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ABSTRACT

In this work, we study the learning theory of reward modeling using pairwise com-
parison data and deep neural networks. We establish a novel non-asymptotic re-
gret bound for deep reward estimators in a non-parametric setting, which depends
explicitly on the network architecture. Furthermore, to underscore the critical im-
portance of clear human beliefs, we introduce a margin-type condition requiring
the conditional winning probability of the optimal action in pairwise comparisons
to be significantly distanced from 1/2. This condition enables a sharper regret
bound, which substantiates the empirical efficiency of Reinforcement Learning
from Human Feedback and highlights the role of clear human beliefs in its suc-
cess. Notably, this improvement stems from high-quality pairwise comparison
data under the margin-type condition and is independent of the specific estimators
used, making it applicable to various learning algorithms and models.

1 INTRODUCTION

Reinforcement Learning from Human Feedback (RLHF) has proven highly effective in aligning
large language models with human preferences and expert policies (Christiano et al., 2017). A
notable advancement in this field, Direct Preference Optimization (DPO), enhances RLHF by learn-
ing rewards directly from pairwise comparison data rather than environmental interactions. This
approach significantly improves efficiency and achieves more robust alignment with human pref-
erences (Rafailov et al., 2024)), particularly in applications where preference feedback is naturally
intuitive, such as recommendation systems and image generation.

The success of the RLHF has ignited extensive research to establish performance guarantees for
learning optimal policies. For instance, Zhu et al| (2023) examines the theoretical properties of
the reward modeling from action-based comparison data, while |Chen et al.| (2022)) and |Saha et al.
(2023) focus on trajectory-based comparison data. However, the theoretical foundations of DPO
remain largely unexplored, especially for deep neural network (DNN) estimators, creating a gap in
understanding its full potential. Additionally, the reason why RLHF significantly improves sample
efficiency compared to traditional RL methods remains less clear. Studies have considered the gap
condition on the Q function to distinguish the optimal action from the others (Shi et al.; 2023}, [Zhan
et al.,2024). This provides a key insight into explaining the efficiency of RLHF based on reward
modeling. Specifically, an underlying reward function structure is a plausible explanation for the
observed efficiency gains in RLHF since the reward signals can always be reconstructed from the
clear human preference feedback.

Strong consensus in pairwise comparison outcome reveals clear human preferences, indicating de-
cisive winning odds for preferred actions and providing crucial insights into the underlying reward
function for RLHF. These preferences are vital for aligning language models with complex psycho-
logical attributes, like honesty and harmlessness, that traditional reinforcement learning struggles to
quantify. The clarity of these preferences enables RLHF to achieve remarkable performance with
minimal pairwise data, even in highly complex environments, demonstrating its efficiency in reward
modeling (Wang et al., [2024a). While recent work has explored structural conditions of the reward
function to explain this efficiency (Shi et al., 2023; Rafailov et al., 2024), these conditions remain
largely unverifiable, limiting their practical explanatory power.
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In this paper, we focus on obtaining theoretical guarantees for reward models with well-designed
network architectures. We aim to build a mathematical model to calibrate the clear preferences and
explain the sample efficiency of RLHF based on reward modeling. Specifically, our contributions
focus on the following aspects:

* We establish regret bounds for reward modeling using deep neural networks, which de-
pend explicitly on network width, depth, and sample size. These bounds provide valuable
insights into the success of DNN-based estimators in RLHF, particularly in terms of their
sample efficiency.

* We propose a novel margin-type condition to calibrate clear human beliefs in RLHF. The
condition implies high-quality pairwise comparison datasets and unveils the structure of the
underlying reward, under which we obtain a sharper regret bound. This finding highlights
the role of clear human beliefs in its success. The theoretical improvements are independent
of the estimators used in practice, allowing them to be applied across a wide range of
learning algorithms.

* We emphasize the broad applicability of the theoretical results in our work. Our findings
provide theoretical guarantees for removing ambiguous comparison data during the pre-
processing stage of RLHF training. We examine DNN-based reward estimators under gen-
eral pairwise comparison models, without restricting them to specific parameterizations,
thereby supporting RLHF’s empirical efficiency across various scenarios.

The rest of the paper is organized as follows. In Section 2] we introduce the pairwise comparison
model and propose the margin-type condition. We demonstrate that this condition leads to faster
convergence of the resulting regret. In Section 3] we derive non-asymptotic regret bounds for deep
reward estimators, which are explicitly characterized by the structure of DNNs. We also discuss
the implications of these results for generalization. We review related literature in Section ] and
conclude with future research directions in Section[5] Technical details are deferred to the Appendix.

2  PAIRWISE COMPARISON, MARGIN-TYPE CONDITION AND SHARPER
BOUND

In this work, we consider the reward modeling in the action-based pairwise comparison case. Let
S be the set of states (prompts) and A be the set of actions (responses) We consider a pairwise
comparison dataset {s?,at, al, y*}~, with sample size N: the state s’ is sampled from the proba-
bility measure on state space S, denoted by p; Conditioning on the state s°, the action pair (at,ad)
are sampled form some ]omt distribution IP’(al, apls®); The comparlson outcome y* indicates the
preference between a] and ag. Specifically, aj is preferred over ay if y* > 0 and conversely, ag is
preferred if * < 0. It is worth noting that we do not restrict the outcome to a binary format, and
it accommodates various types of outcomes discussed in the literature. For simplicity, readers may
consider the binary case where y° takes on values of either —1 or 1. We define the reward function
r: S x A — R, which evaluates the reward of taking each action at a given state. We denote d as
the dimension of the input for reward function 7.

For any reward function r, we denote the decision maker by 7, (s) = argmax,c 4 7(s,a). Let
r*(s,a) denote the underlying optimal reward function, we define the optimal action for the state
s by mp+(s) = argmax,c 4 7*(s,a). For an estimated reward function r, we are interested in the
regret of the induced 7, (s), which is

E(r) = /S P (5,00 (8)) — 1 (5,1 (5)) dps. 0

The regret @) is an intrinsic measure for evaluating RLHF (Zhu et all 2023} [Zhan et al.| 2024)).
It is important to note that the

. In practice, we optimize the comparison model using crowd-sourced comparison
outcomes. Even if the reward function is not perfectly estimated, there remains an opportunity
to derive a correct policy and achieve low regret in reinforcement learning tasks. This potential
stems from clear human beliefs, which suggest a significant gap between the reward of the optimal
action and its alternatives. However, the critical role of reward differences between actions is often
overlooked in pairwise comparison analysis, which typically relies on the smoothness of the reward
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function. In light of this, we are motivated to quantify the effects of reward differences on regret,
capturing the reward gap between actions.

As discussed in|Wang et al[(2024a);|Song et al.|(2024); Zhan et al.| (2024)), we model the relationship
between comparison response and the difference of the rewards r*(s, a;) — r*(s, ag). Specifically,
the probability of the event that a; is preferred over ag under the state s can be expressed as:

My>omﬂh%>=/’g@m%am)—ﬂ@ﬂwwy @)
0

where the function g represents the probability density function of the comparison outcome y and in
this paper we consider a general parametrization for g. It is worth noting that the success of RLHF
is largely attributed to clear human preferences, while incorrect or ambiguous preference labels can
lead to significant performance deterioration in practice (Saha et al.,2023;|Wang et al., 2024a; Chen
et al} |2024). To calibrate the clear human preferences, we propose the following margin condition
in the pairwise comparison dataset.

Assumption 1 (Margin Condition for the Human Preference) For any action pairs (m+(s),a’)
where a' € A\ m,+(s) and t € (0,1/2), we have

1
Ps <P(y>0 | s,a1 = m(5), a0 :a’)—§ St)

o0 1 )
= /5 1 {/0 9y, 7" (5,7 () = 77(s,0"))dy — B < t} dps < cgtT=7,

where ¢, > 0 is a universal constant and o € (0, 1) is the coefficients for quantifying the clear
human belief. The larger o indicates a clearer preference in the pairwise comparison dataset.

Assumption [I] implies that experts have a clear tendency between the optimal action and the other
for most states s, under which the winning probability of the optimal action is bounding away from
1/2.

To better understand Assumption
[Il we take a closer look at its implication on the underlying reward function. Here, we present two
classical comparison models with y € {—1,1} as examples.

Example 1 (BT model (Bradley & Terry,|1952)) The comparison function is

exp(u) 1y = —1) exp(—u)

o) == T ) Tt exp(—w)

Given a particular state-action pair, the probability of observing the outcome y > 0 is
exp(r*(s,a1) — r*(s,a0))/(1 + exp(r*(s,a1) — r*(s,ap))).

Example 2 (Thurstonian model (Thurstone}|1927)) The comparison function is

9(y,u) =1y =1) (u) + L(y = —1) - (1 — (u)),

where ®(u) is the cumulative distribution function of the standard normal distribution. Then we
have P(y > 0] s,a1,a0) = ®(r*(s,a1) — r*(s,ap)).

The BT model and Thurstonian model are widely considered in RLHF and DPO modeling (Chris-
tiano et al., 2017} [Rafailov et al., [2024} [Siththaranjan et al., 2024). Besides that, there are some
other comparison models used in DPO. For example, the Rao-Kupper model and Davidson model
are employed to tackle pairwise comparisons with ties (abstentions), where y takes values from
{—1,0,1} (Chen et al., 2024; Rao & Kupper} |1967; Davidson, [1970). Notably, all of these models
are incorporated into the general comparison framework discussed in our work.

The comparison model connects the underlying reward function to human preferences within the
observed comparison datasets. By considering the clear preference data outlined in Assumption [T}
we could further reveal the specific structure of the reward function, which is summarized in the
following LemmalT}
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Lemma 1 Given Assumption[l} with o € (0,1) and t € (0, ¢,+) where ¢,~ is the upper bound of
the true reward defined in Assumption there exists a universal constant c; such that

1<% (s, e (5)) — “(s,a) <typdps < tTa,
/S {r (s, 1+ (8)) ae.}\r\lii(s)r (s,a) < } ps < ¢
Specifically, c;, = (1/4)2/(A= ¢, in the BT model and Cy = (1/2m)2/2=2% ¢ in the Thurstonian
model.

Lemma (1| implies that a clear preference in the comparison dataset is determined by the reward
margin between the two actions. Its validity also depends on the properties of the comparison
function specified in Definition |1} making it applicable to the general comparison model. Unlike
existing literature, which imposes unverifiable conditions directly on the reward structure, Lemmal[T]
is derived from Assumption [T|on high-quality preference datasets. This approach is more valid and
enjoys greater generalization ability compared to existing conditions (Kim et al., 2021; Shi et al.,
2023;Zhan et al., [2024).

2.1 SHARPER REGRET BOUND

In this section, we present the regret bounds of the decision maker =,.(s) defined in with and
without Assumption [T}

Theorem 1 (Faster Rate with Margin Condition) Let r be some reward function estimator, with
Assumption (I| holds and the margin parameter o € (0, 1), there exist a universal constant ¢; > 0,
such that

1
" 3-2a
) <er (llr =1 lags.m) -

where the norm || - || 2 (s 2y is defined in @

Theorem |1| suggests that when a hard margin is imposed, i.e., « — 1, the regret of the “greedy”
policy induced by the estimated reward function is at the order of O(||r — r* H%Z( s5,02))» Which is

Corollary 1 (Regret Bound without Margin Condition) Let r be some reward function estimator.
There exists a universal constant co > 0, such that

) < e (Ir = 13ase))

Theorem I|first demonstrates the role of clear preference in the comparison dataset and on the regret
bound (Zhu et al.| 2023} Wang et al.|[2024a). Comparing Theorem E] and Corollary E], we show that
the regret bound can be improved significantly with the margin-type condition. It is worth noting
that, the margin parameter « interpolates the regret bound under two extreme cases

1
3

. The
efficiency gain in our results adjusts automatically with the margin parameter o while remaining
independent of the error ||r — r* ||%2( s,¢2)- This improvement is primarily attributed to the use of a
high-quality pairwise comparison dataset and is universally applicable to any estimator r employed
(Audibert & Tsybakov] [2007; [Kim et al.| [2021). These findings are coherent with the empirical
observations in the RLHF training (Wang et al., 20244} |Chen et al. [2024). We also obtain the
convergence rate of action selection consistency in Section C.2 of the Appendix, which is a beneficial
complement for us to further understand the effects of the margin-type condition.

Based on the margin-type condition, we now present an overview of our main result regarding the
regret bound using DNN-based reward estimators.

Theorem 2 (Informal, Guarantee for Deep Reward Modeling) Consider the deep reward esti-
mator v € FpNn where Fpnn is a class of the deep neural networks with width W = O(dﬁ)

and depth D = O(\/N ). Then under some regular Assumptions, with probability at least 1 — 9,

log(1/5) ) "™
£(F) = O {dﬁNdfuur oggv/é)} 7
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where (3 is the Holder smoothness parameter for the reward function v* and d is the dimension of
the input S x A.

Theorem [2] establishes the convergence rate for the regret of deep reward estimators in a fully non-
parametric setting. By setting proper network depth D and width W, the regret of deep reward
estimator achieves a rate of O(N —B/ [(’“25)(3_2&)]). Our analysis provides implications for prac-
titioners on how to choose the neural network parameters and construct high-quality comparison
datasets to achieve effective reward modeling.

3 LEARNING GUARANTEE OF DEEP REWARD MODELING

The log-likelihood function for r on the pairwise comparison dataset is written as follows,

l(r) = E[log g (y,7(s,a1) — (s, a0))] -

Correspondingly, the empirical log-likelihood is written as,

. 1 X o o
i(r) =+ > logg (y'sr(s',ab) — r(s',af)) .

=1

For a given reward function r, the empirical risk [ (r) is calculated using the observed pairwise
comparison data, while the population risk [(r) is the expected value of the risk. Given the pairwise
comparison dataset, we obtain 7 with the following objectives,

7 € arg max I(r). 3)
rEFpNN

To establish the theoretical guarantee of the above estimator, several factors should be considered.
First, the characteristic of the comparison function ¢(y, u) captures the relationships between hu-
man preference and the underlying reward. Second, the smoothness of the true reward function r*
determines how well it can be approximated. Most importantly, the influence of the neural network
configurations, i.e., depth and width, need to be leveraged, as it dictates the model’s capacity and
efficiency to learn complex patterns from finite samples. In the following, we provide definitions
and assumptions related to these factors and shape the efficacy of data-driven reward modeling.

Definition 1 (Comparison Function) A function g : 2 x R — RT, where §) is a symmetric subset
of R denoting the possible comparison outcomes, is said to be a comparison function if:

(i) Foru € R, [, 9(y, u)dy = 1if Q is continuous, and > yea 9y, u) = 1if Qis discrete;

(ii) g(y,u) = g(—y, —u), forany (y,u) € Q x R;

(iii) For y < 0, g(y,u) is decreasing with respect to u, and g(y,u) — 0 as u — 00,

(iv) sup, e 9(y, u) < 400, for every y € QL.

(v) For every y, 9 log g(y,u)/0u® < 0.

These conditions ensure g is a proper probability function with a symmetric preference structure,
stronger preferences for larger relative scores, and log-concavity in u.These conditions are mild and
widely considered in the literature. It is straightforward to check many commonly used models
satisfy these conditions, including BT model, Thurstonian model, Rao-Kupper model, Davidson

model and the paired cardinal model proposed in Shah et al.| (2016). To proceed, we describe the
characteristics of the reward functions in preference learning.

Definition 2 (Holder Function Class) For 3,cy > 0, and a domain X € RY, the Holder function
class HP (X, cy) is defined by

HP (X, cy) = {f:X—>R max [|0% flloo < o,

| wp D=1
lwll1<18]

max )
llwlli=18] z#a’ ||JU—33’H§7L*BJ

|wl|1 = Zgzlwi, and 0% =

where w = (wi,... ,wd)T is a vector of non-negative integers,
0¥t - - - Q¥4 denotes the partial derivative operator.
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Assumption 2 The range of the target reward function ¢y« ‘= MaXqe A SUP,cs 7 (8, @) is finite.

Assumption 3 (i) The marginal probability measure ps is absolutely continuous with respect to the
Lebesgue measure; (ii) For every a € A, the reward function r* (s, a) belongs to the Holder class
HB([0,1]%, ¢y ) for a given smoothness parameter 3 > 0 and a finite constant cz, > 0.

Also, we
estimate the true reward with the condition ) , 7(s,a) = 0 for all s. In our theoretical study,
the reward estimator is implemented by a fully connected feed-forward neural network consisting of
multiple layers of interconnected neurons. Its structure can be described as a composition of linear
mappings and activation functions. Specifically, we consider the class of functions Fpnn consists
of D-layer feed-forward neural networks that can be expressed as follows,

r(s,a;0) = fpy10 fpo---o fao fi(s,a), 4

where f;(z) = c@(H®Oz + () is the transformation for layer 7. H®) and b(*) are the weight
matrix and bias vector, respectively. o(*) denotes the ReLU activation function, which is applied to
its input elementwisely. We denote the width of the neural network as W, which is the maximum
of the width of all layers. Let § = (H™M) () ... HP+D) p(P+1) represents all the parameters in
the neural networks, which consists of p entries in total.

3.1 ESTIMATION WITHIN DEEP NEURAL NETWORK FUNCTION CLASS

With the aforementioned specifications, we start our analysis with the excess risk, which in general
stems from two sources: the error from random data realizations and the error from the DNN’s
limited capacity to represent the target reward. We formalize these intuitions in the following lemma.

Lemma 2 (Excess risk decomposition) The excess risk of 7 is defined and decomposed as

I(r*)y —=1(7) <2 sup |l(r)— Z(r)| + inf  [I(r*) = 1(r)]. (5)

rEFpNN r€FDNN

The first term of the right-hand side is the stochastic error, which measures the difference between
the risk [ and the empirical counterpart [ defined over function class Fpxx, evaluating the estimation
uncertainty caused by the finite sample size. The second term is the approximation error, which
measures how well the function r* can be approximated using Fpnn With respect to the likelihood
I(+). To assist the following analysis, we define the constants depending on g(y,u) and the range
Cret

ko:= sup |[logg(y,u)l,
YEQ, |u|<cpx
and
8 2
K1 = sup logg(y,u)|, ko= inf log g(y,u)| -
yEQ, |u|<cpx 3u ( ) yeQ,|u|<c,x 8u2 ( )

These constants are used in the results, specifying the Lipschitz property and log-concavity invoked
from Definition [I] that ensure the convergence of the maximum likelihood estimator from the deep
neural network function class.

Proposition 1 (Stochastic Error Bound) Under Assumption |2| there exists a universal constant
cs > 0, with probability at least 1 —

< Ko < \/|A|Dplo WD + DMW)UD) + log(1/5)> .

l(r) = U(r)

sup
rEFDNN

(Wni/p
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If »* € JFpnn, Proposition 1| describes the additional cost of the in-sample learned reward
function in terms of the likelihood functional compared to the optimal oracle, which scales as

O(4/log(N)/N) with well-designed network structures form the class Fpnn. It is reasonable that
with more collected samples, the DNN can learn the underlying reward function better. Meanwhile,
the stochastic error bound increases with the complexity of the function class Fpnn. In other words,
once we already know that r* € Fpnn for some network parameters, there is no need to further
increase the network’s width and depth given the available samples.

Proposition 2 (Approximation Error Bound) Let FpnN be the deep RelLU neural network class
with width and depth, respectively, specified as W = 38(| 3] + 1)2dPIT1 M [log,(8M;)] and
D = 21(|B] + 1)?M> [log, (8M>)]. Under Assumptions[2|and|3| for any My, My € N*, we have

inf I(r*) —1(r) < 36r1c, (]3] + 1)2dW+(5§1) (MlMQ)‘%_

rEFpNN

Proposition 2] demonstrates that the approximation error bound is decreasing in the size of the func-
tion class Fpnn through two parameters M; and Ms, which are assigned later. This is intuitive
since a larger network has greater expressive power. On the other hand, a larger network inflates the
stochastic error due to the over-parameterization.

Consequently, it is necessary to design the network structure carefully to strike a balance between the
stochastic error and the approximation error. To do this, we need to appropriately relate M and Moy
to the sample size IV so that an optimal convergence rate of excess risk bound can be achieved. There
are many approaches that result in the same optimal convergence rate while incurring different total
numbers of parameters p. Note that p < W(d+ 1) + (W2 + W) (D — 1)+ W + 1 = O(W?2D),
which grows linearly in the depth D and quadratically in the width W. It is desirable to employ
fewer model parameters, and thus, the deep network architectures are preferable to the wide ones.

[

Next, we obtain the optimal bound in terms of the norm || - ||%2( 5.42) which is defined in (@)

Theorem 3 (Non-asymptotic Estimation Error Bound) Given the network parameters being
specified as in Proposition |2} with M1 = 1 and M, = LNd/@d“"m)J. Under Assumption -
there exists a universal constant c4 > 0, with probability at least 1 — 0,

log(1/6)

(e F8) 17401 g0y B0

Ko

~ * (12
7= 125,02y < 2\/51-”»2/@\

Theorempresents the non-asymptotic convergence rate of ||# — r* \\%2( 5.02)-

&

Combining Theorems|I]and 3] we obtain the regret bound for the decision maker
m#(s) induced by the deep reward estimator under the margin-type condition.

Theorem 4 Let Fpnn be the deep ReLU neural networks class with width and depth, respectively,
specified as

W = 114(|8] + 1)2d2) 1 and D = 21(| B8] + 1)2N 5% [log, (8N 22477 )].
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Given the MLE estimator v € FpNn, under Assumptions - there exists a universal constant cs,
such that with probability at least 1 — 9,

1 1
4 7|8]+1 2\ 3—2a 2 1 2(3—2a)
o <no [A(18) + 1)*dLe) aogN)) N(d+2ﬁﬁ3_2a)+<"olog(5)> .

K2KA K3KAN

Our results reveal that deep neural network reward estimators offer satisfactory solutions with ex-
plicit theoretical guarantees in this general setting. To achieve the fast convergence rate, it is essential
to train the model with sufficient data and to select an appropriate network structure, adhering to the
guidelines for width and depth selection provided in Theoremd] To be specific, the width is a multi-
ple of dP1+1 a polynomial of the feature dimension d; The depth is proportional to /N, as d >> f3.
This explicitness offers more informative insights than those characterized solely by network size.
In Section E of the Appendix, we give an experiment on synthetic data to illustrate the applicability
of our theoretical results for reward modeling with deep neural networks. Theorem [3relies on the
reduced complexity of neural networks, which is obtained through the lens of functional equivalence
024). Such functional equivalence generally holds for fully connected networks, Residual
networks, and attention-based networks. Recently, [Takakura & Suzuki|(2023)) derived a polynomial
convergence rate for sequence-to-sequence learning tasks using transformers, and specifically, they
examine the shift-equivariant properties of transformers. It would be of interest for future studies
to extend the analysis in this paper to state-of-the-art architectures such as Bidirectional Encoder
Representations from Transformers (BERT), Generative Pre-trained Transformers (GPT), and other
attention-based models.

4 RELATED WORKS

Reinforcement Learning from Human Feedback Human preferences have emerged as a valu-
able alternative to numerical rewards in reinforcement learning (RL), owing to their intuitive elicita-
tion process (Ziegler et al, 2019; [Ouyang et al.|[2022)). Recent theoretical advances in offline RLHF
have been made by |Zhu et al.|(2023) and Zhan et al.|(2024)), who developed reward-based preference
models—the former focusing on linear models and the latter extending to a general function class.
While these foundational works establish theoretical frameworks, the critical role of human belief
quality in RLHF has only recently gained attention. Wang et al.| (2024a)) addresses this by develop-
ing protocols for preference label correction and ambiguity smoothing, while [Zhong et al| (2024)
tackles preference heterogeneity through meta-learning approaches. However, a rigorous theoretical
framework for quantifying human belief in RLHF remains an open challenge.

Margin Condition for Human Preference Modeling The efficiency of RLHF is largely attributed
to strong human preferences reflected in pairwise comparison data (Zhong et al.} 2024}; Wang et al.}
[2024a)). This concept parallels established noise conditions in classification theory, particularly Mas-
sart and Tsybakov noise conditions, which bound excess misclassification error 2004;
[Diakonikolas et al., 2021} [2022)). Similar margin-type conditions have proven valuable across var-
ious domains, from individualized treatment analysis 2011) to optimal policy
identification in offline RL 2023), and linear bandit problems (Goldenshluger & Zeevi,
2013}, [Bastani & Bayati, 2020). While recent empirical studies aim to enhance data quality and ad-
dress ambiguous samples in practical applications, offering various treatment strategies for handling
crowd-sourced preference data (Wang et al., 2024a} [Das et al, 2024} [Liu et al} 2024} [Zhan et al.}
2023)), our study provides a theoretical foundation for this phenomenon by introducing margin-type
conditions to analyze excess classification error in RLHF reward function learning.

Convergence Analysis for Deep Neural Network Estimators In this paper, we present the con-
vergence theory based on specific neural network structures, employing uniform convergence anal-
ysis (Schmidt-Hieber] 2020} [Diakonikolas et al] 2021)). The optimization aspects are beyond the
scope of this study and we refer to [Allen-Zhu et al| Z019); [Cyu et al] 2021) for more discus-
sion. Recent studies have proposed other theories regarding the generalization performance of deep
neural networks. Some representative studies include norm-based generalization bounds (Bartletf]

[et’al] 20T7} [Ma et al] 2022), uniform stability theory (Arora et al] 2018} [Zhang et al] 2017), and
algorithm-based generalization bounds (Wang & Ma] 2022). All these studies provide new insights
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5 CONCLUSION

Reward modeling is becoming an essential component of real-world Al systems, crucial for develop-
ing large language models and aligning them with human values. Obtaining theoretical guarantees
for reward models offers an opportunity to understand the efficiency of RLHF in aligning language
models and identifying which values are embedded in them. In this paper, we establish the regret
bound of the reward function implemented by a deep neural network in a non-asymptotic frame-
work. Specifically, the stochastic and approximation errors are well-balanced by selecting network
configurations that achieve the optimal convergence rate. This fully non-parametric approach effec-
tively addresses reward model misspecification in linear reward settings while being applicable to
various pairwise comparison models. Moreover, our sharper bound is based on a margin condition
imposed on the comparison dataset rather than directly on the unknown reward function. The condi-
tion on the dataset is verifiable with the estimated winning probability while the assumption on the
unknown reward function is unverifiable in practice.

We also note that controlling the effects of ambiguous data is important and worthwhile for future
research. Prior works developed learning techniques that are compatible with the label noise level
in learning halfspaces and active learning (Yan & Zhang, 2017; |Zhang et al. 2020). In view of
the margin condition, we assert that computationally efficient learning algorithms can also be de-
veloped to take advantage of the clear preference structure in human belief. It is also of interest
to extend our result to trajectory-based comparisons under Markov decision process settings (Zhu
et al.l [2023). These considerations can be of additional interest when applied to more general rein-
forcement learning tasks.
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A TECHNICAL NOTATIONS

Notations: For sequences {b,}, .y and {c,},,c» We say b,, = O(c,,) if there exists an absolute
constant k and ng € N such that b,, < k¢, for all n > ng. And we say b, = ©(c,) if there exists
absolute constants k1, ko and ng € N such that ky¢,, < b, < kac, for all n > ng. Let [u] denote
the smallest integer that is no less than u, and (gu | denote the greatest integer that is no greater than
u. For a Lebesgue measurable subset S C R, by L? (S, ¢?) we denote the function norm for all
real-valued functions f : & x A — R, such that forevery a € A, f(-, a) is Lebesgue measurable on

S and
N
s,a)lP | dp, , 1<qg< +oo,
1 fllzas,ery := /(g'f ) P 1 (6)
1
essSUPges (Yaen lf(s,0)P)7,  q=+o0
is finite.

Covering Number of a Function Class: Let F be a class of functions : X — R. For a given
e > 0, we denote N (F ¢, || - ||) as the covering number of F with radius § under some norm || - ||
as the least cardinality of a subset 7/ C F, satisfying

sup min — fI <.
sup i 1~ /'] <

This quantity measures the minimum number of functions in F needed to cover the set of functions
within a distance of § under the norm || - ||.

Laplacian Matrix and Graph Structure: The connectivity of the comparison graph plays a cru-
cial role in estimating from pairwise data (Mohar et al.| [{1991)), which relates to the second small-
est eigenvalue of A, we denote it as Ao(A) := min, 1 w' Aw/w w. The pair of actions being
compared need to be carefully selected for effective reward modeling, ensuring that A2(A) is not
excessively small. If some actions are almost not queried among the data, the spectral gap 1/A2(A)
diverges and thus makes the MLE estimator degenerate in terms of regret. This happens if the num-
ber of comparisons between some pairs is too scarce, as shown in Example [3] where 1/A3(L) can
blow up to an order of ©(n), so there is no guarantee for the regret bounded.

Example 3 Suppose there are four actions in A. Let n = 2t + 1, we query (a1, az), (az,as) fort
times each, and (as, aq) only once. The Laplacian matrix of this pairwise comparison design is

t ot 0 0
1| =t 2t -t o0
A=—1 0 2t 141 -1

0 0 -1 1

It is clear that 1/ Mo (A) < 3(2t+1)/2 = ©(n), which blows up the error || —r* ||2L2($ (2, although
the excess risk is still under control.

It is worth pointing out that the optimal choice of A should satisfy that A\o(A) = O(1/]A|). As
A is the Laplacian matrix whose trace(A) = 2, A2(A) < 2/(|.A] — 1). A natural choice to reach
this bound is to require every pair of actions to be compared equally. In the terminology of the
graph, this choice is referred to as the complete graph. In addition to the complete graph, there are
several graphs satisfying Ay (A) = O( ), such as the complete bipartite graph and star graph. In
contrast, the path graph and cycle graph lead to A2(A) = ©(1/|.A[?) (Shah et al., 2016). Therefore,
effective reward modeling requires careful selection of the pairwise comparison subset.

B PROOF OF LEMMA [Tl

We define
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702

s By definition of the comparison function g, it is straightforward that G(0) < 0, so we can al-

ways find a tangent line to G(u) crossing the origin on RT, i.e., there exists a constant £ <
s SUP|y|<c, |-G (u)|, such that G(u) < ku. Note that G(u/k) < wu also holds for all u € RF.

705 Then the set
706

;g; {s €S :G(r*(s,mm(s)) —r*(s,a’)) <G (%)} C{se€S:G(r*(s,mn(s)) —r*(s,a’)) < t}.
709

710

711 }

712 {s €S :G(r*(s,mm(s)) —r*(s,a’)) <G (%)} = {s €8 :r*(s,m=(5)) —7*(s,a") <

713
714 Thus,

715 . e ot o
17 (s,m=(s)) —17(s,a') < — pdps < cytT-2.

5 [afrem-rea< o<,

717

718

719 Example 4 Here we consider the BT model as an example (see Example |Z|) We deliberately set

720 t' = 2t, where t is the probability gap in Assumprion

721

722

e / 1{r*(s,r"(s,m=(8))) — r*(s,a’) < '} dps

724 Js

725 / 1 { exp(r* (s, - (5)))

S

1 1et’ —1
h <= Ip..
7o exp(r (s, m-(3))) Fexp(ris,a)) 2 = 37 41 } v

728

let' —1
729 o <P<y >0]s,a1 =m(s),a0=0a') —1/2 < 2M>
730

731 <Ps(P(y>0]|s,ar =m=(s),a0 =a") —1/2 <t'/4)
732 < (1/4)T5 et T
733 '

~ . :t/ - . . . . . . /
734 The first step holds since % (t, +1l is monotonically increasing. The third is due to % >
735 )

. allt’ € (0,1). Replacing the notation t' with t yields the desired inequality.

737
738
739
740
242 /5 1{r*(s,7"(s,m(8))) —r*(s,a") < t'}dps
743

JS

Also, due to the monotonicity of the function G(u), the set

x|+

Replace ¢/~ with ¢ and update the constant results in the desired inequality.

Example 5 In the Thurstonian model (see Example , we set t' = /7 /2 t, where t is the proba-
bility gap in Assumption([l)

1
745 27 2 2m
746 P2
747 =Ps (P(y>0|s,a =m(s),a0=0a")—1/2< = — =
. S < (/ ‘ y 41 ! ( ) 0 ) / \/E 2)

;:2 <Ps (]P’(y >0]s,a1 =m(s),a0 =a') —1/2 < t'/V 27r>

751 < (1/\/27r)ﬁ(:gt'ﬁ.

752

753 The first step holds since €
754 it
755 L 2"_/ — %f()l‘ allt’ € (0. 1

Q0

N

,e
—t

%)

/

T

— % is monotonically increasing. The third is due to t' /27 >

2

]

~—

. Replacing the notation t' with t yields the desired inequality.
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C PROOF OF THEOREM[

By definition of the regret,
&(r) =/S (r* (s, mp=(5)) = 17 (s, 7= (5))) dps
-/ (1" (5,70 () = * (5 75(5)) dp.
mpx (8)# TR (s)

Now, we define two sets, given any 7 € (0, 1),

S1={seS:0<r"(s,m(s))— max 7r.(s) <nk
a€A/mpx(s)
Sy ={seS:r*(s,m(s)) — max 71,(s)>n}.
=1 (5.7 (s)) = _max | 73(s) > 0}

It is worth noting that the two sets S; and So are the complement of each other, and they are
independent of any reward estimator 7. Then, we can decompose the performance loss as follows,

E(r) = / (1 (5, 70+ (5)) — 1 (5, 750())) dps
7% (8)#£mr(s)NS1
(s, T (8)) — 1™ (s, m-(8))) dps
+ / g T ) = ()

- / (" (8, e () — 7 (5, 7 (5)) dps
Tk (8)F#mr(s)NS1

r* S, Tpx (S —r* S, (S 1 r(s,a —p* s,a)| < dp,
Jr/ﬂ,‘*(s)#m.(s)msz( (5,70 (8)) = 17(s, 0 (5))) {ZH ) —r( )|<77} p

acA

’I"* S, xS —7"* s, m(s 1 r(s,a —7’* s,a)| > ds.
+/7fr*(5)757rr(5)ﬂ82( (5,7 (s)) = 7"(5,7:(5))) {ZH ) =7 )|>77} p

acA
(7
Note that the second term in the last step is O since there is no regret loss as long as the estimated
action is the optimal action.

E(r) §77/S 1 {0 <r*(s,me(s)) — max ri(s) < 17} dps

a€A/ T, (8)

+o+cr*/ 1357 (s, a) = (s, )| = b d.
T (8)#£m(8)NS2

acA

Recall that with Lemma [T] for a non-negative random variable X, and non-decreasing function
¢(u) > 0, the Markov inequality states o(u)P(X > u) < E(p(X)). Let p(n) = n?, where
a € (0,1). Then,

2 *
" / 1057 r(s,0) — r*(s,a)| > 1 b dps
Tk (8)#7r(8)NSa { Z

acA

< nz/sl {Z |r(3,a) —r*(s7a)| > 77} dps < /5 (Z |7”(s,a) _r*(s,a)|> dps,

acA acA

where we apply the Markov inequality in the last step, taking an expectation over the state space S.
Note that || — r*(|72 (5 p1) < [Alllr = 7|72 (s 42)» then

_a 1
E(r) <m-egnm™= + (;)2|A\Cr* [[r — 7‘*\@2(5,@2)-
To balance the two terms above, we choose

_ |'A|c7"* %112
n=\——lr—r ||L2(s,e2)
Cg
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Consequently, we have

1
" 3-2a
e(r) <er (Ir =1 2as.em))

Cg

1—a
. +\ 3/ 2a
with ¢; = (&) )

O

C.1 PROOF OF COROLLARYI

The proof generally follows the proof of Theorem |l|but without any margin condition on the state
distribution. Starting from the second step of (7), we have

&) :/m*<s)¢m< NS (" (s, e (5)) = (5, m2(5))) dps
r*(s,m(8)) — (s, m-(8))) dps
+/7w( );ém(s)ms2( ( () ( (s))) dp

-/ (1 (5,71 (5)) — (s, 7, (5))) dps
()%, (5)NS1

r* S, Tpx (S —r* s, m(s 1 r(s,a —p* s,a)| < ds
+/7"'r*(s)¢‘frr(s)082( ( (5)) = (s, (s))) {Z( ) =77 ( )|<n} p

acA

T*s,ﬁr*s —’I“*S,TFTS 1 r(s,a —T*S,a > ds
+/77r*(8)7é7r7-(8)r782( (8, 7- (8)) = (3,70 (5))) {Z( ) —1*(s,a)] 77} P

acA

1 {Z Ir(s,a) —r*(s,a)| > 77} dps

§n+0+cr*/
acA

mx (8)FEmr(5)NS2

<77+( )?|Aleps||r — 7 H%Z(s,zl)-

Note that ||r —r ||L2 s,y < JAlllr=r 2. 2(s,¢2)- Then with 1 = (| Al
cy = (|A\cr*) %, we have

r—r ||L2 S g2))1/3 and

Wl

1 * *
EC) <+ CPMler =1 Eas.m) < e2 (I =7 Pas.m))

O

C.2 DISCUSSION ON SELECTION CONSISTENCY

In the main text, we present the regret bound in order of O((||r — 7*(|72 s s2) )1/ (3=209) Tt is often
of interest to give the result of the selection consistency for a given reward estimator 7.

Lemma 3 Given the Assumption[I|and the estimator from ([B)), there exist an universal constant cg
such that

3=
Ps (my- (5) # 7o (5)) < 6 (Il = 1" 3ags.9) " -
where .+ (s) is an optimal policy that gives the optimal action that maximizes the reward.

This quantity is important in statistical machine learning literature (Peter L Bartlett & McAuliffe,
20006; |Audibert & Tsybakov, [2007). As o — 1, the selection consistency achieves the best rate.
When a — 0, following the Lemma 1] the reward of an alternative action is comparable with
the optimal one; thus, the selection consistency result may fail. Fundamentally, in reinforcement
learning problems, we do not make predictions that are consistent with data labels. Still, it is a
beneficial complement for us to understand the effects of the margin-type condition.
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C.3 PROOF OF LEMMA[3]

By definition of the regret,
) = [ (" (5.7 (5) = " .70 ()))
> /s (r*(s,mp=(s)) — r*(s,m-(5))) 1 {r*(s,m* (s)) — max ri(s)> t} dps

a€A/ T % (s)
2t [ 1m0 £ m @) 1 e () - _max ri(6)> o} do.
>t (Ps (e () # mr(s)) — cgt ™7 ) .

The last line follows P(E; N Ey) > P(E;) — P(ES), for any two events E; and Ey. Minimizing

(1-a)/a

this term with respect to t, i.e., taking t = ¢'Ps (m,+(s) # m(8)) results in

1. ) =5
Ps (- () # 10(5)) < =€) <o (Ir =1 [Fagsem )

where ¢’ and ¢4 are constants depending on ¢, and . [J

D PROOF OF ERROR BOUNDS

D.1 PROOF OF LEMMA 2]

Denote 7 as an estimator that maximizes the likelihood in the function class Fpnn as

7 = argmax [(r).
rE€EFDNN

We expand the excess risk by adding and substituting the following terms:

1) = 1) = [i7) = )| + [[7) = 1] + [17) = 1] + L6 = 17)
<[i®) =1 + 1) = 1@] + 10" = 17)]
<2 sup |i(r) - i(r)\ FL0) — L (F)
r€FDNN
=2 sw itr) - i(r)‘ £t 167 - 1)),

where the first inequality follows from the definition of 7 as the maximizer of [ (r) in Fpnn, then

[ (7) — I(#) < 0. The second inequality holds due to the fact that both 7 and 7 belong to the function
class Fpnn, and the last equality is valid by the definition of 7.

D.2  PROOF OF PROPOSITION(I]
Let Zi(r) := logg (y';r(s', a}) — r(s', ap)) for 1 < i < N. Then, given Assumption [2] and Ho-
effding’s inequality, with probability at least 1 — §, we have
log ()
2N

< Ko

LN
N Z (Zi(r) = E[Zi(r)])

where the expectation [ is taken over the data distribution. Now considering an estimator 7 that is
within the deep neural network function class, We can further obtain that for any given 7 > 0, let
r1,T2,...,TA be the anchor points of an T-covering for the function class Fpny, where we denote
N := N (Fonn, 7 || - | 1o (s,e)) as the covering number of Fpny with radius 7 under the norm
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| - [l oo (5,e)- By definition, for any » € Fpnn;, there exists an anchor ry, for h € {1,..., N} such
that [y — 7| o (5 ¢y < 7. We further decompose the stochastic error as follows

1r) —I(r) <U(rp) =1 () +107) = L(rp) + 1 (rn) — I(r)

. 1 |& 1
Zl(rh)—l(rh)+ﬁ ZE[Zi(T)—Zi(Th)] v

N
Z[Zi(f) — Zi(rh)]

<l(rp) — l(rp) + 2k17,

where the last step is due to the Lipschitz property of log g(y, u). Therefore, with a fixed € > 0,

P ( sup
r€FDNN

< N (Fo, 7 | s o)), max, B (1) = ()| > ) ®)

I(r) —l(r)’ > (e+m)> < ]P’(Hh ef{l,....N}: ‘l(rh) —Z(rh)‘ > e)

2Ne2
< 2N, (-FDNN»Tv [ - HL“(S,Z“’)) eXp (_ K2 ) ’
0

where the last line comes from Hoeffding’s inequality. Then, for any 6 > 0, let 7 = 1/N and
€ = Ko \/2 log (2N (Fonn, 7, || - [ 2o (s,6)) /8) /N so that the right-hand side of (8) equals to 4,
we have

P ( sup |I(r) — i(r)' >e+ 2/<;17'> <.
r€FDNN

In other words, with probability at least 1 — 4,

sup |I(r) — i(r)’ <e+2r1T
r€FDNN
log 22N (7, Fow, || - [1=(s.)) . [log (3) ) . 2 ©)
< V2ro N B R

where in the second step we use the inequality v/C7 4+ Co < /C7 4+ /C5, for any Cy, Cs > 0.

In the rest of the proof, we bound the covering number. Without loss of generality, we also define
classes of sub-networks of Fpny, that is, {Fy, Fa,- - - 3 F A|}, with non-sharing hidden layers. By
doing so, the function , € F, in each reduced function class takes states as input and returns (s, a)
given an action a € A. For convenience, we assume all the sub-networks have the same width in
each layer, and all model parameters are bounded within [—1, 1] that is,

Fo(W,D) = {ry(-;0) : R" — R definedin @) : 0 € [-1,1]*},

such that the function class of our interest is covered by the product space of sub-network classes,
that is, Fpny C F1 @ F2 @ - -+ @ F|4). Now, we can express the covering number in terms of the
product of complexities of sub-networks by

log N (Fonns 7, || - [l (s.0)) < [Allog N (Fa, 7/| AL [ - [l o). (10)

For the deep ReLU neural network in our setting, [Shen| (2024, Theorem 2) shows that for any 7 > 0.

2D (D + HWP . 1P
N(]:, T, ” ’ HCOC) < ( (W')D )

Then, apply the above inequality to (T0),

T 1/
2W (32(D + 1)| Al /7) D)_ an

log N (Foxn 7 || [|zoe (s,e%)) < [A|Dplog ( (Wwhr/e
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Plug in (9), and take 7 = 1/N, with probability at least 1 — 4,

I(r) - i(r)‘

sup
rEFpNN

< no\/z <\/log 2v2|A|Dplog <2W(32(?W;)11)/;4|N)1/D) . 10g(1/5)> . 2%

< mo\/z <03\/|A|Dp10g (W((D(+W1!))|1«;llN)1/D> n log(1/6)> :

In the second step, due to that 1/N is decaying faster than /log(N)/N, we can simplify the ex-
pression by making c3 a universal constant. [

D.3 PROOF OF PROPOSITION[2]

We adopt the ReLU network approximation result for Holder smooth functions in #” ([0, 1]¢, ¢3,),
proposed in Jiao et al.| (2023, Theorem 3.3). With Assumption 3} for any M;, My € NT, and
for each a € A, there exists a function 7 implemented by a ReLU network with width W =
38(| B8] + 1)2d\PI+1 My [log,(8M7)] and depth D = 21(| 8] + 1) Ma[log,(8My)] such that

[7(s,a) = *(s,a)| < 18ex (L8] +1)2d T VD2 (M My)—2P/1,
for all s € [0,1]¢ except a small set 2 € S with Lebesgue measure § Kp, where § can be arbi-
trarily small. Since we have the same setting for all sub-networks, we have the same bound for

maxgea |7(8, a) — r*(s, a)|. Therefore, integrate both sides with respect to the state space distribu-
tion we have

17— 1| L1 (s,000) < 18cp([B] + 1)2plAIF(BVD/2 (Vg M) =28/4

+ P(2) - sup{max |[F(s,a) — r*(s,a)|}. (12)
s a€A

By Assumption [3] the marginal distribution of S is absolutely continuous with respect to the
Lebesgue measure, which means that liminf;_,o P(€2) = 0. Meanwhile, we know from the def-
inition of Fpnn and Assumption[2]that both sup, s |7 (s, a)| and sup,g |r* (s, a)| are bounded for
all a € A. Therefore, by taking the limit infimum with respect to § on both sides of (I2), we have

17— 1| L1(s,00) < 18cay([B] + 1)2dPIH VD2 (A M) —28/4,
Therefore, by the Lipschitz property of the likelihood function,
W) = UF) < 260 |7 = 77 1 s gy < 36m1030(|B) + 1)2dLH VD2 (0 M) 20/,
d

D.4 PROOF OF THEOREM[3]

Before dealing with the error terms, we first control the logarithmic term involved in the covering
number. Let ¢ be a positive universal constant, then

WD+ DIAN)VP _ W((D+IAN)P
(w)L/e - e(W/e)W>1/p

B (W((D + 1)|.A|N)1/D)
=¢ W1/ WD

—c (W(|A|N)1/D) .

The first step is from the inequality that n! > e(n/e)", for any n € N*. The second step holds
for rectangular neural networks, where the size p = O(W?2D). The last step follows Proposition
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since we require the network has width W > 114 and depth D > 63, leading that W'/" =< 1 and
(D 4 1)Y/P < 1. Now, we combine both stochastic error and approximation error.

(7)) —1(r*) < 2,%0\/5 (Cs\/|A|Dplog (c (W(AIN)/P)) + 10g(1/5)>

+ 36r1cx (18] + 1)2d\_5J+(ﬂ\/1)/2(M1M2)—25/d.

To balance these two error terms, proper tuning parameters M7 and Mo are selected to optimize
the convergence rate with the most efficient network design. Since the network size grows linearly
in-depth D but quadratically in width W. To reach the optimal rate while, at the same time, saving
network size, we decide to fix M; = 1 so that the width W is growing with a polynomial of the
input dimension d while independent of sample size N. Meanwhile, we take My = LN d/(2d+48 )J .
Then with d > (3, we have

W = 114(| 8] + 1)2d81+1, D = 21(| ] + 1)2 [deiw log, (SNﬁﬂ —0 (\/N) , (13)

and

p=0 (WD) =0 ((LBJ +1)8q2LA1+2 [Nwizm (log, N)D 0 (\/N) :
where the log( V) factors are omitted for simplicity.

Therefore, combining l) with the error bound, and letting ¢} an another universal constant, with
probability at least 1 — ¢,

L) = 1) §2ﬁo\/§ (CQ\/W(LBJ + 1)1l (log (V)2 Nzt \/m)
+ 36k103(| 8] + 1)2dLﬁJ+(ﬁV1)/2N%

<2v/2kq ( AL + 1P+ (log(N))* N 57 1g<1/‘”>

N

where Since the stochastic error and approximation error are of the same order now, in the last step,
we combine them with c,4, another universal constant. In this part, we find the following connection
between the excess risk I(7) — I(r*) and the estimation error || — r* ||%2(5 02y

The first order optimality of [(-) implies VI(r*) = 0, then
1(r*) = 1() = VI(r*) (r* — 7) + %(r* I
- 0+/ Z"wa 2 log g(y; ¢)(F(s, a;) — (s, a;) — (r*(s, a;) _T*(S,aj)))zdps

1<j

/ Z —/12 (s,a;) — 7(s,a5) — (r*(s,a;) — r*(s7(1j)))2dpS

1<j

>fiz/mz 1))’ dps

acA

= KakpF — 1" ||L2(s,e2)a

where there exists y € Q and ¢ € [F(s,a;) — 7(s,a;),7"(s,a;) — (s, a;)).

Therefore, we conclude that the final
non-asymptotic error bound: with probability at least 1 — 4,

17 = s ) < 22 ( I8+ 1) (log(N))2N 757 + 10g(1/5)>'
2RA

N
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Different from the deep regression and classification problem, the convergence of the excess risk
does not directly ensure the function convergence of the estimated reward. It is necessary to con-
sider additional constraints on the dataset structure (see Assumptionfd). Assumption @] ensures the
Laplacian spectrum of the comparison graph to be bounded away from O and ensures the conver-
gence of the estimator 7. The condition is also considered by (2023). We note that to
the best of our knowledge, we are the first to study its role in the non-parametric analysis for deep
reward modeling.

d

E AN EXPERIMENT ON SYNTHETIC DATA

We construct a synthetic experiment to illustrate our theory in the guidance for deep neural network
implementation. In this section, we consider two parametrization of the deep reward modeling
using Bradley-Terry and Thurstonian models, respectively. We refer to the Example [T] and 2] for
more details. This reward function is specified as: 7*(s,a1) = 2sin(4¢é(s) "w*) and 7*(s,aq) =
—2sin(4¢(s) Tw*) where ¢(s) = (sin(s1),...,sin(sq)) is a non-parametric transformation for
creating non-linearity. The identification condition, r* (s, a1) + 7*(s,ag) = 0 for every given s, is
ensured. Furthermore, as demonstrated in expression (I} and (@), both regret and preference depend
solely on the difference between rewards. Accordingly, in our implementation, we configure the
output of the neural network to directly represent the reward difference, 7 (s, a1) — 7(s, ag), rather
than estimating individual rewards separately.

We generate n state observations s, with each sampled independently from a uniform distri-
bution over [0,1]¢. 1In this example, we consider each dataset with the dimension of d =
10 and sample size (T¢rain, Mevals Ntest) = (219,29,210),  The true weight w* is fixed
as (—0.040,1.726, —0.814,1.372, 0.506, —0.482, —0.785, 0.668, —0.443,0.188) ', which is ran-
domly generated a priori. We evaluate the rectangular neural networks where all the hidden lay-
ers are of the same width. Specifically, we consider the networks with widths {2¢,i = 4,...,12}
and the depths ranging from 3 to 13. The number of parameters ranges from about 500 to roughly
2 x 107. We note that the candidate networks have varying expression powers and are sufficient to
validate the guidance ability of our theory in the network design. Each configuration is evaluated
across 50 independent replications. The averaged regret results are presented in Figure [T}

BT Thurstonian

1.2
1.0
0.8
0.6
0.4

0.2

10 11 10 11

7.8 ¢
log; (width)

7 8 9
log; (width)

Figure 1: Regrets for synthetic data under different neural network configurations.

Recall that our theoretical analyses reveal a crucial trade-off in neural network architecture design.
The interplay between stochastic and approximation errors fundamentally impacts model perfor-
mance. Proposition[I]and Proposition P]establish that while increased network complexity reduces
approximation error, it simultaneously amplifies stochastic error under finite data scenarios. This
finding emphasizes the importance of balanced architecture selection.
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Our empirical results (see Figure [T) provide compelling evidence for this theoretical framework.
Using a fixed sample size, we examined regret across varying network configurations. We observed a
non-monotonic relationship: initially, deeper and wider networks reduce regret as the approximation
capability of networks increases. However, beyond the near-optimal network configuration, further
increases in model complexity led to degraded performance. This is consistent with our theory that
stochastic error dominates under this case; this empirical evidence is in line with[Han et al]] 2023).

Furthermore, our results reveal that comparable performance levels can be achieved across diverse
architectural configurations, highlighting the adaptability of deep neural networks to varying func-
tion complexities. This is evidenced by a relatively flat region in the parameter space where the
regret remains near-minimal. Such architectural flexibility is particularly valuable in practice, as it
suggests that precise knowledge of the smoothness parameter S is not critical for achieving strong
empirical performance. This robustness effectively addresses the common practical challenge of

architecture selection under unknown function complexity. We recommend [JJiao et al] (2023);
(2019) for a more comprehensive analysis across different models.
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