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ABSTRACT

In this work, we study the learning theory of reward modeling using pairwise com-
parison data and deep neural networks. We establish a novel non-asymptotic re-
gret bound for deep reward estimators in a non-parametric setting, which depends
explicitly on the network architecture. Furthermore, to underscore the critical im-
portance of clear human beliefs, we introduce a margin-type condition requiring
the conditional winning probability of the optimal action in pairwise comparisons
to be significantly distanced from 1/2. This condition enables a sharper regret
bound, which substantiates the empirical efficiency of Reinforcement Learning
from Human Feedback and highlights the role of clear human beliefs in its suc-
cess. Notably, this improvement stems from high-quality pairwise comparison
data under the margin-type condition and is independent of the specific estimators
used, making it applicable to various learning algorithms and models.

1 INTRODUCTION

Reinforcement Learning from Human Feedback (RLHF) has proven highly effective in aligning
large language models with human preferences and expert policies (Christiano et al., 2017). A
notable advancement in this field, Direct Preference Optimization (DPO), enhances RLHF by learn-
ing rewards directly from pairwise comparison data rather than environmental interactions. This
approach significantly improves efficiency and achieves more robust alignment with human pref-
erences (Rafailov et al., 2024), particularly in applications where preference feedback is naturally
intuitive, such as recommendation systems and image generation.

The success of the RLHF has ignited extensive research to establish performance guarantees for
learning optimal policies. For instance, Zhu et al. (2023) examines the theoretical properties of
the reward modeling from action-based comparison data, while Chen et al. (2022) and Saha et al.
(2023) focus on trajectory-based comparison data. However, the theoretical foundations of DPO
remain largely unexplored, especially for deep neural network (DNN) estimators, creating a gap in
understanding its full potential. Additionally, the reason why RLHF significantly improves sample
efficiency compared to traditional RL methods remains less clear. Studies have considered the gap
condition on the Q function to distinguish the optimal action from the others (Shi et al., 2023; Zhan
et al., 2024). This provides a key insight into explaining the efficiency of RLHF based on reward
modeling. Specifically, an underlying reward function structure is a plausible explanation for the
observed efficiency gains in RLHF since the reward signals can always be reconstructed from the
clear human preference feedback.

Strong consensus in pairwise comparison outcome reveals clear human preferences, indicating de-
cisive winning odds for preferred actions and providing crucial insights into the underlying reward
function for RLHF. These preferences are vital for aligning language models with complex psycho-
logical attributes, like honesty and harmlessness, that traditional reinforcement learning struggles to
quantify. The clarity of these preferences enables RLHF to achieve remarkable performance with
minimal pairwise data, even in highly complex environments, demonstrating its efficiency in reward
modeling (Wang et al., 2024a). While recent work has explored structural conditions of the reward
function to explain this efficiency (Shi et al., 2023; Rafailov et al., 2024), these conditions remain
largely unverifiable, limiting their practical explanatory power.
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In this paper, we focus on obtaining theoretical guarantees for reward models with well-designed
network architectures. We aim to build a mathematical model to calibrate the clear preferences and
explain the sample efficiency of RLHF based on reward modeling. Specifically, our contributions
focus on the following aspects:

• We establish regret bounds for reward modeling using deep neural networks, which de-
pend explicitly on network width, depth, and sample size. These bounds provide valuable
insights into the success of DNN-based estimators in RLHF, particularly in terms of their
sample efficiency.

• We propose a novel margin-type condition to calibrate clear human beliefs in RLHF. The
condition implies high-quality pairwise comparison datasets and unveils the structure of the
underlying reward, under which we obtain a sharper regret bound. This finding highlights
the role of clear human beliefs in its success. The theoretical improvements are independent
of the estimators used in practice, allowing them to be applied across a wide range of
learning algorithms.

• We emphasize the broad applicability of the theoretical results in our work. Our findings
provide theoretical guarantees for removing ambiguous comparison data during the pre-
processing stage of RLHF training. We examine DNN-based reward estimators under gen-
eral pairwise comparison models, without restricting them to specific parameterizations,
thereby supporting RLHF’s empirical efficiency across various scenarios.

The rest of the paper is organized as follows. In Section 2, we introduce the pairwise comparison
model and propose the margin-type condition. We demonstrate that this condition leads to faster
convergence of the resulting regret. In Section 3, we derive non-asymptotic regret bounds for deep
reward estimators, which are explicitly characterized by the structure of DNNs. We also discuss
the implications of these results for generalization. We review related literature in Section 4 and
conclude with future research directions in Section 5. Technical details are deferred to the Appendix.

2 PAIRWISE COMPARISON, MARGIN-TYPE CONDITION AND SHARPER
BOUND

In this work, we consider the reward modeling in the action-based pairwise comparison case. Let
S be the set of states (prompts), and A be the set of actions (responses). We consider a pairwise
comparison dataset {si, ai1, ai0, yi}Ni=1 with sample size N : the state si is sampled from the proba-
bility measure on state space S, denoted by ρs; Conditioning on the state si, the action pair (ai1, a

i
0)

are sampled form some joint distribution P(a1, a0|si); The comparison outcome yi indicates the
preference between ai1 and ai0. Specifically, ai1 is preferred over ai0 if yi > 0 and conversely, ai0 is
preferred if yi < 0. It is worth noting that we do not restrict the outcome to a binary format, and
it accommodates various types of outcomes discussed in the literature. For simplicity, readers may
consider the binary case where yi takes on values of either −1 or 1. We define the reward function
r : S × A → R, which evaluates the reward of taking each action at a given state. We denote d as
the dimension of the input for reward function r.

For any reward function r, we denote the decision maker by πr(s) = argmaxa∈A r(s, a). Let
r∗(s, a) denote the underlying optimal reward function, we define the optimal action for the state
s by πr∗(s) = argmaxa∈A r∗(s, a). For an estimated reward function r, we are interested in the
regret of the induced πr(s), which is

E(r) =
∫
S
r∗(s, πr∗(s))− r∗(s, πr(s))dρs. (1)

The regret (1) is an intrinsic measure for evaluating RLHF (Zhu et al., 2023; Zhan et al., 2024).
It is important to note that the policy πr is induced from the reward r and the resulting regret is
determined by r. In practice, we optimize the comparison model using crowd-sourced comparison
outcomes. Even if the reward function is not perfectly estimated, there remains an opportunity
to derive a correct policy and achieve low regret in reinforcement learning tasks. This potential
stems from clear human beliefs, which suggest a significant gap between the reward of the optimal
action and its alternatives. However, the critical role of reward differences between actions is often
overlooked in pairwise comparison analysis, which typically relies on the smoothness of the reward
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function. In light of this, we are motivated to quantify the effects of reward differences on regret,
capturing the reward gap between actions.

As discussed in Wang et al. (2024a); Song et al. (2024); Zhan et al. (2024), we model the relationship
between comparison response and the difference of the rewards r∗(s, a1) − r∗(s, a0). Specifically,
the probability of the event that a1 is preferred over a0 under the state s can be expressed as:

P(y > 0 | s, a1, a0) =
∫ ∞

0

g(y, r∗(s, a1)− r∗(s, a0))dy, (2)

where the function g represents the probability density function of the comparison outcome y and in
this paper we consider a general parametrization for g. It is worth noting that the success of RLHF
is largely attributed to clear human preferences, while incorrect or ambiguous preference labels can
lead to significant performance deterioration in practice (Saha et al., 2023; Wang et al., 2024a; Chen
et al., 2024). To calibrate the clear human preferences, we propose the following margin condition
in the pairwise comparison dataset.

Assumption 1 (Margin Condition for the Human Preference) For any action pairs (πr∗(s), a
′)

where a′ ∈ A \ πr∗(s) and t ∈ (0, 1/2), we have

PS

(
P(y > 0 | s, a1 = πr∗(s), a0 = a′)− 1

2
≤ t

)
:=

∫
S
1

{∫ ∞

0

g(y, r∗(s, πr∗(s))− r∗(s, a′))dy − 1

2
≤ t

}
dρs ≤ cgt

α
1−α ,

where cg > 0 is a universal constant and α ∈ (0, 1) is the coefficients for quantifying the clear
human belief. The larger α indicates a clearer preference in the pairwise comparison dataset.

Assumption 1 implies that experts have a clear tendency between the optimal action and the other
for most states s, under which the winning probability of the optimal action is bounding away from
1/2. It is worth noting that α = 0 and α = 1 correspond to two extreme cases respectively for the
case without any margin-type assumption and the noiseless case. To better understand Assumption
1, we take a closer look at its implication on the underlying reward function. Here, we present two
classical comparison models with y ∈ {−1, 1} as examples.

Example 1 (BT model (Bradley & Terry, 1952)) The comparison function is

g(y, u) = 1(y = 1) · exp(u)

1 + exp(u)
+ 1(y = −1) · exp(−u)

1 + exp(−u)
.

Given a particular state-action pair, the probability of observing the outcome y > 0 is
exp(r∗(s, a1)− r∗(s, a0))/(1 + exp(r∗(s, a1)− r∗(s, a0))).

Example 2 (Thurstonian model (Thurstone, 1927)) The comparison function is

g(y, u) = 1(y = 1) · Φ(u) + 1(y = −1) · (1− Φ(u)),

where Φ(u) is the cumulative distribution function of the standard normal distribution. Then we
have P(y > 0 | s, a1, a0) = Φ(r∗(s, a1)− r∗(s, a0)).

The BT model and Thurstonian model are widely considered in RLHF and DPO modeling (Chris-
tiano et al., 2017; Rafailov et al., 2024; Siththaranjan et al., 2024). Besides that, there are some
other comparison models used in DPO. For example, the Rao-Kupper model and Davidson model
are employed to tackle pairwise comparisons with ties (abstentions), where y takes values from
{−1, 0, 1} (Chen et al., 2024; Rao & Kupper, 1967; Davidson, 1970). Notably, all of these models
are incorporated into the general comparison framework discussed in our work.

The comparison model connects the underlying reward function to human preferences within the
observed comparison datasets. By considering the clear preference data outlined in Assumption 1,
we could further reveal the specific structure of the reward function, which is summarized in the
following Lemma 1.
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Lemma 1 Given Assumption 1, with α ∈ (0, 1) and t ∈ (0, cr∗) where cr∗ is the upper bound of
the true reward defined in Assumption 2, there exists a universal constant c′g such that∫

S
1

{
r∗(s, πr∗(s))− max

a∈A\πr∗ (s)
r∗(s, a) ≤ t

}
dρs ≤ c′gt

α
1−α .

Specifically, c′g = (1/4)α/(1−α)cg in the BT model and c′g = (1/2π)α/(2−2α)cg in the Thurstonian
model.

Lemma 1 implies that a clear preference in the comparison dataset is determined by the reward
margin between the two actions. Its validity also depends on the properties of the comparison
function specified in Definition 1, making it applicable to the general comparison model. Unlike
existing literature, which imposes unverifiable conditions directly on the reward structure, Lemma 1
is derived from Assumption 1 on high-quality preference datasets. This approach is more valid and
enjoys greater generalization ability compared to existing conditions (Kim et al., 2021; Shi et al.,
2023; Zhan et al., 2024).

2.1 SHARPER REGRET BOUND

In this section, we present the regret bounds of the decision maker πr(s) defined in (1) with and
without Assumption 1.

Theorem 1 (Faster Rate with Margin Condition) Let r be some reward function estimator, with
Assumption 1 holds and the margin parameter α ∈ (0, 1), there exist a universal constant c1 > 0,
such that

E(r) ≤ c1

(
∥r − r∗∥2L2(S,ℓ2)

) 1
3−2α

,

where the norm ∥ · ∥L2(S,ℓ2) is defined in (6).

Theorem 1 suggests that when a hard margin is imposed, i.e., α → 1, the regret of the “greedy”
policy induced by the estimated reward function is at the order of O(∥r − r∗∥2L2(S,ℓ2)), which is
theoretically tight in the sense that the rate cannot be improved without additional conditions.

Corollary 1 (Regret Bound without Margin Condition) Let r be some reward function estimator.
There exists a universal constant c2 > 0, such that

E(r) ≤ c2

(
∥r − r∗∥2L2(S,ℓ2)

) 1
3

.

Theorem 1 first demonstrates the role of clear preference in the comparison dataset and on the regret
bound (Zhu et al., 2023; Wang et al., 2024a). Comparing Theorem 1 and Corollary 1, we show that
the regret bound can be improved significantly with the margin-type condition. It is worth noting
that, the margin parameter α interpolates the regret bound under two extreme cases as our result
reduces to the rate O((∥r − r∗∥2L2(S,ℓ2))

1/3) if α = 0 (no margin-type condition is imposed). The
efficiency gain in our results adjusts automatically with the margin parameter α while remaining
independent of the error ∥r − r∗∥2L2(S,ℓ2). This improvement is primarily attributed to the use of a
high-quality pairwise comparison dataset and is universally applicable to any estimator r employed
(Audibert & Tsybakov, 2007; Kim et al., 2021). These findings are coherent with the empirical
observations in the RLHF training (Wang et al., 2024a; Chen et al., 2024). We also obtain the
convergence rate of action selection consistency in Section C.2 of the Appendix, which is a beneficial
complement for us to further understand the effects of the margin-type condition.

Based on the margin-type condition, we now present an overview of our main result regarding the
regret bound using DNN-based reward estimators.

Theorem 2 (Informal, Guarantee for Deep Reward Modeling) Consider the deep reward esti-
mator r̂ ∈ FDNN where FDNN is a class of the deep neural networks with width W = O(dβ)

and depth D = O(
√
N). Then under some regular Assumptions, with probability at least 1− δ,

E(r̂) = O

{dβN− β
d+2β +

√
log(1/δ)

N

} 1
3−2α

 ,
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where β is the Hölder smoothness parameter for the reward function r∗ and d is the dimension of
the input S ×A.

Theorem 2 establishes the convergence rate for the regret of deep reward estimators in a fully non-
parametric setting. By setting proper network depth D and width W , the regret of deep reward
estimator achieves a rate of O(N−β/[(d+2β)(3−2α)]). Our analysis provides implications for prac-
titioners on how to choose the neural network parameters and construct high-quality comparison
datasets to achieve effective reward modeling.

3 LEARNING GUARANTEE OF DEEP REWARD MODELING

The log-likelihood function for r on the pairwise comparison dataset is written as follows,

l(r) = E [log g (y, r(s, a1)− r(s, a0))] .

Correspondingly, the empirical log-likelihood is written as,

l̂(r) =
1

N

N∑
i=1

log g
(
yi; r(si, ai1)− r(si, ai0)

)
.

For a given reward function r, the empirical risk l̂(r) is calculated using the observed pairwise
comparison data, while the population risk l(r) is the expected value of the risk. Given the pairwise
comparison dataset, we obtain r̂ with the following objectives,

r̂ ∈ argmax
r∈FDNN

l̂(r). (3)

To establish the theoretical guarantee of the above estimator, several factors should be considered.
First, the characteristic of the comparison function g(y, u) captures the relationships between hu-
man preference and the underlying reward. Second, the smoothness of the true reward function r∗

determines how well it can be approximated. Most importantly, the influence of the neural network
configurations, i.e., depth and width, need to be leveraged, as it dictates the model’s capacity and
efficiency to learn complex patterns from finite samples. In the following, we provide definitions
and assumptions related to these factors and shape the efficacy of data-driven reward modeling.

Definition 1 (Comparison Function) A function g : Ω× R → R+, where Ω is a symmetric subset
of R denoting the possible comparison outcomes, is said to be a comparison function if:

(i) For u ∈ R,
∫
Ω
g(y, u)dy = 1 if Ω is continuous, and

∑
y∈Ω g(y, u) = 1 if Ω is discrete;

(ii) g(y, u) = g(−y,−u), for any (y, u) ∈ Ω× R;

(iii) For y < 0, g(y, u) is decreasing with respect to u, and g(y, u) → 0 as u → ∞;

(iv) supu∈R g(y, u) < +∞, for every y ∈ Ω.

(v) For every y, ∂2 log g(y, u)/∂u2 < 0.

These conditions ensure g is a proper probability function with a symmetric preference structure,
stronger preferences for larger relative scores, and log-concavity in u.These conditions are mild and
widely considered in the literature. It is straightforward to check many commonly used models
satisfy these conditions, including BT model, Thurstonian model, Rao-Kupper model, Davidson
model and the paired cardinal model proposed in Shah et al. (2016). To proceed, we describe the
characteristics of the reward functions in preference learning.

Definition 2 (Hölder Function Class) For β, cH > 0, and a domain X ∈ Rd, the Hölder function
class Hβ(X , cH) is defined by

Hβ(X , cH) =

{
f : X → R, max

∥ω∥1≤⌊β⌋
∥∂ωf∥∞ ≤ cH, max

∥ω∥1=⌊β⌋
sup
x ̸=x′

|∂ωf(x)− ∂ωf(x′)|
∥x− x′∥β−⌊β⌋

2

≤ cH

}
,

where ω = (ω1, . . . , ωd)
⊤ is a vector of non-negative integers, ∥ω∥1 :=

∑d
i=1 ωi, and ∂ω =

∂ω1 · · · ∂ωd denotes the partial derivative operator.

5
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Assumption 2 The range of the target reward function cr∗ := maxa∈A sups∈S r∗(s, a) is finite.

Assumption 3 (i) The marginal probability measure ρs is absolutely continuous with respect to the
Lebesgue measure; (ii) For every a ∈ A, the reward function r∗(s, a) belongs to the Hölder class
Hβ([0, 1]d, cH) for a given smoothness parameter β > 0 and a finite constant cH > 0.

To ensure the identifiability of r∗, we assume the reward function
∑

a∈A r∗(s, a) = 0 for all s. It is
worth noting that the assumption is more of a normalization condition instead of a constraint, as the
winning probability is invariant to the shift of reward functions. Similar conditions are considered
in Zhu et al. (2023); Rafailov et al. (2024). In addition, we mention that our theory is general
and applies to any underlying reward function, not just normalized ones. For an unknown reward
function, we can always transform it into a normalized version, and both the unnormalized and
normalized functions lead to the same preference distribution (Rafailov et al., 2024). Also, we
estimate the true reward with the condition

∑
a∈A r̂(s, a) = 0 for all s. In our theoretical study,

the reward estimator is implemented by a fully connected feed-forward neural network consisting of
multiple layers of interconnected neurons. Its structure can be described as a composition of linear
mappings and activation functions. Specifically, we consider the class of functions FDNN consists
of D-layer feed-forward neural networks that can be expressed as follows,

r(s, a; θ) = fD+1 ◦ fD ◦ · · · ◦ f2 ◦ f1(s, a), (4)

where fi(x) = σ(i)(H(i)x + b(i)) is the transformation for layer i. H(i) and b(i) are the weight
matrix and bias vector, respectively. σ(i) denotes the ReLU activation function, which is applied to
its input elementwisely. We denote the width of the neural network as W , which is the maximum
of the width of all layers. Let θ = (H(1), b(1), . . . ,H(D+1), b(D+1)) represents all the parameters in
the neural networks, which consists of p entries in total.

3.1 ESTIMATION WITHIN DEEP NEURAL NETWORK FUNCTION CLASS

With the aforementioned specifications, we start our analysis with the excess risk, which in general
stems from two sources: the error from random data realizations and the error from the DNN’s
limited capacity to represent the target reward. We formalize these intuitions in the following lemma.

Lemma 2 (Excess risk decomposition) The excess risk of r̂ is defined and decomposed as

l(r∗)− l(r̂) ≤ 2 sup
r∈FDNN

|l(r)− l̂(r)|+ inf
r∈FDNN

[l(r∗)− l(r)] . (5)

The first term of the right-hand side is the stochastic error, which measures the difference between
the risk l and the empirical counterpart l̂ defined over function class FDNN, evaluating the estimation
uncertainty caused by the finite sample size. The second term is the approximation error, which
measures how well the function r∗ can be approximated using FDNN with respect to the likelihood
l(·). To assist the following analysis, we define the constants depending on g(y, u) and the range
cr∗ :

κ0 := sup
y∈Ω,|u|≤cr∗

|log g(y, u)| ,

and

κ1 = sup
y∈Ω,|u|≤cr∗

∣∣∣∣ ∂∂u log g(y, u)

∣∣∣∣ , κ2 := inf
y∈Ω,|u|≤cr∗

∣∣∣∣ ∂2

∂u2
log g(y, u)

∣∣∣∣ .
These constants are used in the results, specifying the Lipschitz property and log-concavity invoked
from Definition 1 that ensure the convergence of the maximum likelihood estimator from the deep
neural network function class.

Proposition 1 (Stochastic Error Bound) Under Assumption 2, there exists a universal constant
c3 > 0, with probability at least 1− δ,

sup
r∈FDNN

∣∣∣l(r)− l̂(r)
∣∣∣ ≤ κ0

√
2

N

(
c3

√
|A|Dp log

(
W ((D + 1)|A|N)1/D

(W !)1/p

)
+
√
log(1/δ)

)
.

6
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If r∗ ∈ FDNN, Proposition 1 describes the additional cost of the in-sample learned reward
function in terms of the likelihood functional compared to the optimal oracle, which scales as
O(
√
log(N)/N) with well-designed network structures form the class FDNN. It is reasonable that

with more collected samples, the DNN can learn the underlying reward function better. Meanwhile,
the stochastic error bound increases with the complexity of the function class FDNN. In other words,
once we already know that r∗ ∈ FDNN for some network parameters, there is no need to further
increase the network’s width and depth given the available samples.

Proposition 2 (Approximation Error Bound) Let FDNN be the deep ReLU neural network class
with width and depth, respectively, specified as W = 38(⌊β⌋ + 1)2d⌊β⌋+1M1 ⌈log2(8M1)⌉ and
D = 21(⌊β⌋+ 1)2M2 ⌈log2(8M2)⌉. Under Assumptions 2 and 3, for any M1,M2 ∈ N+, we have

inf
r∈FDNN

l(r∗)− l(r) ≤ 36κ1cH(⌊β⌋+ 1)2d⌊β⌋+
(β∨1)

2 (M1M2)
− 2β

d .

Proposition 2 demonstrates that the approximation error bound is decreasing in the size of the func-
tion class FDNN through two parameters M1 and M2, which are assigned later. This is intuitive
since a larger network has greater expressive power. On the other hand, a larger network inflates the
stochastic error due to the over-parameterization.

Consequently, it is necessary to design the network structure carefully to strike a balance between the
stochastic error and the approximation error. To do this, we need to appropriately relate M1 and M2

to the sample size N so that an optimal convergence rate of excess risk bound can be achieved. There
are many approaches that result in the same optimal convergence rate while incurring different total
numbers of parameters p. Note that p ≤ W (d+ 1) +

(
W 2 +W

)
(D − 1) +W + 1 = O(W 2D),

which grows linearly in the depth D and quadratically in the width W . It is desirable to employ
fewer model parameters, and thus, the deep network architectures are preferable to the wide ones.

To ensure the validity of the MLE estimator, we consider the graph structure of the pairwise com-
parison dataset, which requires the number of comparisons between all the action pairs not to be
scarce.

Assumption 4 (Data Coverage Assumption) Let Λ ∈ R|A|×|A| be the Laplacian matrix , where
Λij = −nij/N and Λii =

∑
j nii/N . nij is the fraction of sample size that the pair (ai, aj) is

compared and nii is the fraction of comparisons that ai involves. We assume that there exists a
positive constant κΛ, such that λ2(Λ) > κΛ where λ2(Λ) = argminw⊥1 w

⊤Λw/w⊤w.

If some actions are almost not queried among the data, the spectral gap 1/λ2(Λ) diverges, and thus
the regret of the MLE estimator could not converge (Zhu et al., 2023, Theorem 3.9). We refer to
Appendix A for more discussion and an Example, where 1/λ2(Λ) can blow up, and the regret bound
is not guaranteed consequently.

Next, we obtain the optimal bound in terms of the norm ∥ · ∥2L2(S,ℓ2), which is defined in (6).

Theorem 3 (Non-asymptotic Estimation Error Bound) Given the network parameters being
specified as in Proposition 2, with M1 = 1 and M2 =

⌊
Nd/(2d+4β)

⌋
. Under Assumption 2 - 4,

there exists a universal constant c4 > 0, with probability at least 1− δ,

∥r̂ − r∗∥2L2(S,ℓ2) ≤ 2
√
2

κ0

κ2κΛ

(
c4
√
|A|(⌊β⌋+ 1)4d⌊β⌋+1(log(N))2N− β

d+2β +

√
log(1/δ)

N

)
.

Theorem 3 presents the non-asymptotic convergence rate of ∥r̂ − r∗∥2L2(S,ℓ2). Unlike deep regres-
sion and classification problems, the convergence of excess risk does not directly guarantee the
functional convergence of the estimated reward unless additional constraints on the dataset structure
are imposed (see Assumption 4). This condition is also considered by Zhu et al. (2023). To the
best of our knowledge, we are the first to investigate its role in the non-parametric analysis of deep
reward modeling. Combining Theorems 1 and 3, we obtain the regret bound for the decision maker
πr̂(s) induced by the deep reward estimator under the margin-type condition.

Theorem 4 Let FDNN be the deep ReLU neural networks class with width and depth, respectively,
specified as

W = 114(⌊β⌋+ 1)2d⌊β⌋+1 and D = 21(⌊β⌋+ 1)2N
d

2d+4β ⌈log2(8N
d

2d+4β )⌉.
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Given the MLE estimator r̂ ∈ FDNN, under Assumptions 1 - 3, there exists a universal constant c5,
such that with probability at least 1− δ,

E(r̂) ≤ c5

(
κ0

√
|A|(⌊β⌋+ 1)4d⌊β⌋+1(logN)2

κ2κΛ

) 1
3−2α

N− β
(d+2β)(3−2α) +

(
κ2
0 log

(
1
δ

)
κ2
2κ

2
ΛN

) 1
2(3−2α)

.

Our results reveal that deep neural network reward estimators offer satisfactory solutions with ex-
plicit theoretical guarantees in this general setting. To achieve the fast convergence rate, it is essential
to train the model with sufficient data and to select an appropriate network structure, adhering to the
guidelines for width and depth selection provided in Theorem 4. To be specific, the width is a multi-
ple of d⌊β⌋+1, a polynomial of the feature dimension d; The depth is proportional to

√
N , as d ≫ β.

This explicitness offers more informative insights than those characterized solely by network size.
In Section E of the Appendix, we give an experiment on synthetic data to illustrate the applicability
of our theoretical results for reward modeling with deep neural networks. Theorem 3 relies on the
reduced complexity of neural networks, which is obtained through the lens of functional equivalence
(Shen, 2024). Such functional equivalence generally holds for fully connected networks, Residual
networks, and attention-based networks. Recently, Takakura & Suzuki (2023) derived a polynomial
convergence rate for sequence-to-sequence learning tasks using transformers, and specifically, they
examine the shift-equivariant properties of transformers. It would be of interest for future studies
to extend the analysis in this paper to state-of-the-art architectures such as Bidirectional Encoder
Representations from Transformers (BERT), Generative Pre-trained Transformers (GPT), and other
attention-based models.

4 RELATED WORKS

Reinforcement Learning from Human Feedback Human preferences have emerged as a valu-
able alternative to numerical rewards in reinforcement learning (RL), owing to their intuitive elicita-
tion process (Ziegler et al., 2019; Ouyang et al., 2022). Recent theoretical advances in offline RLHF
have been made by Zhu et al. (2023) and Zhan et al. (2024), who developed reward-based preference
models—the former focusing on linear models and the latter extending to a general function class.
While these foundational works establish theoretical frameworks, the critical role of human belief
quality in RLHF has only recently gained attention. Wang et al. (2024a) addresses this by develop-
ing protocols for preference label correction and ambiguity smoothing, while Zhong et al. (2024)
tackles preference heterogeneity through meta-learning approaches. However, a rigorous theoretical
framework for quantifying human belief in RLHF remains an open challenge.

Margin Condition for Human Preference Modeling The efficiency of RLHF is largely attributed
to strong human preferences reflected in pairwise comparison data (Zhong et al., 2024; Wang et al.,
2024a). This concept parallels established noise conditions in classification theory, particularly Mas-
sart and Tsybakov noise conditions, which bound excess misclassification error (Tsybakov, 2004;
Diakonikolas et al., 2021; 2022). Similar margin-type conditions have proven valuable across var-
ious domains, from individualized treatment analysis (Qian & Murphy, 2011) to optimal policy
identification in offline RL (Shi et al., 2023), and linear bandit problems (Goldenshluger & Zeevi,
2013; Bastani & Bayati, 2020). While recent empirical studies aim to enhance data quality and ad-
dress ambiguous samples in practical applications, offering various treatment strategies for handling
crowd-sourced preference data (Wang et al., 2024a; Das et al., 2024; Liu et al., 2024; Zhan et al.,
2023), our study provides a theoretical foundation for this phenomenon by introducing margin-type
conditions to analyze excess classification error in RLHF reward function learning.

Convergence Analysis for Deep Neural Network Estimators In this paper, we present the con-
vergence theory based on specific neural network structures, employing uniform convergence anal-
ysis (Schmidt-Hieber, 2020; Diakonikolas et al., 2021). The optimization aspects are beyond the
scope of this study and we refer to Allen-Zhu et al. (2019); Lyu et al. (2021) for more discus-
sion. Recent studies have proposed other theories regarding the generalization performance of deep
neural networks. Some representative studies include norm-based generalization bounds (Bartlett
et al., 2017; Ma et al., 2022), uniform stability theory (Arora et al., 2018; Zhang et al., 2017), and
algorithm-based generalization bounds (Wang & Ma, 2022). All these studies provide new insights

8
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for understanding the properties of neural network estimators. Some works focus on the conver-
gence theory for Transformer networks. Examples include (Takakura & Suzuki, 2023; Deora et al.,
2023; Wang et al., 2024b). In addition, we note that most of these studies focus on regression
and classification problems. The analysis for preference learning is relatively limited. Theoretical
guarantees for the pairwise comparison model often rely on additional specific conditions related to
dataset structures. It is of interest to study the learning theory for the reward modeling with DNN
based estimator.

5 CONCLUSION

Reward modeling is becoming an essential component of real-world AI systems, crucial for develop-
ing large language models and aligning them with human values. Obtaining theoretical guarantees
for reward models offers an opportunity to understand the efficiency of RLHF in aligning language
models and identifying which values are embedded in them. In this paper, we establish the regret
bound of the reward function implemented by a deep neural network in a non-asymptotic frame-
work. Specifically, the stochastic and approximation errors are well-balanced by selecting network
configurations that achieve the optimal convergence rate. This fully non-parametric approach effec-
tively addresses reward model misspecification in linear reward settings while being applicable to
various pairwise comparison models. Moreover, our sharper bound is based on a margin condition
imposed on the comparison dataset rather than directly on the unknown reward function. The condi-
tion on the dataset is verifiable with the estimated winning probability while the assumption on the
unknown reward function is unverifiable in practice.

We also note that controlling the effects of ambiguous data is important and worthwhile for future
research. Prior works developed learning techniques that are compatible with the label noise level
in learning halfspaces and active learning (Yan & Zhang, 2017; Zhang et al., 2020). In view of
the margin condition, we assert that computationally efficient learning algorithms can also be de-
veloped to take advantage of the clear preference structure in human belief. It is also of interest
to extend our result to trajectory-based comparisons under Markov decision process settings (Zhu
et al., 2023). These considerations can be of additional interest when applied to more general rein-
forcement learning tasks.
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A TECHNICAL NOTATIONS

Notations: For sequences {bn}n∈N and {cn}n∈N, we say bn = O(cn) if there exists an absolute
constant k and n0 ∈ N such that bn ≤ kcn for all n > n0. And we say bn = Θ(cn) if there exists
absolute constants k1, k2 and n0 ∈ N such that k1cn ≤ bn ≤ k2cn for all n > n0. Let ⌈u⌉ denote
the smallest integer that is no less than u, and ⌊u⌋ denote the greatest integer that is no greater than
u. For a Lebesgue measurable subset S ⊆ Rd, by Lq (S, ℓp) we denote the function norm for all
real-valued functions f : S ×A → R, such that for every a ∈ A, f(·, a) is Lebesgue measurable on
S and

∥f∥Lq(S,ℓp) :=


∫

S

(∑
a∈A

|f(s, a)|p
) q

p

dρs

 1
q

, 1 ≤ q < +∞,

ess sups∈S
(∑

a∈A |f(s, a)|p
) 1

p , q = +∞

(6)

is finite.

Covering Number of a Function Class: Let F be a class of functions : X → R. For a given
ϵ > 0, we denote N (F , ϵ, ∥ · ∥) as the covering number of F with radius δ under some norm ∥ · ∥
as the least cardinality of a subset F ′ ⊆ F , satisfying

sup
f∈F

min
f ′∈F ′

∥f − f ′∥ ≤ δ.

This quantity measures the minimum number of functions in F needed to cover the set of functions
within a distance of δ under the norm ∥ · ∥.

Laplacian Matrix and Graph Structure: The connectivity of the comparison graph plays a cru-
cial role in estimating from pairwise data (Mohar et al., 1991), which relates to the second small-
est eigenvalue of Λ, we denote it as λ2(Λ) := minw⊥1 w

⊤Λw/w⊤w. The pair of actions being
compared need to be carefully selected for effective reward modeling, ensuring that λ2(Λ) is not
excessively small. If some actions are almost not queried among the data, the spectral gap 1/λ2(Λ)
diverges and thus makes the MLE estimator degenerate in terms of regret. This happens if the num-
ber of comparisons between some pairs is too scarce, as shown in Example 3, where 1/λ2(L) can
blow up to an order of Θ(n), so there is no guarantee for the regret bounded.

Example 3 Suppose there are four actions in A. Let n = 2t + 1, we query (a1, a2), (a2, a3) for t
times each, and (a3, a4) only once. The Laplacian matrix of this pairwise comparison design is

Λ =
1

n

 t −t 0 0
−t 2t −t 0
0 −t t+ 1 −1
0 0 −1 1


It is clear that 1/λ2(Λ) ≍ 3(2t+1)/2 = Θ(n), which blows up the error ∥r̂−r∗∥2L2(S,ℓ2), although
the excess risk is still under control.

It is worth pointing out that the optimal choice of Λ should satisfy that λ2(Λ) = Θ(1/|A|). As
Λ is the Laplacian matrix whose trace(Λ) = 2, λ2(Λ) ≤ 2/(|A| − 1). A natural choice to reach
this bound is to require every pair of actions to be compared equally. In the terminology of the
graph, this choice is referred to as the complete graph. In addition to the complete graph, there are
several graphs satisfying λ2(Λ) = Θ(1/|A|), such as the complete bipartite graph and star graph. In
contrast, the path graph and cycle graph lead to λ2(Λ) = Θ(1/|A|3) (Shah et al., 2016). Therefore,
effective reward modeling requires careful selection of the pairwise comparison subset.

B PROOF OF LEMMA 1

We define

G(u) :=

∫ ∞

0

g(y, u)dy − 1

2
.
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By definition of the comparison function g, it is straightforward that G(0) ≤ 0, so we can al-
ways find a tangent line to G(u) crossing the origin on R+, i.e., there exists a constant κ ≤
sup|u|≤cr∗

| d
duG(u)|, such that G(u) ≤ κu. Note that G(u/κ) ≤ u also holds for all u ∈ R+.

Then the set{
s ∈ S : G(r∗(s, πr∗(s))− r∗(s, a′)) ≤ G

(
t

κ

)}
⊆ {s ∈ S : G(r∗(s, πr∗(s))− r∗(s, a′)) ≤ t} .

Also, due to the monotonicity of the function G(u), the set{
s ∈ S : G(r∗(s, πr∗(s))− r∗(s, a′)) ≤ G

(
t

κ

)}
=

{
s ∈ S : r∗(s, πr∗(s))− r∗(s, a′) ≤ t

κ

}
.

Thus, ∫
S
1

{
r∗(s, πr∗(s))− r∗(s, a′) ≤ t

κ

}
dρs ≤ cgt

α
1−α .

Replace t/κ with t and update the constant results in the desired inequality.

Example 4 Here we consider the BT model as an example (see Example 1). We deliberately set
t′ = 2t, where t is the probability gap in Assumption 1.

∫
S
1 {r∗(s, r∗(s, πr∗(s)))− r∗(s, a′) ≤ t′} dρs

=

∫
S
1

{
exp(r∗(s, πr∗(s)))

exp(r∗(s, πr∗(s))) + exp(r(s, a′))
− 1

2
≤ 1

2

et
′ − 1

et′ + 1

}
dρs.

= PS

(
P(y > 0 | s, a1 = πr∗(s), a0 = a′)− 1/2 ≤ 1

2

et
′ − 1

et′ + 1

)
≤ PS (P(y > 0 | s, a1 = πr∗(s), a0 = a′)− 1/2 ≤ t′/4)

≤ (1/4)
α

1−α cgt
′ α
1−α .

The first step holds since 1
2
et

′
−1

et′+1
is monotonically increasing. The third is due to t′

4 ≥ 1
2
et

′
−1

et′+1
for

all t′ ∈ (0, 1). Replacing the notation t′ with t yields the desired inequality.

Example 5 In the Thurstonian model (see Example 2), we set t′ =
√
π/2 t, where t is the proba-

bility gap in Assumption 1.

∫
S
1 {r∗(s, r∗(s, πr∗(s)))− r∗(s, a′) ≤ t′} dρs

=

∫
S
1

{
exp(−(r∗(s, r∗(s, πr∗(s)))− r∗(s, a′))2/2)√

2π
− 1

2
≤ e−t′2/2

√
2π

− 1

2

}
dρs.

= PS

(
P(y > 0 | s, a1 = πr∗(s), a0 = a′)− 1/2 ≤ e−t′2/2

√
2π

− 1

2

)
≤ PS

(
P(y > 0 | s, a1 = πr∗(s), a0 = a′)− 1/2 ≤ t′/

√
2π
)

≤ (1/
√
2π)

α
1−α cgt

′ α
1−α .

The first step holds since e−t′2/2
√
2π

− 1
2 is monotonically increasing. The third is due to t′/

√
2π ≥

e−t′2/2
√
2π

− 1
2 for all t′ ∈ (0, 1). Replacing the notation t′ with t yields the desired inequality.
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C PROOF OF THEOREM 1

By definition of the regret,

E(r) =
∫
S
(r∗(s, πr∗(s))− r∗(s, πr∗(s))) dρs

=

∫
πr∗ (s) ̸=πr̂(s)

(r∗(s, πr∗(s))− r∗(s, πr̂(s))) dρs.

Now, we define two sets, given any η ∈ (0, 1),

S1 ={s ∈ S : 0 < r∗(s, πr∗(s))− max
a∈A/πr∗ (s)

r∗a(s) ≤ η};

S2 ={s ∈ S : r∗(s, πr∗(s))− max
a∈A/πr∗ (s)

r∗a(s) > η}.

It is worth noting that the two sets S1 and S2 are the complement of each other, and they are
independent of any reward estimator r. Then, we can decompose the performance loss as follows,

E(r) =
∫
πr∗ (s)̸=πr(s)∩S1

(r∗(s, πr∗(s))− r∗(s, πr(s))) dρs

+

∫
πr∗ (s)̸=πr(s)∩S2

(r∗(s, πr∗(s))− r∗(s, πr(s))) dρs

=

∫
πr∗ (s)̸=πr(s)∩S1

(r∗(s, πr∗(s))− r∗(s, πr(s))) dρs

+

∫
πr∗ (s)̸=πr(s)∩S2

(r∗(s, πr∗(s))− r∗(s, πr(s)))1

{∑
a∈A

|r(s, a)− r∗(s, a)| ≤ η

}
dρs

+

∫
πr∗ (s)̸=πr(s)∩S2

(r∗(s, πr∗(s))− r∗(s, πr(s)))1

{∑
a∈A

|r(s, a)− r∗(s, a)| ≥ η

}
dρs.

(7)
Note that the second term in the last step is 0 since there is no regret loss as long as the estimated
action is the optimal action.

E(r) ≤η

∫
S
1

{
0 < r∗(s, πr∗(s))− max

a∈A/πr∗ (s)
r∗a(s) ≤ η

}
dρs

+ 0 + cr∗

∫
πr∗ (s) ̸=πr(s)∩S2

1

{∑
a∈A

|r(s, a)− r∗(s, a)| ≥ η

}
dρs.

Recall that with Lemma 1, for a non-negative random variable X , and non-decreasing function
φ(u) > 0, the Markov inequality states φ(u)P(X ≥ u) ≤ E(φ(X)). Let φ(η) = η2, where
α ∈ (0, 1). Then,

η2
∫
πr∗ (s)̸=πr(s)∩S2

1

{∑
a∈A

|r(s, a)− r∗(s, a)| ≥ η

}
dρs

≤ η2
∫
S
1

{∑
a∈A

|r(s, a)− r∗(s, a)| ≥ η

}
dρs ≤

∫
S

(∑
a∈A

|r(s, a)− r∗(s, a)|

)2

dρs,

where we apply the Markov inequality in the last step, taking an expectation over the state space S.
Note that ∥r − r∗∥2L2(S,ℓ1) ≤ |A|∥r − r∗∥2L2(S,ℓ2), then

E(r) ≤ η · cgη
α

1−α + (
1

η
)2|A|cr∗∥r − r∗∥2L2(S,ℓ2).

To balance the two terms above, we choose

η =

(
|A|cr∗
cg

∥r − r∗∥2L2(S,ℓ2)

) 1−α
3−2α

.
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Consequently, we have

E(r) ≤c1

(
∥r − r∗∥2L2(S,ℓ2)

) 1
3−2α

with c1 =
(

|A|cr∗
cg

) 1−α
3−2α

.

□

C.1 PROOF OF COROLLARY 1

The proof generally follows the proof of Theorem 1 but without any margin condition on the state
distribution. Starting from the second step of (7), we have

E(r) =
∫
πr∗ (s)̸=πr(s)∩S1

(r∗(s, πr∗(s))− r∗(s, πr(s))) dρs

+

∫
πr∗ (s)̸=πr(s)∩S2

(r∗(s, πr∗(s))− r∗(s, πr(s))) dρs

=

∫
πr∗ (s) ̸=πr(s)∩S1

(r∗(s, πr∗(s))− r∗(s, πr(s))) dρs

+

∫
πr∗ (s)̸=πr(s)∩S2

(r∗(s, πr∗(s))− r∗(s, πr(s)))1

{∑
a∈A

|r(s, a)− r∗(s, a)| ≤ η

}
dρs

+

∫
πr∗ (s) ̸=πr(s)∩S2

(r∗(s, πr∗(s))− r∗(s, πr(s)))1

{∑
a∈A

|r(s, a)− r∗(s, a)| ≥ η

}
dρs

≤η + 0 + cr∗

∫
πr∗ (s)̸=πr(s)∩S2

1

{∑
a∈A

|r(s, a)− r∗(s, a)| ≥ η

}
dρs

≤η + (
1

η
)2|A|cr∗∥r − r∗∥2L2(S,ℓ1).

Note that ∥r− r∗∥2L2(S,ℓ1) ≤ |A|∥r− r∗∥2L2(S,ℓ2). Then with η = (|A|cr∗∥r− r∗∥2L2(S,ℓ2))
1/3 and

c2 = (|A|cr∗)1/3, we have

E(Cr) ≤ η + (
1

η
)2|A|cr∗∥r − r∗∥2L2(S,ℓ2) ≤ c2

(
∥r − r∗∥2L2(S,ℓ2)

) 1
3

.

□

C.2 DISCUSSION ON SELECTION CONSISTENCY

In the main text, we present the regret bound in order of O((∥r − r∗∥2L2(S,ℓ2))
1/(3−2α)). It is often

of interest to give the result of the selection consistency for a given reward estimator r.

Lemma 3 Given the Assumption 1 and the estimator from (3), there exist an universal constant c6
such that

PS (πr∗(s) ̸= πr(s)) ≤ c6

(
∥r − r∗∥2L2(S,ℓ2)

) α
3−2α

,

where πr∗(s) is an optimal policy that gives the optimal action that maximizes the reward.

This quantity is important in statistical machine learning literature (Peter L Bartlett & McAuliffe,
2006; Audibert & Tsybakov, 2007). As α → 1, the selection consistency achieves the best rate.
When α → 0, following the Lemma 1, the reward of an alternative action is comparable with
the optimal one; thus, the selection consistency result may fail. Fundamentally, in reinforcement
learning problems, we do not make predictions that are consistent with data labels. Still, it is a
beneficial complement for us to understand the effects of the margin-type condition.
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C.3 PROOF OF LEMMA 3

By definition of the regret,

E(r) =
∫
S
(r∗(s, πr∗(s))− r∗(s, πr(s))) dρs

≥
∫
S
(r∗(s, πr∗(s))− r∗(s, πr(s)))1

{
r∗(s, πr∗(s))− max

a∈A/πr∗ (s)
r∗a(s) > t

}
dρs

≥t

∫
S
1 {πr∗(s) ̸= πr(s)} · 1

{
r∗(s, πr∗(s))− max

a∈A/πr∗ (s)
r∗a(s) > t

}
dρs

≥t
(
PS (πr∗(s) ̸= πr(s))− cgt

α
1−α
)
.

The last line follows P(E1 ∩ E2) ≥ P(E1) − P(Ec
2), for any two events E1 and E2. Minimizing

this term with respect to t, i.e., taking t = c′PS (πr∗(s) ̸= πr(s))
(1−α)/α results in

PS (πr∗(s) ̸= πr(s)) ≤
1

c′α
E(r)α ≤ c6

(
∥r − r∗∥2L2(S,ℓ2)

) α
3−2α

,

where c′ and c6 are constants depending on cg and α. □

D PROOF OF ERROR BOUNDS

D.1 PROOF OF LEMMA 2

Denote r̃ as an estimator that maximizes the likelihood in the function class FDNN as

r̃ = argmax
r∈FDNN

l(r).

We expand the excess risk by adding and substituting the following terms:

l(r∗)− l (r̂) =
[
l̂(r̂)− l(r̂)

]
+
[
l̂ (r̃)− l̂(r̂)

]
+
[
l (r̃)− l̂(r̃)

]
+ [l (r∗)− l (r̃)]

≤
[
l(r̂)− l̂(r̂)

]
+
[
l (r̃)− l̂ (r̃)

]
+ [l (r∗)− l (r̃)]

≤2 sup
r∈FDNN

∣∣∣l(r)− l̂(r)
∣∣∣+ l (r∗)− l (r̃)

=2 sup
r∈FDNN

∣∣∣l(r)− l̂(r)
∣∣∣+ inf

r∈FDNN

[l(r∗)− l (r)] ,

where the first inequality follows from the definition of r̂ as the maximizer of l̂(r) in FDNN, then
l̂ (r̃)− l̂(r̂) ≤ 0. The second inequality holds due to the fact that both r̂ and r̃ belong to the function
class FDNN, and the last equality is valid by the definition of r̃.

D.2 PROOF OF PROPOSITION 1

Let Zi(r) := log g
(
yi; r(si, ai1)− r(si, ai0)

)
for 1 ≤ i ≤ N. Then, given Assumption 2 and Ho-

effding’s inequality, with probability at least 1− δ, we have∣∣∣∣∣ 1N
N∑
i=1

(Zi(r)− E [Zi(r)])

∣∣∣∣∣ ≤ κ0

√
log
(
2
δ

)
2N

,

where the expectation E is taken over the data distribution. Now considering an estimator r that is
within the deep neural network function class, We can further obtain that for any given τ > 0, let
r1, r2, . . . , rN be the anchor points of an τ -covering for the function class FDNN, where we denote
N := N

(
FDNN, τ, ∥ · ∥L∞(S,ℓ∞)

)
as the covering number of FDNN with radius τ under the norm
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∥ · ∥L∞(S,ℓ∞). By definition, for any r ∈ FDNN, there exists an anchor rh for h ∈ {1, . . . ,N} such
that ∥rh − r∥L∞(S,ℓ∞) ≤ τ . We further decompose the stochastic error as follows

l(r)− l̂(r) ≤l (rh)− l̂ (rh) + l(r)− l (rh) + l̂ (rh)− l̂(r)

=l (rh)− l̂ (rh) +
1

N

∣∣∣∣∣
N∑
i=1

E [Zi(r)− Zi(rh)]

∣∣∣∣∣+ 1

N

∣∣∣∣∣
N∑
i=1

[Zi(r)− Zi(rh)]

∣∣∣∣∣
≤l(rh)− l̂(rh) + 2κ1τ,

where the last step is due to the Lipschitz property of log g(y, u). Therefore, with a fixed ϵ > 0,

P
(

sup
r∈FDNN

∣∣∣l(r)− l̂(r)
∣∣∣ ≥ (ϵ+ κ1τ)

)
≤ P

(
∃ h ∈ {1, . . . ,N} :

∣∣∣l (rh)− l̂ (rh)
∣∣∣ ≥ ϵ

)
≤ Nn

(
FDNN, τ, ∥ · ∥L∞(S,ℓ∞)

)
max

h∈{1,...,N}
P
(∣∣∣l (rh)− l̂ (rh)

∣∣∣ ≥ ϵ
)

≤ 2Nn

(
FDNN, τ, ∥ · ∥L∞(S,ℓ∞)

)
exp

(
−2Nϵ2

κ2
0

)
,

(8)

where the last line comes from Hoeffding’s inequality. Then, for any δ > 0, let τ = 1/N and

ϵ = κ0

√
2 log

(
2N

(
FDNN, τ, ∥ · ∥L∞(S,ℓ∞)

)
/δ
)
/N so that the right-hand side of (8) equals to δ,

we have

P
(

sup
r∈FDNN

∣∣∣l(r)− l̂(r)
∣∣∣ ≥ ϵ+ 2κ1τ

)
≤ δ.

In other words, with probability at least 1− δ,

sup
r∈FDNN

∣∣∣l(r)− l̂(r)
∣∣∣ ≤ ϵ+ 2κ1τ

≤
√
2κ0

√ log 2
√
2N

(
τ,FDNN, ∥ · ∥L∞(S,ℓ∞)

)
N

+

√
log
(
1
δ

)
N

+
2κ1

N
,

(9)

where in the second step we use the inequality
√
C1 + C2 ≤

√
C1 +

√
C2, for any C1, C2 ≥ 0.

In the rest of the proof, we bound the covering number. Without loss of generality, we also define
classes of sub-networks of FDNN, that is, {F1,F2, · · · ,F|A|}, with non-sharing hidden layers. By
doing so, the function ra ∈ Fa in each reduced function class takes states as input and returns r(s, a)
given an action a ∈ A. For convenience, we assume all the sub-networks have the same width in
each layer, and all model parameters are bounded within [−1, 1] that is,

Fa (W,D) =
{
ra(·; θ) : Rd → R defined in (4) : θ ∈ [−1, 1]p

}
,

such that the function class of our interest is covered by the product space of sub-network classes,
that is, FDNN ⊂ F1 ⊗ F2 ⊗ · · · ⊗ F|A|. Now, we can express the covering number in terms of the
product of complexities of sub-networks by

logN
(
FDNN, τ, ∥ · ∥L∞(S,ℓ∞)

)
≤ |A| logN (Fa, τ/|A|, ∥ · ∥L∞). (10)

For the deep ReLU neural network in our setting, Shen (2024, Theorem 2) shows that for any τ > 0.

N (F , τ, ∥ · ∥L∞) ≤
(
2D+5(D + 1)WD · τ−1

)p
(W !)D

.

Then, apply the above inequality to (10),

logN
(
FDNN, τ, ∥ · ∥L∞(S,ℓ∞)

)
≤ |A|Dp log

(
2W (32(D + 1)|A|/τ)1/D

(W !)1/p

)
. (11)
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Plug (11) in (9), and take τ = 1/N , with probability at least 1− δ,

sup
r∈FDNN

∣∣∣l(r)− l̂(r)
∣∣∣

≤ κ0

√
2

N

(√
log 2

√
2|A|Dp log

(
2W (32(D + 1)|A|N)1/D

(W !)1/p

)
+
√
log(1/δ)

)
+

2κ1

N

≤ κ0

√
2

N

(
c3

√
|A|Dp log

(
W ((D + 1)|A|N)1/D

(W !)1/p

)
+
√
log(1/δ)

)
.

In the second step, due to that 1/N is decaying faster than
√

log(N)/N , we can simplify the ex-
pression by making c3 a universal constant. □

D.3 PROOF OF PROPOSITION 2

We adopt the ReLU network approximation result for Hölder smooth functions in Hβ([0, 1]d, cH),
proposed in Jiao et al. (2023, Theorem 3.3). With Assumption 3, for any M1,M2 ∈ N+, and
for each a ∈ A, there exists a function r̃ implemented by a ReLU network with width W =
38(⌊β⌋+ 1)2d⌊β⌋+1M1⌈log2(8M1)⌉ and depth D = 21(⌊β⌋+ 1)2M2⌈log2(8M2)⌉ such that

|r̃(s, a)− r∗(s, a)| ≤ 18cH(⌊β⌋+ 1)2d⌊β⌋+(β∨1)/2(M1M2)
−2β/d,

for all s ∈ [0, 1]d except a small set Ω ∈ S with Lebesgue measure δKp, where δ can be arbi-
trarily small. Since we have the same setting for all sub-networks, we have the same bound for
maxa∈A |r̃(s, a)− r∗(s, a)|. Therefore, integrate both sides with respect to the state space distribu-
tion we have

∥r̃ − r∗∥L1(S,ℓ∞) ≤ 18cH(⌊β⌋+ 1)2p⌊β⌋+(β∨1)/2(M1M2)
−2β/d

+ P(Ω) · sup
s∈Ω

{max
a∈A

|r̃(s, a)− r∗(s, a)|}. (12)

By Assumption 3, the marginal distribution of S is absolutely continuous with respect to the
Lebesgue measure, which means that lim infδ→0 P(Ω) = 0. Meanwhile, we know from the def-
inition of FDNN and Assumption 2 that both sups∈S |r̃(s, a)| and sups∈S |r∗(s, a)| are bounded for
all a ∈ A. Therefore, by taking the limit infimum with respect to δ on both sides of (12), we have

∥r̃ − r∗∥L1(S,ℓ∞) ≤ 18cH(⌊β⌋+ 1)2d⌊β⌋+(β∨1)/2(M1M2)
−2β/d.

Therefore, by the Lipschitz property of the likelihood function,

l(r∗)− l(r̃) ≤ 2κ1 ∥r̃ − r∗∥L1(S,ℓ∞) ≤ 36κ1cH(⌊β⌋+ 1)2d⌊β⌋+(β∨1)/2(M1M2)
−2β/d.

□

D.4 PROOF OF THEOREM 3

Before dealing with the error terms, we first control the logarithmic term involved in the covering
number. Let c be a positive universal constant, then

W ((D + 1)|A|N)1/D

(W !)1/p
≤ W ((D + 1)|A|N)1/D(

e (W/e)
W
)1/p

= c

(
W ((D + 1)|A|N)1/D

W 1/WD

)
= c

(
W (|A|N)1/D

)
.

The first step is from the inequality that n! ≥ e(n/e)n, for any n ∈ N+. The second step holds
for rectangular neural networks, where the size p = O(W 2D). The last step follows Proposition 2,
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since we require the network has width W > 114 and depth D > 63, leading that W 1/W ≍ 1 and
(D + 1)1/D ≍ 1. Now, we combine both stochastic error and approximation error.

l(r̂)− l(r∗) ≤ 2κ0

√
2

N

(
c3

√
|A|Dp log

(
c
(
W (|A|N)1/D

))
+
√
log(1/δ)

)
+ 36κ1cH(⌊β⌋+ 1)2d⌊β⌋+(β∨1)/2(M1M2)

−2β/d.

To balance these two error terms, proper tuning parameters M1 and M2 are selected to optimize
the convergence rate with the most efficient network design. Since the network size grows linearly
in-depth D but quadratically in width W . To reach the optimal rate while, at the same time, saving
network size, we decide to fix M1 = 1 so that the width W is growing with a polynomial of the
input dimension d while independent of sample size N . Meanwhile, we take M2 =

⌊
Nd/(2d+4β)

⌋
.

Then with d ≫ β, we have

W = 114(⌊β⌋+ 1)2d⌊β⌋+1;D = 21(⌊β⌋+ 1)2
⌈
N

d
2d+4β log2

(
8N

d
2d+4β

)⌉
= O

(√
N
)
, (13)

and
p = O

(
W 2D

)
= O

(
(⌊β⌋+ 1)6d2⌊β⌋+2

⌈
N

d
2(d+2β) (log2 N)

⌉)
= O

(√
N
)
,

where the log(N) factors are omitted for simplicity.

Therefore, combining (13) with the error bound, and letting c′3 an another universal constant, with
probability at least 1− δ,

l(r̂)− l(r∗) ≤2κ0

√
2

N

(
c′3
√

|A|(⌊β⌋+ 1)4d⌊β⌋+1(log(N))2N
d

2d+4β +
√
log(1/δ)

)
+ 36κ1cH(⌊β⌋+ 1)2d⌊β⌋+(β∨1)/2N

−β
d+2β

≤2
√
2κ0

(
c4
√
|A|(⌊β⌋+ 1)4d⌊β⌋+1(log(N))2N

−β
d+2β +

√
log(1/δ)

N

)
,

where Since the stochastic error and approximation error are of the same order now, in the last step,
we combine them with c4, another universal constant. In this part, we find the following connection
between the excess risk l(r̂)− l(r∗) and the estimation error ∥r̂ − r∗∥2L2(S,ℓ2).

The first order optimality of l(·) implies ∇l(r∗) = 0, then

l(r∗)− l(r̂) = ∇l(r∗)(r∗ − r̂) +
1

2
(r∗ − r̂)⊤∇2l(ζ)(r∗ − r̂)

= 0 +

∫
S

1

N

∑
i<j

nij
∂2

∂u2
log g(y; ζ)(r̂(s, ai)− r̂(s, aj)− (r∗(s, ai)− r∗(s, aj)))

2dρs

≥
∫
S

∑
i<j

nij

N
κ2(r̂(s, ai)− r̂(s, aj)− (r∗(s, ai)− r∗(s, aj)))

2dρs

≥ κ2

∫
S
κΛ

∑
a∈A

(r̂(s, a)− r∗(s, a))
2
dρs

= κ2κΛ∥r̂ − r∗∥2L2(S,ℓ2),

where there exists y ∈ Ω and ζ ∈ [r̂(s, ai) − r̂(s, aj), r
∗(s, ai) − r∗(s, aj)]. The second last

step holds by the identifiability constraint for both the true and estimated reward function, i.e.,∑
a∈A r̂(s, a) = 0 and

∑
a∈A r∗(s, a) = 0, which leads to

∑
a∈A(r̂(s, a) − r∗(s, a)) = 0. This

identifiability constraint is also posited in (Shah et al., 2016). Therefore, we conclude that the final
non-asymptotic error bound: with probability at least 1− δ,

∥r̂ − r∗∥2L2(S,ℓ2) ≤ 2
√
2

κ0

κ2κΛ

(
c4
√
|A|(⌊β⌋+ 1)4d⌊β⌋+1(log(N))2N− β

d+2β +

√
log(1/δ)

N

)
.
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Different from the deep regression and classification problem, the convergence of the excess risk
does not directly ensure the function convergence of the estimated reward. It is necessary to con-
sider additional constraints on the dataset structure (see Assumption 4). Assumption 4 ensures the
Laplacian spectrum of the comparison graph to be bounded away from 0 and ensures the conver-
gence of the estimator r̂. The condition is also considered by Zhu et al. (2023). We note that to
the best of our knowledge, we are the first to study its role in the non-parametric analysis for deep
reward modeling.

□

E AN EXPERIMENT ON SYNTHETIC DATA

We construct a synthetic experiment to illustrate our theory in the guidance for deep neural network
implementation. In this section, we consider two parametrization of the deep reward modeling
using Bradley-Terry and Thurstonian models, respectively. We refer to the Example 1 and 2 for
more details. This reward function is specified as: r∗(s, a1) = 2 sin(4ϕ(s)⊤w∗) and r∗(s, a0) =
−2 sin(4ϕ(s)⊤w∗) where ϕ(s) = (sin(s1), . . . , sin(sd)) is a non-parametric transformation for
creating non-linearity. The identification condition, r∗(s, a1) + r∗(s, a0) = 0 for every given s, is
ensured. Furthermore, as demonstrated in expression (1) and (2), both regret and preference depend
solely on the difference between rewards. Accordingly, in our implementation, we configure the
output of the neural network to directly represent the reward difference, r̂(s, a1) − r̂(s, a0), rather
than estimating individual rewards separately.

We generate n state observations s, with each sampled independently from a uniform distri-
bution over [0, 1]d. In this example, we consider each dataset with the dimension of d =
10 and sample size (ntrain, neval, ntest) = (210, 29, 210). The true weight w∗ is fixed
as (−0.040, 1.726,−0.814, 1.372, 0.506,−0.482,−0.785, 0.668,−0.443, 0.188)⊤, which is ran-
domly generated a priori. We evaluate the rectangular neural networks where all the hidden lay-
ers are of the same width. Specifically, we consider the networks with widths {2i, i = 4, . . . , 12}
and the depths ranging from 3 to 13. The number of parameters ranges from about 500 to roughly
2 × 107. We note that the candidate networks have varying expression powers and are sufficient to
validate the guidance ability of our theory in the network design. Each configuration is evaluated
across 50 independent replications. The averaged regret results are presented in Figure 1.

Figure 1: Regrets for synthetic data under different neural network configurations.

Recall that our theoretical analyses reveal a crucial trade-off in neural network architecture design.
The interplay between stochastic and approximation errors fundamentally impacts model perfor-
mance. Proposition 1 and Proposition 2 establish that while increased network complexity reduces
approximation error, it simultaneously amplifies stochastic error under finite data scenarios. This
finding emphasizes the importance of balanced architecture selection.
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Our empirical results (see Figure 1) provide compelling evidence for this theoretical framework.
Using a fixed sample size, we examined regret across varying network configurations. We observed a
non-monotonic relationship: initially, deeper and wider networks reduce regret as the approximation
capability of networks increases. However, beyond the near-optimal network configuration, further
increases in model complexity led to degraded performance. This is consistent with our theory that
stochastic error dominates under this case; this empirical evidence is in line with Han et al. (2023).

Furthermore, our results reveal that comparable performance levels can be achieved across diverse
architectural configurations, highlighting the adaptability of deep neural networks to varying func-
tion complexities. This is evidenced by a relatively flat region in the parameter space where the
regret remains near-minimal. Such architectural flexibility is particularly valuable in practice, as it
suggests that precise knowledge of the smoothness parameter β is not critical for achieving strong
empirical performance. This robustness effectively addresses the common practical challenge of
architecture selection under unknown function complexity. We recommend Jiao et al. (2023); Lee
et al. (2019) for a more comprehensive analysis across different models.
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