

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 WHY ASK ONE WHEN YOU CAN ASK k ? LEARNING- TO-DEFER TO THE TOP- k EXPERTS

005 **Anonymous authors**

006 Paper under double-blind review

ABSTRACT

011 Existing *Learning-to-Defer* (L2D) frameworks are limited to *single-expert deferral*,
012 forcing each query to rely on only one expert and preventing the use of col-
013 lective expertise. We introduce the first framework for *Top- k Learning-to-Defer*,
014 which allocates queries to the k most cost-effective entities. Our formulation uni-
015 fies and strictly generalizes prior approaches, including the *one-stage* and *two-
016 stage* regimes, *selective prediction*, and classical cascades. In particular, it re-
017 covers the usual Top-1 deferral rule as a special case while enabling principled
018 collaboration with multiple experts when $k > 1$. We further propose *Top- $k(x)$*
019 *Learning-to-Defer*, an adaptive variant that learns the optimal number of experts
020 per query based on input difficulty, expert quality, and consultation cost. To en-
021 able practical learning, we develop a novel surrogate loss that is Bayes-consistent,
022 \mathcal{H}_h -consistent in the one-stage setting, and $(\mathcal{H}_r, \mathcal{H}_g)$ -consistent in the two-stage
023 setting. Crucially, this surrogate is independent of k , allowing a single policy to
024 be learned once and deployed flexibly across k . Experiments across both regimes
025 show that Top- k and Top- $k(x)$ deliver superior accuracy–cost trade-offs, opening
026 a new direction for multi-expert deferral in L2D.

1 INTRODUCTION

030 Learning-to-Defer (L2D) enables models to defer uncertain queries to external experts, explicitly
031 trading off predictive accuracy and consultation cost (Madras et al., 2018; Mozannar & Sontag,
032 2020; Verma et al., 2022). Classical L2D, however, routes each query to a *single* expert. This design
033 is ill-suited for complex decisions that demand collective judgment. For instance, in oncology, pa-
034 tient cases are routinely reviewed by multidisciplinary tumor boards comprising radiologists, pathol-
035 ogists, oncologists, and surgeons. Each specialist contributes a different perspective—imaging,
036 histopathology, treatment protocols, and surgical considerations—and only through aggregation can
037 an accurate and safe recommendation be made (Jiang et al., 1999; Fatima et al., 2017). Similar
038 multi-expert deliberation underpins fraud detection, cybersecurity, and judicial review (Dietterich,
039 2000). We believe this reliance on a single expert constitutes a *fundamental limitation* of existing
040 L2D frameworks: in many high-stakes domains, deferring to only one expert is not desirable.

041 Motivated by these challenges, we introduce *Top- k Learning-to-Defer*, a unified framework that
042 allocates each query to the k most cost-effective experts. Our formulation supports both major
043 regimes of L2D. In the *two-stage* setting, all experts are trained offline, and a routing function is
044 then trained to allocate queries either to one of the experts or to a fixed main predictor (Narasimhan
045 et al., 2022; Mao et al., 2023a; 2024c; Montreuil et al., 2025b;a). In contrast, the *one-stage* setting
046 jointly learns the main prediction task and the allocation policy within a single model, allowing
047 both components to adapt during training (Madras et al., 2018; Mozannar & Sontag, 2020). Our
048 framework admits instantiations in both regimes, ensuring broad applicability.

049 We further propose *Top- $k(x)$* , an adaptive extension that learns the number of experts to consult per
050 query based on input complexity, expert competence, and consultation cost. To enable both fixed- k
051 and adaptive deferral, we design a novel surrogate loss that is Bayes-consistent, $(\mathcal{H}_r, \mathcal{H}_g)$ -consistent
052 in the two-stage setting, \mathcal{H}_h -consistent in the one-stage setting, and independent of k , allowing
053 efficient reuse across cardinalities without retraining. Finally, we show that our framework strictly
generalizes prior paradigms: *selective prediction* (Chow, 1970; Cortes et al., 2016) and classical
model cascades (Viola & Jones, 2001; Saberian & Vasconcelos, 2014; Laskaridis et al., 2021), with

054 the usual Top-1 Bayes policy arising as a special case. This situates Top- k /Top- $k(x)$ as a unifying
 055 and strictly more general framework for Learning-to-Defer.

056 Our main contributions are: **(i)** We introduce **Top- k L2D**, the first framework for deferral to the
 057 top- k experts, unifying both *one-stage* and *two-stage* regimes. **(ii)** We develop a k -**independent**
 058 **surrogate loss** with Bayes-, \mathcal{H}_h -, and $(\mathcal{H}_r, \mathcal{H}_g)$ -consistency guarantees, allowing a single policy to
 059 be reused across all values of k without retraining. **(iii)** We show that **classical model cascades** are
 060 strictly subsumed as a special case, and that the *usual Top-1 Bayes policy rule* is recovered from both
 061 one-stage and two-stage formulations, as well as from **selective prediction** within our framework.
 062 **(iv)** We propose **Top- $k(x)$** , an adaptive variant that learns the optimal number of experts per query
 063 under accuracy–cost trade-offs. **(v)** We provide **extensive empirical results** demonstrating that
 064 Top- k and Top- $k(x)$ consistently achieve superior accuracy–cost trade-offs compared to prior L2D
 065 methods.

066 2 RELATED WORK

069 **Learning-to-Defer.** Learning-to-Defer (L2D) extends selective prediction (Chow, 1970; Bartlett
 070 & Wegkamp, 2008; Cortes et al., 2016; Geifman & El-Yaniv, 2017; Cao et al., 2022; Cortes et al.,
 071 2024) by allowing models not only to abstain on uncertain inputs but also to defer them to external
 072 experts (Madras et al., 2018; Mozannar & Sontag, 2020; Verma et al., 2022). Two main approaches
 073 have emerged. In *two-stage* frameworks, the base predictor and experts are trained offline, and a sep-
 074 arate allocation function is learned to decide whether to predict or defer (Narasimhan et al., 2022;
 075 Mao et al., 2023a), with extensions to regression (Mao et al., 2024c), multi-task learning (Montreuil
 076 et al., 2025b), adversarial robustness (Montreuil et al., 2025a), and applied systems (Strong et al.,
 077 2024; Palomba et al., 2025; Montreuil et al., 2025c). In contrast, *one-stage* frameworks train predic-
 078 tion and deferral jointly. The score-based formulation of Mozannar & Sontag (2020) established the
 079 first Bayes-consistent surrogate and has since become the standard, with follow-up work improving
 080 calibration (Verma et al., 2022; Cao et al., 2024), surrogate design (Charusaie et al., 2022; Mao
 081 et al., 2024a; Wei et al., 2024), and guarantees such as \mathcal{H} -consistency and realizability (Mozannar
 082 et al., 2023; Mao et al., 2024b; 2025). Applications span diverse classification tasks (Verma et al.,
 083 2022; Cao et al., 2024; Keswani et al., 2021; Kerrigan et al., 2021; Hemmer et al., 2022; Benz &
 084 Rodriguez, 2022; Tailor et al., 2024; Liu et al., 2024).

085 **Top- k Classification.** Top- k classification generalizes standard classification by predicting a set of
 086 top-ranked labels rather than a single class. Early hinge-based approaches (Lapin et al., 2015; 2016)
 087 were later shown to lack Bayes consistency (Yang & Koyejo, 2020), and non-convex formulations
 088 raised optimization challenges (Yang & Koyejo, 2020; Thilagar et al., 2022). More recent advances
 089 have established Bayes- and \mathcal{H} -consistency for a broader family of surrogates, including cross-
 090 entropy (Mao et al., 2023b) and constrained losses (Cortes & Vapnik, 1995), with cardinality-aware
 091 refinements providing stronger theoretical guarantees (Cortes et al., 2024).

092 **Gap.** Existing L2D frameworks are restricted to *single-expert deferral*, a critical limitation: in
 093 high-stakes domains, robust decisions demand aggregating complementary expertise, while reliance
 094 on a single expert amplifies bias and error. Crucially, no prior work enables top- k or adaptive top- $k(x)$
 095 deferral in either one-stage or two-stage regimes, nor provides surrogate losses with provable
 096 consistency guarantees. We address this gap by introducing the first unified framework for Top- k
 097 and Top- $k(x)$ L2D, supported by a k -independent surrogate loss that ensures statistically sound and
 098 cost-efficient multi-expert allocation.

100 3 PRELIMINARIES

103 Let \mathcal{X} be the input space and \mathcal{Z} the output space, with training examples (x, z) drawn i.i.d. from an
 104 unknown distribution \mathcal{D} .

106 **One-Stage L2D.** In the one-stage regime (Madras et al., 2018; Mozannar & Sontag, 2020), pre-
 107 diction and deferral are optimized jointly through a single model in a multiclass setting with label
 108 space $\mathcal{Z} = \mathcal{Y} = \{1, \dots, n\}$, corresponding to n distinct categories. The system has access to \mathcal{J}

108 offline experts. In the deterministic case, each expert is a mapping $\hat{m}_j : \mathcal{X} \rightarrow \mathcal{Z}$. An expert may be
 109 modeled as a stochastic predictor. In this case, its output M_j is defined as a random variable jointly
 110 distributed with (X, Y) , and training samples include realizations \hat{m}_j drawn from the conditional
 111 distribution $\mathbb{P}(M_j | X = x, Y = y)$. All our results remain valid when experts are stochastic; the
 112 analysis extends verbatim by treating each expert’s output as a random variable jointly distributed
 113 with (X, Y) .

114 We treat both class labels and experts uniformly as *entities*. The corresponding entity set is
 115

$$\mathcal{A}^{1s} = \{1, \dots, n\} \cup \{n + 1, \dots, n + J\},$$

116 where indices $j \leq n$ correspond to predicting class j , and indices $j > n$ correspond to deferring to
 117 expert m_{j-n} . We define the hypothesis class of score-based classifier as $\mathcal{H}_h = \{h : \mathcal{X} \times \mathcal{A}^{1s} \rightarrow \mathbb{R}\}$.
 118 For any $h \in \mathcal{H}_h$, the induced decision rule selects $\hat{h}(x) = \arg \max_{j \in \mathcal{A}^{1s}} h(x, j)$, i.e., the entity in
 119 \mathcal{A}^{1s} with the highest score. If $\hat{h}(x) \leq n$, the predictor outputs class $\hat{h}(x) \in \mathcal{Y}$; otherwise, it defers
 120 to expert $m_{\hat{h}(x)-n}$. The hypothesis h is learned by minimizing the risk induced by the deferral
 121 loss (Mozannar & Sontag, 2020; Verma et al., 2022; Cao et al., 2024; Mao et al., 2024a).
 122

123 **Definition 3.1** (One-Stage Deferral Loss). Let $x \in \mathcal{X}$, $y \in \mathcal{Y}$, and $h \in \mathcal{H}_h$ be a score-based
 124 classifier. The one-stage deferral loss is
 125

$$\ell_{\text{def}}^{1s}(\hat{h}(x), y) = \mathbf{1}\{\hat{h}(x) \neq y\} \mathbf{1}\{\hat{h}(x) \leq n\} + \sum_{j=1}^J c_j(x, y) \mathbf{1}\{\hat{h}(x) = n + j\},$$

126 with surrogate $\Phi_{\text{def}}^{1s,u}(h, x, y) = \Phi_{01}^u(h, x, y) + \sum_{j=1}^J (1 - c_j(x, y)) \Phi_{01}^u(h, x, n + j)$, where Φ_{01}^u
 127 belongs to the cross-entropy family (Mohri et al., 2012; Mao et al., 2023b). The cost is defined as
 128 $c_j : \mathcal{X} \times \mathcal{Y} \rightarrow [0, 1]$ with $c_j(x, y) = \alpha_j \mathbf{1}\{\hat{m}_j(x) \neq y\} + \beta_j$, where $\alpha_j \geq 0$ penalizes prediction
 129 error and $\beta_j \geq 0$ is a fixed consultation fee.
 130

131 **Two-Stage L2D.** In the two-stage regime (Narasimhan et al., 2022; Mao et al., 2023a; 2024c;
 132 Montreuil et al., 2025b;a), the main predictor and experts are trained offline and remain fixed.
 133 Unlike the one-stage setting, where a single augmented classifier jointly performs prediction and
 134 deferral, the two-stage approach introduces a separate *rejector* that allocates queries among entities.
 135 Formally, we consider an output space \mathcal{Z} and a main predictor $g \in \mathcal{H}_g$ with predictions
 136 $\hat{g}(x) \in \mathcal{Z}$, which is fully observable to the system. We also assume access to a collection of J
 137 experts $\{\hat{m}_j : \mathcal{X} \rightarrow \mathcal{Z}\}_{j=1}^J$. We treat both the main predictor and experts uniformly as *entities*. The
 138 corresponding entity set is
 139

$$\mathcal{A}^{2s} = \{1, \dots, J + 1\},$$

140 where $j = 1$ denotes the base predictor and $j \geq 2$ denotes expert \hat{m}_{j-1} . We define the hypothesis
 141 class of rejectors as $\mathcal{H}_r = \{r : \mathcal{X} \times \mathcal{A}^{2s} \rightarrow \mathbb{R}\}$. For any $r \in \mathcal{H}_r$, scores are assigned to entities,
 142 and the induced decision rule is $\hat{r}(x) = \arg \max_{j \in \mathcal{A}^{2s}} r(x, j)$. If $\hat{r}(x) = 1$, the system outputs the
 143 base predictor’s label $\hat{g}(x)$; otherwise, it defers to expert $m_{\hat{r}(x)-1}$. The deferral loss is then defined
 144 as follows.
 145

146 **Definition 3.2** (Two-Stage Deferral Loss). Let $x \in \mathcal{X}$, $z \in \mathcal{Z}$, and $r \in \mathcal{R}$ be a rejector. The
 147 two-stage deferral loss and its convex surrogate are
 148

$$\ell_{\text{def}}^{2s}(\hat{r}(x), z) = \sum_{j=1}^{J+1} c_j(x, z) \mathbf{1}\{\hat{r}(x) = j\}, \quad \Phi_{\text{def}}^{2s,u}(r, x, z) = \sum_{j=1}^{J+1} \tau_j(x, z) \Phi_{01}^u(r, x, j),$$

149 where $c_j : \mathcal{X} \times \mathcal{Z} \rightarrow \mathbb{R}_+$ is defined as $c_1(x, z) = \alpha_1 \psi(\hat{g}(x), z) + \beta_1$ with ψ a task-specific
 150 penalty (e.g., RMSE, mAP, or 0-1 loss) and $c_j(x, z) = \alpha_j \psi(\hat{m}_j(x), z) + \beta_j$ for $j \geq 2$. The term
 151 $\tau_j(x, z) = \sum_{i \neq j} c_i(x, z)$ aggregates the costs of all non-selected entities.
 152

153 **Consistency.** We restrict attention to the one-stage regime for clarity. The objective is to learn a
 154 hypothesis $h \in \mathcal{H}_h$ that minimizes the expected deferral risk $\mathcal{E}_{\ell_{\text{def}}^{1s}}(h) = \mathbb{E}_{X, Y}[\ell_{\text{def}}^{1s}(\hat{h}(X), Y)]$, with
 155 Bayes-optimal value $\mathcal{E}_{\ell_{\text{def}}^{1s}}^B(\mathcal{H}_h) = \inf_{h \in \mathcal{H}_h} \mathcal{E}_{\ell_{\text{def}}^{1s}}(h)$. Direct optimization is intractable due to discontinuity
 156 and non-differentiability (Zhang, 2002; Steinwart, 2007; Awasthi et al., 2022; Mozannar &
 157

Sontag, 2020; Mao et al., 2024a), motivating the use of convex surrogates. A prominent class is the *comp-sum* family (Mao et al., 2023b), which defines cross-entropy surrogates as

$$\Phi_{01}^u(h, x, j) = \Psi^u \left(\sum_{j' \in \mathcal{A}} e^{h(x, j') - h(x, j)} - 1 \right),$$

where the outer function Ψ^u is parameterized by $u > 0$. Specific choices recover canonical losses: $\Psi^1(v) = \log(1 + v)$ (logistic), $\Psi^u(v) = \frac{1}{1-u}[(1+v)^{1-u} - 1]$ for $u \neq 1$, covering sum-exponential (Weston & Watkins, 1998), logistic regression (Ohn Aldrich, 1997), generalized cross-entropy (Zhang & Sabuncu, 2018), and MAE (Ghosh et al., 2017).

A fundamental criterion for surrogate adequacy is *consistency*, which requires that minimizing surrogate excess risk also reduces true excess risk (Zhang, 2002; Bartlett et al., 2006; Steinwart, 2007; Tewari & Bartlett, 2007). To formalize this, Awasthi et al. (2022) introduced the notion of \mathcal{H}_h -consistency bounds, which quantify consistency with respect to a restricted hypothesis class rather than all measurable functions. The following bound has been established in the one-stage L2D setting (Mao et al., 2024a).

Theorem 3.3 (\mathcal{H}_h -consistency bounds). *Suppose the surrogate Φ_{01}^u is \mathcal{H}_h -calibrated for any distribution \mathcal{D} . Then there exists a non-decreasing function $\Gamma_u^{-1} : \mathbb{R}_+ \rightarrow \mathbb{R}_+$, depending on u , such that for all $h \in \mathcal{H}_h$,*

$$\mathcal{E}_{\ell_{\text{def}}^{1s}}(h) - \mathcal{E}_{\ell_{\text{def}}^{1s}}^B(\mathcal{H}_h) + \mathcal{U}_{\ell_{\text{def}}^{1s}}(\mathcal{H}_h) \leq \Gamma_u^{-1} \left(\mathcal{E}_{\Phi_{\text{def}}^{1s,u}}(h) - \mathcal{E}_{\Phi_{\text{def}}^{1s,u}}^*(\mathcal{H}_h) + \mathcal{U}_{\Phi_{\text{def}}^{1s,u}}(\mathcal{H}_h) \right).$$

Here $\mathcal{U}_{\ell_{\text{def}}^{1s}}(\mathcal{H}_h) = \mathcal{E}_{\ell_{\text{def}}^{1s}}^B(\mathcal{H}_h) - \mathbb{E}_X \left[\inf_{h \in \mathcal{H}_h} \mathbb{E}_{Y|X=x} [\ell_{\text{def}}^{1s}(\hat{h}(x), Y)] \right]$ is the *minimizability gap*, which measures the irreducible approximation error due to the expressive limitations of \mathcal{H}_h . When \mathcal{H}_h is sufficiently rich (e.g., $\mathcal{H}_h = \mathcal{H}_h^{\text{all}}$), the gap vanishes, and the inequality recovers Bayes-consistency guarantees (Steinwart, 2007; Awasthi et al., 2022). [Taking the limit of this bound recovers the same Bayes-consistency established in Mozannar & Sontag \(2020\)](#).

4 GENERALIZING LEARNING-TO-DEFER TO THE TOP- k EXPERTS

4.1 FROM SINGLE TO TOP- k EXPERT SELECTION

Notations. Prior Learning-to-Defer methods allocate each input $x \in \mathcal{X}$ to exactly one entity, corresponding to a *top-1* decision rule (Mozannar & Sontag, 2020; Verma et al., 2022; Mao et al., 2024a). Formally, this is captured by the one-stage deferral loss in Definition 3.1 or its two-stage counterpart in Definition 3.2. To unify notation across both regimes, we define the hypothesis class of decision rules as $\mathcal{H}_\pi = \{\pi : \mathcal{X} \times \mathcal{A} \rightarrow \mathbb{R}\}$. For any $\pi \in \mathcal{H}_\pi$, the function assigns a score $\pi(x, j)$ to each entity $j \in \mathcal{A}$, and the induced selection rule is

$$\hat{\pi}(x) = \arg \max_{j \in \mathcal{A}} \pi(x, j).$$

In the one-stage regime, π coincides with the augmented classifier h and $\mathcal{A} = \mathcal{A}^{1s}$, while in the two-stage regime, π coincides with the rejector r and $\mathcal{A} = \mathcal{A}^{2s}$. For clarity, we will henceforth use \mathcal{A} without superscripts, with the understanding that it denotes the appropriate entity set for the regime under consideration.

Top- k Selection. We generalize L2D to a *top- k* rule, where each query may be assigned to several entities simultaneously, enabling multi-expert deferral and joint use of complementary expertise. We first formalize the top- k selection set:

Definition 4.1 (Top- k Selection Set). Let $x \in \mathcal{X}$ and let $\pi : \mathcal{X} \times \mathcal{A} \rightarrow \mathbb{R}$ be a decision rule that assigns a score $\pi(x, j)$ to each entity $j \in \mathcal{A}$. For any $1 \leq k \leq |\mathcal{A}|$, the *top- k selection set* is

$$\Pi_k(x) = \{[1]_\pi^\downarrow, [2]_\pi^\downarrow, \dots, [k]_\pi^\downarrow\},$$

where $[i]_\pi^\downarrow$ denotes the index of the i -th highest-scoring entity under $\pi(x, \cdot)$. The ordering is non-increasing: $\pi(x, [1]_\pi^\downarrow) \geq \pi(x, [2]_\pi^\downarrow) \geq \dots \geq \pi(x, [k]_\pi^\downarrow)$.

Choosing $k = 1$ recovers the standard top-1 rule $\Pi_1(x) = \{\arg \max_{j \in \mathcal{A}} \pi(x, j)\}$, which corresponds to $\Pi_1(x) = \{\arg \max_{j \in \mathcal{A}^{1s}} h(x, j)\}$ in the one-stage setting (Mozannar & Sontag, 2020; Cao et al., 2024; Mao et al., 2024a) and $\Pi_1(x) = \{\arg \max_{j \in \mathcal{A}^{2s}} r(x, j)\}$ in the two-stage setting (Narasimhan et al., 2022; Mao et al., 2023a; 2024c; Montreuil et al., 2025b).

Remark 1. We further show in Appendix A.6 that the Top- k Selection Set subsumes classical cascade approaches (Viola & Jones, 2001; Saberian & Vasconcelos, 2014; Dohan et al., 2022; Jitkrittum et al., 2023) as a strict special case, thereby unifying cascaded inference and multi-expert deferral under a single framework.

Top- k True Deferral Loss. L2D losses are tailored to top-1 selection and do not extend directly to $k > 1$. In the one-stage case (Definition 3.1), terms such as $\mathbf{1}\{h(x) \neq y\}\mathbf{1}\{h(x) \leq n\}$ enforce exclusivity, assuming exactly one entity is chosen. This assumption breaks in the top- k setting: the selection set $\Pi_k(x)$ may simultaneously include the true label y and multiple experts with heterogeneous accuracy and cost. A naive extension, e.g. $\mathbf{1}\{y \in \Pi_k(x)\}$, is inadequate for three reasons: (i) it collapses correctness to the mere inclusion of y , ignoring whether the consulted experts themselves are reliable; (ii) it fails to account for the cumulative consultation costs incurred when querying several entities; and (iii) it yields non-decomposable set-based indicators, which obstruct surrogate design since the accuracy–cost tradeoff is determined jointly at the *set* level rather than per entity. These issues motivate a reformulation of L2D losses to handle top- k deferral.

Each regime specifies an entity set \mathcal{A} and associated functions $\{\hat{a}_j : \mathcal{X} \rightarrow \mathcal{Z}\}_{j \in \mathcal{A}}$:

- One-stage: $\mathcal{A}^{1s} = \{1, \dots, n + J\}$, where $\hat{a}_j(x) = j$ for $j \leq n$ (predicting label j), and $a_{n+j}(x) = \hat{m}_j(x)$ for $j = 1, \dots, J$ (deferring to expert m_j).
- Two-stage: $\mathcal{A}^{2s} = \{1, \dots, J + 1\}$, where $a_1(x)$ is the base predictor prediction $\hat{g}(x)$, and $a_{1+j}(x) = \hat{m}_j(x)$ for $j = 1, \dots, J$ (deferring to expert m_j).

For any entity $j \in \mathcal{A}$, we define an *augmented cost* $\mu_j(x, z) = \alpha_j \psi(\hat{a}_j(x), z) + \beta_j$, where $\alpha_j, \beta_j \geq 0$, and ψ is a task-specific error measure (the 0–1 loss in classification, or any non-negative loss otherwise). By construction, $\mu_j(x, z) \in \mathbb{R}_+$.

Definition 4.2 (Top- k True Deferral Loss). Let $x \in \mathcal{X}$, $z \in \mathcal{Z}$, and $\Pi_k(x) \subseteq \mathcal{A}$ be the top- k selection set. Let $\mu_j(x, z)$ the cost of selecting entity j for input (x, z) . The uniformized top- k true deferral loss is

$$\ell_{\text{def}, k}(\Pi_k(x), z) = \sum_{j=1}^{|\mathcal{A}|} \mu_j(x, z) \mathbf{1}\{j \in \Pi_k(x)\},$$

We give a detailed explanation in Appendix A.7. This loss quantifies the *total cost* of allocating a query to k entities, thereby unifying the one-stage (Definition 3.1) and two-stage (Definition 3.2) objectives into a single formulation that explicitly supports joint decision-making across multiple entities. Unlike classical top-1 deferral, which only evaluates the outcome of a single choice, the top- k loss accumulates both predictive errors and consultation costs across all selected entities.

For instance, in binary classification with $\mathcal{Y} = \{1, 2\}$ and two experts, the entity set is $\mathcal{A} = \{1, 2, 3, 4\}$, where $j \leq 2$ correspond to labels and $j > 2$ to experts. If the top-2 selection set is $\Pi_2(x) = \{3, 1\}$, the incurred loss is $\mu_3(x, y) + \mu_1(x, y)$, jointly reflecting the cost of deferring to both expert m_1 and predicting label 1.

Remark 2. For $k = 1$, the top- k deferral loss reduces exactly to the classical objectives: the one-stage loss in Definition 3.1 and the two-stage loss in Definition 3.2.

4.2 SURROGATES FOR THE TOP- k TRUE DEFERRAL LOSS

In Lemma 4.2, the top- k true deferral loss is defined via a hard ranking operator over the selection set $\Pi_k(x)$. This makes it discontinuous and non-differentiable, hence unsuitable for gradient-based optimization. To enable practical learning, we follow standard practice in Learning-to-Defer (Mozannar & Sontag, 2020; Charusai et al., 2022; Cao et al., 2024; Mao et al., 2024a; Montreuil et al., 2025b;a) and introduce a convex surrogate family grounded in the theory of calibrated surrogate losses (Zhang, 2002; Bartlett et al., 2006).

270 **Lemma 4.3** (Upper Bound on the Top- k Deferral Loss). *Let $x \in \mathcal{X}$, $z \in \mathcal{Z}$, and let $1 \leq k \leq |\mathcal{A}|$.
271 Let Φ_{01}^u a convex surrogate in the cross-entropy family. Then the top- k deferral loss satisfies*

$$273 \quad \ell_{\text{def},k}(\Pi_k(x), z) \leq \sum_{j \in \mathcal{A}} \left(\sum_{i \neq j} \mu_i(x, z) \right) \Phi_{01}^u(\pi, x, j) - (|\mathcal{A}| - 1 - k) \sum_{j \in \mathcal{A}} \mu_j(x, z), \\ 274$$

275 We prove Lemma 4.3 in Appendix A.8. The key observation is that the cost term $\sum_{j \in \mathcal{A}} \mu_j(x, z)$
276 does not depend on the decision rule π , since each $\mu_j(x, z) = \alpha_j \psi(\hat{a}_j(x), z) + \beta_j$ is fixed for a given
277 (x, z) in both the one-stage and two-stage regimes. Furthermore, for all $k \leq |\mathcal{A}|$, we have $\mathbf{1}\{j \in \Pi_k(x)\} \leq \Phi_{01}^u(\pi, x, j)$ (Lapin et al., 2017; Cortes et al., 2024). Consequently, minimizing the upper
278 bound reduces to minimizing only the first term, and the optimization becomes *independent of k* .
279 This directly yields the following tight surrogate family:
280

281 **Corollary 4.4** (Surrogates for the Top- k Deferral Loss). *Let $x \in \mathcal{X}$, $z \in \mathcal{Z}$, and let $\pi : \mathcal{X} \times \mathcal{A} \rightarrow \mathbb{R}$
282 be a decision rule. The corresponding surrogate family for the top- k deferral loss is*

$$283 \quad \Phi_{\text{def},k}^u(\pi, x, z) = \sum_{j \in \mathcal{A}} \left(\sum_{i \neq j} \mu_i(x, z) \right) \Phi_{01}^u(\pi, x, j), \\ 285$$

286 which is independent of k .
287

288 This independence is a key strength: a single decision rule π can be trained once and reused for
289 any cardinality level k , eliminating the need for retraining and allowing practitioners to adjust the
290 number of consulted experts dynamically at inference time depending on budget or risk constraints.
291 Algebraically, the surrogate in Corollary 4.4 coincides with the formulation of Mao et al. (2024c),
292 but our derivation shows that this form arises as a convex upper bound for all k . Thus, the loss
293 expression itself remains unchanged, while our framework extends the underlying deferral objective,
294 the decision rule, and the guarantees from top-1 to the general top- k setting.

295 However, convexity and boundedness alone do not suffice for statistical validity (Zhang, 2002;
296 Bartlett et al., 2006). Crucially, the fact that our surrogate coincides algebraically with that of Mao
297 et al. (2024c) does not imply that their guarantees transfer: their analysis establishes consistency
298 only in the top-1 regime, leaving the multi-entity case $k > 1$ unresolved. Extending consistency
299 from $k = 1$ to $k > 1$ is generally non-trivial, as shown in the top- k classification literature (Lapin
300 et al., 2015; 2016; 2017; Yang & Koyejo, 2020; Cortes et al., 2024), where set-valued decisions
301 introduce fundamentally different statistical challenges. Closing this gap requires new analysis. In
302 the next subsection, we establish that minimizing any member of the surrogate family $\Phi_{\text{def},k}^u$ yields
303 consistency for both one-stage and two-stage L2D, thereby guaranteeing convergence to the Bayes-
304 optimal top- k deferral policy as the sample size grows.
305

305 4.3 THEORETICAL GUARANTEES

306 While recent work by Cortes et al. (2024) has established that the cross-entropy family of surrogates
307 Φ_{01}^u is \mathcal{H}_π -consistent for the top- k *classification* loss $\ell_k(\Pi_k(x), j) = \mathbf{1}\{j \in \Pi_k(x)\}$, the consis-
308 tency of top- k *deferral* surrogates remains unresolved and requires dedicated theoretical analysis.
309 Unlike standard classification, deferral introduces an additional layer of complexity: costs depend
310 jointly on predictive accuracy and consultation with heterogeneous experts, and errors propagate
311 differently depending on whether the system predicts directly or defers. These factors fundamen-
312 tally alter the Bayes-optimal decision rule, making existing results insufficient. Prior analyses have
313 addressed the $k = 1$ case in one-stage and two-stage settings (Mozannar & Sontag, 2020; Verma
314 et al., 2022; Mao et al., 2024a;c), but extending consistency guarantees to $k > 1$ is non-trivial. Our
315 theoretical analysis fills this gap by proving that the surrogate family $\Phi_{\text{def},k}^u$ is Bayes- and class-
316 consistent for the top- k deferral objective, thereby establishing statistical validity of learning in this
317 more general regime.
318

319 To proceed, we impose only mild regularity conditions on the hypothesis class \mathcal{H}_π : (i) *Regularity*:
320 for any input x , the scores $\pi(x, \cdot)$ induce a strict total order over all entities in \mathcal{A} ; (ii) *Symmetry*: the
321 scoring rule is invariant under permutations of entity indices, i.e., relabeling entities does not affect
322 the induced scores; (iii) *Completeness*: for every fixed x , the range of $\pi(x, j)$ is dense in \mathbb{R} .
323

324 These assumptions are standard and are satisfied by common hypothesis classes, including fully
325 connected neural networks and the space of all measurable functions $\mathcal{H}_\pi^{\text{all}}$ (Awasthi et al., 2022).
326

324 4.3.1 OPTIMALITY OF THE TOP- k SELECTION SET
325

326 A central challenge in Learning-to-Defer is deciding which entities to consult at test time, given
327 their heterogeneous accuracies and consultation costs. For $k = 1$, prior work has established that
328 the Bayes-optimal policy selects the single entity with the lowest expected cost (Mozannar & Sontag,
329 2020; Verma et al., 2022; Narasimhan et al., 2022; Mao et al., 2023a; 2024a). The key question we
330 address is how this principle extends to the richer regime $k > 1$. We prove the following Lemma in
331 Appendix A.9.

332 **Lemma 4.5** (Bayes-Optimal Top- k Selection). *Let $x \in \mathcal{X}$. For each entity $j \in \mathcal{A}$, define
333 the expected cost $\bar{\mu}_j(x) = \mathbb{E}_{Z|X=x}[\mu_j(x, Z)]$, its Bayes-optimal expected cost as $\bar{\mu}_j^B(x) =$
334 $\inf_{g \in \mathcal{H}_g} \bar{\mu}_j(x)$. Then the Bayes-optimal top- k selection set is*

$$335 \quad \Pi_k^B(x) = \arg \min_{\substack{\Pi_k \subseteq \mathcal{A} \\ |\Pi_k|=k}} \sum_{j \in \Pi_k} \bar{\mu}_j^B(x) = \{[1]_{\bar{\mu}^B}^{\uparrow}, [2]_{\bar{\mu}^B}^{\uparrow}, \dots, [k]_{\bar{\mu}^B}^{\uparrow}\},$$

336 where $[i]_{\bar{\mu}^B}^{\uparrow}$ denotes the index of the i -th smallest expected cost in $\{\bar{\mu}_j^B(x) : j \in \mathcal{A}\}$. In the one-stage
337 regime, where no base predictor class \mathcal{H}_g is defined, we simply set $\bar{\mu}_j^B(x) = \bar{\mu}_j(x)$.

338 Lemma 4.5 shows that Bayes-optimal top- k deferral is obtained by ranking entities according to
339 their expected cost and selecting the k lowest.

340 **Corollary 4.6** (Special cases for $k = 1$). *The Bayes rule in Lemma 4.5 recovers prior Top-1 results:*

341 1. **One-stage L2D.** For any entity j (labels $j \leq n$ and experts $j > n$),

$$342 \quad \bar{\mu}_j^B(x) = \alpha_j \mathbb{P}(\hat{a}_j(x) \neq Y | X = x) + \beta_j,$$

343 which yields the Top-1 Bayes policy of Mozannar & Sontag (2020).

344 2. **Two-stage L2D.** Let $j = 1$ denote the base predictor and $j \geq 2$ the experts. Then

$$345 \quad \bar{\mu}_1^B(x) = \alpha_1 \inf_{g \in \mathcal{H}_g} \mathbb{E}_{Z|X=x} [\psi(\hat{g}(x), Z)] + \beta_1,$$

$$346 \quad \text{and for } j \geq 2, \bar{\mu}_j^B(x) = \alpha_j \mathbb{E}_{Z|X=x} [\psi(\hat{m}_{j-1}(x), Z)] + \beta_j,$$

347 recovering the Top-1 allocation in Narasimhan et al. (2022); Mao et al. (2023a); Montreuil
348 et al. (2025b).

349 3. **Selective prediction (reject option).** We take the set of label entities and augment it with
350 an abstain entity \perp , defined by $\alpha_{\perp} = 0$ and $\beta_{\perp} = \lambda > 0$, while label entities use $\alpha_j =$
351 $1, \beta_j = 0$. Then

$$352 \quad \bar{\mu}_j^B(x) = \mathbb{P}(j \neq Y | X = x) \quad (j \in \{1, \dots, n\}), \quad \bar{\mu}_{\perp}^B(x) = \lambda,$$

353 yielding the Chow's rule (Chow, 1970).

354 We defer the proof of this corollary and give additional details in Appendix A.10. The Top- k Bayes
355 policy strictly generalizes all prior Top-1 results: it reduces to known rules when $k = 1$, but for
356 $k > 1$ it yields a principled way to combine multiple entities under a unified cost-sensitive criterion.

357 4.3.2 CONSISTENCY OF THE TOP- k DEFERRAL LOSS SURROGATES
358

359 Having established the Bayes-optimal policy in Lemma 4.5, we now turn to the surrogate family
360 $\Phi_{\text{def},k}^u$. The central question is whether minimizing the surrogate risk guarantees convergence to
361 toward the Bayes-optimal policy for the top- k true deferral loss (Lemma 4.2). This property, known
362 as *consistency*, is crucial: without it, empirical risk minimization may converge to arbitrarily sub-
363 optimal policies. While consistency has been established for $k = 1$ in both one-stage (Mozannar &
364 Sontag, 2020; Verma et al., 2022; Mao et al., 2024a) and two-stage (Narasimhan et al., 2022; Mao
365 et al., 2024c; Montreuil et al., 2025b), no prior results extend to the richer regime $k > 1$.

366 **Theorem 4.7** (Unified Consistency for Top- k Deferral). *Let \mathcal{A} denote the set of entities. Assume
367 that \mathcal{H}_{π} is symmetric, complete, and regular for top- k deferral, and that in the two-stage case, \mathcal{H}_g*

378 is the base predictor class. Let $S := (|\mathcal{A}| - 1) \sum_{j \in \mathcal{A}} \mathbb{E}_X[\bar{\mu}_j(X)]$. Suppose Φ_{01}^u is \mathcal{H}_π -consistent
 379 for top- k classification with a non-negative, non-decreasing, concave function Γ_u^{-1} .
 380

381 **One-stage.** Let $\mathbb{E}_X[\bar{\mu}_j(X)] = \alpha_j \mathbb{P}(\hat{a}_j(X) \neq Y) + \beta_j$. For any $h \in \mathcal{H}_h$,

$$382 \mathcal{E}_{\ell_{\text{def},k}}(h) - \mathcal{E}_{\ell_{\text{def},k}}^B(\mathcal{H}_h) + \mathcal{U}_{\ell_{\text{def},k}}(\mathcal{H}_h) \leq k S \Gamma_u^{-1} \left(\frac{\mathcal{E}_{\Phi_{\text{def},k}^u}(h) - \mathcal{E}_{\Phi_{\text{def},k}^u}^*(\mathcal{H}_h) + \mathcal{U}_{\Phi_{\text{def},k}^u}(\mathcal{H}_h)}{S} \right).$$

385 **Two-stage.** Let $\mathbb{E}_X[\bar{\mu}_j(X)] = \alpha_j \mathbb{E}_{X,Z}[\psi(\hat{a}_j(X), Z)] + \beta_j$. For any $(r, g) \in \mathcal{H}_r \times \mathcal{H}_g$,

$$387 \mathcal{E}_{\ell_{\text{def},k}}(r, g) - \mathcal{E}_{\ell_{\text{def},k}}^B(\mathcal{H}_r, \mathcal{H}_g) + \mathcal{U}_{\ell_{\text{def},k}}(\mathcal{H}_r, \mathcal{H}_g) \leq \mathbb{E}_X[\bar{\mu}_1(X) - \inf_{g \in \mathcal{H}_g} \bar{\mu}_1(X)] \\ 388 \\ 389 + k S \Gamma_u^{-1} \left(\frac{\mathcal{E}_{\Phi_{\text{def},k}^u}(r) - \mathcal{E}_{\Phi_{\text{def},k}^u}^*(\mathcal{H}_r) + \mathcal{U}_{\Phi_{\text{def},k}^u}(\mathcal{H}_r)}{S} \right)$$

392 with $\Gamma_1(v) = \frac{1+v}{2} \log(1+v) + \frac{1-v}{2} \log(1-v)$ (logistic), $\Gamma_0(v) = 1 - \sqrt{1-v^2}$ (exponential), and
 393 $\Gamma_2(v) = v/|\mathcal{A}|$ (MAE).
 394

395 We give the proof in Appendix A.11. Theorem 4.7 provides the first consistency guarantees for
 396 top- k deferral across both one-stage and two-stage regimes. The bounds reveal that the excess
 397 deferral risk depends explicitly on k : consulting more entities enlarges the cost term $k S$. At the
 398 same time, calibration of Φ_{01}^u ensures that minimizing surrogate risk drives the excess true risk
 399 to zero, establishing both \mathcal{H}_h , $(\mathcal{H}_r, \mathcal{H}_g)$, and Bayes-consistency: learned policies converge to the
 400 Bayes-optimal top- k deferral rule from Lemma 4.5 as data grows.

401 In the two-stage regime, we assume the Bayes-optimal cost is attainable (or can be arbitrarily well
 402 approximated), i.e., there exists a sequence $g_t \in \mathcal{H}_g$ such that $\mathbb{E}_X[\bar{\mu}_1(X) - \bar{\mu}_1^B(X)] \rightarrow 0$. Fur-
 403 thermore, if there exists $r_t \in \mathcal{H}_r$ with $\mathcal{E}_{\Phi_{\text{def},k}^u}(r_t) - \mathcal{E}_{\Phi_{\text{def},k}^u}^*(\mathcal{H}_r) + \mathcal{U}_{\Phi_{\text{def},k}^u}(\mathcal{H}_r) \rightarrow 0$, then by
 404 Theorem 4.7 and the fact that $v \mapsto k S \Gamma_u^{-1}(v/S)$ is nonnegative and nondecreasing on $[0, \infty)$ with
 405 $\Gamma_u^{-1}(0) = 0$, we obtain $\mathcal{E}_{\ell_{\text{def},k}}(r_t, g_t) - \mathcal{E}_{\ell_{\text{def},k}}^B(\mathcal{H}_r, \mathcal{H}_g) + \mathcal{U}_{\ell_{\text{def},k}}(\mathcal{H}_r, \mathcal{H}_g) \rightarrow 0$, which shows that
 406 the surrogate indeed minimizes its target loss.

407 **The minimizability gap vanishes under realizability and, more generally, whenever the hypothesis**
 408 **class is sufficiently rich, for instance when $\mathcal{H}_\pi = \mathcal{H}_\pi^{\text{all}}$ (Steinwart, 2007).** Importantly, by setting
 409 $k = 1$, we recover the established \mathcal{H}_h -consistency bounds for one-stage L2D (Mao et al., 2024a)
 410 and $(\mathcal{H}_r, \mathcal{H}_g)$ -consistency bounds for two-stage L2D (Mao et al., 2024c; 2023a; Montreuil et al.,
 411 2025b). Thus our result strictly generalizes prior work, while covering the entire cross-entropy
 412 surrogate family, including log-softmax, exponential, and MAE. This unification provides the first
 413 rigorous statistical foundation for multi-expert deferral.

415 5 TOP- k (x): ADAPTING THE NUMBER OF ENTITIES PER QUERY

417 While our Top- k deferral framework enables richer allocations than prior works, it still assumes
 418 a uniform cardinality k across all queries. In practice, input complexity varies: some instances
 419 may require only one confident decision, while others may benefit from aggregating over multiple
 420 entities. To address this heterogeneity, we propose an adaptive mechanism that selects a query-
 421 specific number of entities.

422 Following the principle of cardinality adaptation introduced in Top- k classification (Cortes et al.,
 423 2024), we define a *cardinality function* $k_\theta : \mathcal{X} \rightarrow \mathcal{A}$, parameterized by a hypothesis class \mathcal{H}_k . For a
 424 given input x , the function selects the cardinality level via $\hat{k}_\theta(x) = \arg \max_{i \in \mathcal{A}} k(x, i)$ and returns
 425 the Top- $k(x)$ subset $\Pi_{\hat{k}_\theta(x)}(x) \subseteq \Pi_{|\mathcal{A}|}(x)$ produced by the scoring function $\pi(x, \cdot)$.
 426

427 **Definition 5.1** (Cardinality-Aware Deferral Loss). Let $x \in \mathcal{X}$, and let $\Pi_{\hat{k}_\theta(x)}(x)$ denote the adaptive
 428 Top- $k(x)$ subset. Let d denote a metric, $\xi : \mathbb{R}^+ \rightarrow \mathbb{R}^+$ a non-decreasing function, and $\lambda \geq 0$ a
 429 regularization parameter. Then, the adaptive cardinality loss is defined as

$$430 \ell_{\text{card}}(\Pi_{\hat{k}_\theta(x)}(x), \hat{k}_\theta(x), x, z) = d(\Pi_{\hat{k}_\theta(x)}(x), x, z) + \lambda \xi \left(\sum_{i=1}^{\hat{k}_\theta(x)} \beta_{[i]_\pi^1} \right),$$

432 with surrogate $\Phi_{\text{card}}(\Pi_{|\mathcal{A}|}(x), k_\theta, x, z) = \sum_{v \in \mathcal{A}} (1 - \tilde{\ell}_{\text{card}}(\Pi_v(x), v, x, z)) \Phi_{01}^u(k_\theta, x, v)$, where
 433 $\tilde{\ell}_{\text{card}}$ is a normalized version of the cardinality-aware loss and $\beta_{[i]_\pi^\downarrow}$ denotes the consultation cost of
 434 the i -th ranked entity. This surrogate is \mathcal{H}_k -consistent, and the proof follows the same structure as
 435 in Cortes et al. (2024).
 436

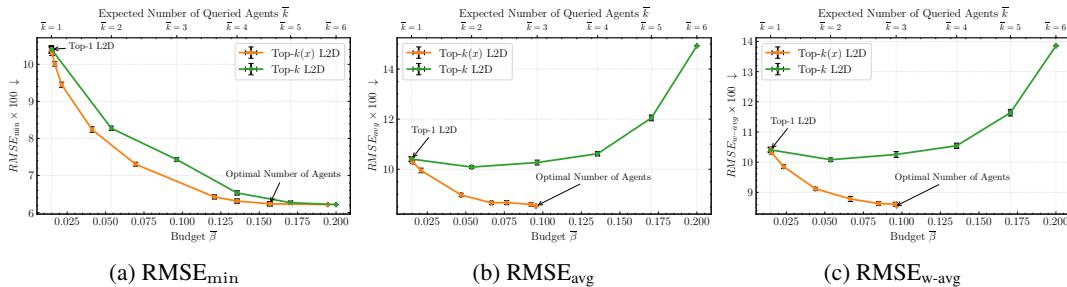
437 The term $d(\Pi_{\hat{k}_\theta(x)}(x), x, z)$ captures the predictive error of the selected set and can be instantiated
 438 using top- k accuracy, majority-voting error, or any other task-dependent aggregation metric (see
 439 Appendix A.13 for examples). The second component penalizes costly selections, encouraging the
 440 model to query additional entities only when the expected accuracy gain justifies the consultation
 441 cost.
 442

443 A detailed theoretical analysis of the behavior of the cardinality function k_θ is provided in Ap-
 444 pendix A.12. There, we show that the number of selected entities increases only when the anticipated
 445 gain in predictive accuracy outweighs the additional consultation cost.
 446

6 EXPERIMENTS

447 We evaluate our proposed methods—*Top- k L2D* and its adaptive extension *Top- $k(x)$ L2D*—against
 448 state-of-the-art one-stage (Mozannar & Sontag, 2020; Mao et al., 2024a) and two-stage (Narasimhan
 449 et al., 2022; Mao et al., 2023a; 2024c; Montreuil et al., 2025b) baselines. Across all tasks, *Top- k*
 450 and *Top- $k(x)$* consistently outperform single-expert deferral methods, demonstrating both improved
 451 accuracy-cost trade-offs and strict generalization beyond $k = 1$.
 452

453 In the main text, we report two-stage results on the **California Housing** dataset (Kelley Pace &
 454 Barry, 1997), while deferring additional experiments for both settings on **CIFAR-100** and
 455 **SVHN** to Appendix B.2. For the one-stage setting, we provide detailed evaluations on CIFAR-
 456 10 (Krizhevsky, 2009) and SVHN (Goodfellow et al., 2013) in Appendix B.3. Evaluation met-
 457 riques are formally defined in Appendices A.13 and B.1.1. We track the *expected budget* $\bar{\beta}(k) =$
 458 $\mathbb{E}_X[\sum_{j=1}^k \beta_{[j]_\pi^\downarrow}]$ and the expected number of queried entities $\bar{k} = \mathbb{E}_X[|\Pi_k(X)|]$, where k is fixed
 459 in Top- k L2D and input-dependent in Top- $k(x)$ L2D. Algorithms are provided in Appendix A.4,
 460 with illustrations in Appendix A.5.
 461



472 Figure 1: Performance of Top- k and Top- $k(x)$ L2D across varying budgets $\bar{\beta}$. Each plot reports a
 473 different metric: (a) minimum RMSE, (b) uniform average RMSE, and (c) weighted average RMSE
 474 (B.1.1). Our approach outperforms the Top-1 L2D baseline (Mao et al., 2024c).
 475

476 **Interpretation.** In Figure 1a, Top- $k(x)$ achieves a near-optimal RMSE of 6.23 with a budget of
 477 $\bar{\beta} = 0.156$ and an expected number of entities $\bar{k} = 4.77$, whereas Top- k requires the full budget
 478 $\bar{\beta} = 0.2$ and $\bar{k} = 6$ entities to reach a comparable score (6.21). This demonstrates the ability of Top- $k(x)$
 479 to allocate resources more efficiently by querying only the necessary entities, in contrast to Top- k ,
 480 which tends to over-allocate costly or redundant ones. Additionally, our approach outperforms
 481 the Top-1 L2D baseline (Mao et al., 2024c), confirming the limitations of single-entity deferral.
 482

483 Figures 1b and 1c evaluate Top- k and Top- $k(x)$ L2D under more restrictive metrics—RMSE_{avg} and
 484 RMSE_{w-avg}—where performance is not necessarily monotonic in the number of queried entities. In
 485 these settings, consulting too many or overly expensive entities may degrade overall performance.
 Top- $k(x)$ consistently outperforms Top- k by carefully adjusting the number of consulted entities. In

486 both cases, $\text{Top-}k(x)$ achieves optimal performance using a budget of just $\beta = 0.095$ —a level that
 487 $\text{Top-}k$ fails to attain. For example, in Figure 1b, $\text{Top-}k(x)$ achieves an $\text{RMSE}_{\text{avg}} = 8.53$, compared
 488 to 10.08 for $\text{Top-}k$. This demonstrates that our $\text{Top-}k(x)$ L2D selectively chooses the appropriate
 489 entities—when necessary—to enhance the overall system performance.
 490

491 7 CONCLUSION

492
 493 We introduced *Top- k Learning-to-Defer*, a generalization of the two-stage L2D framework that al-
 494 lows deferring queries to multiple agents, and its adaptive extension, *Top- $k(x)$ L2D*, which dyna-
 495 mically selects the number of consulted agents based on input complexity, consultation costs, and the
 496 agents’ underlying distributions. We established rigorous theoretical guarantees, including Bayes
 497 and $(\mathcal{H}_r, \mathcal{H}_g)$ -consistency, \mathcal{H}_h -consistency, and showed that model cascades arise as a restricted
 498 special case of our framework. Through experiments on both one-stage and two-stage regimes, we
 499 demonstrated that $\text{Top-}k$ and $\text{Top-}k(x)$ L2D consistently outperforms single-agent baselines.
 500

501 8 REPRODUCIBILITY STATEMENT

502 All code, datasets, and experimental configurations are publicly released to facilitate full repro-
 503 ducibility. Results are reported as the mean and standard deviation over four independent runs, with
 504 a fixed set of experts. For random baseline policies, metrics are averaged over fifty repetitions to
 505 reduce stochastic variability. All plots include error bars indicating one standard deviation. Dataset
 506 details are provided in Appendix B.1.3, while the training procedures for both the policy and the
 507 cardinality function are described in Algorithm 1 and Algorithm 2. Proofs, intermediate derivations,
 508 and explicit assumptions are included in the Appendix.
 509

511 REFERENCES

512
 513 Pranjal Awasthi, Anqi Mao, Mehryar Mohri, and Yutao Zhong. Multi-class h-consistency bounds.
 514 In *Proceedings of the 36th International Conference on Neural Information Processing Systems*,
 515 NIPS ’22, Red Hook, NY, USA, 2022. Curran Associates Inc. ISBN 9781713871088.
 516
 517 Peter Bartlett, Michael Jordan, and Jon McAuliffe. Convexity, classification, and risk bounds.
 518 *Journal of the American Statistical Association*, 101:138–156, 02 2006. doi: 10.1198/
 519 016214505000000907.
 520
 521 Peter L. Bartlett and Marten H. Wegkamp. Classification with a reject option using a hinge loss. *The*
 522 *Journal of Machine Learning Research*, 9:1823–1840, June 2008.
 523
 524 Nina L Corvelo Benz and Manuel Gomez Rodriguez. Counterfactual inference of second opinions.
 525 In *Uncertainty in Artificial Intelligence*, pp. 453–463. PMLR, 2022.
 526
 527 Yuzhou Cao, Tianchi Cai, Lei Feng, Lihong Gu, Jinjie Gu, Bo An, Gang Niu, and Masashi
 528 Sugiyama. Generalizing consistent multi-class classification with rejection to be compatible with
 529 arbitrary losses. *Advances in neural information processing systems*, 35:521–534, 2022.
 530
 531 Yuzhou Cao, Hussein Mozannar, Lei Feng, Hongxin Wei, and Bo An. In defense of softmax
 532 parametrization for calibrated and consistent learning to defer. In *Proceedings of the 37th In-*
 533 *ternational Conference on Neural Information Processing Systems*, NIPS ’23, Red Hook, NY,
 534 USA, 2024. Curran Associates Inc.
 535
 536 Mohammad-Amin Charusai, Hussein Mozannar, David Sontag, and Samira Samadi. Sample effi-
 537 cient learning of predictors that complement humans, 2022.
 538
 539 C. Chow. On optimum recognition error and reject tradeoff. *IEEE Transactions on Information*
 540 *Theory*, 16(1):41–46, January 1970. doi: 10.1109/TIT.1970.1054406.
 541
 542 Corinna Cortes and Vladimir Naumovich Vapnik. Support-vector networks. *Machine Learning*, 20:
 543 273–297, 1995. URL <https://api.semanticscholar.org/CorpusID:52874011>.

540 Corinna Cortes, Giulia DeSalvo, and Mehryar Mohri. Learning with rejection. In Ronald Ortner,
 541 Hans Ulrich Simon, and Sandra Zilles (eds.), *Algorithmic Learning Theory*, pp. 67–82, Cham,
 542 2016. Springer International Publishing. ISBN 978-3-319-46379-7.

543 Corinna Cortes, Anqi Mao, Christopher Mohri, Mehryar Mohri, and Yutao Zhong. Cardinality-
 544 aware set prediction and top-\$k\$ classification. In *The Thirty-eighth Annual Conference on Neu-
 545 ral Information Processing Systems*, 2024. URL <https://openreview.net/forum?id=WAT3qu737X>.

546 Thomas G. Dietterich. Ensemble methods in machine learning. In *Multiple Classifier Systems*, pp.
 547 1–15, Berlin, Heidelberg, 2000. Springer Berlin Heidelberg. ISBN 978-3-540-45014-6.

548 David Dohan, Winnie Xu, Aitor Lewkowycz, Jacob Austin, David Bieber, Raphael Gontijo Lopes,
 549 Yuhuai Wu, Henryk Michalewski, Rif A Saurous, Jascha Sohl-Dickstein, et al. Language model
 550 cascades. *arXiv preprint arXiv:2207.10342*, 2022.

551 Meherwar Fatima, Maruf Pasha, et al. Survey of machine learning algorithms for disease diagnostic.
 552 *Journal of Intelligent Learning Systems and Applications*, 9(01):1, 2017.

553 Yonatan Geifman and Ran El-Yaniv. Selective classification for deep neural networks. In
 554 I. Guyon, U. Von Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett
 555 (eds.), *Advances in Neural Information Processing Systems*, volume 30. Curran Associates, Inc.,
 556 2017. URL https://proceedings.neurips.cc/paper_files/paper/2017/file/4a8423d5e91fda00bb7e46540e2b0cf1-Paper.pdf.

557 Aritra Ghosh, Himanshu Kumar, and P. S. Sastry. Robust loss functions under label noise for deep
 558 neural networks. In *Proceedings of the Thirty-First AAAI Conference on Artificial Intelligence,
 559 AAAI’17*, pp. 1919–1925. AAAI Press, 2017.

560 Ian J Goodfellow, Yaroslav Bulatov, Julian Ibarz, Sacha Arnoud, and Vinay Shet. Multi-digit number
 561 recognition from street view imagery using deep convolutional neural networks. *arXiv preprint
 562 arXiv:1312.6082*, 2013.

563 Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recog-
 564 nition. In *Proceedings of the IEEE conference on computer vision and pattern recognition*, pp.
 565 770–778, 2016.

566 Patrick Hemmer, Sebastian Schellhammer, Michael Vössing, Johannes Jakubik, and Gerhard
 567 Satzger. Forming effective human-AI teams: Building machine learning models that comple-
 568 ment the capabilities of multiple experts. In Lud De Raedt (ed.), *Proceedings of the Thirty-First
 569 International Joint Conference on Artificial Intelligence, IJCAI-22*, pp. 2478–2484. International
 570 Joint Conferences on Artificial Intelligence Organization, 7 2022. doi: 10.24963/ijcai.2022/344.
 571 URL <https://doi.org/10.24963/ijcai.2022/344>. Main Track.

572 Yulei Jiang, Robert M Nishikawa, Robert A Schmidt, Charles E Metz, Maryellen L Giger, and Kunio
 573 Doi. Improving breast cancer diagnosis with computer-aided diagnosis. *Academic radiology*, 6
 574 (1):22–33, 1999.

575 Wittawat Jitkrittum, Neha Gupta, Aditya K Menon, Harikrishna Narasimhan, Ankit Rawat, and
 576 Sanjiv Kumar. When does confidence-based cascade deferral suffice? *Advances in Neural Infor-
 577 mation Processing Systems*, 36:9891–9906, 2023.

578 R. Kelley Pace and Ronald Barry. Sparse spatial autoregressions. *Statistics and Probability Let-
 579 ters*, 33(3):291–297, 1997. ISSN 0167-7152. doi: [https://doi.org/10.1016/S0167-7152\(96\)00140-X](https://doi.org/10.1016/S0167-7152(96)00140-X). URL <https://www.sciencedirect.com/science/article/pii/S016771529600140X>.

580 Gavin Kerrigan, Padhraic Smyth, and Mark Steyvers. Combining human predictions with
 581 model probabilities via confusion matrices and calibration. In M. Ranzato, A. Beygelz-
 582 imer, Y. Dauphin, P.S. Liang, and J. Wortman Vaughan (eds.), *Advances in Neural
 583 Information Processing Systems*, volume 34, pp. 4421–4434. Curran Associates, Inc.,
 584 2021. URL https://proceedings.neurips.cc/paper_files/paper/2021/file/234b941e88b755b7a72a1c1dd5022f30-Paper.pdf.

594 Vijay Keswani, Matthew Lease, and Krishnaram Kenthapadi. Towards unbiased and accurate de-
 595 ferral to multiple experts. In *Proceedings of the 2021 AAAI/ACM Conference on AI, Ethics, and*
 596 *Society*, AIES '21, pp. 154–165, New York, NY, USA, 2021. Association for Computing Machinery.
 597 ISBN 9781450384735. doi: 10.1145/3461702.3462516. URL <https://doi.org/10.1145/3461702.3462516>.

599 Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. *arXiv preprint*
 600 *arXiv:1412.6980*, 2014.

602 Alex Krizhevsky. Learning multiple layers of features from tiny images. 2009. URL <https://api.semanticscholar.org/CorpusID:18268744>.

604 Maksim Lapin, Matthias Hein, and Bernt Schiele. Top-k multiclass svm. *Advances in neural infor-*
 605 *mation processing systems*, 28, 2015.

607 Maksim Lapin, Matthias Hein, and Bernt Schiele. Loss functions for top-k error: Analysis and
 608 insights. In *Proceedings of the IEEE conference on computer vision and pattern recognition*, pp.
 609 1468–1477, 2016.

610 Maksim Lapin, Matthias Hein, and Bernt Schiele. Analysis and optimization of loss functions
 611 for multiclass, top-k, and multilabel classification. *IEEE transactions on pattern analysis and*
 612 *machine intelligence*, 40(7):1533–1554, 2017.

614 Stefanos Laskaridis, Alexandros Kouris, and Nicholas D. Lane. Adaptive inference through early-
 615 exit networks: Design, challenges and directions. In *Proceedings of the 5th International Work-*
 616 *shop on Embedded and Mobile Deep Learning*, EMDL'21, pp. 1–6, New York, NY, USA, 2021.
 617 Association for Computing Machinery. ISBN 9781450385978. doi: 10.1145/3469116.3470012.
 618 URL <https://doi.org/10.1145/3469116.3470012>.

619 Shuqi Liu, Yuzhou Cao, Qiaozhen Zhang, Lei Feng, and Bo An. Mitigating underfitting in learn-
 620 ing to defer with consistent losses. In *International Conference on Artificial Intelligence and*
 621 *Statistics*, pp. 4816–4824. PMLR, 2024.

623 Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. *arXiv preprint*
 624 *arXiv:1711.05101*, 2017.

625 David Madras, Toni Pitassi, and Richard Zemel. Predict responsibly: improving fairness and accu-
 626 racy by learning to defer. *Advances in neural information processing systems*, 31, 2018.

628 Anqi Mao, Christopher Mohri, Mehryar Mohri, and Yutao Zhong. Two-stage learning to defer with
 629 multiple experts. In *Thirty-seventh Conference on Neural Information Processing Systems*, 2023a.
 630 URL <https://openreview.net/forum?id=G1lsH0T4b2>.

631 Anqi Mao, Mehryar Mohri, and Yutao Zhong. Cross-entropy loss functions: Theoretical analysis
 632 and applications. In *International conference on Machine learning*, pp. 23803–23828. PMLR,
 633 2023b.

635 Anqi Mao, Mehryar Mohri, and Yutao Zhong. Principled approaches for learning to defer with
 636 multiple experts. In *ISAIM*, 2024a.

637 Anqi Mao, Mehryar Mohri, and Yutao Zhong. Realizable h -consistent and bayes-consistent loss
 638 functions for learning to defer. *Advances in neural information processing systems*, 37:73638–
 639 73671, 2024b.

641 Anqi Mao, Mehryar Mohri, and Yutao Zhong. Regression with multi-expert deferral. In *Proceedings*
 642 *of the 41st International Conference on Machine Learning*, ICML'24. JMLR.org, 2024c.

643 Anqi Mao, Mehryar Mohri, and Yutao Zhong. Mastering multiple-expert routing: Realizable $\$h\$$ -
 644 consistency and strong guarantees for learning to defer. In *Forty-second International Conference*
 645 *on Machine Learning*, 2025.

647 Mehryar Mohri, Afshin Rostamizadeh, and Ameet Talwalkar. *Foundations of machine learning*.
 MIT Press, 2012.

648 Yannis Montreuil, Axel Carlier, Lai Xing Ng, and Wei Tsang Ooi. Adversarial robustness in two-
 649 stage learning-to-defer: Algorithms and guarantees. In *Forty-second International Conference on*
 650 *Machine Learning*, 2025a.

651

652 Yannis Montreuil, Yeo Shu Heng, Axel Carlier, Lai Xing Ng, and Wei Tsang Ooi. A two-stage
 653 learning-to-defer approach for multi-task learning. In *Forty-second International Conference on*
 654 *Machine Learning*, 2025b.

655 Yannis Montreuil, Shu Heng Yeo, Axel Carlier, Lai Xing Ng, and Wei Tsang Ooi. Optimal query
 656 allocation in extractive qa with llms: A learning-to-defer framework with theoretical guarantees.
 657 *arXiv preprint arXiv:2410.15761*, 2025c.

658

659 Hussein Mozannar and David Sontag. Consistent estimators for learning to defer to an expert. In
 660 *Proceedings of the 37th International Conference on Machine Learning*, ICML'20. JMLR.org,
 661 2020.

662 Hussein Mozannar, Hunter Lang, Dennis Wei, Prasanna Sattigeri, Subhro Das, and David A.
 663 Sontag. Who should predict? exact algorithms for learning to defer to humans. In *Inter-
 664 national Conference on Artificial Intelligence and Statistics*, 2023. URL <https://api.semanticscholar.org/CorpusID:255941521>.

665

666 Harikrishna Narasimhan, Wittawat Jitkrittum, Aditya K Menon, Ankit Rawat, and Sanjiv Ku-
 667 mar. Post-hoc estimators for learning to defer to an expert. In S. Koyejo, S. Mo-
 668 hamed, A. Agarwal, D. Belgrave, K. Cho, and A. Oh (eds.), *Advances in Neural In-
 669 formation Processing Systems*, volume 35, pp. 29292–29304. Curran Associates, Inc.,
 670 2022. URL https://proceedings.neurips.cc/paper_files/paper/2022/file/bc8f76d9caadd48f77025b1c889d2e2d-Paper-Conference.pdf.

671

672 R A Ohn Aldrich. Fisher and the making of maximum likelihood 1912-1922. *Statistical Science*,
 673 12(3):162–179, 1997.

674

675 Filippo Palomba, Andrea Pugnana, Jose Manuel Alvarez, and Salvatore Ruggieri. A causal frame-
 676 work for evaluating deferring systems. In *The 28th International Conference on Artificial Intelli-
 677 gence and Statistics*, 2025. URL <https://openreview.net/forum?id=mkkFubLdNW>.

678

679 Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agar-
 680 wal, Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, Gretchen Krueger, and Ilya
 681 Sutskever. Learning transferable visual models from natural language supervision, 2021. URL
 682 <https://arxiv.org/abs/2103.00020>.

683

684 Mohammad Saberian and Nuno Vasconcelos. Boosting algorithms for detector cascade learning.
 685 *Journal of Machine Learning Research*, 15(74):2569–2605, 2014. URL <http://jmlr.org/papers/v15/saberian14a.html>.

686

687 Ingo Steinwart. How to compare different loss functions and their risks. *Constructive Approx-
 688 imation*, 26:225–287, 2007. URL <https://api.semanticscholar.org/CorpusID:16660598>.

689

690 Joshua Strong, Qianhui Men, and Alison Noble. Towards human-AI collaboration in healthcare:
 691 Guided deferral systems with large language models. In *ICML 2024 Workshop on LLMs and*
 692 *Cognition*, 2024. URL <https://openreview.net/forum?id=4c5rg9y4me>.

693

694 Dharmesh Tailor, Aditya Patra, Rajeev Verma, Putra Manggala, and Eric Nalisnick. Learning to de-
 695 fer to a population: A meta-learning approach. In Sanjoy Dasgupta, Stephan Mandt, and Yingzhen
 696 Li (eds.), *Proceedings of The 27th International Conference on Artificial Intelligence and Statis-
 697 tics*, volume 238 of *Proceedings of Machine Learning Research*, pp. 3475–3483. PMLR, 02–04
 698 May 2024. URL <https://proceedings.mlr.press/v238/tailor24a.html>.

699

700 Ambuj Tewari and Peter L. Bartlett. On the consistency of multiclass classification methods. *Journal*
 701 *of Machine Learning Research*, 8(36):1007–1025, 2007. URL <http://jmlr.org/papers/v8/tewari07a.html>.

702 Anish Thilagar, Rafael Frongillo, Jessica J Finocchiaro, and Emma Goodwill. Consistent polyhe-
 703 dral surrogates for top-k classification and variants. In Kamalika Chaudhuri, Stefanie Jegelka,
 704 Le Song, Csaba Szepesvari, Gang Niu, and Sivan Sabato (eds.), *Proceedings of the 39th Inter-
 705 national Conference on Machine Learning*, volume 162 of *Proceedings of Machine Learning
 706 Research*, pp. 21329–21359. PMLR, 17–23 Jul 2022. URL <https://proceedings.mlr.press/v162/thilagar22a.html>.

707

708 Rajeev Verma, Daniel Barrejon, and Eric Nalisnick. Learning to defer to multiple experts:
 709 Consistent surrogate losses, confidence calibration, and conformal ensembles. In *Inter-
 710 national Conference on Artificial Intelligence and Statistics*, 2022. URL <https://api.semanticscholar.org/CorpusID:253237048>.

711

712

713 P. Viola and M. Jones. Rapid object detection using a boosted cascade of simple features. In *Proceedings of the 2001 IEEE Computer Society Conference on Computer Vision and Pattern
 714 Recognition. CVPR 2001*, volume 1, pp. I–I, 2001. doi: 10.1109/CVPR.2001.990517.

715

716 Zixi Wei, Yuzhou Cao, and Lei Feng. Exploiting human-ai dependence for learning to defer. In *Forty-first International Conference on Machine Learning*, 2024.

717

718 Jason Weston and Chris Watkins. Multi-class support vector machines. Technical report, Citeseer,
 719 1998.

720

721 Forest Yang and Sanmi Koyejo. On the consistency of top-k surrogate losses. In *International
 722 Conference on Machine Learning*, pp. 10727–10735. PMLR, 2020.

723

724 Tong Zhang. Statistical behavior and consistency of classification methods based on convex risk
 725 minimization. *Annals of Statistics*, 32, 12 2002. doi: 10.1214/aos/1079120130.

726

727 Zhiliu Zhang and Mert Sabuncu. Generalized cross entropy loss for training deep neural networks
 728 with noisy labels. *Advances in neural information processing systems*, 31, 2018.

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

755

756	CONTENTS	
757		
758		
759	1 Introduction	1
760		
761	2 Related Work	2
762		
763	3 Preliminaries	2
764		
765	4 Generalizing Learning-to-Defer to the Top-k Experts	4
766		
767	4.1 From Single to Top- k Expert Selection	4
768	4.2 Surrogates for the Top- k True Deferral Loss	5
769	4.3 Theoretical Guarantees	6
770	4.3.1 Optimality of the Top- k Selection Set	7
771	4.3.2 Consistency of the Top- k Deferral Loss Surrogates	7
772		
773		
774	5 Top-$k(x)$: Adapting the Number of Entities per Query	8
775		
776	6 Experiments	9
777		
778	7 Conclusion	10
779		
780	8 Reproducibility Statement	10
781		
782		
783		
784	A Appendix	17
785		
786	A.1 General Notations	17
787	A.2 Notations for Ordered Sets	17
788	A.3 Useful Definition	18
789	A.4 Algorithm	19
790	A.5 Illustration of Top- $k(x)$ and Top- k L2D	19
791	A.6 Model Cascades Are Special Cases of Top- k and Top- $k(x)$ Selection	20
792	A.6.1 Model cascades	21
793	A.6.2 Embedding a fixed- k cascade	21
794	A.6.3 Embedding adaptive (early-exit) cascades	21
795	A.6.4 Expressiveness: Model Cascades vs. Top- k / Top- $k(x)$ Selection	21
796	A.7 Proof Lemma 4.2	22
797	A.8 Proof Lemma 4.3	24
798	A.9 Proof Lemma 4.5	25
799	A.10 Proof Corollary 4.6	27
800	A.11 Proof Theorem 4.7	28
801	A.12 Behavior of the Cardinality-Aware Deferral Loss	33
802	A.13 Choice of the Metric d	33
803	A.14 Use of Large Language Models	34

810	B Experiments	34
811	B.1 Resources	34
812	B.1.1 Metrics	34
813	B.1.2 Training	35
814	B.1.3 Datasets	35
815	B.2 One-Stage	35
816	B.2.1 Results on CIFAR-10	36
817	B.2.2 Results on SVHN	37
818	B.3 Two-Stage	38
819	B.3.1 Results on California Housing.	39
820	B.3.2 Results on SVHN	39
821	B.3.3 Results on CIFAR100.	42
822		
823		
824		
825		
826		
827		
828		
829		
830		
831		
832		
833		
834		
835		
836		
837		
838		
839		
840		
841		
842		
843		
844		
845		
846		
847		
848		
849		
850		
851		
852		
853		
854		
855		
856		
857		
858		
859		
860		
861		
862		
863		

864 **A APPENDIX**865 **A.1 GENERAL NOTATIONS**866 Table 1: Summary of main notation used throughout the paper.
867

870 Symbol	871 Description
871 \mathcal{X}	872 Input space; $x \in \mathcal{X}$ denotes an input/query.
872 \mathcal{Z}	873 Output space; a generic outcome variable. In multiclass classification, $\mathcal{Z} =$ 874 $\mathcal{Y} = \{1, \dots, n\}$.
874 \mathcal{Y}	875 Label space in classification, $\mathcal{Y} = \{1, \dots, n\}$.
875 (X, Z)	876 Random variables taking values in $\mathcal{X} \times \mathcal{Z}$. Training examples (x, z) are 877 drawn i.i.d. from \mathcal{D} .
877 \mathcal{D}	878 Unknown data distribution over $\mathcal{X} \times \mathcal{Z}$.
879 m_j, \hat{m}_j	880 Expert $j \in \{1, \dots, J\}$, with prediction map $\hat{m}_j : \mathcal{X} \rightarrow \mathcal{Y}$ (classification) or 881 $\mathcal{X} \rightarrow \mathcal{Z}$ (general task).
881 g, \hat{g}	882 Base predictor in the two-stage regime, $\hat{g} : \mathcal{X} \rightarrow \mathcal{Z}$.
882 $\pi, \hat{\pi}$	883 policy, $\hat{\pi} : \mathcal{X} \rightarrow \mathcal{Z}$.
883 \mathcal{A}	884 Generic entity set; \mathcal{A} denotes either \mathcal{A}_{1s} or \mathcal{A}_{2s} depending on the regime.
885 \hat{a}_j	886 Entity map $\hat{a}_j : \mathcal{X} \rightarrow \mathcal{Z}$ associated with entity $j \in \mathcal{A}$ (label or expert 887 prediction) used in the unified top- k formulation.
887 $\Pi_k(x)$	888 Top- k selection set $\Pi_k(x) \subseteq \mathcal{A}$ of size k , containing the k entities with the 889 largest scores under $\pi(x, \cdot)$.
889 $[i]_{\uparrow \mu}$	890 Index of the i -th smallest expected cost $\mu_j(x)$; used to describe the Bayes- 891 optimal selection rule.
891 $\ell_{\text{def}, k}$	892 Unified top- k true deferral loss $\ell_{\text{def}, k}(\Pi_k(x), z) = \sum_{j \in \mathcal{A}} \mu_j(x, z) \mathbf{1}\{j \in$ 893 $\Pi_k(x)\}$ (uniformized top- k deferral cost).
894 $\Phi_{\text{def}, k}^u$	895 Top- k deferral surrogate based on cross-entropy family members Φ_{01}^u , used 896 for training a k -independent policy π .
896 k_θ	897 Cardinality function $k_\theta : \mathcal{X} \rightarrow \mathcal{A}_k$ used in $\text{Top-}k(x)$; parameterized by θ 898 and learned with surrogate Φ_{card} .
898 ℓ_{card}	899 Cardinality-aware deferral loss $\ell_{\text{card}}(\Pi_{\hat{k}_\theta(x)}(x), \hat{k}_\theta(x), x, z) =$ 900 $d(\Pi_{\hat{k}_\theta(x)}(x), x, z) + \lambda \xi(\sum_{i=1}^{\hat{k}_\theta(x)} \beta_{[i]_{\uparrow \pi}})$.
901 d	902 Metric measuring task-specific error between the selected entity set using an 903 aggregation mechanism and the true outcome (used in ℓ_{card}).
903 Φ_{card}	904 Surrogate loss for adaptive cardinality, $\Phi_{\text{card}}(\Pi_{ \mathcal{A} }(x), k_\theta, x, z)$, built from 905 a normalized variant $\tilde{\ell}_{\text{card}}$.

906 **A.2 NOTATIONS FOR ORDERED SETS**907 **Definition A.1** (Orderings on a finite set). Let $\Omega = \{1, \dots, N\}$ be a set of cardinality $N := |\Omega|$ and
908 let

909
$$f : \mathcal{M} \times \Omega \longrightarrow \mathbb{R}, \quad (m, \omega) \mapsto f(m, \omega),$$

910 where \mathcal{M} is a measurable input space (typically $\mathcal{M} = \mathcal{X}$ or $\mathcal{M} = \mathcal{X} \times \mathcal{Y}$).911 **Descending permutation.** For every fixed $m \in \mathcal{M}$, let

912
$$\rho_f^\downarrow(m) : \Omega \longrightarrow \Omega$$

913 be the (tie-broken) permutation that satisfies

914
$$f(m, \rho_f^\downarrow(m)(1)) \geq f(m, \rho_f^\downarrow(m)(2)) \geq \dots \geq f(m, \rho_f^\downarrow(m)(N)).$$

918 The element occupying the i -th *largest* position is denoted by
 919

$$[i]_f^\downarrow := \rho_f^\downarrow(m)(i), \quad i = 1, \dots, N.$$

920 **Ascending permutation.** Analogously, define
 921

$$\rho_f^\uparrow(m) : \Omega \longrightarrow \Omega$$

922 such that
 923

$$f(m, \rho_f^\uparrow(m)(1)) \leq f(m, \rho_f^\uparrow(m)(2)) \leq \dots \leq f(m, \rho_f^\uparrow(m)(N)),$$

924 and set
 925

$$[i]_f^\uparrow := \rho_f^\uparrow(m)(i), \quad i = 1, \dots, N.$$

926 **Top- k Selection Set.** For $k \in \{1, \dots, J+1\}$ and an order indicator $o \in \{\downarrow, \uparrow\}$, the *top- k selection*
 927 set is
 928

$$\Pi_k(x) := \{[1]_f^o, [1]_f^o, \dots, [k]_f^o\}.$$

929 *Remark 3* (Typical instantiations). In particular:
 930

1. **Policy scores.** Take $\Omega = \mathcal{A} = \{1, \dots, J+1\}$, $\mathcal{M} = \mathcal{X}$, and $f_\pi(x, j) := \pi(x, j)$. Descending order ($o = \downarrow$) ranks agents from most to least confident at retaining the query.
2. **Agent-specific consultation costs.** Fix $\Omega = \mathcal{A}$ but enlarge the input space to $\mathcal{M} = \mathcal{X} \times \mathcal{Z}$ and define

$$f_c((x, z), j) := c_j(\hat{a}_j(x), z).$$

931 Ascending order ($o = \uparrow$) lists agents from cheapest to most expensive for the specific pair
 932 (x, z) .
 933

934 A.3 USEFUL DEFINITION

935 **Definition A.2** (\mathcal{H}_π -consistency). Let \mathcal{H}_π be a hypothesis set and let $(\pi_t)_{t \geq 1} \subset \mathcal{H}_\pi$. We say that
 936 the loss Φ_{def} is \mathcal{H}_π -consistent with respect to the loss $\ell_{def,k}$ if
 937

$$\begin{aligned} \mathcal{E}_{\Phi_{def}}(\pi_t) - \mathcal{E}_{\Phi_{def}}^B(\mathcal{H}_\pi) + \mathcal{U}_{\Phi_{def}}(\mathcal{H}_\pi) &\xrightarrow[t \rightarrow \infty]{} 0 \\ \implies \mathcal{E}_{\ell_{def,k}}(\pi_t) - \mathcal{E}_{\ell_{def,k}}^B(\mathcal{H}_\pi) + \mathcal{U}_{\ell_{def,k}}(\mathcal{H}_\pi) &\xrightarrow[t \rightarrow \infty]{} 0, \end{aligned}$$

938 where $\mathcal{E}_{\Phi_{def}}^B(\mathcal{H}_\pi) := \inf_{H_\pi \in \mathcal{H}_\pi} \mathcal{E}_{\Phi_{def}}(H_\pi)$ and $\mathcal{U}_{\Phi_{def}}(\mathcal{H}_\pi)$ (resp. $\mathcal{U}_{\ell_{def,k}}(\mathcal{H}_\pi)$) denotes the mini-
 939 mizability gap associated with Φ_{def} (resp. $\ell_{def,k}$).
 940

941 **Definition A.3** (\mathcal{H}_π -calibration). Let \mathcal{H}_π be a hypothesis set. We say that the loss Φ_{def} is \mathcal{H}_π -
 942 calibrated with respect to the loss $\ell_{def,k}$ if, for any $\epsilon > 0$, there exists $\delta > 0$ such that for all $\pi \in \mathcal{H}_\pi$
 943 and all $x \in \mathcal{X}$,
 944

$$\mathcal{C}_{\Phi_{def}}(\pi, x) < \mathcal{C}_{\Phi_{def}}^*(\mathcal{H}_\pi, x) + \epsilon \implies \mathcal{C}_{\ell_{def,k}}(\pi, x) < \mathcal{C}_{\ell_{def,k}}^B(\mathcal{H}_\pi, x) + \delta,$$

945 where $\mathcal{C}_{\Phi_{def}}(\pi, x)$ and $\mathcal{C}_{\ell_{def,k}}(\pi, x)$ are the conditional risks at x , $\mathcal{C}_{\Phi_{def}}^*(\mathcal{H}_\pi, x) :=$
 946 $\inf_{\pi \in \mathcal{H}_\pi} \mathcal{C}_{\Phi_{def}}(\pi, x)$, and $\mathcal{C}_{\ell_{def,k}}^B(\mathcal{H}_\pi, x) := \inf_{\pi \in \mathcal{H}_\pi} \mathcal{C}_{\ell_{def,k}}(\pi, x)$.
 947

972 A.4 ALGORITHM
973

974

975 **Algorithm 1** Top- k L2D Training Algorithm

976 **Input:** Dataset $\{(x_i, z_i)\}_{i=1}^I$, entities $\{\hat{a}_j : \mathcal{X} \rightarrow \mathcal{Z}\}_{j \in \mathcal{A}}$, policy $\pi \in \Pi$, number of epochs
977 EPOCH, batch size BATCH, learning rate ν .
978 **Initialization:** Initialize policy parameters θ .
979 **for** $i = 1$ to EPOCH **do**
980 Shuffle dataset $\{(x_i, z_i)\}_{i=1}^I$.
981 **for** each mini-batch $\mathcal{B} \subset \{(x_i, z_i)\}_{i=1}^I$ of size BATCH **do**
982 Extract input-output pairs $(x, z) \in \mathcal{B}$.
983 Query entities $\{\hat{a}_j : \mathcal{X} \rightarrow \mathcal{Z}\}_{j \in \mathcal{A}}$.
984 Compute the empirical risk minimization:
985 $\tilde{\mathcal{E}}_{\Phi_{\text{def},k}^u}(\pi; \theta) = \frac{1}{\text{BATCH}} \sum_{(x,z) \in \mathcal{B}} [\Phi_{\text{def},k}^u(\pi, x, z)]$.
986 Update parameters θ :
987 $\theta \leftarrow \theta - \nu \nabla_{\theta} \tilde{\mathcal{E}}_{\Phi_{\text{def},k}^u}(\pi; \theta)$.
988 {Gradient update}
989 **end for**
990 **end for**
991 **Return:** trained policy π .

992

993

994 **Algorithm 2** Cardinality Training Algorithm

995 **Input:** Dataset $\{(x_i, z_i)\}_{i=1}^I$, trained policy π from Algorithm 1, entities $\{\hat{a}_j : \mathcal{X} \rightarrow \mathcal{Z}\}_{j \in \mathcal{A}}$,
996 cardinality function $k_{\theta} \in \mathcal{H}_k$, number of epochs EPOCH, batch size BATCH, learning rate ν .
997 **Initialization:** Initialize cardinality parameters θ .
998 **for** $i = 1$ to EPOCH **do**
999 Shuffle dataset $\{(x_i, z_i)\}_{i=1}^I$.
1000 **for** each mini-batch $\mathcal{B} \subset \{(x_i, z_i)\}_{i=1}^I$ of size BATCH **do**
1001 Extract input-output pairs $(x, y) \in \mathcal{B}$.
1002 Query entities $\{\hat{a}_j : \mathcal{X} \rightarrow \mathcal{Z}\}_{j \in \mathcal{A}}$.
1003 Compute the scores $\{\pi(x, j)\}_{j=1}^{|\mathcal{A}|}$ using the trained policy π .
1004 Sort these scores and select entries to construct the top- k entity set $\Pi_{|\mathcal{A}|}(x)$.
1005 Compute the empirical risk minimization:
1006 $\tilde{\mathcal{E}}_{\Phi_{\text{car}}}(k_{\theta}; \theta) = \frac{1}{\text{BATCH}} \sum_{(x,y) \in \mathcal{B}} [\Phi_{\text{car}}(\Pi_{|\mathcal{A}|}, k_{\theta}, x, y)]$.
1007 Update parameters θ :
1008 $\theta \leftarrow \theta - \nu \nabla_{\theta} \tilde{\mathcal{E}}_{\Phi_{\text{car}}}(k_{\theta}; \theta)$.
1009 {Gradient update}
1010 **end for**
1011 **end for**
1012 **Return:** trained cardinality model k_{θ} .

1013

1014

1015 A.5 ILLUSTRATION OF TOP- $k(x)$ AND TOP- k L2D

1016

1017

1018

1019

1020

1021

1022

1023

1024

1025

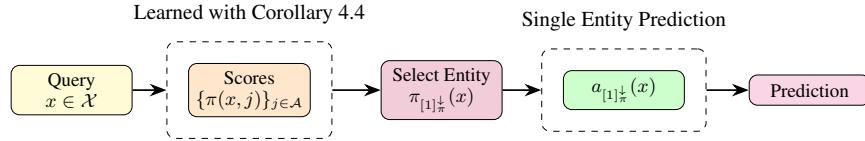
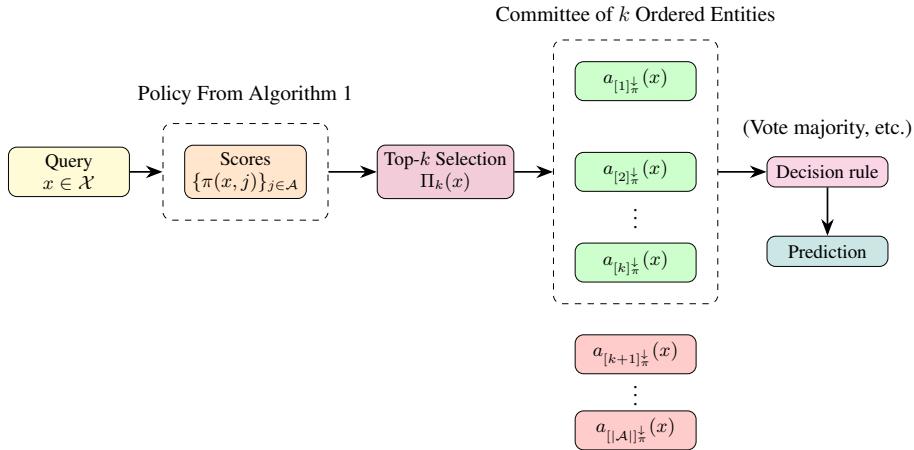


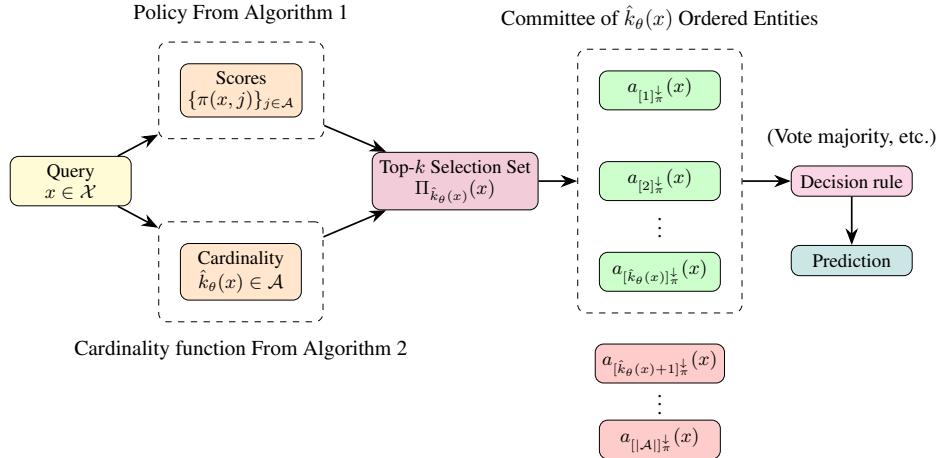
Figure 2: Inference step of Top-1 L2D (Narasimhan et al., 2022; Mao et al., 2023a; 2024c; Mozannar & Sontag, 2020; Mao et al., 2024a): Given a query, we process it through the learned policy π . We select the entity with the highest score $\hat{\pi}(x) = \arg \max_{j \in \mathcal{A}} \pi(x, j)$. Then, we query this entity and make the final prediction.

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040



1041 Figure 3: Inference Step of Top- k L2D: Given a query x , we first process it through the policy
1042 learned using Algorithm 1. Based on this, we select a fixed number k of entities to query, forming
1043 the *Top- k Selection Set* $\Pi_k(x)$, as defined in Definition 4.1. By construction, the expected size
1044 satisfies $\mathbb{E}_X[|\Pi_k(X)|] = k$. We then aggregate predictions from the selected top- k entities using a
1045 decision rule—such as majority vote or weighted voting. The final prediction is produced by this
1046 committee according to the chosen rule.

1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064



1065 Figure 4: Inference Step of Top- $k(x)$ L2D: Given a query x , we process it through both the policy
1066 π , trained using Algorithm 1, and the cardinality function k_θ , trained using Algorithm 2. Based
1067 on these two functions, we construct the *Top- k Selection set*. By construction, its expected size
1068 satisfies $\mathbb{E}_X[|\Pi_{k_\theta(x)}(X)|] = \mathbb{E}_X[k_\theta(X)]$. We then aggregate predictions from the top- $\hat{k}_\theta(x)$ entities
1069 using a decision rule (e.g., majority vote, weighted voting). The final prediction is produced by this
1070 committee of entities according to the chosen decision rule.

1071
1072
1073
1074
1075
1076
1077
1078
1079

A.6 MODEL CASCADES ARE SPECIAL CASES OF TOP- k AND TOP- $k(x)$ SELECTION

Throughout, let \mathcal{A} be the set of entities. For $j \in \mathcal{A}$ we denote by $\hat{a}_j : \mathcal{X} \rightarrow \mathcal{Z}$ the prediction of entity j , by $\pi : \mathcal{X} \times \mathcal{A} \rightarrow \mathbb{R}$ a *policy score*, and by

$$\Pi_k(x) = \{\pi_{[1]^\downarrow}(x), \dots, \pi_{[k]^\downarrow}(x)\}$$

the *Top- k Selection Set* containing the indices of the k largest scores.

1080 A.6.1 MODEL CASCADES
10811082 **Definition A.4** (Evaluation order and thresholds). Fix a permutation $\rho = (\rho_1, \dots, \rho_{|\mathcal{A}|})$ of \mathcal{A} (the
1083 *evaluation order*) and confidence thresholds $0 < \nu_1 < \nu_2 < \dots < \nu_{|\mathcal{A}|} < 1$. For each entity let
1084 $\text{conf} : \mathcal{X} \times \mathcal{A} \rightarrow [0, 1]$ be a confidence measure.1085 **Definition A.5** (Size- k cascade allocation). For a fixed $k \in \{1, \dots, |\mathcal{A}|\}$ define the *cascade set*
1086

1087
$$\mathcal{K}_k(x) := \{\rho_1, \dots, \rho_k\}.$$

1088 The cascade evaluates the entities in the order ρ until it reaches ρ_k . If the confidence test
1089 $\text{conf}(\rho_k, x) \geq \nu_k$ is satisfied, the cascade *allocates* the set $\mathcal{K}_k(x)$; otherwise it proceeds to the
1090 next stage (see Section A.6.3 for the adaptive case).1091 A.6.2 EMBEDDING A FIXED- k CASCADE
10921093 **Lemma A.6** (Score construction). For a fixed k define

1094
$$\pi_k(x, j) := \begin{cases} 2 - \frac{\text{rank}_{\mathcal{K}_k(x)}(j)}{k+1}, & j \in \mathcal{K}_k(x), \\ -\frac{\text{rank}_{\mathcal{A} \setminus \mathcal{K}_k(x)}(j)}{|\mathcal{A}|+1}, & j \notin \mathcal{K}_k(x), \end{cases}$$

1095 where $\text{rank}_B(j) \in \{1, \dots, |B|\}$ is the index of j inside the list B ordered according to ρ . Then for
1096 every $x \in \mathcal{X}$

1097
$$\Pi_k(x) = \mathcal{K}_k(x).$$

1098 *Proof.* **Separation.** Scores assigned to $\mathcal{K}_k(x)$ lie in $(1, 2]$, while scores assigned to $\mathcal{A} \setminus \mathcal{K}_k(x)$ lie
1099 in $[-1, -\frac{1}{|\mathcal{A}|+1})$; hence all k largest scores belong exactly to $\mathcal{K}_k(x)$.1100 **Distinctness.** Within each block, consecutive ranks differ by $1/(k+1)$ or $1/(|\mathcal{A}|+1)$, so ties cannot
1101 occur. Therefore the permutation returns precisely the indices of $\mathcal{K}_k(x)$ in decreasing order, and the
1102 Top- k Selection Set equals $\mathcal{K}_k(x)$. \square 1103 **Corollary A.7** (Cascade embedding for any fixed k). For every $k \in \{1, \dots, |\mathcal{A}|\}$ the policy π_k of
1104 Lemma A.6 satisfies

1105
$$\Pi_k(x) = \mathcal{K}_k(x) \quad \forall x \in \mathcal{X}.$$

1106 Consequently, the Top- k Selection coincides exactly with the size- k cascade allocation.1107 *Proof.* Immediate from Lemma A.6. \square 1114 A.6.3 EMBEDDING ADAPTIVE (EARLY-EXIT) CASCADES
11151116 Let the cascade stop after a *data-dependent* number of stages $\hat{k}_\theta(x) \in \{1, \dots, |\mathcal{A}|\}$. Define the
1117 cardinality function $\hat{k}_\theta(x)$ and reuse the score construction of Lemma A.6 with k replaced by $\hat{k}_\theta(x)$:
1118 $\pi_{\hat{k}_\theta(x)}(x, \cdot)$.1119 **Lemma A.8** (Cascade embedding for adaptive cardinality). With policy $\pi_{\hat{k}_\theta(x)}$ and cardinality func-
1120 tion $\hat{k}_\theta(x)$, the Top- $k(x)$ Selection pipeline allocates $\mathcal{K}_{\hat{k}_\theta(x)}(x)$ for every input x . Therefore any
1121 adaptive (early-exit) model cascade is a special case of Top- $k(x)$ Selection.
11221123 *Proof.* Applying Lemma A.6 with $k = \hat{k}_\theta(x)$ yields $\Pi_{\hat{k}_\theta(x)}(x) = \mathcal{K}_{\hat{k}_\theta(x)}(x)$. The cardinality
1124 function truncates the full Top- $k(x)$ set to its first $\hat{k}_\theta(x)$ elements—precisely $\mathcal{K}_{\hat{k}_\theta(x)}(x)$. \square 1125 A.6.4 EXPRESSIVENESS: MODEL CASCADES VS. TOP- k / TOP- $k(x)$ SELECTION
11261127 **Hierarchy.** Every model cascade can be realised by a suitable choice of policy scores and, for the
1128 adaptive case, a cardinality function (see App. A.6). Hence

1129
$$\underbrace{\text{Model Cascades}}_{\text{prefix of a fixed order}} \subset \underbrace{\text{Top-}k \text{ Selection}}_{\text{constant } k} \subset \underbrace{\text{Top-}k(x) \text{ Selection}}_{\text{learned } k(x)}.$$

1130

1131 The inclusion is *strict*, for the reasons detailed below.
1132

1134
1135**Why the inclusion is strict.**1136
1137
1138

1. **Non-contiguous selection.** A Top- k Selection Set $\Pi_k(x)$ may pick any subset of size k (e.g. $\{1, 2, 5\}$), whereas a cascade always selects a *prefix* $\{\rho_1, \dots, \rho_k\}$ of the evaluation order.
2. **Learned cardinality.** In Top- $k(x)$ Selection the cardinality function $\hat{k}_\theta(x)$ is trained by minimizing a surrogate risk; Theorem 4.7 provides consistency and ensures the optimality of $\Pi_{k(x)}(x)$. Classical cascades, by contrast, rely on fixed confidence thresholds with no statistical guarantee.
3. **Cost-aware ordering.** Lemma 4.5 shows the Bayes-optimal policy orders entities by *expected cost*, which may vary with x . Top- k policies can realize such input-dependent orderings by means of the policy scores $\pi(x, j)$. Cascades, in contrast, impose a single, input-independent order ρ .
4. **Multi-entity aggregation.** After selecting k entities, Top- k Selection can aggregate their predictions (majority vote, weighted vote, averaging, *etc.*). A cascade, however, *uses only the last entity in the prefix whose confidence test is passed*. Earlier entities are effectively discarded. Thus cascades cannot implement multi-entity aggregation rules.

1148

1149
1150
1151
1152

Separating example. Assume $|\mathcal{A}| = 3$ with entities a_1, a_2, a_3 and consider a Top-2 Selection policy defined by policy scores $\pi(x, \cdot)$ such that

1153

$$\text{on some } x : \quad \pi(x, 1) > \pi(x, 3) > \pi(x, 2) \quad \Rightarrow \quad \Pi_2(x) = \{1, 3\},$$

1154

1155

$$\text{on some } x' : \quad \pi(x', 1) > \pi(x', 2) > \pi(x', 3) \quad \Rightarrow \quad \Pi_2(x') = \{1, 2\}.$$

1156

1157

Suppose, for contradiction, that a *cascade with a fixed, input-independent order* ρ realizes the same selections as Top-2. Because $\Pi_2(x) = \{1, 3\}$ is not a prefix of any order unless 3 precedes 2, we must have ρ satisfying

1158

$$1 \succ_\rho 3 \succ_\rho 2.$$

1159

1160

But since $\Pi_2(x') = \{1, 2\}$ must also be a prefix of the *same* ρ , we must have

1161

1162

$$1 \succ_\rho 2 \succ_\rho 3,$$

1163

1164

a contradiction. Hence no fixed-order cascade can realize this Top-2 Selection Set.

1165

1166

1167

Moreover, even in cases where a Top- k set *is* a prefix (e.g., $\{1, 2\}$), a cascade outputs the prediction of the *last* confident entity in that prefix, whereas Top- k Selection may aggregate the k entities' predictions (e.g., by a weighted vote). Therefore, cascades cannot, in general, implement Top- k aggregation rules.

1168

1169

A.7 PROOF LEMMA 4.2

1170

1171

1172

1173

1174

1175

1176

1177

1178

1179

Definition 4.2 (Top- k True Deferral Loss). Let $x \in \mathcal{X}$, $z \in \mathcal{Z}$, and $\Pi_k(x) \subseteq \mathcal{A}$ be the top- k selection set. Let $\mu_j(x, z)$ the cost of selecting entity j for input (x, z) . The uniformized top- k true deferral loss is

1180
1181
1182
1183

$$\ell_{\text{def}, k}(\Pi_k(x), z) = \sum_{j=1}^{|\mathcal{A}|} \mu_j(x, z) \mathbf{1}\{j \in \Pi_k(x)\},$$

1184

1185

Proof. We will prove this novel true deferral loss for both the one-stage and two-stage regime.

1186

1187

Two-Stage. In the standard L2D setting (see 3.2), the deferral loss utilizes the indicator function $\mathbf{1}\{\hat{\pi}(x) = j\}$ to select the most cost-efficient entity in the system. Specifically, we have $\pi = r$, $|\mathcal{A}^{2s}| = J + 1$, and $\mu_j(x, z) = c_j(x, z)$. We can upper-bound the standard two-stage L2D loss by

1188 employing the indicator function over the Top- k Selection Set $\Pi_k(x)$ defined in 4.1:
 1189

$$\begin{aligned}
 \ell_{\text{def}}^{2s}(\hat{\pi}(x), z) &= \sum_{j=1}^{J+1} c_j(x, z) \mathbf{1}\{\hat{\pi}(x) = j\} \\
 &= \sum_{j=1}^{J+1} \mu_j(x, z) \mathbf{1}\{\hat{\pi}(x) = j\} \\
 &\leq \sum_{j=1}^{J+1} \mu_j(x, z) \mathbf{1}\{j \in \Pi_k(x)\} \\
 &= \ell_{\text{def},k}^{2s}(\Pi_k(x), z).
 \end{aligned} \tag{1}$$

1200 Consider a system with two experts $\{m_1, m_2\}$ and one main predictor g . Leading to $\mathcal{A} = \{1, 2, 3\}$,
 1201 and the Top- $|\mathcal{A}|$ Selection Set $\Pi_{|\mathcal{A}|}(x) = \{3, 2, 1\}$. This indicates that expert m_2 has a higher
 1202 confidence score than expert m_1 and predictor g , i.e., $\pi(x, 3) \geq \pi(x, 2) \geq \pi(x, 1)$. We evaluate
 1203 $\ell_{\text{def},k}^{2s}$ for different values of $k \leq |\mathcal{A}|$:

1204 **For $k = 1$:** The Selection Set is $\Pi_1(x) = \{3\}$, which corresponds to the standard L2D setting where
 1205 deferral is made to the most confident entity (Narasimhan et al., 2022; Mao et al., 2023a; Montreuil
 1206 et al., 2025b). Thus,

$$\ell_{\text{def},1}^{2s}(\Pi_1(x), z) = \mu_3(x, z) = \alpha_3 \psi(\hat{m}_2(x), z) + \beta_3, \tag{2}$$

1207 recovering the same result as ℓ_{def}^{2s} defined in 3.2.

1208 **For $k = 2$:** The Selection Set expands to $\Pi_2(x) = \{3, 2\}$, implying that both expert m_2 and expert
 1209 m_1 are queried. Therefore,

$$\ell_{\text{def},2}^{2s}(\Pi_2(x), z) = \mu_3(x, z) + \mu_2(x, z), \tag{3}$$

1210 correctly reflecting the computation of costs from the queried entities.

1211 **For $k = 3$:** The Selection Set further extends to $\Pi_3(x) = \{3, 2, 1\}$, implying that all entities in the
 1212 system are queried. Consequently,

$$\ell_{\text{def},3}^{2s}(\Pi_3(x), z) = \mu_3(x, z) + \mu_2(x, z) + \mu_1(x, z), \tag{4}$$

1213 incorporating the costs from all entities in the system.

1214 **One-Stage.** The standard One-Stage deferral loss introduced by Mozannar & Sontag (2020) assigns
 1215 cost based on whether the model predicts or defers:

$$\ell_{\text{def}}^{1s}(\hat{h}(x), y) = \mathbf{1}\{\hat{h}(x) \neq y\} \mathbf{1}\{\hat{h}(x) \leq n\} + \sum_{j=1}^J c_j(x, y) \mathbf{1}\{\hat{h}(x) = n + j\},$$

1216 This formulation handles two mutually exclusive cases: the model predicts a class label $j \in$
 1217 $\{1, \dots, n\}$ and is penalized if $j \neq y$, or it defers to expert m_j and incurs the expert-specific cost
 1218 $c_j(x, y)$. However, this formulation relies on a hard-coded distinction between prediction and deferral.

1219 To generalize and simplify the analysis, we introduce a unified cost-sensitive reformulation over the
 1220 entire entity set $\mathcal{A} = \{1, \dots, n + J\}$. We define

$$\mu_j(x, y) = \begin{cases} \alpha_j \mathbf{1}\{j \neq y\} + \beta_j & \text{for } j \leq n, \\ \alpha_j \mathbf{1}\{\hat{m}_{j-n}(x) \neq y\} + \beta_j & \text{for } j > n. \end{cases}$$

1221 This assigns each entity—whether label or expert—a structured cost combining prediction error and
 1222 fixed usage cost. The total loss is then

$$\ell_{\text{def}}^{2s}(\hat{h}(x), y) = \sum_{j=1}^{n+J} \mu_j(x, y) \mathbf{1}\{\hat{h}(x) = j\}.$$

1242 We now verify that this general formulation is equivalent to the original loss when the cost parameters
 1243 are selected appropriately.

1244 Consider a binary classification example with $\mathcal{Y} = \{1, 2\}$, two experts $\{m_1, m_2\}$, and parameters
 1245 $\alpha_j = 1, \beta_j = 0$ for all j . If the classifier h predicts label $\hat{h}(x) = 1$, then the cost is $\mu_1(x, y) =$
 1246 $\mathbf{1}\{1 \neq y\}$, which matches the original unit penalty for incorrect prediction. If $\hat{h}(x) = y$, the
 1247 cost becomes $\mu_y(x, y) = \mathbf{1}\{y \neq y\} = 0$, correctly yielding no penalty for correct prediction.
 1248 If instead the classifier h defers to expert m_1 , i.e., $\hat{h}(x) = n + 1 = 3$, then the loss becomes
 1249 $\mu_3(x, y) = \mathbf{1}\{m_1(x) \neq y\}$, matching the original expert cost.

1250
 1251 Therefore, by using $\pi = h$ and $|\mathcal{A}^{1s}| = J + n$, it follows:

$$\begin{aligned} 1253 \quad \ell_{\text{def}}^{1s}(\hat{h}(x), y) &= \sum_{j=1}^{J+n} \mu_j(x, y) \mathbf{1}\{\hat{h}(x) = j\} \\ 1254 \quad &\leq \sum_{j=1}^{J+n} \mu_j(x, y) \mathbf{1}\{j \in \Pi_k(x)\} \\ 1255 \quad &= \ell_{\text{def}, k}^{1s}(\Pi_k(x), y). \end{aligned} \tag{5}$$

□

1262 A.8 PROOF LEMMA 4.3

1263 **Lemma 4.3** (Upper Bound on the Top- k Deferral Loss). *Let $x \in \mathcal{X}, z \in \mathcal{Z}$, and let $1 \leq k \leq |\mathcal{A}|$.
 1264 Let Φ_{01}^u a convex surrogate in the cross-entropy family. Then the top- k deferral loss satisfies*

$$1265 \quad \ell_{\text{def}, k}(\Pi_k(x), z) \leq \sum_{j \in \mathcal{A}} \left(\sum_{i \neq j} \mu_i(x, z) \right) \Phi_{01}^u(\pi, x, j) - (|\mathcal{A}| - 1 - k) \sum_{j \in \mathcal{A}} \mu_j(x, z),$$

1266
 1267 *Proof.* Let the entity set \mathcal{A} and the policy $\pi \in \mathcal{H}_\pi$. For a query-label pair (x, z) denote the costs of
 1268 allocating to an entity j by $\mu_j(x, z) \geq 0$ ($j = 1, \dots, |\mathcal{A}|\)$ and the total cost by
 1269

$$1270 \quad C_{\text{tot}}(x, z) = \sum_{j=1}^{|\mathcal{A}|} \mu_j(x, z).$$

1271 Define, for each index j ,

$$1272 \quad \xi_j(x, z) = \sum_{\substack{q=1 \\ q \neq j}}^{|\mathcal{A}|} \mu_q(x, z) = C_{\text{tot}}(x, z) - \mu_j(x, z).$$

1273 For any $k \in \{1, \dots, |\mathcal{A}|\}$ and any size- k decision set $\Pi_k(x) \subseteq \{1, \dots, |\mathcal{A}|\}$ the top- k deferral loss
 1274 is

$$1275 \quad \ell_{\text{def}, k}(\Pi_k(x), z) = \sum_{j=1}^{|\mathcal{A}|} \mu_j(x, z) \mathbf{1}\{j \in \Pi_k(x)\}$$

1276 Because $\Pi_k(x)$ and its complement $\bar{\Pi}_k(x)$ form a disjoint partition of $\{1, \dots, |\mathcal{A}|\}$,

$$1277 \quad \ell_{\text{def}, k}(\Pi_k(x), z) = \sum_{j \in \Pi_k} \mu_j = C_{\text{tot}} - \sum_{j \in \bar{\Pi}_k} \mu_j. \tag{6}$$

1278 For every j we have $\mu_j = C_{\text{tot}} - \xi_j$ with $\xi_j = \sum_{i \neq j} \mu_i$, whence

$$1279 \quad \sum_{j \in \bar{\Pi}_k} \mu_j = \sum_{j \in \bar{\Pi}_k} (C_{\text{tot}} - \xi_j) = (|\mathcal{A}| - k)C_{\text{tot}} - \sum_{j \in \bar{\Pi}_k} \xi_j, \tag{7}$$

1296 with the factor $|\mathcal{A}| - k$ being the cardinality of $\bar{\Pi}_k$. Substituting equation 7 into equation 6 yields
 1297

$$\ell_{\text{def},k}(\Pi_k(x), z) = C_{\text{tot}} - \left[(|\mathcal{A}| - k)C_{\text{tot}} - \sum_{j \in \bar{\Pi}_k} \xi_j \right] \quad (8)$$

$$= \sum_{j=1}^{|\mathcal{A}|} \xi_j \mathbf{1}\{j \notin \Pi_k\} - (|\mathcal{A}| - k - 1) \sum_{j=1}^{|\mathcal{A}|} \mu_j(x, z). \quad (9)$$

1303 Let us inspect limit cases:
 1304

- 1305 1. $k = 1$. Then $\bar{\Pi}_k$ has $|\mathcal{A}| - 1$ indices and the constant term reduces to $-(|\mathcal{A}| - 2)C_{\text{tot}}$;
 1306 expanding the sum shows $\ell_{\text{def},1} = \mu_{\hat{\pi}(x)}$ as expected for the classical true deferral loss
 1307 defined in 3.1 and 3.2.
- 1309 2. $k = |\mathcal{A}|$. The complement is empty, $\sum_{j \notin \Pi_{|\mathcal{A}|}} \xi_j = 0$ and $|\mathcal{A}| - k - 1 = -1$, so the formula
 1310 gives $\ell_{\text{def},|\mathcal{A}|} = C_{\text{tot}}$, i.e. paying *all* deferral costs — again matching intuition.

1312 Finally, Let $\Phi_{01}^u(\pi, x, j)$ be a multiclass surrogate that satisfies $\mathbf{1}\{j \notin \Pi_k(x)\} \leq \Phi_{01}^u(\pi, x, j)$ for
 1313 every j . As shown by Lapin et al. (2016); Yang & Koyejo (2020); Cortes et al. (2024) the cross-
 1314 entropy family satisfy this condition. Because each weight $\xi_j(x, z) \geq 0$, we have

$$\begin{aligned} \ell_{\text{def},k}(\Pi_k, x, z) &\leq \sum_{j=1}^{|\mathcal{A}|} \xi_j(x, z) \Phi_{01}^u(\pi, x, j) - (|\mathcal{A}| - k - 1) \sum_{j=1}^{|\mathcal{A}|} \mu_j(x, z) \\ &= \sum_{j=1}^{|\mathcal{A}|} \left(\sum_{i \neq j} \mu_i(x, z) \right) \Phi_{01}^u(\pi, x, j) - (|\mathcal{A}| - k - 1) \sum_{j=1}^{|\mathcal{A}|} \mu_j(x, z) \end{aligned} \quad (10)$$

1322 We have shown the desired relationship. \square
 1323

1324 A.9 PROOF LEMMA 4.5

1325 **Lemma 4.5** (Bayes-Optimal Top- k Selection). *Let $x \in \mathcal{X}$. For each entity $j \in \mathcal{A}$, define
 1326 the expected cost $\bar{\mu}_j(x) = \mathbb{E}_{Z|X=x}[\mu_j(x, Z)]$, its Bayes-optimal expected cost as $\bar{\mu}_j^B(x) =$
 1327 $\inf_{g \in \mathcal{H}_g} \bar{\mu}_j(x)$. Then the Bayes-optimal top- k selection set is*

$$\Pi_k^B(x) = \arg \min_{\substack{\Pi_k \subseteq \mathcal{A} \\ |\Pi_k|=k}} \sum_{j \in \Pi_k} \bar{\mu}_j^B(x) = \{[1]_{\bar{\mu}^B}^{\uparrow}, [2]_{\bar{\mu}^B}^{\uparrow}, \dots, [k]_{\bar{\mu}^B}^{\uparrow}\},$$

1328 where $[i]_{\bar{\mu}^B}^{\uparrow}$ denotes the index of the i -th smallest expected cost in $\{\bar{\mu}_j^B(x) : j \in \mathcal{A}\}$. In the one-stage
 1329 regime, where no base predictor class \mathcal{H}_g is defined, we simply set $\bar{\mu}_j^B(x) = \bar{\mu}_j(x)$.
 1330

1331 *Proof.* Let's consider the Top- k Deferral Loss defined by

$$\ell_{\text{def},k}(\Pi_k(x), z) = \sum_{j=1}^{|\mathcal{A}|} \mu_j(x, z) \mathbf{1}\{j \in \Pi_k(x)\},$$

1332 where $\mu_j(x, z) = \alpha_j \psi(\hat{a}_j(x), z) + \beta_j$ in the two-stage and $\mu_j(x, z) = \alpha_j \mathbf{1}\{\hat{a}_j(x) \neq y\} + \beta_j$ in
 1333 one-stage setting, is the cost associated with entity $j \in \mathcal{A}$. We define the expected cost as:
 1334

$$\bar{\mu}_j(x) = \mathbb{E}_{Z|X=x}[\mu_j(x, Z)]$$

1343 Given the policy $\pi : \mathcal{X} \rightarrow \mathcal{A}$, we have the Top- k Selection Set $\Pi_k(x) \subseteq \mathcal{A}$.
 1344

1345 **One-stage.** Here $\mu_j(x, y) = \alpha_j \mathbf{1}\{\hat{a}_j(x) \neq y\} + \beta_j$ and \hat{a}_j are fixed (non-optimizable) as they are
 1346 labels or experts. Thus

$$\begin{aligned} \bar{\mu}_j(x) &= \alpha_j \mathbb{P}(Y \neq \hat{a}_j(x) \mid X = x) + \beta_j \\ &= \begin{cases} \alpha_j \mathbb{P}(Y \neq j \mid X = x) + \beta_j & \text{if } j \leq n \\ \alpha_j \mathbb{P}(Y \neq \hat{m}_{j-n}(x) \mid X = x) + \beta_j & \text{if } j > n \end{cases} \end{aligned}$$

1350 is independent of π (or h here). We introduce the conditional risk (Steinwart, 2007; Bartlett et al.,
 1351 2006) of the Top- k Deferral Loss:

$$\begin{aligned} 1353 \quad \mathcal{C}_{\ell_{\text{def},k}}(\pi, x) &= \mathbb{E}_{Y|X=x} [\ell_{\text{def},k}(\Pi_k(x), Y)] \\ 1354 \quad &= \sum_{j=1}^{|\mathcal{A}|} \bar{\mu}_j(x) \mathbf{1}\{j \in \Pi_k(x)\} \end{aligned}$$

1358 Hence the Bayes (conditional) risk over policies reduces to choosing a size- k subset minimizing the
 1359 sum of these expected costs:

$$\begin{aligned} 1360 \quad \mathcal{C}_{\ell_{\text{def},k}}^B(\mathcal{H}_\pi, x) &= \inf_{\pi \in \mathcal{H}_\pi} \mathcal{C}_{\ell_{\text{def},k}}(\pi, x) \\ 1361 \quad &= \inf_{\pi \in \mathcal{H}_\pi} \sum_{j=1}^{|\mathcal{A}|} \bar{\mu}_j(x) \mathbf{1}\{j \in \Pi_k(x)\} \end{aligned} \tag{11}$$

1365 Let $[i]_{\bar{\mu}}^\uparrow$ denote the index of the i -th smallest expected cost, so that
 1366

$$\bar{\mu}_{[1]_{\bar{\mu}}^\uparrow}(x, y) \leq \bar{\mu}_{[2]_{\bar{\mu}}^\uparrow}(x, y) \leq \dots \leq \bar{\mu}_{[n+J]_{\bar{\mu}}^\uparrow}(x, y).$$

1368 Then the Bayes-optimal risk is obtained by selecting the k entities with the lowest expected costs:
 1369

$$\mathcal{C}_{\ell_{\text{def},k}}^B(\mathcal{H}_\pi, x) = \sum_{i=1}^k \bar{\mu}_{[i]_{\bar{\mu}}^\uparrow}(x, y).$$

1373 Consequently, the Top- k Selection Set $\Pi_k^B(x)$ that achieves this minimum is
 1374

$$\Pi_k^B(x) = \arg \min_{\substack{\Pi_k(x) \subseteq \mathcal{A} \\ |\Pi_k(x)|=k}} \sum_{j \in \Pi_k(x)} \bar{\mu}_j^B(x) = \{[1]_{\bar{\mu}^B}^\uparrow, [2]_{\bar{\mu}^B}^\uparrow, \dots, [k]_{\bar{\mu}^B}^\uparrow\}, \tag{12}$$

1377 meaning $\Pi_k^B(x)$ selects the k entities with the lowest optimal expected costs.
 1378

1379 **Two-Stage.** Here $\mu_j(x, z) = \alpha_j \psi(\hat{a}_j(x), z) + \beta_j$ and \hat{a}_j are fixed but we have the full control of
 1380 the predictor $g \in \mathcal{H}_g$. Thus

$$\begin{aligned} 1381 \quad \bar{\mu}_j(x) &= \alpha_j \mathbb{E}_{Z|X=x} [\psi(\hat{a}_j(x), Z)] + \beta_j \\ 1382 \quad &= \begin{cases} \alpha_j \mathbb{E}_{Z|X=x} [\psi(g(x), Z)] + \beta_j & \text{if } j = 1 \\ \alpha_j \mathbb{E}_{Z|X=x} [\psi(\hat{m}_{j-1}(x), Z)] + \beta_j & \text{if } j > 1 \end{cases} \end{aligned}$$

1385 is independent of π (or r here) but not $g \in \mathcal{H}_g$ for μ_1 . We introduce the conditional risk (Steinwart,
 1386 2007; Bartlett et al., 2006) of the Top- k Deferral Loss:
 1387

$$\begin{aligned} 1388 \quad \mathcal{C}_{\ell_{\text{def},k}}(\pi, g, x) &= \mathbb{E}_{Z|X=x} [\ell_{\text{def},k}(\Pi_k(x), Z)] \\ 1389 \quad &= \sum_{j=1}^{|\mathcal{A}|} \bar{\mu}_j(x) \mathbf{1}\{j \in \Pi_k(x)\} \end{aligned}$$

1393 Hence the Bayes (conditional) risk over policies reduces to choosing a size- k subset minimizing the
 1394 sum of these expected costs:
 1395

$$\begin{aligned} 1396 \quad \mathcal{C}_{\ell_{\text{def},k}}^B(\mathcal{H}_\pi, \mathcal{H}_g, x) &= \inf_{\pi \in \mathcal{H}_\pi} \inf_{g \in \mathcal{H}_g} \mathcal{C}_{\ell_{\text{def},k}}(\pi, g, x) \\ 1397 \quad &= \inf_{\pi \in \mathcal{H}_\pi} \sum_{j=1}^{|\mathcal{A}|} \bar{\mu}_j^B(x) \mathbf{1}\{j \in \Pi_k(x)\} \end{aligned} \tag{13}$$

1401 with $\bar{\mu}_1^B(x) = \inf_{g \in \mathcal{H}_g} \bar{\mu}_1(x)$ and for $j > 1$, $\bar{\mu}_j^B(x) = \bar{\mu}_j(x)$. Let $[i]_{\bar{\mu}}^\uparrow$ denote the index of the i -th
 1402 smallest expected cost, so that
 1403

$$\overline{\mu^B}_{[1]_{\bar{\mu}^B}^\uparrow}(x, z) \leq \overline{\mu^B}_{[2]_{\bar{\mu}^B}^\uparrow}(x, z) \leq \dots \leq \overline{\mu^B}_{[J+1]_{\bar{\mu}^B}^\uparrow}(x, z).$$

1404 Then the Bayes-optimal risk is obtained by selecting the k entities with the lowest expected costs:
 1405

$$1406 \quad 1407 \quad 1408 \quad \mathcal{C}_{\ell_{\text{def},k}}^B(\mathcal{H}_\pi, \mathcal{H}_g, x) = \sum_{i=1}^k \bar{\mu}_{[i]_{\bar{\mu}^B}}^B(x, z).$$

1409 Consequently, the Top- k Selection Set $\Pi_k^B(x)$ that achieves this minimum is
 1410

$$1411 \quad 1412 \quad 1413 \quad \Pi_k^B(x) = \arg \min_{\substack{\Pi_k(x) \subseteq \mathcal{A} \\ |\Pi_k(x)|=k}} \sum_{j \in \Pi_k(x)} \bar{\mu}_j(x) = \{[1]_{\bar{\mu}}^{\uparrow}, [2]_{\bar{\mu}}^{\uparrow}, \dots, [k]_{\bar{\mu}}^{\uparrow}\}, \quad (14)$$

1414 meaning $\Pi_k^B(x)$ selects the k entities with the lowest optimal expected costs.
 1415 \square
 1416

1417 A.10 PROOF COROLLARY 4.6

1419 **Corollary 4.6** (Special cases for $k = 1$). *The Bayes rule in Lemma 4.5 recovers prior Top-1 results:*
 1420

1421 1. **One-stage L2D.** For any entity j (labels $j \leq n$ and experts $j > n$),

$$1422 \quad 1423 \quad \bar{\mu}_j^B(x) = \alpha_j \mathbb{P}(\hat{a}_j(x) \neq Y | X = x) + \beta_j,$$

1424 which yields the Top-1 Bayes policy of Mozannar & Sontag (2020).

1425 2. **Two-stage L2D.** Let $j = 1$ denote the base predictor and $j \geq 2$ the experts. Then

$$1427 \quad 1428 \quad \bar{\mu}_1^B(x) = \alpha_1 \inf_{g \in \mathcal{H}_g} \mathbb{E}_{Z|X=x} [\psi(\hat{g}(x), Z)] + \beta_1,$$

$$1429 \quad \text{and for } j \geq 2, \quad \bar{\mu}_j^B(x) = \alpha_j \mathbb{E}_{Z|X=x} [\psi(\hat{m}_{j-1}(x), Z)] + \beta_j,$$

1431 recovering the Top-1 allocation in Narasimhan et al. (2022); Mao et al. (2023a); Montreuil
 1432 et al. (2025b).

1433 3. **Selective prediction (reject option).** We take the set of label entities and augment it with
 1434 an abstain entity \perp , defined by $\alpha_{\perp} = 0$ and $\beta_{\perp} = \lambda > 0$, while label entities use $\alpha_j =$
 1435 $1, \beta_j = 0$. Then

$$1437 \quad \bar{\mu}_j^B(x) = \mathbb{P}(j \neq Y | X = x) \quad (j \in \{1, \dots, n\}), \quad \bar{\mu}_{\perp}^B(x) = \lambda,$$

1438 yielding the Chow's rule (Chow, 1970).

1440 *Proof of Corollary 4.6.* Set $k = 1$ in Lemma 4.5. Then the Bayes rule selects the single index
 1441

$$1442 \quad 1443 \quad \Pi_1^B(x) = \{[1]_{\bar{\mu}^B}^{\uparrow}\} = \left\{ \arg \min_{j \in \mathcal{A}} \bar{\mu}_j^B(x) \right\},$$

1444 i.e., the entity with the smallest Bayes-optimized conditional expected cost at x . We verify the three
 1445 specializations.
 1446

1447 **(1) One-stage L2D.** In one-stage, the entities (labels or fixed experts) do not depend on any g , and

$$1448 \quad 1449 \quad \mu_j(x, y) = \alpha_j \mathbf{1}\{\hat{a}_j(x) \neq y\} + \beta_j \implies \bar{\mu}_j^B(x) = \bar{\mu}_j(x) = \alpha_j \mathbb{P}(\hat{a}_j(x) \neq Y | X = x) + \beta_j.$$

1450 Thus, $\Pi_1^B(x) = \{\arg \min_j \bar{\mu}_j(x)\}$ selects the entity with the lowest expected cost, which in the
 1451 one-stage case corresponds to choosing the label or expert with the lowest misclassification probability.
 1452 This recovers exactly the Bayes-optimal Top-1 policy established in prior one-stage L2D
 1453 work (Mozannar & Sontag, 2020; Mao et al., 2024a).

1454 **(2) Two-stage L2D.** Let $j = 1$ denote the fixed base predictor entity $a_1(x) = \hat{g}(x)$, and $j \geq 2$
 1455 denote (fixed) experts $\hat{m}_{j-1}(x)$. Then

$$1457 \quad \bar{\mu}_1^B(x) = \inf_{g \in \mathcal{H}_g} \mathbb{E}_{Z|X=x} [\alpha_1 \psi(\hat{g}(x), Z) + \beta_1] = \alpha_1 \inf_{g \in \mathcal{H}_g} \mathbb{E}_{Z|X=x} [\psi(\hat{g}(x), Z)] + \beta_1,$$

1458 while for $j \geq 2$ (no g -dependence)

$$1460 \quad \bar{\mu}_j^B(x) = \bar{\mu}_j(x) = \alpha_j \mathbb{E}_{Z|X=x} [\psi(\hat{m}_{j-1}(x), Z)] + \beta_j.$$

1461 Hence $\Pi_1^B(x) = \{\arg \min_{j \in \mathcal{A}} \bar{\mu}_j^B(x)\}$ selects, among the base predictor and the experts, the single
 1462 entity with the smallest Bayes-optimized expected cost, which recovers the standard Top-1 allocation
 1463 in two-stage L2D (e.g., Narasimhan et al.; Mao et al.; Montreuil et al.).

1464 **(3) Selective prediction (reject option).** Let the action set consist of the n label entities and a reject
 1465 action \perp . Set $\alpha_j = 1, \beta_j = 0$ for labels $j \in \{1, \dots, n\}$, and $\alpha_{\perp} = 0, \beta_{\perp} = \lambda > 0$. Write
 1466 $p_j(x) := \mathbb{P}(Y = j | X = x)$. Then

$$1469 \quad \bar{\mu}_j^B(x) = \mathbb{P}(j \neq Y | X = x) = 1 - p_j(x), \quad \bar{\mu}_{\perp}^B(x) = \lambda.$$

1470 Therefore

$$1472 \quad \min \left\{ \min_{1 \leq j \leq n} (1 - p_j(x)), \lambda \right\} = \min \left\{ 1 - \max_{1 \leq j \leq n} p_j(x), \lambda \right\}.$$

1473 Equivalently, predict the most probable class $j^*(x) \in \arg \max_j p_j(x)$ if $1 - p_{j^*}(x) \leq \lambda$ (i.e.,
 1474 $p_{j^*}(x) \geq 1 - \lambda$), and abstain otherwise. This is precisely Chow's rule (Chow, 1970; Geifman &
 1475 El-Yaniv, 2017; Cortes et al., 2016). \square

1477 A.11 PROOF THEOREM 4.7

1479 First, we prove an intermediate Lemma.

1480 **Lemma A.9** (Consistency of a Top- k Loss). *sample A surrogate loss function Φ_{01}^u is said to be
 1481 \mathcal{H}_{π} -consistent with respect to the top- k loss $\ell_k(\Pi_k(x), j) = \mathbf{1}\{j \in \Pi_k(x)\}$ if, for any $\pi \in \mathcal{H}_{\pi}$,
 1482 there exists a non-decreasing, and non-negative, concave function $\Gamma_u^{-1} : \mathbb{R}^+ \rightarrow \mathbb{R}^+$ such that:*

$$1485 \quad \sum_{j \in \mathcal{A}} p_j \mathbf{1}\{j \notin \Pi_k(x)\} - \inf_{\pi \in \mathcal{H}_{\pi}} \sum_{j \in \mathcal{A}} p_j \mathbf{1}\{j \notin \Pi_k(x)\} \leq k \Gamma_u^{-1} \left(\sum_{j \in \mathcal{A}} p_j \Phi_{01}^u(\pi, x, j) - \inf_{\pi \in \mathcal{H}_{\pi}} \sum_{j \in \mathcal{A}} p_j \Phi_{01}^u(\pi, x, j) \right),$$

1488 where $p \in \Delta^{|\mathcal{A}|}$ denotes a probability distribution over the set \mathcal{A} and $k \leq |\mathcal{A}|$

1490 *Proof.* Let the top- k loss be

$$1491 \quad \ell_k(\Pi_k(x), j) = \mathbf{1}\{j \notin \Pi_k(x)\},$$

1493 and define its conditional risk as

$$1494 \quad \mathcal{C}_{\ell_k}(\pi, x) := \mathbb{E}_{Z|X=x} [\ell_k(\Pi_k(x), Z)] = \sum_{j \in \mathcal{A}} p_j(x) \mathbf{1}\{j \notin \Pi_k(x)\},$$

1497 where $p_j(x) = \mathbb{P}(Z = j | X = x)$.

1498 The excess conditional risk is

$$1500 \quad \Delta \mathcal{C}_{\ell_k}(\pi, x) := \mathcal{C}_{\ell_k}(\pi, x) - \inf_{\pi \in \mathcal{H}_{\pi}} \mathcal{C}_{\ell_k}(\pi, x).$$

1502 Assume that the following pointwise calibration inequality holds for an increasing concave function
 1503 Γ_u^{-1} (Awasthi et al., 2022):

$$1505 \quad \sum_{j \in \mathcal{A}} p_j \mathbf{1}\{j \notin \Pi_k(x)\} - \inf_{\pi \in \mathcal{H}_{\pi}} \sum_{j \in \mathcal{A}} p_j \mathbf{1}\{j \notin \Pi_k(x)\} \leq k \Gamma_u^{-1} \left(\sum_{j \in \mathcal{A}} p_j \Phi_{01}^u(\pi, x, j) - \inf_{\pi \in \mathcal{H}_{\pi}} \sum_{j \in \mathcal{A}} p_j \Phi_{01}^u(\pi, x, j) \right), \quad (15)$$

1508 we identify the corresponding conditional risks for a distribution $p \in \Delta^{|\mathcal{A}|}$ as done by Awasthi et al.
 1509 (2022):

$$1511 \quad \mathcal{C}_{\ell_k}(\pi, x) - \inf_{\pi \in \mathcal{H}_{\pi}} \mathcal{C}_{\ell_k}(\pi, x) \leq k \Gamma_u^{-1} \left(\mathcal{C}_{\Phi_{01}^u}(\pi, x) - \inf_{\pi \in \mathcal{H}_{\pi}} \mathcal{C}_{\Phi_{01}^u}(\pi, x) \right). \quad (16)$$

1512 Using the definition from Awasthi et al. (2022), we express the expected conditional risk difference
 1513 as:

$$\begin{aligned} \mathbb{E}_X[\Delta\mathcal{C}_{\ell_k}(\pi, X)] &= \mathbb{E}_X \left[\mathcal{C}_{\ell_k}(\pi, X) - \inf_{\pi \in \mathcal{H}_\pi} \mathcal{C}_{\ell_k}(\pi, X) \right] \\ &= \mathcal{E}_{\ell_k}(\pi) - \mathcal{E}_{\ell_k}^B(\mathcal{H}_\pi) - \mathcal{U}_{\ell_k}(\mathcal{H}_\pi). \end{aligned} \quad (17)$$

1518 Consequently, we obtain:

$$\mathcal{C}_{\ell_k}(\pi, x) - \inf_{\pi \in \mathcal{H}_\pi} \mathcal{C}_{\ell_k}(\pi, x) \leq k\Gamma_u^{-1} \left(\mathcal{C}_{\Phi_{01}^u}(\pi, x) - \inf_{\pi \in \mathcal{G}} \mathcal{C}_{\Phi_{01}^u}(\pi, x) \right). \quad (18)$$

1522 Applying the expectation and by the Jensen's inequality yields:

$$\begin{aligned} \mathbb{E}_X[\Delta\mathcal{C}_{\ell_k}(\pi, X)] &\leq \mathbb{E}_X \left[k\Gamma_u^{-1} (\Delta\mathcal{C}_{\Phi_{01}^u}(\pi, X)) \right] \\ &\leq k\Gamma_u^{-1} (\mathbb{E}_X [\Delta\mathcal{C}_{\Phi_{01}^u}(\pi, X)]). \end{aligned} \quad (19)$$

1526 Then,

$$\mathcal{E}_{\ell_k}(\pi) - \mathcal{E}_{\ell_k}^B(\mathcal{H}_\pi) - \mathcal{U}_{\ell_k}(\mathcal{H}_\pi) \leq k\Gamma_u^{-1} \left(\mathcal{E}_{\Phi_{01}^u}(\pi) - \mathcal{E}_{\Phi_{01}^u}^*(\mathcal{H}_\pi) - \mathcal{U}_{\Phi_{01}^u}(\mathcal{H}_\pi) \right). \quad (20)$$

1529 This result implies that the surrogate loss Φ_{01}^u is \mathcal{H}_π -consistent with respect to the top- k loss ℓ_k .
 1530 From Cortes et al. (2024); Mao et al. (2023b), we have for the cross-entropy surrogates,

$$\Gamma_u(v) = \begin{cases} (1 - \sqrt{1 - v^2}) & u = 0 \\ \left(\frac{1+v}{2} \log[1+v] + \frac{1-v}{2} \log[1-v] \right) & u = 1 \\ \frac{1}{v(n+J)^v} \left[\left(\frac{(1+v)^{\frac{1}{1-v}} + (1-v)^{\frac{1}{1-v}}}{2} \right)^{1-v} - 1 \right] & u \in (0, 1) \\ \frac{1}{n+J} v & u = 2. \end{cases} \quad (21)$$

□

1542 **Theorem 4.7** (Unified Consistency for Top- k Deferral). *Let \mathcal{A} denote the set of entities. Assume
 1543 that \mathcal{H}_π is symmetric, complete, and regular for top- k deferral, and that in the two-stage case, \mathcal{H}_g
 1544 is the base predictor class. Let $S := (|\mathcal{A}| - 1) \sum_{j \in \mathcal{A}} \mathbb{E}_X[\bar{\mu}_j(X)]$. Suppose Φ_{01}^u is \mathcal{H}_π -consistent
 1545 for top- k classification with a non-negative, non-decreasing, concave function Γ_u^{-1} .*

1546 **One-stage.** Let $\mathbb{E}_X[\bar{\mu}_j(X)] = \alpha_j \mathbb{P}(\hat{a}_j(X) \neq Y) + \beta_j$. For any $h \in \mathcal{H}_h$,

$$\mathcal{E}_{\ell_{\text{def},k}}(h) - \mathcal{E}_{\ell_{\text{def},k}}^B(\mathcal{H}_h) + \mathcal{U}_{\ell_{\text{def},k}}(\mathcal{H}_h) \leq k S \Gamma_u^{-1} \left(\frac{\mathcal{E}_{\Phi_{\text{def},k}^u}(h) - \mathcal{E}_{\Phi_{\text{def},k}^u}^*(\mathcal{H}_h) + \mathcal{U}_{\Phi_{\text{def},k}^u}(\mathcal{H}_h)}{S} \right).$$

1551 **Two-stage.** Let $\mathbb{E}_X[\bar{\mu}_j(X)] = \alpha_j \mathbb{E}_{X,Z} [\psi(\hat{a}_j(X), Z)] + \beta_j$. For any $(r, g) \in \mathcal{H}_r \times \mathcal{H}_g$,

$$\begin{aligned} \mathcal{E}_{\ell_{\text{def},k}}(r, g) - \mathcal{E}_{\ell_{\text{def},k}}^B(\mathcal{H}_r, \mathcal{H}_g) + \mathcal{U}_{\ell_{\text{def},k}}(\mathcal{H}_r, \mathcal{H}_g) &\leq \mathbb{E}_X[\bar{\mu}_1(X) - \inf_{g \in \mathcal{H}_g} \bar{\mu}_1(X)] \\ &\quad + k S \Gamma_u^{-1} \left(\frac{\mathcal{E}_{\Phi_{\text{def},k}^u}(r) - \mathcal{E}_{\Phi_{\text{def},k}^u}^*(\mathcal{H}_r) + \mathcal{U}_{\Phi_{\text{def},k}^u}(\mathcal{H}_r)}{S} \right) \end{aligned}$$

1557 with $\Gamma_1(v) = \frac{1+v}{2} \log(1+v) + \frac{1-v}{2} \log(1-v)$ (logistic), $\Gamma_0(v) = 1 - \sqrt{1 - v^2}$ (exponential), and
 1558 $\Gamma_2(v) = v/|\mathcal{A}|$ (MAE).

1559 **One-stage.**

1562 *Proof.* We begin by recalling the definition of the conditional deferral risk and its Bayes-optimal
 1563 counterpart:

$$\mathcal{C}_{\ell_{\text{def},k}}(\pi, x) = \sum_{j=1}^{n+J} \bar{\mu}_j(x) \mathbf{1}\{j \in \Pi_k(x)\}, \quad \mathcal{C}_{\ell_{\text{def},k}}^B(\mathcal{H}_\pi, x) = \sum_{i=1}^k \bar{\mu}_{[i]_\pi^\uparrow}(x), \quad (22)$$

1566 where $\bar{\mu}_j(x) = \mathbb{E}_{Y|X=x}[\mu_j(x, Y)]$ denotes the expected cost of selecting entity j . The calibration
 1567 gap at input x is defined as the difference between the incurred and optimal conditional risks:
 1568

$$1569 \Delta \mathcal{C}_{\ell_{\text{def},k}}(\pi, x) = \mathcal{C}_{\ell_{\text{def},k}}(\pi, x) - \mathcal{C}_{\ell_{\text{def},k}}^B(\mathcal{H}_\pi, x). \quad (23)$$

1570 To connect this quantity to surrogate risk, we use the reformulation used in the Proof of Lemma 4.3
 1571 in Equation 8:
 1572

$$1573 \mathcal{C}_{\ell_{\text{def},k}}(\pi, x) = \sum_{j=1}^{n+J} \left(\sum_{i \neq j} \bar{\mu}_i(x) \right) \mathbf{1}\{j \notin \Pi_k(x)\} - (n+J-k-1) \sum_{j=1}^{n+J} \bar{\mu}_j(x), \quad (24)$$

1576 the second term is independent of the hypothesis $\pi \in \mathcal{H}_\pi$. This yields: To prepare for applying an
 1577 \mathcal{H}_π -consistency result, we define normalized weights:
 1578

$$1579 p_j = \frac{\sum_{i \neq j} \bar{\mu}_i(x)}{\sum_{j=1}^{n+J} \left(\sum_{i \neq j} \bar{\mu}_i(x) \right)},$$

1582 which form a probability distribution over entities $j \in \mathcal{A}$. Then:
 1583

$$1584 \Delta \mathcal{C}_{\ell_{\text{def},k}}(\pi, x) = \sum_{j=1}^{n+J} \left(\sum_{i \neq j} \bar{\mu}_i(x) \right) \left(\sum_{j=1}^{n+J} p_j \mathbf{1}\{j \notin \Pi_k(x)\} - \inf_{\pi \in \mathcal{H}_\pi} \sum_{j=1}^{n+J} p_j \mathbf{1}\{j \notin \Pi_k(x)\} \right).$$

1587 Now, we apply the \mathcal{H}_π -consistency guarantee of the surrogate loss Φ_{01}^u for top- k classification
 1588 (Lemma A.9), which provides:
 1589

$$1590 \sum_{j=1}^{n+J} p_j \mathbf{1}\{j \notin \Pi_k(x)\} - \inf_{\pi \in \mathcal{H}_\pi} \sum_{j=1}^{n+J} p_j \mathbf{1}\{j \notin \Pi_k(x)\} \leq \\ 1591 \quad \quad \quad k \Gamma_u^{-1} \left(\sum_{j=1}^{n+J} p_j \Phi_{01}^u(\pi, x, j) - \inf_{\pi \in \mathcal{H}_\pi} \sum_{j=1}^{n+J} p_j \Phi_{01}^u(\pi, x, j) \right).$$

1597 Multiplying both sides by $\sum_{j=1}^{n+J} \left(\sum_{i \neq j} \bar{\mu}_i(x) \right)$, we obtain:
 1598

$$1599 \Delta \mathcal{C}_{\ell_{\text{def},k}}(\pi, x) \leq \\ 1600 \sum_{j=1}^{n+J} \left(\sum_{i \neq j} \bar{\mu}_i(x) \right) k \Gamma_u^{-1} \left(\frac{\sum_{j=1}^{n+J} \left(\sum_{i \neq j} \bar{\mu}_i(x) \right) \Phi_{01}^u(\pi, x, j) - \inf_{\pi \in \mathcal{H}_\pi} \sum_{j=1}^{n+J} \left(\sum_{i \neq j} \bar{\mu}_i(x) \right) \Phi_{01}^u(\pi, x, j)}{\sum_{j=1}^{n+J} \left(\sum_{i \neq j} \bar{\mu}_i(x) \right)} \right).$$

1604 Define the calibration gap of the surrogate as:
 1605

$$1606 \Delta \mathcal{C}_{\Phi_{\text{def},k}^u}(\pi, x) = \sum_{j=1}^{n+J} \bar{\mu}_j(x) \Phi_{01}^u(\pi, x, j) - \inf_{\pi \in \mathcal{H}_\pi} \sum_{j=1}^{n+J} \bar{\mu}_j(x) \Phi_{01}^u(\pi, x, j),$$

1609 Then,

$$1610 \Delta \mathcal{C}_{\ell_{\text{def},k}}(\pi, x) \leq \sum_{j=1}^{n+J} \left(\sum_{i \neq j} \bar{\mu}_i(x) \right) k \Gamma_u^{-1} \left(\frac{\Delta \mathcal{C}_{\Phi_{\text{def},k}^u}(\pi, x)}{\sum_{j=1}^{n+J} \left(\sum_{i \neq j} \bar{\mu}_i(x) \right)} \right).$$

1613 Taking expectations:

$$1615 \mathcal{E}_{\ell_{\text{def},k}}(\pi) - \mathcal{E}_{\ell_{\text{def},k}}^B(\mathcal{H}_\pi) - \mathcal{U}_{\ell_{\text{def},k}}(\mathcal{H}_\pi) \leq \\ 1616 \quad \quad \quad k \sum_{j=1}^{n+J} \left(\sum_{i \neq j} \mathbb{E}_X[\bar{\mu}_i(X)] \right) \Gamma_u^{-1} \left(\frac{\mathcal{E}_{\Phi_{\text{def},k}^u}(\pi) - \mathcal{E}_{\Phi_{\text{def},k}^u}^*(\mathcal{H}_\pi) - \mathcal{U}_{\Phi_{\text{def},k}^u}(\mathcal{H}_\pi)}{\sum_{j=1}^{n+J} \left(\sum_{i \neq j} \mathbb{E}_X[\bar{\mu}_i(X)] \right)} \right), \\ 1617 \quad \quad \quad (25)$$

1620 Note that we have $\sum_{j=1}^{n+J} \left(\sum_{i \neq j} \mathbb{E}_X[\bar{\mu}_i(X)] \right) = (|\mathcal{A}| - 1) \sum_{j \in \mathcal{A}} \mathbb{E}_X[\bar{\mu}_j(X)]$ with $\mathbb{E}_X[\bar{\mu}_j(X)] =$
 1621 $\alpha_j \mathbb{P}(\hat{a}_j(X) \neq Y) + \beta_j$, leading to $S = (|\mathcal{A}| - 1) \sum_{j \in \mathcal{A}} \left(\alpha_j \mathbb{P}(\hat{a}_j(X) \neq Y) + \beta_j \right)$:
 1622

$$1624 \mathcal{E}_{\ell_{\text{def},k}}(\pi) - \mathcal{E}_{\ell_{\text{def},k}}^B(\mathcal{H}_\pi) - \mathcal{U}_{\ell_{\text{def},k}}(\mathcal{H}_\pi) \leq \\ 1625 \quad k S \Gamma_u^{-1} \left(\frac{\mathcal{E}_{\Phi_{\text{def},k}^u}(\pi) - \mathcal{E}_{\Phi_{\text{def},k}^u}^*(\mathcal{H}_\pi) - \mathcal{U}_{\Phi_{\text{def},k}^u}(\mathcal{H}_\pi)}{S} \right), \quad (26)$$

1626
 1627
 1628 \square
 1629

1630 Two-Stage.

1631
 1632 *Proof.* We begin by recalling the definition of the conditional deferral risk and its Bayes-optimal
 1633 counterpart:

$$1634 \mathcal{C}_{\ell_{\text{def},k}}(\pi, g, x) = \sum_{j=1}^{J+1} \bar{\mu}_j(x) \mathbf{1}\{j \in \Pi_k(x)\}, \quad \mathcal{C}_{\ell_{\text{def},k}}^B(\mathcal{H}_\pi, \mathcal{H}_g, x) = \sum_{i=1}^k \bar{\mu}_{[i]_{\bar{\mu}^B}}^B(x), \quad (27)$$

1635 where $\bar{\mu}_j(x) = \mathbb{E}_{Z|X=x}[\mu_j(x, Z)]$ denotes the expected cost of selecting entity j . Note that the
 1636 conditional risk is different because of the main predictor g . The calibration gap at input x is defined
 1637 as the difference between the incurred and optimal conditional risks:
 1638

$$1639 \Delta \mathcal{C}_{\ell_{\text{def},k}}(\pi, g, x) = \mathcal{C}_{\ell_{\text{def},k}}(\pi, g, x) - \mathcal{C}_{\ell_{\text{def},k}}^B(\mathcal{H}_\pi, \mathcal{H}_g, x) \\ 1640 = \sum_{i=1}^{J+1} \bar{\mu}_j(x) \mathbf{1}\{j \in \Pi_k(x)\} - \sum_{i=1}^k \bar{\mu}_{[i]_{\bar{\mu}^B}}^B(x) \\ 1641 = \sum_{i=1}^{J+1} \bar{\mu}_j(x) \mathbf{1}\{j \in \Pi_k(x)\} - \sum_{i=1}^k \bar{\mu}_{[i]_{\bar{\mu}}}^B(x) \\ 1642 + \left(\sum_{i=1}^k \bar{\mu}_{[i]_{\bar{\mu}}}^B(x) - \sum_{i=1}^k \bar{\mu}_{[i]_{\bar{\mu}^B}}^B(x) \right). \quad (28)$$

1643 Observing that:

$$1644 \sum_{i=1}^k \bar{\mu}_{[i]_{\bar{\mu}}}^B(x) - \sum_{i=1}^k \bar{\mu}_{[i]_{\bar{\mu}^B}}^B(x) \leq \bar{\mu}_1(x) - \inf_{g \in \mathcal{H}_g} \bar{\mu}_1(x) \quad (29)$$

1645 Since the only contribution of g appears through the cost term μ_1 , we can rewrite the first term in
 1646 terms of conditional risks. Importantly, the minimization is carried out only over the decision rule
 1647 $\pi \in \mathcal{H}_\pi$.
 1648

$$1649 \sum_{i=1}^{J+1} \bar{\mu}_j(x) \mathbf{1}\{j \in \Pi_k(x)\} - \sum_{i=1}^k \bar{\mu}_{[i]_{\bar{\mu}}}^B(x) = \mathcal{C}_{\ell_{\text{def},k}}(\pi, g, x) - \inf_{\pi \in \mathcal{H}_\pi} \mathcal{C}_{\ell_{\text{def},k}}(\pi, g, x). \quad (30)$$

1650 Using the explicit formulation of the top- k deferral loss in terms of the indicator function $\mathbf{1}\{j \notin \Pi_k(x)\}$ (Equation 8), we obtain:
 1651

$$1652 \mathcal{C}_{\ell_{\text{def},k}}(\pi, g, x) - \inf_{\pi \in \mathcal{H}_\pi} \mathcal{C}_{\ell_{\text{def},k}}(\pi, g, x) = \sum_{j=1}^{n+J} \left(\sum_{i \neq j} \bar{\mu}_i(x) \right) \mathbf{1}\{j \notin \Pi_k(x)\} \\ 1653 - \inf_{\pi \in \mathcal{H}_\pi} \sum_{j=1}^{n+J} \left(\sum_{i \neq j} \bar{\mu}_i(x) \right) \mathbf{1}\{j \notin \Pi_k(x)\}. \quad (31)$$

1654
 1655
 1656
 1657
 1658
 1659
 1660
 1661
 1662
 1663
 1664
 1665
 1666
 1667
 1668
 1669
 1670
 1671
 1672
 1673
 1674
 1675
 1676
 1677
 1678
 1679
 1680
 1681
 1682
 1683
 1684
 1685
 1686
 1687
 1688
 1689
 1690
 1691
 1692
 1693
 1694
 1695
 1696
 1697
 1698
 1699
 1700
 1701
 1702
 1703
 1704
 1705
 1706
 1707
 1708
 1709
 1710
 1711
 1712
 1713
 1714
 1715
 1716
 1717
 1718
 1719
 1720
 1721
 1722
 1723
 1724
 1725
 1726
 1727
 1728
 1729
 1730
 1731
 1732
 1733
 1734
 1735
 1736
 1737
 1738
 1739
 1740
 1741
 1742
 1743
 1744
 1745
 1746
 1747
 1748
 1749
 1750
 1751
 1752
 1753
 1754
 1755
 1756
 1757
 1758
 1759
 1760
 1761
 1762
 1763
 1764
 1765
 1766
 1767
 1768
 1769
 1770
 1771
 1772
 1773
 1774
 1775
 1776
 1777
 1778
 1779
 1780
 1781
 1782
 1783
 1784
 1785
 1786
 1787
 1788
 1789
 1790
 1791
 1792
 1793
 1794
 1795
 1796
 1797
 1798
 1799
 1800
 1801
 1802
 1803
 1804
 1805
 1806
 1807
 1808
 1809
 1810
 1811
 1812
 1813
 1814
 1815
 1816
 1817
 1818
 1819
 1820
 1821
 1822
 1823
 1824
 1825
 1826
 1827
 1828
 1829
 1830
 1831
 1832
 1833
 1834
 1835
 1836
 1837
 1838
 1839
 1840
 1841
 1842
 1843
 1844
 1845
 1846
 1847
 1848
 1849
 1850
 1851
 1852
 1853
 1854
 1855
 1856
 1857
 1858
 1859
 1860
 1861
 1862
 1863
 1864
 1865
 1866
 1867
 1868
 1869
 1870
 1871
 1872
 1873
 1874
 1875
 1876
 1877
 1878
 1879
 1880
 1881
 1882
 1883
 1884
 1885
 1886
 1887
 1888
 1889
 1890
 1891
 1892
 1893
 1894
 1895
 1896
 1897
 1898
 1899
 1900
 1901
 1902
 1903
 1904
 1905
 1906
 1907
 1908
 1909
 1910
 1911
 1912
 1913
 1914
 1915
 1916
 1917
 1918
 1919
 1920
 1921
 1922
 1923
 1924
 1925
 1926
 1927
 1928
 1929
 1930
 1931
 1932
 1933
 1934
 1935
 1936
 1937
 1938
 1939
 1940
 1941
 1942
 1943
 1944
 1945
 1946
 1947
 1948
 1949
 1950
 1951
 1952
 1953
 1954
 1955
 1956
 1957
 1958
 1959
 1960
 1961
 1962
 1963
 1964
 1965
 1966
 1967
 1968
 1969
 1970
 1971
 1972
 1973
 1974
 1975
 1976
 1977
 1978
 1979
 1980
 1981
 1982
 1983
 1984
 1985
 1986
 1987
 1988
 1989
 1990
 1991
 1992
 1993
 1994
 1995
 1996
 1997
 1998
 1999
 2000
 2001
 2002
 2003
 2004
 2005
 2006
 2007
 2008
 2009
 2010
 2011
 2012
 2013
 2014
 2015
 2016
 2017
 2018
 2019
 2020
 2021
 2022
 2023
 2024
 2025
 2026
 2027
 2028
 2029
 2030
 2031
 2032
 2033
 2034
 2035
 2036
 2037
 2038
 2039
 2040
 2041
 2042
 2043
 2044
 2045
 2046
 2047
 2048
 2049
 2050
 2051
 2052
 2053
 2054
 2055
 2056
 2057
 2058
 2059
 2060
 2061
 2062
 2063
 2064
 2065
 2066
 2067
 2068
 2069
 2070
 2071
 2072
 2073
 2074
 2075
 2076
 2077
 2078
 2079
 2080
 2081
 2082
 2083
 2084
 2085
 2086
 2087
 2088
 2089
 2090
 2091
 2092
 2093
 2094
 2095
 2096
 2097
 2098
 2099
 2100
 2101
 2102
 2103
 2104
 2105
 2106
 2107
 2108
 2109
 2110
 2111
 2112
 2113
 2114
 2115
 2116
 2117
 2118
 2119
 2120
 2121
 2122
 2123
 2124
 2125
 2126
 2127
 2128
 2129
 2130
 2131
 2132
 2133
 2134
 2135
 2136
 2137
 2138
 2139
 2140
 2141
 2142
 2143
 2144
 2145
 2146
 2147
 2148
 2149
 2150
 2151
 2152
 2153
 2154
 2155
 2156
 2157
 2158
 2159
 2160
 2161
 2162
 2163
 2164
 2165
 2166
 2167
 2168
 2169
 2170
 2171
 2172
 2173
 2174
 2175
 2176
 2177
 2178
 2179
 2180
 2181
 2182
 2183
 2184
 2185
 2186
 2187
 2188
 2189
 2190
 2191
 2192
 2193
 2194
 2195
 2196
 2197
 2198
 2199
 2200
 2201
 2202
 2203
 2204
 2205
 2206
 2207
 2208
 2209
 2210
 2211
 2212
 2213
 2214
 2215
 2216
 2217
 2218
 2219
 2220
 2221
 2222
 2223
 2224
 2225
 2226
 2227
 2228
 2229
 2230
 2231
 2232
 2233
 2234
 2235
 2236
 2237
 2238
 2239
 2240
 2241
 2242
 2243
 2244
 2245
 2246
 2247
 2248
 2249
 2250
 2251
 2252
 2253
 2254
 2255
 2256
 2257
 2258
 2259
 2260
 2261
 2262
 2263
 2264
 2265
 2266
 2267
 2268
 2269
 2270
 2271
 2272
 2273
 2274
 2275
 2276
 2277
 2278
 2279
 2280
 2281
 2282
 2283
 2284
 2285
 2286
 2287
 2288
 2289
 2290
 2291
 2292
 2293
 2294
 2295
 2296
 2297
 2298
 2299
 2300
 2301
 2302
 2303
 2304
 2305
 2306
 2307
 2308
 2309
 2310
 2311
 2312
 2313
 2314
 2315
 2316
 2317
 2318
 2319
 2320
 2321
 2322
 2323
 2324
 2325
 2326
 2327
 2328
 2329
 2330
 2331
 2332
 2333
 2334
 2335
 2336
 2337
 2338
 2339
 2340
 2341
 2342
 2343
 2344
 2345
 2346
 2347
 2348
 2349
 2350
 2351
 2352
 2353
 2354
 2355
 2356
 2357
 2358
 2359
 2360
 2361
 2362
 2363
 2364
 2365
 2366
 2367
 2368
 2369
 2370
 2371
 2372
 2373
 2374
 2375
 2376
 2377
 2378
 2379
 2380
 2381
 2382
 2383
 2384
 2385
 2386
 2387
 2388
 2389
 2390
 2391
 2392
 2393
 2394
 2395
 2396
 2397
 2398
 2399
 2400
 2401
 2402
 2403
 2404
 2405
 2406
 2407
 2408
 2409
 2410
 2411
 2412
 2413
 2414
 2415
 2416
 2417
 2418
 2419
 2420
 2421
 2422
 2423
 2424
 2425
 2426
 2427
 2428
 2429
 2430
 2431
 2432
 2433
 2434
 2435
 2436
 2437
 2438
 2439
 2440
 2441
 2442
 2443
 2444
 2445
 2446
 2447
 2448
 2449
 2450
 2451
 2452
 2453
 2454
 2455
 2456
 2457
 2458
 2459
 2460
 2461
 2462
 2463
 2464
 2465
 2466
 2467
 2468
 2469
 2470
 2471
 2472
 2473
 2474
 2475
 2476
 2477
 2478
 2479
 2480
 2481
 2482
 2483
 2484
 2485
 2486
 2487
 2488
 2489
 2490
 2491
 2492
 2493
 2494
 2495
 2496
 2497
 2498
 2499
 2500
 2501
 2502
 2503
 2504
 2505
 2506
 2507
 2508
 2509
 2510
 2511
 2512
 2513
 2514
 2515
 2516
 2517
 2518
 2519
 2520
 2521
 2522
 2523
 2524
 2525
 2526
 2527
 2528
 2529
 2530
 2531
 2532
 2533
 2534
 2535
 2536
 2537
 2538
 2539
 2540
 2541
 2542
 2543
 2544
 2545
 2546
 2547
 2548
 2549
 2550
 2551
 2552
 2553
 2554
 2555
 2556
 2557
 2558
 2559
 2560
 2561
 2562
 2563
 2564
 2565
 2566
 2567
 2568
 2569
 2570
 2571
 2572
 2573
 2574
 2575
 2576
 2577
 2578
 2579
 2580
 2581
 2582
 2583
 2584
 2585
 2586
 2587
 2588
 2589
 2590
 2591
 2592
 2593
 2594
 2595
 2596
 2597
 2598
 2599
 2600
 2601
 2602
 2603
 2604
 2605
 2606
 2607
 2608
 2609
 2610
 2611
 2612
 2613
 2614
 2615
 2616
 2617
 2618
 2619
 2620
 2621
 2622
 2623
 2624
 2625
 2626
 2627
 2628
 2629
 2630
 2631
 2632
 2633
 2634
 2635
 2636
 2637
 2638
 2639
 2640
 2641
 2642
 2643
 2644
 2645
 2646
 2647
 2648
 2649
 2650
 2651
 2652
 2653
 2654
 2655
 2656
 2657
 2658
 2659
 2660
 2661
 2662
 2663
 2664
 2665
 2666
 2667
 2668
 2669
 2670
 2671
 2672
 2673
 2674
 2675
 2676
 2677
 2678
 2679
 2680
 2681
 2682
 2683
 2684
 2685
 2686
 2687
 2688
 2689
 2690
 2691
 2692
 2693
 2694
 2695
 2696
 2697
 2698
 2699
 2700
 2701
 2702
 2703
 2704
 2705
 2706
 2707
 2708
 2709
 2710
 2711
 2712
 2713
 2714
 2715
 2716
 2717
 2718
 2719
 2720
 2721
 2722
 2723
 2724
 2725
 2726
 2727
 2728
 2729
 2730
 2731
 2732
 2733
 2734
 2735
 2736
 2737
 2738
 2739
 2740
 2741
 2742
 2743
 2744
 2745
 2746
 2747
 2748
 2749
 2750
 2751
 2752
 2753
 2754
 2755
 2756
 2757
 2758
 2759
 2760
 2761
 2762
 2763
 2764
 2765
 2766
 2767
 2768
 2769
 2770
 2771
 2772
 2773
 2774
 2775
 2776
 2777
 2778
 2779
 2780
 2781
 2782
 2783
 2784
 2785
 2786
 2787
 2788
 2789
 2790
 2791
 2792
 2793<br

1674 which form a probability distribution over entities $j \in \mathcal{A}$. Then:
1675

$$\begin{aligned} 1676 \quad \mathcal{C}_{\ell_{\text{def},k}}(\pi, g, x) - \inf_{\pi \in \mathcal{H}_\pi} \mathcal{C}_{\ell_{\text{def},k}}(\pi, g, x) &= \sum_{j=1}^{J+1} \left(\sum_{i \neq j} \bar{\mu}_i(x) \right) \left(\sum_{j=1}^{n+J} p_j \mathbf{1}\{j \notin \Pi_k(x)\} \right. \\ 1677 \quad &\quad \left. - \inf_{\pi \in \mathcal{H}_\pi} \sum_{j=1}^{n+J} p_j \mathbf{1}\{j \notin \Pi_k(x)\} \right) \\ 1678 \end{aligned}$$

1682 Since the surrogate losses Φ_{01}^u are consistent with the top- k loss, we apply Lemma A.9:
1683

$$\begin{aligned} 1684 \quad \mathcal{C}_{\ell_{\text{def},k}}(\pi, g, x) - \inf_{\pi \in \mathcal{H}_\pi} \mathcal{C}_{\ell_{\text{def},k}}(\pi, g, x) &\leq \sum_{j=1}^{J+1} \left(\sum_{i \neq j} \bar{\mu}_i(x) \right) k \Gamma_u^{-1} \left(\sum_{j=1}^{n+J} p_j \mathbf{1}\{j \notin \Pi_k(x)\} \right. \\ 1685 \quad &\quad \left. - \inf_{\pi \in \mathcal{H}_\pi} \sum_{j=1}^{n+J} p_j \mathbf{1}\{j \notin \Pi_k(x)\} \right) \\ 1686 \quad &= \sum_{j=1}^{J+1} \left(\sum_{i \neq j} \bar{\mu}_i(x) \right) k \Gamma_u^{-1} \left(\frac{\mathcal{C}_{\Phi_{\text{def},k}}(\pi, g, x) - \inf_{\pi \in \mathcal{H}_\pi} \mathcal{C}_{\Phi_{\text{def},k}}(\pi, g, x)}{\sum_{j=1}^{J+1} \left(\sum_{i \neq j} \bar{\mu}_i(x) \right)} \right) \\ 1687 \quad &1690 \quad 1691 \quad 1692 \end{aligned}$$

1693 Earlier, we have stated:
1694

$$\begin{aligned} 1695 \quad \Delta \mathcal{C}_{\ell_{\text{def},k}}(\pi, g, x) &= \mathcal{C}_{\ell_{\text{def},k}}(\pi, g, x) - \mathcal{C}_{\ell_{\text{def},k}}^B(\mathcal{H}_\pi, \mathcal{H}_g, x) \\ 1696 \quad &= \sum_{i=1}^{J+1} \bar{\mu}_i(x) \mathbf{1}\{j \in \Pi_k(x)\} - \sum_{i=1}^k \bar{\mu}_{[i]_\mu^\uparrow}(x) \\ 1697 \quad &\quad + \left(\sum_{i=1}^k \bar{\mu}_{[i]_\mu^\uparrow}(x) - \sum_{i=1}^k \bar{\mu}_{[i]_{\mu^B}^\uparrow}(x) \right). \\ 1698 \quad &1699 \quad 1700 \quad 1701 \end{aligned} \tag{32}$$

1702 which is

$$\begin{aligned} 1703 \quad \Delta \mathcal{C}_{\ell_{\text{def},k}}(\pi, g, x) &= \mathcal{C}_{\ell_{\text{def},k}}(\pi, g, x) - \inf_{\pi \in \mathcal{H}_\pi} \mathcal{C}_{\ell_{\text{def},k}}(\pi, g, x) \\ 1704 \quad &\quad + \left(\sum_{i=1}^k \bar{\mu}_{[i]_\mu^\uparrow}(x) - \sum_{i=1}^k \bar{\mu}_{[i]_{\mu^B}^\uparrow}(x) \right). \\ 1705 \quad &1706 \quad 1707 \end{aligned} \tag{33}$$

$$\leq \mathcal{C}_{\ell_{\text{def},k}}(\pi, g, x) - \inf_{\pi \in \mathcal{H}_\pi} \mathcal{C}_{\ell_{\text{def},k}}(\pi, g, x) + (\bar{\mu}_1(x) - \bar{\mu}_1^B(x))$$

1708 Then,
1709

$$\begin{aligned} 1710 \quad \Delta \mathcal{C}_{\ell_{\text{def},k}}(\pi, g, x) &\leq \sum_{j=1}^{J+1} \left(\sum_{i \neq j} \bar{\mu}_i(x) \right) k \Gamma_u^{-1} \left(\frac{\mathcal{C}_{\Phi_{\text{def},k}^u}(\pi, g, x) - \inf_{\pi \in \mathcal{H}_\pi} \mathcal{C}_{\Phi_{\text{def},k}^u}(\pi, g, x)}{\sum_{j=1}^{J+1} \left(\sum_{i \neq j} \bar{\mu}_i(x) \right)} \right) \\ 1711 \quad &\quad + (\bar{\mu}_1(x) - \bar{\mu}_1^B(x)) \\ 1712 \quad &1713 \quad 1714 \end{aligned} \tag{34}$$

1715 Taking expectations,
1716

$$\begin{aligned} 1717 \quad \mathcal{E}_{\ell_{\text{def},k}}(\pi, g) - \mathcal{E}_{\ell_{\text{def},k}}^B(\mathcal{H}_\pi, \mathcal{H}_g) - \mathcal{U}_{\ell_{\text{def},k}}(\mathcal{H}_\pi, \mathcal{H}_g) &\leq \mathbb{E}_X [\bar{\mu}_1(X) - \bar{\mu}_1^B(X)] \\ 1718 \quad &\quad + \sum_{j=1}^{J+1} \left(\sum_{i \neq j} \mathbb{E}_X [\bar{\mu}_i(X)] \right) k \Gamma_u^{-1} \left(\frac{\mathcal{E}_{\Phi_{\text{def},k}^u}(\pi) - \mathcal{E}_{\Phi_{\text{def},k}^u}^*(\mathcal{H}_\pi) - \mathcal{U}_{\Phi_{\text{def},k}^u}(\mathcal{H}_\pi)}{\sum_{j=1}^{J+1} \left(\sum_{i \neq j} \mathbb{E}_X [\bar{\mu}_i(X)] \right)} \right) \\ 1719 \quad &1720 \quad 1721 \quad 1722 \end{aligned} \tag{35}$$

1723 Similarly, we have $\mathbb{E}_X [\bar{\mu}_j(X)] = \alpha_j \mathbb{E}_{X,Z} [\psi(\hat{a}_j(X), Z)] + \beta_j$. Using
1724 $\sum_{j=1}^{n+J} \left(\sum_{i \neq j} \mathbb{E}_X [\bar{\mu}_i(X)] \right) = (|\mathcal{A}| - 1) \sum_{j \in \mathcal{A}} \mathbb{E}_X [\bar{\mu}_j(X)]$, leading to $S = (|\mathcal{A}| - 1) \sum_{j \in \mathcal{A}} (\alpha_j \mathbb{E}_{X,Z} [\psi(\hat{a}_j(X), Z)] + \beta_j)$:
1725 \square

1728 A.12 BEHAVIOR OF THE CARDINALITY-AWARE DEFERRAL LOSS
17291730 For any $x \in \mathcal{X}$ and $k \in \{1, \dots, |\mathcal{A}|\}$, the conditional risk of selecting the top- k experts is
1731

1732
$$\begin{aligned} \mathcal{C}_{\ell_{\text{card}}}(k) &:= \mathbb{E}[\ell_{\text{card}}(\Pi_k(x), k, x, Z) \mid X = x] \\ 1733 &= \mathbb{E}[d(\Pi_k(x), x, Z) \mid X = x] + \lambda \xi \left(\sum_{i=1}^k \beta_{[i]\downarrow\pi} \right). \end{aligned}$$

1735

1736 The Bayes-optimal cardinality function is therefore
1737

1738
$$k_{\theta}^B(x) \in \arg \min_{k \in \{1, \dots, |\mathcal{A}|\}} \left\{ \mathbb{E}[d(\Pi_k(x), x, Z) \mid X = x] + \lambda \xi \left(\sum_{i=1}^k \beta_{[i]\downarrow\pi} \right) \right\}.$$

1740

1741 For $k \geq 2$, define
1742

1743
$$\delta \mathcal{C}_{\ell_{\text{card}}}(k) := \mathcal{C}_{\ell_{\text{card}}}(k) - \mathcal{C}_{\ell_{\text{card}}}(k-1), \quad S_k := \sum_{i=1}^k \beta_{[i]\downarrow\pi}.$$

1744

1745 A simple computation gives
1746

1747
$$\delta \mathcal{C}_{\ell_{\text{card}}}(k) = \underbrace{\mathbb{E}[d(\Pi_k(x), x, Z) - d(\Pi_{k-1}(x), x, Z) \mid X = x]}_{:= \delta D_x(k)} + \lambda [\xi(S_k) - \xi(S_{k-1})].$$

1748

1749 Thus, for any $k \in \{1, \dots, |\mathcal{A}| - 1\}$,
1750

1751
$$\mathcal{C}_{\ell_{\text{card}}}(k+1) \leq \mathcal{C}_{\ell_{\text{card}}}(k) \iff \delta D_x(k+1) + \lambda [\xi(S_{k+1}) - \xi(S_k)] \leq 0, \quad (36)$$

1752

1753 that is, moving from k to $k+1$ strictly decreases the conditional risk if and only if the marginal
1754 reduction in expected error, $-\delta D_x(k+1)$, is at least as large as the marginal regularization cost,
1755 $\lambda [\xi(S_{k+1}) - \xi(S_k)]$.
17561757 This shows that consulting and aggregating multiple experts is not ad hoc: for any fixed aggregation
1758 rule d , it is Bayes-optimal to choose $k_{\theta}^B(x) > 1$ precisely when using additional experts yields a net
1759 decrease of the conditional risk $\mathcal{C}_{\ell_{\text{card}}}(k)$, i.e., when improving the final prediction quality is worthy
1760 the price of consulting selected experts.
17611762 **Tuning Parameters.** As shown above, the parameter λ controls the trade-off between consulta-
1763 tion cost and predictive reliability. Increasing λ makes the model more cost-sensitive, leading it to
1764 select fewer experts. Conversely, decreasing λ places greater emphasis on reliability, resulting in the
1765 selection of a larger set of experts when beneficial.
17661767 A.13 CHOICE OF THE METRIC d
17681769 The metric d in the cardinality-based deferral loss governs how disagreement between the final
1770 prediction and labels is penalized, and its choice depends on application-specific priorities. For
1771 instance, it determines how predictions from multiple entities in the Top- k Selection Set $\Pi_k(x) \subseteq \mathcal{A}$
1772 are aggregated into a final decision. In all cases, ties are broken by selecting the entity with the
1773 smallest index.
17741775 **Classification Metrics for Cardinality Loss.** In classification, common choices include:
17761777

- **Top- k True Loss** A binary penalty is incurred when the true label y is not present in the
1778 prediction set:

1779
$$d_{\text{top-}k}(\Pi_2(x), 2, y) = \mathbf{1}\{y \notin \{a_{[1]\downarrow\pi}(x), \dots, a_{[k]\downarrow\pi}(x)\}\}.$$

1780

1781 Example: let $\Pi_2(x) = \{3, 1\}$ the metric will compute $d_{\text{top-}k}(\Pi_k(x), k, y) = \mathbf{1}\{y \notin \{a_1(x), a_3(x)\}\}.$
1782

- **Weighted Voting Loss.** Each entity is weighted according to a reliability score, typically derived from a softmax over the scores $\pi(x, \cdot)$. The predicted label is obtained via weighted voting:

$$\hat{y} = \arg \max_{y \in \mathcal{Y}} \sum_{j \in \Pi_k(x)} w_j \mathbf{1}\{\hat{a}_j(x) = y\}, \quad \text{with} \quad w_j = \hat{p}(x, j) = \frac{\exp(\pi(x, j))}{\sum_{j'} \exp(\pi(x, j'))}.$$

The loss is defined as $d_{w\text{-vl}}(\Pi_k(x), k, y) = \mathbf{1}\{y \neq \hat{y}\}$.

- **Majority Voting Loss.** All entities contribute equally, and the predicted label is chosen by majority vote:

$$\hat{y} = \arg \max_{y \in \mathcal{Y}} \sum_{j \in \Pi_k(x)} \mathbf{1}\{\hat{a}_j(x) = y\},$$

with the corresponding loss $d_{\text{maj}}(\Pi_k(x), k, y) = \mathbf{1}\{y \neq \hat{y}\}$.

Regression Metrics for Cardinality Loss. Let $\ell_{\text{reg}}(z, \hat{z}) \in \mathbb{R}^+$ denote a base regression loss (e.g., squared error or smooth L1). Common choices include:

- **Minimum Cost (Best Expert) Loss.** The error is measured using the prediction from the best-performing entity in the Top- k Selection Set:

$$d_{\text{min}}(\Pi_k(x), k, z) = \min_{j \in \Pi_k(x)} \ell_{\text{reg}}(\hat{a}_j(x), z).$$

- **Weighted Average Prediction Loss.** Each entity is assigned a reliability weight based on a softmax over scores $\pi(x, \cdot)$. The predicted output is a weighted average of entity predictions:

$$\hat{z} = \sum_{j \in \Pi_k(x)} w_j \hat{a}_j(x), \quad \text{with} \quad w_j = \frac{\exp(\pi(x, j))}{\sum_{j'} \exp(\pi(x, j'))},$$

and the loss is computed as $d_{w\text{-avg}}(\Pi_k(x), k, z) = \ell_{\text{reg}}(\hat{z}, z)$.

- **Uniform Average Prediction Loss.** Each entity in the Top- k Selection Set contributes equally, and the final prediction is a simple average:

$$\hat{z} = \frac{1}{k} \sum_{j \in \Pi_k(x)} \hat{a}_j(x), \quad d_{\text{avg}}(\Pi_k(x), k, z) = \ell_{\text{reg}}(\hat{z}, z).$$

A.14 USE OF LARGE LANGUAGE MODELS

Large language models were employed exclusively as writing aids for this manuscript. In particular, we used them to refine the text with respect to vocabulary choice, orthography, and grammar. All conceptual contributions, technical results, proofs, and experiments are original to the authors. The LLMs were not used to generate research ideas, mathematical derivations, or experimental analyses.

B EXPERIMENTS

B.1 RESOURCES

All experiments were conducted on an internal cluster using an NVIDIA A100 GPU with 40 GB of VRAM.

B.1.1 METRICS

For classification tasks, we report accuracy under three evaluation rules. The *Top- k Accuracy* is defined as $\text{Acc}_{\text{top-}k} = \mathbb{E}_X [1 - d_{\text{top-}k}(X)]$, where the prediction is deemed correct if the true label y is included in the outputs of the queried entities. The *Weighted Voting Accuracy* is given by $\text{Acc}_{w\text{-vl}} = \mathbb{E}_X [1 - d_{w\text{-vl}}(X)]$, where entity predictions are aggregated via softmax-weighted voting.

Finally, the *Majority Voting Accuracy* is defined as $\text{Acc}_{\text{maj}} = \mathbb{E}_X[1 - d_{\text{maj}}(X)]$, where all entities in the Top- k Selection Set contribute equally.

For regression tasks, we report RMSE under three aggregation strategies. The *Minimum Cost RMSE* is defined as $\text{RMSE}_{\text{min}} = \mathbb{E}_X[d_{\text{min}}(X)]$, corresponding to the prediction from the best-performing entity. The *Weighted Average Prediction RMSE* is given by $\text{RMSE}_{\text{w-avg}} = \mathbb{E}_X[d_{\text{w-avg}}(X)]$, using a softmax-weighted average of predictions. The *Uniform Average Prediction RMSE* is computed as $\text{RMSE}_{\text{avg}} = \mathbb{E}_X[d_{\text{avg}}(X)]$, using the unweighted mean of entity predictions.

In addition to performance, we also report two resource-sensitive metrics. The *expected budget* is defined as $\bar{\beta}(k) = \mathbb{E}_X \left[\sum_{j=1}^k \beta_{[j]_{\pi}^{\downarrow}} \right]$, where β_j denotes the consultation cost of entity j , and $[j]_{\pi}^{\downarrow}$ is the index of the j -th ranked entity by the policy π . The *expected number of queried entities* is given by $\bar{k} = \mathbb{E}_X[|\Pi_k(X)|]$, where k is fixed for Top- k L2D and varies with x in the adaptive Top- $k(x)$ L2D Settings. Additional details are provided in Appendix A.13.

B.1.2 TRAINING

We assign fixed consultation costs β_j to each entity. In the one-stage regime, class labels ($j \leq n$) incur no consultation cost ($\beta_j = 0$), since predictions from the model itself are free. In the two-stage regime, we similarly set $\beta_1 = 0$ for the base predictor g . For experts, we use the cost schedule $\beta_j \in \{0.05, 0.045, 0.040, 0.035, 0.03\}$, with m_1 assigned as the most expensive. This decreasing pattern reflects realistic setups where experts differ in reliability and cost. As the surrogate loss, we adopt the multiclass log-softmax surrogate $\Phi_{01}^{u=1}(q, x, j) = -\log \left(\frac{e^{q(x, j)}}{\sum_{j' \in \mathcal{A}} e^{q(x, j')}} \right)$, used both for learning the policy $\pi \in \mathcal{H}_{\pi}$ and for optimizing the adaptive cardinality function k_{θ} . The adaptive function k_{θ} is trained under three evaluation protocols—Top- k Accuracy, Majority Voting, and Weighted Voting (see A.13 and B.1.1). To balance accuracy and consultation cost, we perform a grid search over the regularization parameter $\lambda \in \{10^{-9}, 0.01, 0.05, 0.25, 0.5, 1, 1.5, \dots, 6.5\}$, which directly shapes the learned values of $\hat{k}(x)$. Larger λ penalizes expensive deferral sets, encouraging smaller k . When multiple values of k achieve the same loss, ties are broken by selecting the smallest index according to a fixed ordering of entities in \mathcal{A} .

B.1.3 DATASETS

CIFAR-10. A standard image classification benchmark with 60,000 color images of resolution 32×32 , evenly distributed across 10 object categories (Krizhevsky, 2009). Each class has 6,000 examples, with 50,000 for training and 10,000 for testing. We follow the standard split and apply dataset-specific normalization.

CIFAR-100. Identical setup to CIFAR-10 but with 100 categories, each containing 600 images.

SVHN. The Street View House Numbers (SVHN) dataset (Goodfellow et al., 2013) is a large-scale digit classification benchmark comprising over 600,000 RGB images of size 32×32 , extracted from real-world street scenes. We use the standard split of 73,257 training images and 26,032 test images. The dataset is released under a non-commercial use license.

California Housing. The California Housing dataset (Kelle Pace & Barry, 1997) is a regression benchmark based on the 1990 U.S. Census (CC0). It contains 20,640 instances, each representing a geographical block in California and described by eight real-valued features (e.g., median income, average occupancy). The target is the median house value in each block, measured in hundreds of thousands of dollars. We standardize all features and use an 80/20 train-test split.

B.2 ONE-STAGE

We compare our proposed *Top- k* and *Top- $k(x)$* L2D approaches against prior work (Mozannar & Sontag, 2020; Mao et al., 2024a), as well as against random and oracle (optimal) baselines.

1890

B.2.1 RESULTS ON CIFAR-10

1891

1892

1893

1894

Settings. We synthetically construct a pool of 6 experts with overlapping areas of competence. Each expert is assigned to a subset of 5 target classes, where they achieve a high probability of correct prediction ($p = 0.94$). For all other (non-assigned) classes, their predictions are uniformly random (Mozannar & Sontag, 2020; Verma et al., 2022). This design reflects a realistic setting where experts specialize in overlapping but not disjoint regions of the input space. Table 2 reports the classification accuracy of each expert on the CIFAR-10 validation set.

1900

1901

1902

1903

1904

1905

1906

Table 2: Validation accuracy of each expert on CIFAR-10. Each expert specializes in 5 out of 10 classes with high confidence.

1907

1908

1909

1910

Expert	1	2	3	4	5	6
Accuracy (%)	52.08	52.68	52.11	52.03	52.16	52.41

1911

1912

1913

1914

1915

1916

1917

1918

1919

1920

1921

1922

1923

1924

1925

Top- k One-Stage. We train the classifier $h \in \mathcal{H}_h$ using a ResNet-4 architecture (He et al., 2016), following the procedure described in Algorithm 1 ($\pi = h$). Optimization is performed using the Adam optimizer with a batch size of 2048, an initial learning rate of 1×10^{-3} , and 200 training epochs. The final policy h is selected based on the lowest Top- k deferral surrogate loss (Corollary 4.4) on a held-out validation set. We report results across various fixed values of $k \in \mathcal{A}^{1s}$, corresponding to the number of queried entities at inference.

1926

1927

1928

1929

1930

1931

1932

1933

1934

1935

1936

1937

1938

Top- $k(x)$ One-Stage. Given the trained classifier h , we train a cardinality function $k_\theta \in \mathcal{H}_k$ as described in Algorithm A.4. This function is implemented using a CLIP-based image encoder (Radford et al., 2021) followed by a classification head. We train k using the AdamW optimizer (Loshchilov & Hutter, 2017) with a batch size of 128, learning rate of 1×10^{-3} , weight decay of 1×10^{-5} , and cosine learning rate scheduling over 10 epochs. To evaluate the learned deferral strategy, we experiment with different decision rules based on various metrics d ; detailed definitions and evaluation setups are provided in Appendix A.13.

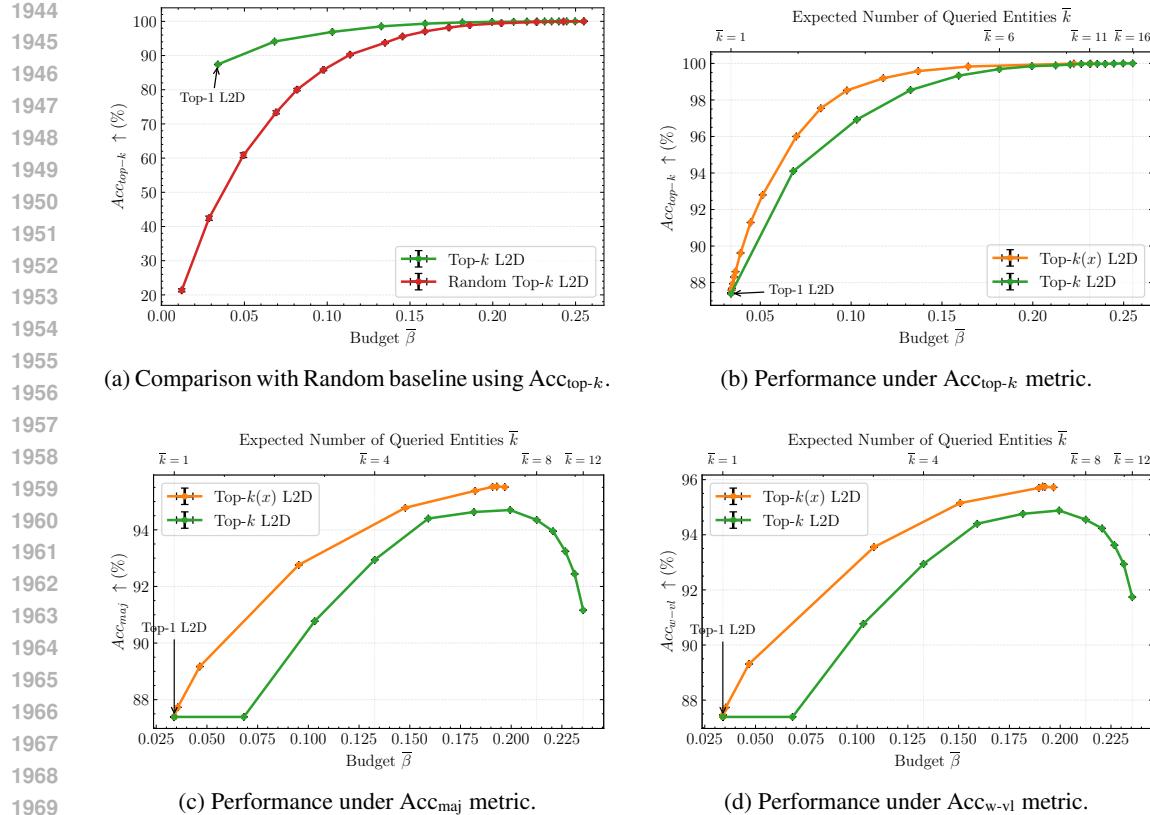


Figure 5: Comparison of Top- k and Top- $k(x)$ One-Stage across four accuracy metrics on CIFAR-10. Top- $k(x)$ achieves better budget-accuracy trade-offs across all settings. For clarity, only the first 12 entities are shown. Results are averaged over 4 independent runs. The Top-1 L2D corresponds to Mozannar & Sontag (2020); Mao et al. (2024a).

Performance Comparison. Figure 5 summarizes our results for both Top- k and adaptive Top- $k(x)$ One-Stage surrogates on CIFAR-10. In Figure 5b, we report the Top- k Accuracy as a function of the average consultation budget $\bar{\beta}$. As expected, the Top-1 L2D method (Mozannar & Sontag, 2020) is recovered as a special case of our Top- k framework, and is strictly outperformed as k increases. More importantly, the adaptive Top- $k(x)$ consistently dominates fixed- k strategies for a given budget level across all metrics. Notably, Top- $k(x)$ achieves its highest Majority Voting Accuracy of 95.53% at a budget of $\bar{\beta} = 0.192$, outperforming the best Top- k result of 94.7%, which requires a higher budget of $\bar{\beta} = 0.199$ (Figure 5c). A similar gain is observed under the Weighted Voting metric: Top- $k(x)$ again reaches 95.53% at $\bar{\beta} = 0.191$, benefiting from its ability to leverage classifier scores for soft aggregation (Figure 5d).

This performance gain arises from the ability of the learned cardinality function $k(x)$ to select the most cost-effective subset of entities. For simple inputs, Top- $k(x)$ conservatively queries a small number of entities; for complex or ambiguous instances, it expands the deferral set to improve reliability. Additionally, we observe that increasing k indiscriminately may inflate the consultation cost and introduce potential bias in aggregation-based predictions (e.g., through overdominance of unreliable entities in majority voting). The Top- $k(x)$ mechanism mitigates this by adjusting k dynamically, thereby avoiding the inefficiencies and inaccuracies that arise from over-querying.

B.2.2 RESULTS ON SVHN

Settings. We construct a pool of six experts, each based on a ResNet-18 architecture (He et al., 2016), trained and evaluated on different subsets of the dataset. These subsets are synthetically generated by selecting three classes per expert, with one class overlapping between consecutive experts to ensure partial redundancy. Each expert is trained for 20 epochs using the Adam opti-

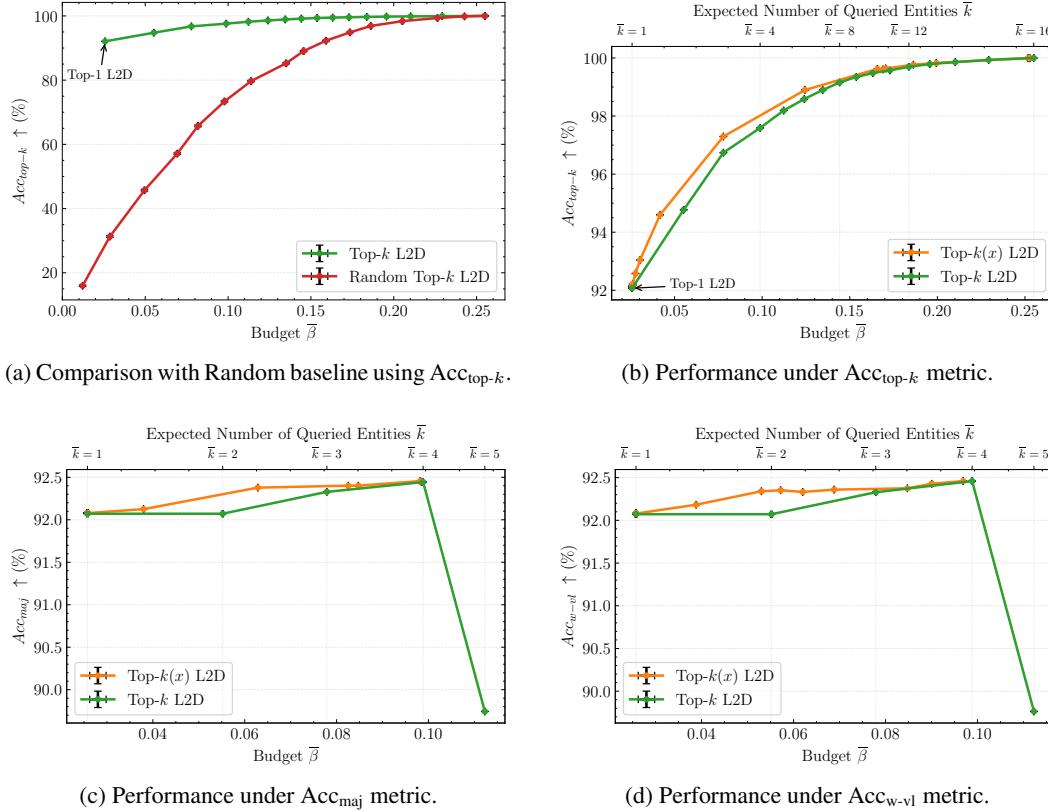
1998 mizer (Kingma & Ba, 2014) with a learning rate of 1×10^{-3} . Model selection is based on the
 1999 lowest validation loss computed on each expert’s respective subset. Table 3 reports the classification
 2000 accuracy of each trained expert, evaluated on the full SVHN validation set.

Table 3: Accuracy of each expert on the SVHN validation set.

Expert	1	2	3	4	5	6
Accuracy (%)	45.16	35.56	28.64	25.68	23.64	18.08

2008 **Top- k and Top- $k(x)$ One-Stage.** We adopt the same training configuration as in the CIFAR-10
 2009 experiments, including architecture, optimization settings, and evaluation protocol.

2011 **Performance Comparison.** Figure 6 shows results consistent with those observed on CIFAR-10.
 2012 Our Top- k One-Stage framework successfully generalizes the standard Top-1 method (Mozannar &
 2013 Sontag, 2020). Moreover, the adaptive Top- $k(x)$ variant consistently outperforms the fixed- k ap-
 2014 proach across all three evaluation metrics, further confirming its effectiveness in balancing accuracy
 2015 and consultation cost.



2043 Figure 6: Comparison of Top- k and Top- $k(x)$ One-Stage across four accuracy metrics on SVHN.
 2044 Top- $k(x)$ achieves better budget-accuracy trade-offs across all settings. For clarity, only the first 5
 2045 entities are shown. Results are averaged over 4 independent runs. The Top-1 L2D corresponds to
 2046 Mozannar & Sontag (2020); Mao et al. (2024a).

B.3 TWO-STAGE

2050 We compare our proposed *Top-k* and *Top-k(x)* L2D approaches against prior work (Narasimhan
 2051 et al., 2022; Mao et al., 2023a; 2024c; Montreuil et al., 2025b), as well as against random and oracle
 (optimal) baselines.

2052 B.3.1 RESULTS ON CALIFORNIA HOUSING.
2053

2054 **Settings.** We construct a pool of 6 regression entities (five experts and one main predictor), each
2055 trained on a predefined, spatially localized subset of the California Housing dataset. To simulate
2056 domain specialization, each entity is associated with a specific geographical region of California,
2057 reflecting scenarios in which real estate professionals possess localized expertise. The training re-
2058 gions are partially overlapping to introduce heterogeneity and ensure that no single entity has access
2059 to all regions, thereby creating a realistic setting for deferral and expert allocation.

2060 We train each entity using a multilayer perceptron (MLP) for 30 epochs with a batch size of 256,
2061 a learning rate of 1×10^{-3} , optimized using Adam. Model selection is based on the checkpoint
2062 achieving the lowest RMSE on the entity’s corresponding validation subset. We report the RMSE
2063 on the entire California validation set in Table 4.

2064 Table 4: RMSE $\times 100$ of each entity on the California validation set.
2065

Entity	1	2	3	4	5	6
RMSE $\times 100$	21.97	15.72	31.81	16.20	27.06	40.26

2070 **Top- k L2D.** We train a two-layer MLP following Algorithm 1. The rejector is trained for 100
2071 epochs with a batch size of 256, a learning rate of 5×10^{-4} , using the Adam optimizer and a cosine
2072 learning rate scheduler. We select the checkpoint that achieves the lowest Top- k surrogate loss on
2073 the validation set, yielding the final rejector r . We report Top- k L2D performance for each fixed
2074 value $k \in \mathcal{A}$.

2075 **Top- $k(x)$ L2D.** We train the cardinality function using the same two-layer MLP architecture, fol-
2076 lowing Algorithm 2. The cardinality function is also trained for 100 epochs with a batch size of 256,
2077 a learning rate of 5×10^{-4} , using Adam and cosine scheduling. We conduct additional experiments
2078 using various instantiations of the metric d , as detailed in Section B.1.1.

2079 **Performance Comparison.** Figures 7, compare Top- k and Top- $k(x)$ L2D across multiple evalua-
2080 tion metrics and budget regimes. Top- k L2D consistently outperforms random baselines and closely
2081 approaches the oracle (optimal) strategy under the RMSE_{\min} metric, validating the benefit of using
2082 different entities (Table 4).

2083 In Figure 7b, Top- $k(x)$ achieves near-optimal performance (6.23) with a budget of $\bar{\beta} = 0.156$ and
2084 an expected number of entities $\bar{k} = 4.77$, whereas Top- k requires the full budget $\bar{\beta} = 0.2$ and $\bar{k} = 6$
2085 entities to reach a comparable score (6.21). This demonstrates the ability of Top- $k(x)$ to allocate
2086 resources more efficiently by querying only the necessary number of entities, in contrast to Top- k ,
2087 which tends to over-allocate costly or redundant experts. Additionally, our approach outperforms
2088 the Top-1 L2D baseline (Mao et al., 2024c), confirming the limitations of single-entity deferral.

2089 Figures 7c and 7d evaluate Top- k and Top- $k(x)$ L2D under more restrictive metrics— RMSE_{avg} and
2090 $\text{RMSE}_{\text{w-avg}}$ —where performance is not necessarily monotonic in the number of queried entities. In
2091 these settings, consulting too many or overly expensive entities may degrade overall performance.
2092 Top- $k(x)$ consistently outperforms Top- k by carefully adjusting the number of consulted entities. In
2093 both cases, it achieves optimal performance with a budget of only $\bar{\beta} = 0.095$, a level that Top- k fails
2094 to reach. For example, in Figure 7c, Top- $k(x)$ achieves $\text{RMSE}_{\text{avg}} = 8.53$, compared to 10.08 for
2095 Top- k . Similar trends are observed under the weighted average metric (Figure 7d), where Top- $k(x)$
2096 again outperforms Top- k , suggesting that incorporating rejector-derived weights w_j leads to more
2097 effective aggregation. This demonstrates that our Top- $k(x)$ L2D selectively chooses the appropriate
2098 entities—when necessary—to enhance the overall system performance.

2101 B.3.2 RESULTS ON SVHN
2102

2103 **Settings.** We construct a pool of 6 convolutional neural networks (CNNs), each trained on a ran-
2104 domly sampled, partially overlapping subset of the SVHN dataset (20%). This setup simulates
2105 realistic settings where entities are trained on distinct data partitions due to privacy constraints or

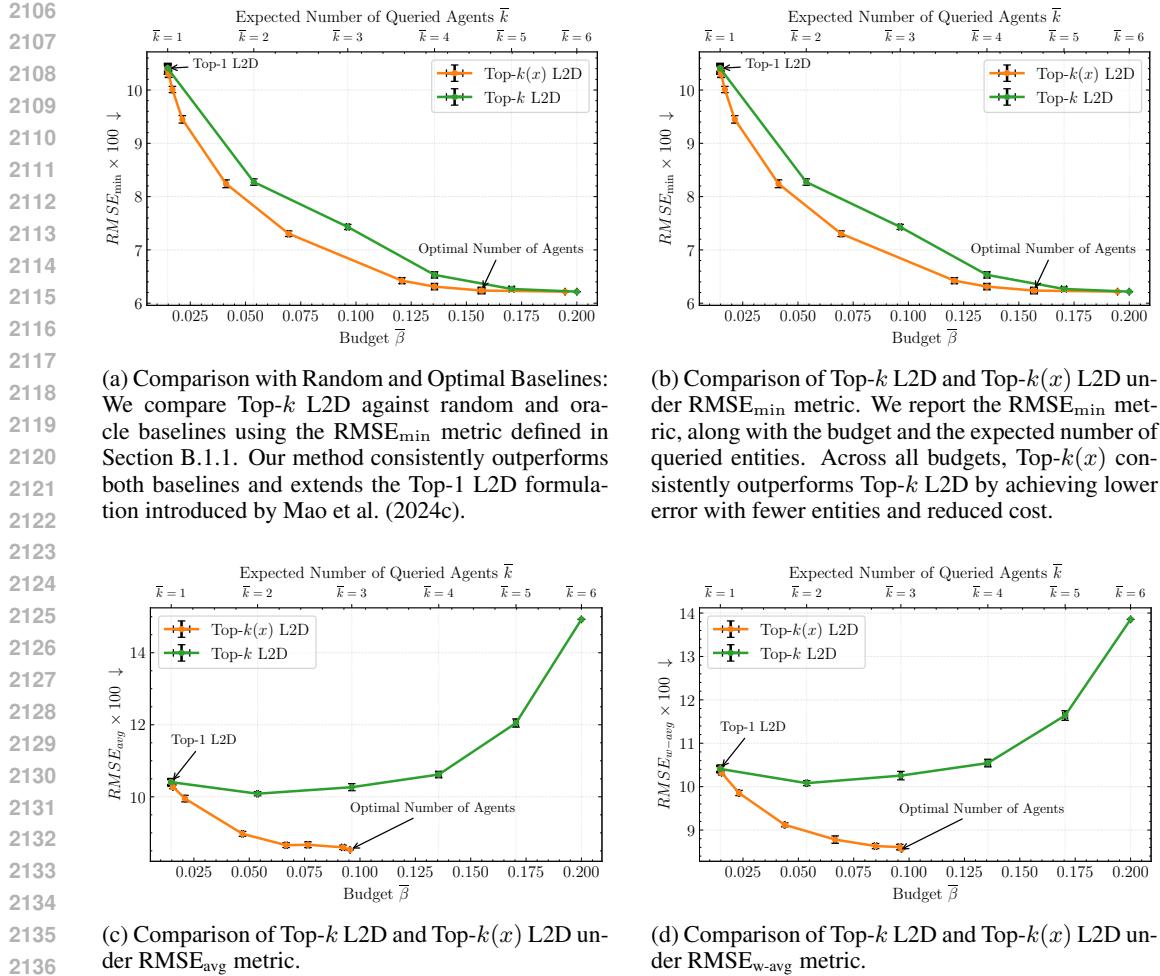


Figure 7: Results on the California dataset comparing Top- k and Top- $k(x)$ L2D across four evaluation metrics. Top- $k(x)$ consistently achieves superior performance across all trade-offs. The Top-1 L2D corresponds to Narasimhan et al. (2022); Mao et al. (2024c).

institutional data siloing. As a result, the entities exhibit heterogeneous predictive capabilities and error patterns.

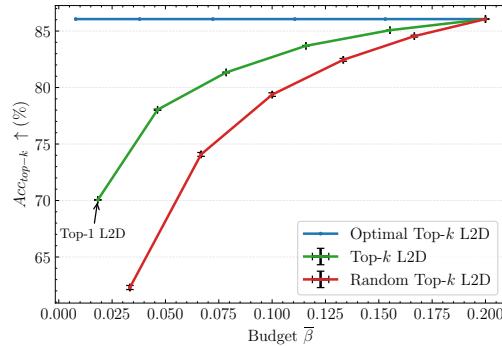
Each entity is trained for 3 epochs using the Adam optimizer (Kingma & Ba, 2014), with a batch size of 64 and a learning rate of 1×10^{-3} . Model selection is performed based on the lowest loss on each entity’s respective validation subset. The table 5 below reports the classification accuracy of each trained entity, evaluated on a common held-out validation set:

Table 5: Accuracy of each entity on the SVHN validation set.

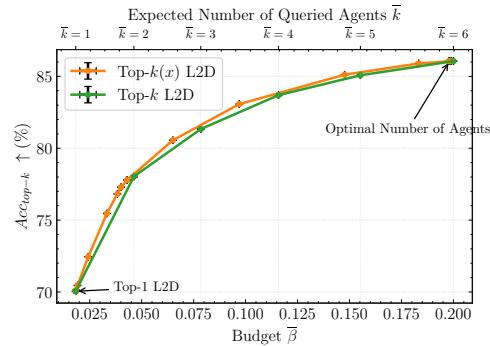
Entity	1	2	3	4	5	6
Accuracy (%)	63.51	55.53	61.56	62.60	66.66	64.26

Top- k L2D. We train the rejector using a ResNet-4 architecture (He et al., 2016), following Algorithm 1. The model is trained for 50 epochs with a batch size of 256 and an initial learning rate of 1×10^{-2} , scheduled via cosine annealing. Optimization is performed using the Adam optimizer. We select the checkpoint that minimizes the Top- k surrogate loss on the validation set, yielding the final rejector r . We report Top- k L2D performance for each fixed value $k \in \mathcal{A}$.

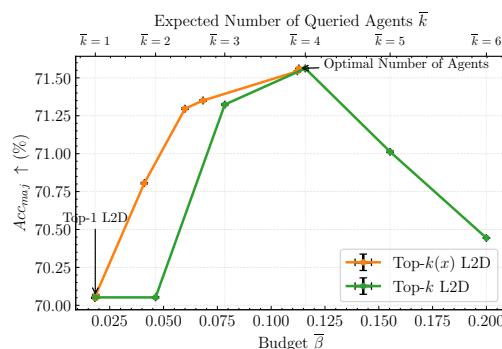
Top- $k(x)$ L2D. We reuse the trained rejector r and follow Algorithm 2 to train a cardinality cardinality function $s \in \mathcal{S}$. The cardinality function is composed of a CLIP-based feature extractor (Radford et al., 2021) and a lightweight classification head. It is trained for 10 epochs with a batch size of 256, a learning rate of 1×10^{-3} , weight decay of 1×10^{-5} , and cosine learning rate scheduling. We use the AdamW optimizer (Loshchilov & Hutter, 2017) for optimization.



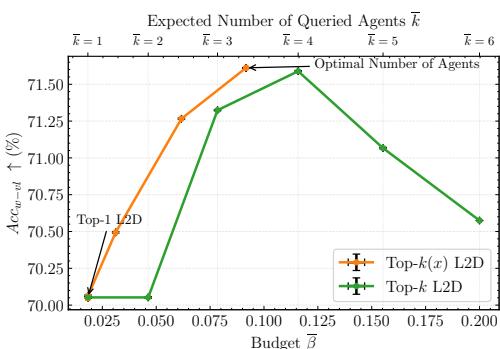
(a) Comparison with Random and Optimal baselines using $\text{Acc}_{\text{top-}k}$.



(b) Top- $k(x)$ vs. Top- k L2D on $\text{Acc}_{\text{top-}k}$.



(c) Performance under Acc_{maj} metric.



(d) Performance under $\text{Acc}_{\text{w-vl}}$ metric.

Figure 8: Comparison of Top- k and Top- $k(x)$ L2D across four accuracy metrics on SVHN. Top- $k(x)$ achieves better budget-accuracy trade-offs across all settings. The Top-1 L2D corresponds to Montreuil et al. (2025b).

Performance Comparison. Figure 8 compares our *Top- k* and *Top- $k(x)$* L2D approaches against prior work (Narasimhan et al., 2022; Mao et al., 2023a), as well as oracle and random baselines. As shown in Figure 8a, querying multiple entities significantly improves performance, with both of our methods surpassing the Top-1 L2D baselines (Narasimhan et al., 2022; Mao et al., 2023a). Moreover, our learned deferral strategies consistently outperform the random L2D baseline, underscoring the effectiveness of our allocation policy in routing queries to appropriate entities. In Figure 8b, Top- $k(x)$ L2D consistently outperforms Top- k L2D, achieving better accuracy under the same budget constraints.

For more restrictive metrics, Figures 8c and 8d show that Top- $k(x)$ achieves notably stronger performance, particularly in the low-budget regime. For example, in Figure 8c, at a budget of $\bar{\beta} = 0.41$, Top- $k(x)$ attains $\text{Acc}_{\text{maj}} = 70.81$, compared to $\text{Acc}_{\text{maj}} = 70.05$ for Top- k . This performance gap widens further at smaller budgets. Both figures also highlight that querying too many entities may degrade accuracy due to the inclusion of low-quality predictions. In contrast, Top- $k(x)$ identifies a better trade-off, reaching up to $\text{Acc}_{\text{maj}} = 71.56$ under majority voting and $\text{Acc}_{\text{w-vl}} = 71.59$ with weighted voting. As in the California Housing experiment, weighted voting outperforms majority voting, suggesting that leveraging rejector-derived weights improves overall decision quality.

2214 B.3.3 RESULTS ON CIFAR100.
2215

2216 **entity Settings.** We construct a pool of 6 entities. We train a main predictor (entity 1) using a
 2217 ResNet-4 (He et al., 2016) for 50 epochs, a batch size of 256, the Adam Optimizer (Kingma & Ba,
 2218 2014) and select the checkpoints with the lower validation loss. We synthetically create 5 experts
 2219 with strong overlapped knowledge. We assign experts to classes for which they have the probability
 2220 to be correct reaching $p = 0.94$ and uniform in non-assigned classes. Typically, we assign 55 classes
 2221 to each experts. We report in the Table 6 the accuracy of each entity on the validation set.
 2222

2223 Table 6: Accuracy of each entity on the CIFAR100 validation set.

Entity	1	2	3	4	5	6
Accuracy (%)	59.74	51.96	52.58	52.21	52.32	52.25

2224 **Top- k L2D.** We train the rejector model using a ResNet-4 architecture (He et al., 2016), following
 2225 the procedure described in Algorithm 1. The model is optimized using Adam with a batch size of
 2226 2048, an initial learning rate of 1×10^{-3} , and cosine annealing over 200 training epochs. We select
 2227 the checkpoint that minimizes the Top- k surrogate loss on the validation set, resulting in the final
 2228 rejector r . We report Top- k L2D performance for each fixed value $k \in \mathcal{A}$.
 2229

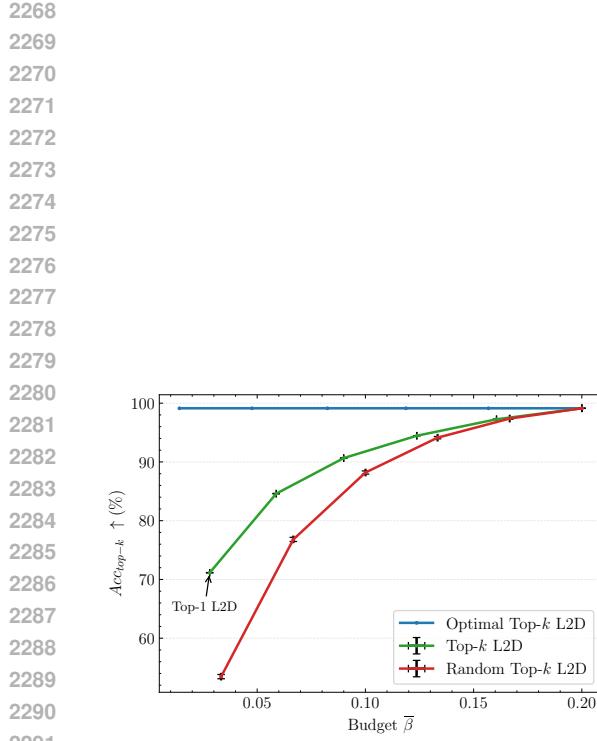
2230 **Top- $k(x)$ L2D.** We reuse the learned rejector r and train a cardinality function $s \in \mathcal{S}$
 2231 as described in Algorithm 2. The cardinality function is composed of a CLIP-based feature ex-
 2232 tractor (Radford et al., 2021) and a lightweight classification head. It is trained using the AdamW
 2233 optimizer (Loshchilov & Hutter, 2017) with a batch size of 128, a learning rate of 1×10^{-3} , weight
 2234 decay of 1×10^{-5} , and cosine learning rate scheduling over 15 epochs. To evaluate performance
 2235 under different decision rules, we conduct experiments using multiple instantiations of the metric d ;
 2236 detailed definitions and evaluation protocols are provided in Section B.1.1.
 2237

2238 **Performance Comparison.** Figure 9b shows that Top- k L2D outperforms random query allo-
 2239 cation, validating the benefit of learned deferral policies. As shown in Figure 9a, Top- $k(x)$ further
 2240 improves performance over Top- k by adaptively selecting the number of entities per query. In Fig-
 2241 ures 9c and 9d, Top- $k(x)$ consistently yields higher accuracy across all budget levels, achieving
 2242 significant gains over fixed- k strategies.
 2243

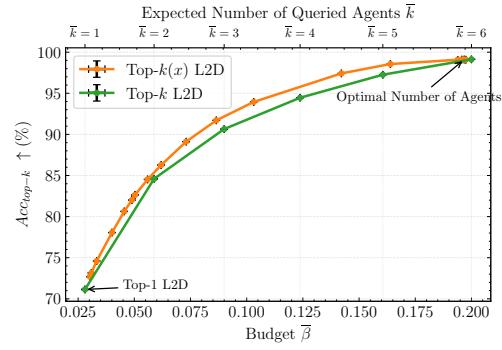
2244 Notably, unlike in other datasets, querying additional entities in this setting does not degrade per-
 2245 formance. This is due to the absence of low-quality entities: each entity predicts correctly with high
 2246 probability (at least 94%) on its assigned class subset. As a result, aggregating predictions from
 2247 multiple entities improves accuracy by selectively querying them.
 2248

2249 Nevertheless, Top- $k(x)$ remains advantageous due to the overlap between entities and their differing
 2250 consultation costs. When several entities are likely to produce correct predictions, it is preferable
 2251 to defer to the less costly one. By exploiting this flexibility, Top- $k(x)$ achieves a large performance
 2252 improvement over Top- k L2D while also reducing the overall budget.
 2253

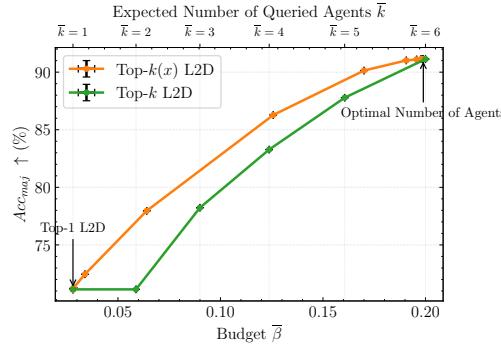
2254
 2255
 2256
 2257
 2258
 2259
 2260
 2261
 2262
 2263
 2264
 2265
 2266
 2267



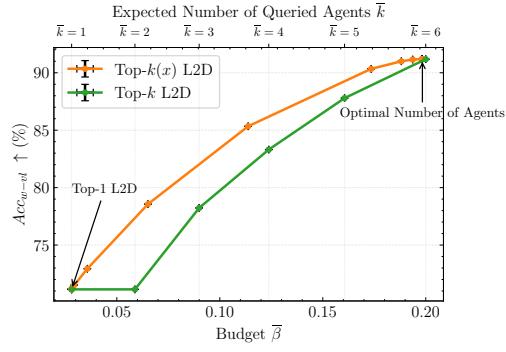
(a) Comparison with Random and Optimal baselines using $\text{Acc}_{\text{top-}k}$.



(b) Top- $k(x)$ vs. Top- k L2D on $\text{Acc}_{\text{top-}k}$.



(c) Performance under Acc_{maj} metric.



(d) Performance under $\text{Acc}_{\text{w-vl}}$ metric.

Figure 9: Comparison of Top- k and Top- $k(x)$ L2D across four accuracy metrics on CIFAR100. Top- $k(x)$ achieves better budget-accuracy trade-offs across all settings. The Top-1 L2D corresponds to Narasimhan et al. (2022); Mao et al. (2023a).