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Abstract001

Large language models (LLMs) can suggest002
missing elements from items listed in a prompt,003
which can be used for list completion or similar004
item recommendation. However, their perfor-005
mance degrades when they are exposed to too006
many items, as they start to suggest items al-007
ready included in the input list. This occurs at008
around 100 items for mid-2024 flagship LLMs.009
We evaluate this phenomenon on both synthetic010
problems (e.g., finding missing numbers in a011
given range of shuffled integers) and realistic012
movie recommendation scenarios. We refer013
to this issue as attention overflow, as avoiding014
repetition requires attending to all items simul-015
taneously. Although iterative loops can miti-016
gate this problem, their costs increase with the017
repetition rate, affecting the language models’018
ability to derive novelty from lengthy inputs.019

1 Introduction020

Large language models (LLMs) boast ever-growing021

context windows, enabling new potential applica-022

tions. However, the theoretical context length is023

not a sufficient indication of a model’s real perfor-024

mance with a given input size (Liu et al., 2024).025

Multiple benchmarks have been proposed to stress-026

test the actual ability of language models to reason027

over long contexts. These tasks either involve pure028

retrieval or a form of reasoning requiring the iden-029

tification of a few relevant portions from a large030

context.031

We question the effective context window of032

language models from an opposite angle: asking033

them to provide the only relevant elements that are034

not in a large input. We formulate this as a miss-035

ing item prediction task. Missing item prediction036

has multiple applications, notably in conversational037

recommendation, where users can provide a list of038

items (e.g. movies) they liked and ask for new sug-039

gestions. This task involves a form of inductive040

reasoning, in contrast to the deductive reasoning041

typically explored in long context stress tests. More 042

importantly, it requires comparing a representation 043

to the whole input, and we notice that this is diffi- 044

cult for current LLMs, which leads to the prediction 045

of items already in the input (repetition). 046

Missing item prediction is also relevant when 047

models are asked to generate long lists. We ob- 048

served repetitions in this scenario1, but we focus on 049

the movie recommendation use case, where users 050

provide the movies they have watched, and we also 051

create synthetic examples, notably number ranges 052

with a missing element. We quantify the repetition 053

phenomenon with existing off-the-shelf language 054

models and investigate whether fine-tuning can eas- 055

ily address this problem. The created datasets are 056

publicly available2. 057

2 Related work 058

Repetitions in language modeling We study a 059

form of repetitions, a well-identified problem in 060

language models (Keskar et al., 2019), which can 061

sometimes lead to text degeneration, where models 062

repeat the same token indefinitely (Fu et al., 2021). 063

Repetition penalties were proposed to alleviate this 064

issue (Keskar et al., 2019), but they operate at the 065

token level and cannot scale to large contexts where 066

all tokens are already represented. Repetitions also 067

exist in more subtle ways, as Chiang and Lee (2024) 068

showed that chain-of-thought reasoning contains 069

redundant content. 070

LLM context length stress tests Our work is 071

also related to context window stress testing and 072

language modeling-based recommendation. Previ- 073

ous work has studied the ability of attention mech- 074

anisms to identify what is present in long contexts, 075

but not what is missing. The Long-Range Arena 076

(Tay et al., 2021) provides the first systematic analy- 077

1For example, asking Claude Sonnet 3.5 200 movies re-
leased in 2022 leads to numerous repetitions: [artifact]

2[data:HF-datasets ]

1

https://claude.site/artifacts/67f091d2-4ab5-4b88-9fce-b4114ade666e
https://redacted
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(a) Zero-shot missing number prediction
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(b) Zero-shot missing movie prediction

Figure 1: Zero-shot test accuracy and repetition rate with increasing itemset sizes.

sis of the long-range processing capabilities of text078

encoders, focusing mainly on algorithmic reason-079

ing and retrieval tasks. BABILong (Kuratov et al.,080

2024) uses bAbi reasoning tasks (Weston et al.,081

2016) and interleaves relevant text with irrelevant082

input. FlenQA (Levy et al., 2024) applies a similar083

process to the RuleTaker (Clark et al., 2020) de-084

ductive logical reasoning task. Ruler (Hsieh et al.,085

2024) uses simple algorithmic/retrieval tasks.086

Recommendation with LLMs Our study is also087

related to LLM usage for collaborative filtering088

(Sileo et al., 2022), where users enumerate a list089

of items to communicate their tastes. LLMs can090

also be used in content-based recommendations,091

where users explicitly mention what they are look-092

ing for (Wu et al., 2023). Here, we do not ad-093

dress the fine-grained relevance of the recommen-094

dations (providing an item that users do not already095

know). Repetition is also related to the novelty096

metric in recommender systems evaluation (Vargas097

and Castells, 2011).098

3 Missing item prediction099

We formalize the task of missing item prediction100

as follows: Given a set X (randomly shuffled) of101

N elements, guess the element y that is missing in 102

X . This is technically an induction task that can be 103

under-determined but we can construct relatively 104

easy X, y pairs with easily identifiable itemsets 105

S (numbers from 0 to 1024, letters, chemical el- 106

ements...) and randomly removing one element 107

y from S to get X . We can use two evaluation 108

metrics: 109

Accuracy the rate at which a language model 110

returns the expected missing element. 111

Repetition rate the rate at which a language 112

model returns an element that is already in X . 113

Repetitions are always mistakes. For easily iden- 114

tifiable sets, ideal behavior is perfect accuracy and 115

no repetition. But even in cases where the structure 116

of S is under-determined, language models per- 117

forming missing item prediction should not repeat 118

elements from X . 119

To construct an example of the missing item 120

prediction task, we select an itemset S, select a 121

random element y, and present a scrambled version 122

of X = S \ {y} in a prompt explicitly asking the 123

model to guess a missing element. We provide the 124

following itemsets: 125

Movies We select a user from the MovieLens 1M 126

dataset who watched more than 2048 movies. 127
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(a) Llama-3 zero-shot missing number prediction on multiple domains
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(b) Llama-3 fine-tuned on missing number prediction

Figure 2: Llama-3-8B-Instruct Accuracy on various itemsets with increasing itemset sizes, without any fine-tuning
(a) and after fine-tuning on the numbers itemset.

Numbers Numbers in numerical form (1...1024).128

We exclude set extrema from the choice of y for129

numerical itemsets.130

Numbers-english We use the same numbers but131

converted in English using the num2word library3.132

An example with the Numbers itemset of size 8133

is QUESTION: Find the missing element in 5, 7, 1,134

3, 6, 8, 4. ANSWER: 2.135

4 Experiments136

We use the same prompt template for all models:137

Guess the missing item from this list: {X}.
Directly answer with only one item. Item for-
mat should match the list format. Provide no
explanation. Answer format: "{item}."

138

To construct this prompt template, we iterated on139

Llama-3-8B-Instruct with the numbers itemset val-140

idation data until we obtained a satisfactory output141

format. We normalize the outputs with punctua-142

tion removal and lowercasing to compute repetition143

rate and accuracy, and perform exact matches to144

compute accuracy and repetition rate.145

3https://github.com/savoirfairelinux/num2words

We use powers of 2 starting from 16 as itemset 146

sizes. This ensures that there are enough items to 147

guess the itemset structure. We generate 200 train 148

examples and 100/100 validation test examples per 149

itemset size and itemset type. 150

4.1 Zero-shot evaluation 151

We evaluate off-the-shelf instruction-tuned lan- 152

guage models API through OpenRouter. We evalu- 153

ate Llama3-Instruct 8B and 70B, Gemini 1.5 Flash 154

and Pro, GPT-4o, and Claude 3.5 Sonnet with the 155

default hyperparameters. 156

Figure 1 shows the evolution of Accuracy and 157

Repetition metrics with different itemsets sizes for 158

numeric numbers and movies missing item predic- 159

tion tasks. Most language models solve the missing 160

number prediction task with relatively high accu- 161

racy with less than 128 items. Increasing model 162

size improves accuracy, as Gemini Pro and Llama- 163

3-70B outperform their smaller counterparts. How- 164

ever, the repetition rates shoot up and the accuracy 165

decreases in all models after 256 items. 166

We cannot interpret the low accuracy of the 167

movie item prediction tasks as a failure because 168

the models can predict relevant movies that are not 169

3

https://github.com/savoirfairelinux/num2words


y. However, we can interpret the growing repe-170

tition rate as a failure, which can frustrate users171

who could expect better recommendations as they172

provide more examples, which limits the accuracy173

of conversational recommender systems that do not174

filter their output to prevent repetitions.175

4.2 Fine-tuning176

We now investigate whether fine-tuning can easily177

address this issue. We fine-tune Llama-3 Instruct178

8B using Unsloth default configuration 4 (4bit quan-179

tization, LoRA (Dettmers et al., 2024) with dimen-180

sion 16, 1 epoch with a learning rate of 2e-4). We181

fine-tune on 500 numeric items of a size below182

256 and evaluate on the test set in-domain and out-183

domain.184

Figure 2 shows that fine-tuning improves miss-185

ing item prediction on in-domain data, but do not186

generalize to larger itemsets nor to different do-187

mains, which might indicate a fundamental limit188

of current attention architectures that may not be189

solved with data only.190

4.3 Contrastive evaluation191

We also evaluated the ability of LLama-3-8B-192

Instruct to tell whether an element is present or not193

in the list by randomly sampling either the missing194

element or a random element from a prompt.195

{X}. Is "{item}" in the previous list? Pro-
vide no explanation, directly answer with only
"Yes." or "No."

196

Figure 3 shows the evolution of accuracy with197

growing itemset sizes. Llama-3-8B-Instruct main-198

tains 75% accuracy below 1024 items5. This shows199

that once the item is explicitly present in the query,200

the model is much better at identifying it. These201

results are lower than the Needle in a Haystack202

evaluation scores of Llama-3 (Zhang et al., 2024),203

which is due to the high similarity between items.204

This suggests that context-length stress testing is205

harder when many prompt elements are similar to206

each other, which makes existing (Kuratov et al.,207

2024) problem lengthening strategies too easy to208

get around.209

4https://colab.research.google.com/drive/
135ced7oHytdxu3N2DNe1Z0kqjyYIkDXp?usp=sharing

5All examples fit in the 8K context window of Llama 3.
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Figure 3: Zero-shot contrastive accuracy with Lllama-3-
8B-Instruct on the Numbers itemset.

5 Analysis 210

To solve missing item prediction, a transformer 211

language model needs to construct a latent repre- 212

sentation of the missing item when predicting the 213

next token. Finding a close representation is rela- 214

tively simple in the tasks we propose, as language 215

models consistently output items that belong to the 216

item set. However, they also need to move away 217

the latent representation from the representation of 218

each prompted item. At each layer, the transformer 219

layer can refine the representation to shift it away 220

from prompted items. Our contrastive experiments 221

show that it is possible with relatively high accu- 222

racy when evaluating one item at a time, but the 223

models lack the depth to do it for many items. 224

6 Conclusion 225

We introduce a new missing item prediction dataset 226

and we show that repetitions occur during plausible 227

movie recommendation tasks, alongside synthetic 228

list completion. Our findings have implications on 229

the current language models’ ability to check text 230

exhaustivity. Our simple examples show that we 231

must be careful when asking language models to 232

produce new content from contextual information, 233

as language models can repeat context elements 234

without noticing it. Our research demonstrates that 235

issues arise with sequences of just hundreds of to- 236

kens, in contrast to the RULER (Hsieh et al., 2024) 237

study, which identified problems only at lengths of 238

thousands of tokens. We attribute this phenomenon 239

to an overflow of attention, speculating that the 240

model needs to evaluate candidates and compare 241

them to all input items at once. It would be worth- 242

while to actually analyze the attention heads during 243

this task, even though multi-head attention is hard 244

to interpret (Bibal et al., 2022). Our dataset is pub- 245

licly available with itemset sizes up to 8192 for 246

future work. 247

4

https://colab.research.google.com/drive/135ced7oHytdxu3N2DNe1Z0kqjyYIkDXp?usp=sharing
https://colab.research.google.com/drive/135ced7oHytdxu3N2DNe1Z0kqjyYIkDXp?usp=sharing


Limitations248

Our study has several limitations that should be con-249

sidered. The range of itemsets and models tested250

could be expanded to ensure broader generalizabil-251

ity. Our fine-tuning experiments were limited in252

scope, and a more systematic approach to prompt253

engineering might yield different results. We also254

lack a human baseline for comparison. The movie255

recommendation task is a simplified version of real-256

world scenarios, which often involve more complex257

user preferences and item attributes. While we258

speculate about the role of attention in the observed259

phenomenon, we did not conduct an in-depth anal-260

ysis of attention patterns or explore how efficiently261

the models utilize their full context window. Ad-262

dressing these limitations in future work would263

provide a more comprehensive understanding of264

the attention overflow phenomenon and its impli-265

cations for long-context processing in language266

models.267
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