sentence embedding models and encoding settings.

within 20 epochs, after which the performance de-533

clines due to overfitting. The performance of the534

linear MLPs, gradually increases and eventually535

converges as the training progresses. NV consis-536

tently performs the best for both linear and non-537

linear MLPs.538

To explore the relationship between test perfor-539

mance and dimensionality, we use NV to evaluate540

Figure 4: Spearman correlation coefficients of the four
dimensionality reduction methods on the test set for NV-
Embed-v2 (NV) over different dimensionalities.

Model Non-linear MLP Linear MLP PCA ICA

NV 69.30 69.95 32.04 19.13
SFR 62.85 59.22 19.86 -1.99
GTE 64.16 56.10 22.82 7.26
E5 62.12 47.03 11.43 -0.17
SimCSE_large 56.67 45.96 8.22 -4.89
SimCSE_base 56.60 39.54 6.19 -1.66

Table 2: Spearman correlation of embedding models
based on supervised and unsupervised dimensionality
reduction methods with reduced dimensionality 512.

our supervised dimensionality reduction methods 541

(MLPs) as well as the unsupervised methods (PCA 542

and ICA), as shown in Figure 4. Overall, the super- 543

vised MLPs achieve much higher Spearman cor- 544

relations while significantly reducing the dimen- 545

sionality. Their performance stabilises at relatively 546

high levels as the dimensionality exceeds 200 and 547

peaks around 500. In this way, we achieve an 8× 548

compression of the sentence embeddings (original 549

dimensionality 4096) while maintaining high per- 550
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s1: Young woman in orange dress about to serve in tennis game, on blue court with green sides.
s2: A girl playing tennis wears a gray uniform and holds her black racket behind her.
cos(s1, s2) 0.5006 → 0.9016

Condition 1: The color of the dress. Rating: 1 Condition 2: The name of the game. Rating: 5
cos(s1, s2; c1) 0.4757 → 0.2522 cos(s1, s2; c2) 0.6233 → 0.9660

s1: Two snow skiers with ski poles and snow skis, standing on top of a snow covered mountain with other skiers around them.
s2: A skier stands alone at the top of a snowy slope with blue skies and mountains in the distance.
cos(s1, s2) 0.6318 → 0.7702

Condition 1: The number of person. Rating: 1 Condition 2: The type of job. Rating: 5
cos(s1, s2; c1) 0.6358 → 0.2788 cos(s1, s2; c2) 0.7502 → 0.9539

s1: A bunch of people standing around at the beach with a kite in the air.
s2: a beach scene with a beach chair decorated with the Canadian Flag and surfers walking by with their surfboards
cos(s1, s2) 0.3988 → 0.5350

Condition 1: The type of hobby. Rating: 1 Condition 2: The type of location. Rating: 5
cos(s1, s2; c1) 0.4386 → 0.4886 cos(s1, s2; c2) 0.4825 → 0.8582

Table 3: Cosine similarity scores (cos) for two sentences under different conditions are computed using NV
embeddings (shown on the left side of the arrows) vs. using MLP projected 512 embeddings (i.e. CASE embeddings
given by (1)) (shown on the right side of the arrows). Compared to the unconditional similarity between the
two sentences, conditional similarity scores computed using NV embeddings align well with the human ratings.
Moreover, the conditional similarities are further appropriately amplified by the supervised projection. Further
qualitative evaluations shown in Appendix E.

formance. In contrast, unsupervised PCA and ICA551

do not effectively capture the conditional semantics552

in sentence embeddings. While PCA preserves the553

performance of the original sentence embeddings,554

it does not improve the performance on the C-STS555

task. ICA, on the other hand, performs even worse,556

showing a consistent decline in performance as di-557

mensionality increases, which could be attributable558

to the lack of sufficiently independent components559

in sentence embeddings.560

We compare sentence encoders in Table 2 for561

a fixed (i.e. 512) dimensional projection from562

their original embeddings. NV obtains the highest563

Spearman coefficient across all sentence encoders564

and dimensionality reduction methods. GTE and565

SFR also achieve high Spearman coefficients un-566

der the non-linear MLPs. SimCSE_large and567

SimCSE_base have the lowest Spearman coeffi-568

cients, regardless of the dimensionality reduction569

method being used. Overall, we see that LLM-570

based embeddings perform better than the MLM-571

based embeddings on the C-STS task. Note that572

direct comparison between our method and other573

C-STS approaches is challenging due to differences574

in the train/test sets used in prior work. Never-575

theless, we present our results alongside previous576

methods in Appendix D for completeness, which577

shows its superior performance.578

Similarity scores computed for three sentence579

pairs are shown in Table 3 for the original high-580

dimensional LLM-based embeddings and low-581

dimensional projected CASE. By comparing the582

similarity scores with and without the supervised 583

projection, we can evaluate the ability of CASE to 584

focus on the condition-related information. Com- 585

pared to the unconditional similarity between the 586

two sentences, conditional similarities scores com- 587

puted using NV embeddings align well with the 588

human ratings. For example, in the top row in 589

Table 3, we see that the unconditional similarity 590

between the two sentences reduces from 0.5006 to 591

0.4747 under c1, while increasing to 0.6233 under 592

c2. Moreover, the conditional similarities are fur- 593

ther appropriately amplified by CASE using the su- 594

pervised projection (i.e. decreasing to 0.2522 under 595

c1, while increasing to 0.9660 under c2). Specifi- 596

cally, CASE reduces the similarity between the two 597

sentences under the lower-rated condition, while 598

increasing the same under the high-rated condition. 599

This demonstrates that CASE is able to effectively 600

capture the shift in conditional meaning between 601

sentences under different conditions. 602

5 Conclusion 603

We propose CASE, which encodes the condition 604

under sentence by subtracting the condition in a 605

post-processing step when measuring C-STS. Our 606

findings show that LLM-based sentence embed- 607

dings consistently outperform MLM-based embed- 608

dings for C-STS. Moreover, we introduce an ef- 609

ficient supervised projection learning method to 610

reduce the dimensionality of LLM-based embed- 611

dings, while improving the performance in C-STS. 612
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6 Limitations613

We use the original C-STS training set and the re-614

annotated validation set in this paper. The dataset,615

especially the training set, includes annotation er-616

rors, such as invalid conditions and subjective hu-617

man annotations. These disadvantages hurt the618

model’s ability to capture the semantics and per-619

form the C-STS task. This further introduces am-620

biguity and inaccuracy to CASE. Manually re-621

annotating the training set, which contains 11342622

instances, is costly and is deferred to future work.623

Our evaluations cover only English, which is a624

morphologically limited language. To the best of625

our knowledge, C-STS datasets have not been an-626

notated for languages other than English, which627

has limited all prior work on C-STS to conduct ex-628

periments using only English data. However, the629

sentence encoders we used in our experiments sup-630

port multiple languages. Therefore, we consider631

it to be an important future research direction to632

create multilingual datasets for C-STS and eval-633

uate the effectiveness of our proposed method in634

multilingual settings.635

There is a large number of sentence en-636

coders (over 240 models as at March 2025 eval-637

uated on Massive Text Embedding Benchmark638

(MTEB) (Muennighoff et al., 2023) leaderboard1).639

However, due to computational limitations, we had640

to select a subset covering the best performing (top641

ranked on MTEB at the time of writing) models for642

our evaluations. We will release our source code643

and the evaluation framework such that the research644

community can evaluate our proposed method with645

any sentence encoder for C-STS.646

7 Ethical Concerns647

We did not collect or annotate any datasets in this648

project. Instead, we use existing C-STS datasets649

annotated and made available by Deshpande et al.650

(2023) and Tu et al. (2024). To the best of our651

knowledge, no ethical issues have been raised re-652

garding those datasets.653

We use multiple pre-trained and publicly654

available MLM- and LLM-based sentence en-655

coders (Kaneko and Bollegala, 2021). Both MLMs656

and LLMs are known to encode unfair social biases657

such as gender or racial biases. We have not evalu-658

ated how such social biases would be influenced by659

the CASE learning method proposed in this work.660

1https://huggingface.co/spaces/mteb/
leaderboard

Therefore, we consider it would be important to 661

measure the social biases in CASE created in this 662

work before they are deployed in real-world appli- 663

cations. 664
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Supplementary Materials 883

A Models 884

To evaluate the effectiveness of the LLM-based 885

and MLM-based sentence embeddings as described 886

in §3, we apply six sentence encoders, out of 887

which three are LLM-based: NV-Embed-v2 (4096 888

dimensional and uses latent pooling) (NV)2, SFR- 889

Embedding-Mistral (4096 dimensional and uses 890

average pooling) (SFR)3, gte-Qwen2-7B-instruct 891

(3584 dimensional and uses last token pooling) 892

(GTE)4 and three are MLM-based: Multilingual- 893

E5-large-instruct (1024 dimensional and uses av- 894

erage pooling) (E5)5, sup-simcse-roberta-large 895

(1024 dimensional and uses last token pool- 896

ing) (SimCSE_large)6, and sup-simcse-bert-base- 897

uncased (786 dimensional and uses last token pool- 898

ing) (SimCSE_base)7. 899

B Isotropy for Embeddings 900

We first use the embedding-to-mean cosine simi- 901

larity distribution to measure the isotropy of the 902

embeddings. Given a set of embeddings S = 903

{x1,x2, . . . ,xn}, we first compute the mean em- 904

bedding vector µ = 1
n

∑n
i=1 xi. Then, for each 905

embedding xi ∈ S, we compute its cosine simi- 906

larity with the mean vector µ, i.e., cos(xi,µ) = 907
xi

⊤µ
||xi||||µ|| . The distribution of these embedding- 908

to-mean cosine similarities is then analysed to 909

characterise the embedding space – a distribution 910

sharply peaked near 1 indicates anisotropy, whereas 911

a broader, more uniform distribution suggests a 912

more isotropic geometry. 913

From Table 4, Figure 5, and Figure 6, we see 914

that the embeddings after subtracting c have a 915

lower mean cosine similarity to the mean vector 916

and a higher standard deviation, indicating that 917

they are more spread out in the embedding space. 918

In contrast, the embeddings without subtracting 919

c are more clustered around a central direction 920

(higher mean, lower standard deviation), reflecting 921

anisotropy, a tendency for vectors to concentrate 922

2https://huggingface.co/nvidia/NV-Embed-v2
3https://huggingface.co/Salesforce/

SFR-Embedding-Mistral
4https://huggingface.co/Alibaba-NLP/

gte-Qwen2-7B-instruct
5https://huggingface.co/intfloat/

multilingual-e5-large-instruct
6https://huggingface.co/princeton-nlp/

sup-simcse-roberta-large
7https://huggingface.co/princeton-nlp/

sup-simcse-bert-base-uncased
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Model Embedding Type Mean Std

NV cond - c 0.407 0.084
cond 0.492 0.067

SFR cond - c 0.537 0.055
cond 0.708 0.021

GTE cond - c 0.489 0.067
cond 0.696 0.036

E5 cond - c 0.542 0.056
cond 0.897 0.010

SimCSE_base CONC(c+ s) - c 0.254 0.095
CONC(c+ s) 0.347 0.088

SimCSE_large CONC(c+ s) - c 0.248 0.110
CONC(c+ s) 0.333 0.085

Table 4: Cosine similarity to mean vector: comparing
mean and standard deviation of two embedding types
across three LLM-based and three MLM-based models.

in a narrow region. Therefore, embeddings after923

subtracting c tend to be more isotropic, indicating924

better distributional diversity.925

Another method to measure the isotropy is926

Principle Components (IPC) (Mu et al., 2018).927

To address the numerical instability issues when928

using PCA for isotropy measurement in high-929

dimensional embedding spaces, we use an approxi-930

mation method for computing the IPC.931

Given a normalized embedding matrix E ∈932

Rn×d where each row represents a unit vector, in-933

stead of computing the eigenvectors of the covari-934

ance matrix, we randomly sample k unit vectors935

u1,u2, ...,uk from the unit hypersphere Sd−1. For936

each sampled direction ui, we compute the func-937

tion F (ui) =
∑n

j=1 exp(ej
⊤ui), where ej repre-938

sents the j-th embedding vector. The approximated939

IPC is then defined as the ratio between the mini-940

mum and maximum values of F , given by (10).941

IPCapprox =
mini∈1,...,k F (ui)

maxi∈1,...,k F (ui)
(10)942

If the approximated IPC value is close to 1,943

it means that the embedding space shows high944

isotropy where vectors are uniformly distributed945

across all directions in the high-dimensional space946

instead of clustering in some dominant directions.947

Conversely, when the IPC value approaches 0, it948

means significant anisotropy in the embedding949

space. We use k = 1000 random directions to950

compute the approximation of IPC. Table 5 shows951

that the post-processing step of subtracting the con-952

dition c gives higher approximated IPC values, in-953

Model IPC (-c) IPC

NV 0.9611 0.9471
SFR 0.9463 0.9266
GTE 0.9490 0.9310
E5 0.8906 0.8368
SimCSE_base 0.9461 0.9297
SimCSE_large 0.9499 0.9406

Table 5: Approximated IPC values for each model. The
left column of IPC (-c) lists values with post-processing
step of subtracting the condition c.

dicating the improvement of isotropy. 954

C Full Results for all Models 955

Each LLM encoder has its own preferred pooling 956

method, recommended by the original authors of 957

those models. From Table 6 we see that the perfor- 958

mance varies significantly depending on the pool- 959

ing method being used, while the latent attention 960

pooling used in NV reporting the best results. Note 961

that NV does not support last or average pooling, 962

while latent pooling is not supported by the other 963

models. 964

D Comparisons against Prior work 965

In Table 7, we compare our proposed method 966

(CASE) against the best performances reported by 967

the previously published C-STS methods. We re- 968

port the results directly from their original publi- 969

cations and do not reproduce those methods in our 970

comparisons. Moreover, when there are multiple 971

encoder settings (e.g. bi-encoder, tri-encoder or 972

cross-encoder) considered in prior work, we report 973

the result for the best setting. The methods shown 974

in the first four rows in Table 7 (Deshpande et al. 975

(2023), Liu et al. (2025), Li et al. (2024b) and Yoo 976

et al. (2024)) use the same training, validation and 977

test sets from Deshpande et al. (2023). The penul- 978

timate method (Tu et al. (2024)) re-annotates the 979

validation dataset from Deshpande et al. (2023) and 980

further split it into a train/test (70% vs. 30%). They 981

then use this train split for training their method 982

and evaluate the performance on their test split. 983

Our proposed CASE method uses the same re- 984

annotated dataset by Tu et al. (2024), but with a 985

different random split of 70-30 for train and test 986

purposes because Tu et al. (2024) did not released 987

their train/test random split. Due to the differences 988

in encoder settings and train/test data splits used in 989

prior work, direct comparisons of Spearman cor- 990
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(a) NV: cond - c (b) NV: cond

(c) SFR: cond - c (d) SFR: cond

(e) GTE: cond - c (f) GTE: cond

Figure 5: Embeddings-to-mean cosine similarity distributions across three LLM-based models. Each row compares
cond - c and cond representations.

relation coefficients is difficult. However, despite991

these discrepancies, we see that Tu et al. (2024)992

and CASE report significantly higher Spearman993

correlations compared to the rest of the methods.994

E Additional Qualitative Analysis995

We briefly show an example of our method in Ta-996

ble 8. We treat the conditions as questions for997

sentences and extract the relevant information as998

answers to compare whether CASE can focus on999

the condition-related information. The overall simi-1000

larity trend is consistent with the actual ratings. For1001

all sentence and answer pairs, the similarity scores1002

increase after supervised projection. This demon-1003

strates that the embeddings effectively capture the1004

conditional meaning shift with higher condition- 1005

dependent similarity. 1006
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(a) E5: cond - c (b) E5: cond

(c) SimCSE_base: CONC(c+ s) - c (d) SimCSE_base: CONC(c+ s)

(e) SimCSE_large: CONC(c+ s) - c (f) SimCSE_large: CONC(c+ s)

Figure 6: Embeddings-to-mean cosine similarity distributions across three MLM-based models. Each row compares
two embedding types.
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Model Pooling sent/cond? Spear. Acc.

NV latent sent - c 16.98 52.24
latent sent 22.07 59.89
latent cond - c 31.32 64.91
latent cond 27.02 48.02

SFR last sent - c 11.88 46.97
last sent -0.18 33.77
last cond - c 19.28 50.66
last cond 13.00 44.33

average sent - c 19.54 57.52
average sent 11.89 43.01
average cond - c 20.38 52.51
average cond 18.32 46.44
average sent - c 19.54 57.52
average sent 11.89 43.01
average cond - c 20.38 52.51
average cond 18.32 46.44

GTE last sent - c 7.16 42.48
last sent 7.16 37.20
last cond - c 20.40 54.08
last cond 16.58 45.12

average sent - c 13.01 42.48
average sent 11.34 36.67
average cond - c 17.87 42.22
average cond 18.42 42.22

E5 average sent - c 11.08 42.21
average sent 3.77 33.77
average cond - c 12.01 42.74
average cond 6.18 37.47

last sent - c 9.28 41.69
last sent 0.49 31.13
last cond - c 8.90 39.84
last cond 3.05 34.56

SimCSE_large CONC(s+ c) 5.59 37.46
CONC(c+ s) 4.00 35.09
CONC(s+ c) - c 8.32 34.56
CONC(c+ s) - c 8.58 48.02

SimCSE_base CONC(s+ c) 4.37 39.81
CONC(c+ s) 1.25 34.82
CONC(s+ c) - c 7.05 42.74
CONC(c+ s) - c 6.00 36.67

Table 6: Spearman and accuracy scores for sentence
embedding models. The original dimensionality of each
model is indicated in parentheses. latent denotes latent
attention pooling for NV, whereas last and average
correspond to last token pooling and average pooling,
respectively.

Method Spearman
Deshpande et al. (2023) (bi-encoder) 47.5
Liu et al. (2025) (bi-encoder) 48.1
Li et al. (2024b) (cross-encoder) 43.8
Yoo et al. (2024) (tri-encoder) 39.6
Tu et al. (2024) (bi-encoder) 75.9
Our CASE (bi-encoder) 70.0

Table 7: Spearman correlation of previously proposed
methods and ours (CASE). We report the best perform-
ing encoder setting (shown in brackets) from each pub-
lished paper.

15



s1: Young woman in orange dress about to serve in tennis game, on blue court with green sides.
s2: A girl playing tennis wears a gray uniform and holds her black racket behind her.
cos(s1, s2) 0.5006 → 0.9016

Condition 1: The color of the dress. Condition 2: The name of the game.
Answer 1: orange Answer 2: gray Rating: 1 Answer 1: tennis Answer 2: tennis Rating: 5
cos(s1, s2; c1) 0.4757 → 0.2522 cos(s1, s2; c2) 0.6233 → 0.9660
cos(s1, orange; c1) 0.1986 → 0.3551 cos(s1, tennis; c2) 0.1135 → 0.6448
cos(s2, gray; c1) 0.0559 → 0.6061 cos(s2, tennis; c2) 0.0983 → 0.6426

s1: Two snow skiers with ski poles and snow skis, standing on top of a snow covered mountain with other skiers around them.
s2: A skier stands alone at the top of a snowy slope with blue skies and mountains in the distance.
cos(s1, s2) 0.6318 → 0.7702

Condition 1: The number of person. Condition 2: The type of job.
Answer 1: two Answer 2: one Rating: 1 Answer 1: skier Answer 2: skier Rating: 5
cos(s1, s2; c1) 0.6358 → 0.2788 cos(s1, s2; c2) 0.7502 → 0.9539
cos(s1, two; c1) −0.0970 → 0.7014 cos(s1, skier; c2) 0.2488 → 0.8016
cos(s2, one; c1) 0.0227 → 0.7953 cos(s2, skier; c2) 0.3409 → 0.8032

s1: A bunch of people standing around at the beach with a kite in the air.
s2: a beach scene with a beach chair decorated with the Canadian Flag and surfers walking by with their surfboards
cos(s1, s2) 0.3988 → 0.5350

Condition 1: The type of hobby. Condition 2: The type of location.
Answer 1: kite flying Answer 2: surf Rating: 1 Answer 1: beach Answer 2: beach Rating: 5
cos(s1, s2; c1) 0.4386 → 0.4886 cos(s1, s2; c2) 0.4825 → 0.8582
cos(s1, kite flying; c1) 0.3457 → 0.7717 cos(s1, beach; c2) 0.2254 → 0.7281
cos(s2, surf; c1) 0.1034 → 0.6665 cos(s2, beach; c2) 0.1129 → 0.6703

Table 8: Example of similarity scores for two conditions applied to the same sentence pair, based on linear MLP with
dimensionality 512 on NV. The table shows how supervised MLP projection improves the CASE for C-STS task.
cos(·, ·) denotes cosine similarity. Answer 1 and Answer 2 refer to the corresponding answers for Sentence 1 and
Sentence 2 under conditions, respectively. The predicted similarity scores before and after applying supervised MLP
are listed on the left and right of the arrow. That is, the similarity score for original high-dimensional LLM-based
embeddings is on the left of the arrow, while the similarity score for CASE is on the right.
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