
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

WHY ASK ONE WHEN YOU CAN ASK k? LEARNING-
TO-DEFER TO THE TOP-k EXPERTS

Anonymous authors
Paper under double-blind review

ABSTRACT

Existing Learning-to-Defer (L2D) frameworks are limited to single-expert defer-
ral, forcing each query to rely on only one expert and preventing the use of col-
lective expertise. We introduce the first framework for Top-k Learning-to-Defer,
which allocates queries to the k most cost-effective entities. Our formulation uni-
fies and strictly generalizes prior approaches, including the one-stage and two-
stage regimes, selective prediction, and classical cascades. In particular, it re-
covers the usual Top-1 deferral rule as a special case while enabling principled
collaboration with multiple experts when k > 1. We further propose Top-k(x)
Learning-to-Defer, an adaptive variant that learns the optimal number of experts
per query based on input difficulty, expert quality, and consultation cost. To en-
able practical learning, we develop a novel surrogate loss that is Bayes-consistent,
Hh-consistent in the one-stage setting, and (Hr,Hg)-consistent in the two-stage
setting. Crucially, this surrogate is independent of k, allowing a single policy to
be learned once and deployed flexibly across k. Experiments across both regimes
show that Top-k and Top-k(x) deliver superior accuracy–cost trade-offs, opening
a new direction for multi-expert deferral in L2D.

1 INTRODUCTION

Learning-to-Defer (L2D) enables models to defer uncertain queries to external experts, explicitly
trading off predictive accuracy and consultation cost (Madras et al., 2018; Mozannar & Sontag,
2020; Verma et al., 2022). Classical L2D, however, routes each query to a single expert. This design
is ill-suited for complex decisions that demand collective judgment. For instance, in oncology, pa-
tient cases are routinely reviewed by multidisciplinary tumor boards comprising radiologists, pathol-
ogists, oncologists, and surgeons. Each specialist contributes a different perspective—imaging,
histopathology, treatment protocols, and surgical considerations—and only through aggregation can
an accurate and safe recommendation be made (Jiang et al., 1999; Fatima et al., 2017). Similar
multi-expert deliberation underpins fraud detection, cybersecurity, and judicial review (Dietterich,
2000). We believe this reliance on a single expert constitutes a fundamental limitation of existing
L2D frameworks: in many high-stakes domains, deferring to only one expert is not desirable.

Motivated by these challenges, we introduce Top-k Learning-to-Defer, a unified framework that
allocates each query to the k most cost-effective experts. Our formulation supports both major
regimes of L2D. In the two-stage setting, all experts are trained offline, and a routing function is
then trained to allocate queries either to one of the experts or to a fixed main predictor (Narasimhan
et al., 2022; Mao et al., 2023a; 2024c; Montreuil et al., 2025b;a). In contrast, the one-stage setting
jointly learns the main prediction task and the allocation policy within a single model, allowing
both components to adapt during training (Madras et al., 2018; Mozannar & Sontag, 2020). Our
framework admits instantiations in both regimes, ensuring broad applicability.

We further propose Top-k(x), an adaptive extension that learns the number of experts to consult per
query based on input complexity, expert competence, and consultation cost. To enable both fixed-k
and adaptive deferral, we design a novel surrogate loss that is Bayes-consistent, (Hr,Hg)-consistent
in the two-stage setting, Hh-consistent in the one-stage setting, and independent of k, allowing
efficient reuse across cardinalities without retraining. Finally, we show that our framework strictly
generalizes prior paradigms: selective prediction (Chow, 1970; Cortes et al., 2016) and classical
model cascades (Viola & Jones, 2001; Saberian & Vasconcelos, 2014; Laskaridis et al., 2021), with
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the usual Top-1 Bayes policy arising as a special case. This situates Top-k/Top-k(x) as a unifying
and strictly more general framework for Learning-to-Defer.

Our main contributions are: (i) We introduce Top-k L2D, the first framework for deferral to the
top-k experts, unifying both one-stage and two-stage regimes. (ii) We develop a k-independent
surrogate loss with Bayes-,Hh-, and (Hr,Hg)-consistency guarantees, allowing a single policy to
be reused across all values of k without retraining. (iii) We show that classical model cascades are
strictly subsumed as a special case, and that the usual Top-1 Bayes policy rule is recovered from both
one-stage and two-stage formulations, as well as from selective prediction within our framework.
(iv) We propose Top-k(x), an adaptive variant that learns the optimal number of experts per query
under accuracy–cost trade-offs. (v) We provide extensive empirical results demonstrating that
Top-k and Top-k(x) consistently achieve superior accuracy–cost trade-offs compared to prior L2D
methods.

2 RELATED WORK

Learning-to-Defer. Learning-to-Defer (L2D) extends selective prediction (Chow, 1970; Bartlett
& Wegkamp, 2008; Cortes et al., 2016; Geifman & El-Yaniv, 2017; Cao et al., 2022; Cortes et al.,
2024) by allowing models not only to abstain on uncertain inputs but also to defer them to external
experts (Madras et al., 2018; Mozannar & Sontag, 2020; Verma et al., 2022). Two main approaches
have emerged. In two-stage frameworks, the base predictor and experts are trained offline, and a sep-
arate allocation function is learned to decide whether to predict or defer (Narasimhan et al., 2022;
Mao et al., 2023a), with extensions to regression (Mao et al., 2024c), multi-task learning (Montreuil
et al., 2025b), adversarial robustness (Montreuil et al., 2025a), and applied systems (Strong et al.,
2024; Palomba et al., 2025; Montreuil et al., 2025c). In contrast, one-stage frameworks train predic-
tion and deferral jointly. The score-based formulation of Mozannar & Sontag (2020) established the
first Bayes-consistent surrogate and has since become the standard, with follow-up work improving
calibration (Verma et al., 2022; Cao et al., 2024), surrogate design (Charusaie et al., 2022; Mao
et al., 2024a; Wei et al., 2024) , and guarantees such as H-consistency and realizability (Mozannar
et al., 2023; Mao et al., 2024b; 2025). Applications span diverse classification tasks (Verma et al.,
2022; Cao et al., 2024; Keswani et al., 2021; Kerrigan et al., 2021; Hemmer et al., 2022; Benz &
Rodriguez, 2022; Tailor et al., 2024; Liu et al., 2024).

Top-k Classification. Top-k classification generalizes standard classification by predicting a set of
top-ranked labels rather than a single class. Early hinge-based approaches (Lapin et al., 2015; 2016)
were later shown to lack Bayes consistency (Yang & Koyejo, 2020), and non-convex formulations
raised optimization challenges (Yang & Koyejo, 2020; Thilagar et al., 2022). More recent advances
have established Bayes- and H-consistency for a broader family of surrogates, including cross-
entropy (Mao et al., 2023b) and constrained losses (Cortes & Vapnik, 1995), with cardinality-aware
refinements providing stronger theoretical guarantees (Cortes et al., 2024).

Gap. Existing L2D frameworks are restricted to single-expert deferral, a critical limitation: in
high-stakes domains, robust decisions demand aggregating complementary expertise, while reliance
on a single expert amplifies bias and error. Crucially, no prior work enables top-k or adaptive top-
k(x) deferral in either one-stage or two-stage regimes, nor provides surrogate losses with provable
consistency guarantees. We address this gap by introducing the first unified framework for Top-k
and Top-k(x) L2D, supported by a k-independent surrogate loss that ensures statistically sound and
cost-efficient multi-expert allocation.

3 PRELIMINARIES

Let X be the input space and Z the output space, with training examples (x, z) drawn i.i.d. from an
unknown distribution D.

One-Stage L2D. In the one-stage regime (Madras et al., 2018; Mozannar & Sontag, 2020), pre-
diction and deferral are optimized jointly through a single model in a multiclass setting with label
space Z = Y = {1, . . . , n}, corresponding to n distinct categories. The system has access to J
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offline experts. In the deterministic case, each expert is a mapping m̂j : X → Z . An expert may be
modeled as a stochastic predictor. In this case, its output Mj is defined as a random variable jointly
distributed with (X,Y ), and training samples include realizations m̂j drawn from the conditional
distribution P(Mj | X = x, Y = y). All our results remain valid when experts are stochastic; the
analysis extends verbatim by treating each expert’s output as a random variable jointly distributed
with (X,Y ).

We treat both class labels and experts uniformly as entities. The corresponding entity set is

A1s = {1, . . . , n} ∪ {n+ 1, . . . , n+ J},
where indices j ≤ n correspond to predicting class j, and indices j > n correspond to deferring to
expertmj−n. We define the hypothesis class of score-based classifier asHh = {h : X ×A1s → R}.
For any h ∈ Hh, the induced decision rule selects ĥ(x) = argmaxj∈A1s h(x, j), i.e., the entity in
A1s with the highest score. If ĥ(x) ≤ n, the predictor outputs class ĥ(x) ∈ Y; otherwise, it defers
to expert mĥ(x)−n. The hypothesis h is learned by minimizing the risk induced by the deferral
loss (Mozannar & Sontag, 2020; Verma et al., 2022; Cao et al., 2024; Mao et al., 2024a).

Definition 3.1 (One-Stage Deferral Loss). Let x ∈ X , y ∈ Y , and h ∈ Hh be a score-based
classifier. The one-stage deferral loss is

ℓ1sdef(ĥ(x), y) = 1{ĥ(x) ̸= y}1{ĥ(x) ≤ n}+
J∑

j=1

cj(x, y)1{ĥ(x) = n+ j},

with surrogate Φ1s,u
def (h, x, y) = Φu

01(h, x, y) +
∑J

j=1(1 − cj(x, y)) Φu
01(h, x, n + j), where Φu

01

belongs to the cross-entropy family (Mohri et al., 2012; Mao et al., 2023b). The cost is defined as
cj : X × Y → [0, 1] with cj(x, y) = αj1{m̂j(x) ̸= y} + βj , where αj ≥ 0 penalizes prediction
error and βj ≥ 0 is a fixed consultation fee.

Two-Stage L2D. In the two-stage regime (Narasimhan et al., 2022; Mao et al., 2023a; 2024c;
Montreuil et al., 2025b;a), the main predictor and experts are trained offline and remain fixed.
Unlike the one-stage setting, where a single augmented classifier jointly performs prediction and
deferral, the two-stage approach introduces a separate rejector that allocates queries among enti-
ties. Formally, we consider an output space Z and a main predictor g ∈ Hg with predictions
ĝ(x) ∈ Z , which is fully observable to the system. We also assume access to a collection of J
experts {m̂j : X → Z}Jj=1. We treat both the main predictor and experts uniformly as entities. The
corresponding entity set is

A2s = {1, . . . , J + 1},
where j = 1 denotes the base predictor and j ≥ 2 denotes expert m̂j−1. We define the hypothesis
class of rejectors as Hr = {r : X × A2s → R}. For any r ∈ Hr, scores are assigned to entities,
and the induced decision rule is r̂(x) = argmaxj∈A2s r(x, j). If r̂(x) = 1, the system outputs the
base predictor’s label ĝ(x); otherwise, it defers to expert mr̂(x)−1. The deferral loss is then defined
as follows.

Definition 3.2 (Two-Stage Deferral Loss). Let x ∈ X , z ∈ Z , and r ∈ R be a rejector. The
two-stage deferral loss and its convex surrogate are

ℓ2sdef(r̂(x), z) =

J+1∑
j=1

cj(x, z)1{r̂(x) = j}, Φ2s,u
def (r, x, z) =

J+1∑
j=1

τj(x, z)Φ
u
01(r, x, j),

where cj : X × Z → R+ is defined as c1(x, z) = α1ψ(ĝ(x), z) + β1 with ψ a task-specific
penalty (e.g., RMSE, mAP, or 0-1 loss) and cj(x, z) = αjψ(m̂j(x), z) + βj for j ≥ 2. The term
τj(x, z) =

∑
i̸=j ci(x, z) aggregates the costs of all non-selected entities.

Consistency. We restrict attention to the one-stage regime for clarity. The objective is to learn a
hypothesis h ∈ Hh that minimizes the expected deferral risk Eℓ1sdef

(h) = EX,Y [ℓ
1s
def(ĥ(X), Y )], with

Bayes-optimal value EB
ℓ1sdef

(Hh) = infh∈Hh
Eℓ1sdef

(h). Direct optimization is intractable due to discon-
tinuity and non-differentiability (Zhang, 2002; Steinwart, 2007; Awasthi et al., 2022; Mozannar &
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Sontag, 2020; Mao et al., 2024a), motivating the use of convex surrogates. A prominent class is the
comp-sum family (Mao et al., 2023b), which defines cross-entropy surrogates as

Φu
01(h, x, j) = Ψu

∑
j′∈A

eh(x,j
′)−h(x,j) − 1

 ,

where the outer function Ψu is parameterized by u > 0. Specific choices recover canonical
losses: Ψ1(v) = log(1 + v) (logistic), Ψu(v) = 1

1−u [(1 + v)1−u − 1] for u ̸= 1, covering
sum-exponential (Weston & Watkins, 1998), logistic regression (Ohn Aldrich, 1997), generalized
cross-entropy (Zhang & Sabuncu, 2018), and MAE (Ghosh et al., 2017).

A fundamental criterion for surrogate adequacy is consistency, which requires that minimizing sur-
rogate excess risk also reduces true excess risk (Zhang, 2002; Bartlett et al., 2006; Steinwart, 2007;
Tewari & Bartlett, 2007). To formalize this, Awasthi et al. (2022) introduced the notion of Hh-
consistency bounds, which quantify consistency with respect to a restricted hypothesis class rather
than all measurable functions. The following bound has been established in the one-stage L2D
setting (Mao et al., 2024a).
Theorem 3.3 (Hh-consistency bounds). Suppose the surrogate Φu

01 isHh-calibrated for any distri-
bution D. Then there exists a non-decreasing function Γ−1

u : R+ → R+, depending on u, such that
for all h ∈ Hh,

Eℓ1sdef
(h)− EBℓ1sdef

(Hh) + Uℓ1sdef
(Hh) ≤ Γ−1

u

(
EΦ1s,u

def
(h)− E∗

Φ1s,u
def

(Hh) + UΦ1s,u
def

(Hh)
)
.

Here Uℓ1sdef
(Hh) = EB

ℓ1sdef
(Hh) − EX

[
infh∈Hh

EY |X=x[ℓ
1s
def(ĥ(x), Y )]

]
is the minimizability gap,

which measures the irreducible approximation error due to the expressive limitations of Hh. When
Hh is sufficiently rich (e.g., Hh = Hall

h ), the gap vanishes, and the inequality recovers Bayes-
consistency guarantees (Steinwart, 2007; Awasthi et al., 2022). Taking the limit of this bound recov-
ers the same Bayes-consistency established in Mozannar & Sontag (2020).

4 GENERALIZING LEARNING-TO-DEFER TO THE TOP-k EXPERTS

4.1 FROM SINGLE TO TOP-k EXPERT SELECTION

Notations. Prior Learning-to-Defer methods allocate each input x ∈ X to exactly one entity,
corresponding to a top-1 decision rule (Mozannar & Sontag, 2020; Verma et al., 2022; Mao et al.,
2024a). Formally, this is captured by the one-stage deferral loss in Definition 3.1 or its two-stage
counterpart in Definition 3.2. To unify notation across both regimes, we define the hypothesis class
of decision rules asHπ = {π : X ×A → R}. For any π ∈ Hπ , the function assigns a score π(x, j)
to each entity j ∈ A, and the induced selection rule is

π̂(x) = argmax
j∈A

π(x, j).

In the one-stage regime, π coincides with the augmented classifier h and A = A1s, while in the
two-stage regime, π coincides with the rejector r and A = A2s. For clarity, we will henceforth
use A without superscripts, with the understanding that it denotes the appropriate entity set for the
regime under consideration.

Top-k Selection. We generalize L2D to a top-k rule, where each query may be assigned to several
entities simultaneously, enabling multi-expert deferral and joint use of complementary expertise.
We first formalize the top-k selection set:
Definition 4.1 (Top-k Selection Set). Let x ∈ X and let π : X × A → R be a decision rule that
assigns a score π(x, j) to each entity j ∈ A. For any 1 ≤ k ≤ |A|, the top-k selection set is

Πk(x) = {[1]↓π, [2]↓π, . . . , [k]↓π},
where [i]↓π denotes the index of the i-th highest-scoring entity under π(x, ·). The ordering is non-
increasing: π(x, [1]↓π) ≥ π(x, [2]↓π) ≥ · · · ≥ π(x, [k]↓π).

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

Choosing k = 1 recovers the standard top-1 rule Π1(x) = {argmaxj∈A π(x, j)}, which corre-
sponds to Π1(x) = {argmaxj∈A1s h(x, j)} in the one-stage setting (Mozannar & Sontag, 2020;
Cao et al., 2024; Mao et al., 2024a) and Π1(x) = {argmaxj∈A2s r(x, j)} in the two-stage setting
(Narasimhan et al., 2022; Mao et al., 2023a; 2024c; Montreuil et al., 2025b).
Remark 1. We further show in Appendix A.6 that the Top-k Selection Set subsumes classical cas-
cade approaches (Viola & Jones, 2001; Saberian & Vasconcelos, 2014; Dohan et al., 2022; Jitkrittum
et al., 2023) as a strict special case, thereby unifying cascaded inference and multi-expert deferral
under a single framework.

Top-k True Deferral Loss. L2D losses are tailored to top-1 selection and do not extend directly
to k > 1. In the one-stage case (Definition 3.1), terms such as 1{h(x) ̸= y}1{h(x) ≤ n} enforce
exclusivity, assuming exactly one entity is chosen. This assumption breaks in the top-k setting: the
selection set Πk(x) may simultaneously include the true label y and multiple experts with heteroge-
neous accuracy and cost. A naive extension, e.g. 1{y ∈ Πk(x)}, is inadequate for three reasons: (i) it
collapses correctness to the mere inclusion of y, ignoring whether the consulted experts themselves
are reliable; (ii) it fails to account for the cumulative consultation costs incurred when querying
several entities; and (iii) it yields non-decomposable set-based indicators, which obstruct surrogate
design since the accuracy–cost tradeoff is determined jointly at the set level rather than per entity.
These issues motivate a reformulation of L2D losses to handle top-k deferral.

Each regime specifies an entity set A and associated functions {âj : X → Z}j∈A:

• One-stage: A1s = {1, . . . , n + J}, where âj(x) = j for j ≤ n (predicting label j), and
an+j(x) = m̂j(x) for j = 1, . . . , J (deferring to expert mj).

• Two-stage: A2s = {1, . . . , J + 1}, where a1(x) is the base predictor prediction ĝ(x), and
a1+j(x) = m̂j(x) for j = 1, . . . , J (deferring to expert mj).

For any entity j ∈ A, we define an augmented cost µj(x, z) = αj ψ(âj(x), z)+βj , where αj , βj ≥
0, and ψ is a task-specific error measure (the 0–1 loss in classification, or any non-negative loss
otherwise). By construction, µj(x, z) ∈ R+.

Definition 4.2 (Top-k True Deferral Loss). Let x ∈ X , z ∈ Z , and Πk(x) ⊆ A be the top-k
selection set. Let µj(x, z) the cost of selecting entity j for input (x, z). The uniformized top-k true
deferral loss is

ℓdef,k(Πk(x), z) =

|A|∑
j=1

µj(x, z)1{j ∈ Πk(x)},

We give a detailed explanation in Appendix A.7. This loss quantifies the total cost of allocating
a query to k entities, thereby unifying the one-stage (Definition 3.1) and two-stage (Definition 3.2)
objectives into a single formulation that explicitly supports joint decision-making across multiple
entities. Unlike classical top-1 deferral, which only evaluates the outcome of a single choice, the
top-k loss accumulates both predictive errors and consultation costs across all selected entities.

For instance, in binary classification with Y = {1, 2} and two experts, the entity set is A =
{1, 2, 3, 4}, where j ≤ 2 correspond to labels and j > 2 to experts. If the top-2 selection set is
Π2(x) = {3, 1}, the incurred loss is µ3(x, y) + µ1(x, y), jointly reflecting the cost of deferring to
both expert m1 and predicting label 1.
Remark 2. For k = 1, the top-k deferral loss reduces exactly to the classical objectives: the one-
stage loss in Definition 3.1 and the two-stage loss in Definition 3.2.

4.2 SURROGATES FOR THE TOP-k TRUE DEFERRAL LOSS

In Lemma 4.2, the top-k true deferral loss is defined via a hard ranking operator over the selection set
Πk(x). This makes it discontinuous and non-differentiable, hence unsuitable for gradient-based op-
timization. To enable practical learning, we follow standard practice in Learning-to-Defer (Mozan-
nar & Sontag, 2020; Charusaie et al., 2022; Cao et al., 2024; Mao et al., 2024a; Montreuil et al.,
2025b;a) and introduce a convex surrogate family grounded in the theory of calibrated surrogate
losses (Zhang, 2002; Bartlett et al., 2006).
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Lemma 4.3 (Upper Bound on the Top-k Deferral Loss). Let x ∈ X , z ∈ Z , and let 1 ≤ k ≤ |A|.
Let Φu

01 a convex surrogate in the cross-entropy family. Then the top-k deferral loss satisfies

ℓdef,k(Πk(x), z) ≤
∑
j∈A

(∑
i̸=j

µi(x, z)

)
Φu

01(π, x, j)− (|A| − 1− k)
∑
j∈A

µj(x, z),

We prove Lemma 4.3 in Appendix A.8. The key observation is that the cost term
∑

j∈A µj(x, z)

does not depend on the decision rule π, since each µj(x, z) = αjψ(âj(x), z)+βj is fixed for a given
(x, z) in both the one-stage and two-stage regimes. Furthermore, for all k ≤ |A|, we have 1{j ∈
Πk(x)} ≤ Φu

01(π, x, j) (Lapin et al., 2017; Cortes et al., 2024). Consequently, minimizing the upper
bound reduces to minimizing only the first term, and the optimization becomes independent of k.
This directly yields the following tight surrogate family:
Corollary 4.4 (Surrogates for the Top-k Deferral Loss). Let x ∈ X , z ∈ Z , and let π : X ×A → R
be a decision rule. The corresponding surrogate family for the top-k deferral loss is

Φu
def,k(π, x, z) =

∑
j∈A

(∑
i̸=j

µi(x, z)

)
Φu

01(π, x, j),

which is independent of k.

This independence is a key strength: a single decision rule π can be trained once and reused for
any cardinality level k, eliminating the need for retraining and allowing practitioners to adjust the
number of consulted experts dynamically at inference time depending on budget or risk constraints.
Algebraically, the surrogate in Corollary 4.4 coincides with the formulation of Mao et al. (2024c),
but our derivation shows that this form arises as a convex upper bound for all k. Thus, the loss
expression itself remains unchanged, while our framework extends the underlying deferral objective,
the decision rule, and the guarantees from top-1 to the general top-k setting.

However, convexity and boundedness alone do not suffice for statistical validity (Zhang, 2002;
Bartlett et al., 2006). Crucially, the fact that our surrogate coincides algebraically with that of Mao
et al. (2024c) does not imply that their guarantees transfer: their analysis establishes consistency
only in the top-1 regime, leaving the multi-entity case k > 1 unresolved. Extending consistency
from k = 1 to k > 1 is generally non-trivial, as shown in the top-k classification literature (Lapin
et al., 2015; 2016; 2017; Yang & Koyejo, 2020; Cortes et al., 2024), where set-valued decisions
introduce fundamentally different statistical challenges. Closing this gap requires new analysis. In
the next subsection, we establish that minimizing any member of the surrogate family Φu

def,k yields
consistency for both one-stage and two-stage L2D, thereby guaranteeing convergence to the Bayes-
optimal top-k deferral policy as the sample size grows.

4.3 THEORETICAL GUARANTEES

While recent work by Cortes et al. (2024) has established that the cross-entropy family of surrogates
Φu

01 is Hπ-consistent for the top-k classification loss ℓk(Πk(x), j) = 1{j ∈ Πk(x)}, the consis-
tency of top-k deferral surrogates remains unresolved and requires dedicated theoretical analysis.
Unlike standard classification, deferral introduces an additional layer of complexity: costs depend
jointly on predictive accuracy and consultation with heterogeneous experts, and errors propagate
differently depending on whether the system predicts directly or defers. These factors fundamen-
tally alter the Bayes-optimal decision rule, making existing results insufficient. Prior analyses have
addressed the k = 1 case in one-stage and two-stage settings (Mozannar & Sontag, 2020; Verma
et al., 2022; Mao et al., 2024a;c), but extending consistency guarantees to k > 1 is non-trivial. Our
theoretical analysis fills this gap by proving that the surrogate family Φu

def,k is Bayes- and class-
consistent for the top-k deferral objective, thereby establishing statistical validity of learning in this
more general regime.

To proceed, we impose only mild regularity conditions on the hypothesis class Hπ: (i) Regularity:
for any input x, the scores π(x, ·) induce a strict total order over all entities in A; (ii) Symmetry: the
scoring rule is invariant under permutations of entity indices, i.e., relabeling entities does not affect
the induced scores; (iii) Completeness: for every fixed x, the range of π(x, j) is dense in R.

These assumptions are standard and are satisfied by common hypothesis classes, including fully
connected neural networks and the space of all measurable functionsHall

π (Awasthi et al., 2022).
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4.3.1 OPTIMALITY OF THE TOP-k SELECTION SET

A central challenge in Learning-to-Defer is deciding which entities to consult at test time, given
their heterogeneous accuracies and consultation costs. For k = 1, prior work has established that
the Bayes-optimal policy selects the single entity with the lowest expected cost (Mozannar & Sontag,
2020; Verma et al., 2022; Narasimhan et al., 2022; Mao et al., 2023a; 2024a). The key question we
address is how this principle extends to the richer regime k > 1. We prove the following Lemma in
Appendix A.9.

Lemma 4.5 (Bayes-Optimal Top-k Selection). Let x ∈ X . For each entity j ∈ A, define
the expected cost µj(x) = EZ|X=x[µj(x, Z)], its Bayes-optimal expected cost as µB

j (x) =
infg∈Hg µj(x). Then the Bayes-optimal top-k selection set is

ΠB
k (x) = argmin

Πk⊆A
|Πk|=k

∑
j∈Πk

µB
j (x) = {[1]↑µB , [2]

↑
µB , . . . , [k]

↑
µB},

where [i]↑
µB denotes the index of the i-th smallest expected cost in {µB

j (x) : j ∈ A}. In the one-stage
regime, where no base predictor classHg is defined, we simply set µB

j (x) = µj(x).

Lemma 4.5 shows that Bayes-optimal top-k deferral is obtained by ranking entities according to
their expected cost and selecting the k lowest.

Corollary 4.6 (Special cases for k = 1). The Bayes rule in Lemma 4.5 recovers prior Top-1 results:

1. One-stage L2D. For any entity j (labels j ≤ n and experts j > n),

µB
j (x) = αjP

(
âj(x) ̸= Y

∣∣X = x
)
+ βj ,

which yields the Top-1 Bayes policy of Mozannar & Sontag (2020).

2. Two-stage L2D. Let j = 1 denote the base predictor and j ≥ 2 the experts. Then

µB
1 (x) = α1 inf

g∈Hg

EZ|X=x

[
ψ
(
ĝ(x), Z

)]
+ β1,

and for j ≥ 2, µB
j (x) = αjEZ|X=x

[
ψ
(
m̂j−1(x), Z

)]
+ βj ,

recovering the Top-1 allocation in Narasimhan et al. (2022); Mao et al. (2023a); Montreuil
et al. (2025b).

3. Selective prediction (reject option). We take the set of label entities and augment it with
an abstain entity ⊥, defined by α⊥ = 0 and β⊥ = λ > 0, while label entities use αj =
1, βj = 0. Then

µB
j (x) = P

(
j ̸= Y

∣∣X = x
)

(j ∈ {1, . . . , n}), µB
⊥(x) = λ,

yielding the Chow’s rule (Chow, 1970).

We defer the proof of this corollary and give additional details in Appendix A.10. The Top-k Bayes
policy strictly generalizes all prior Top-1 results: it reduces to known rules when k = 1, but for
k > 1 it yields a principled way to combine multiple entities under a unified cost-sensitive criterion.

4.3.2 CONSISTENCY OF THE TOP-k DEFERRAL LOSS SURROGATES

Having established the Bayes-optimal policy in Lemma 4.5, we now turn to the surrogate family
Φu

def,k. The central question is whether minimizing the surrogate risk guarantees convergence to-
ward the Bayes-optimal policy for the top-k true deferral loss (Lemma 4.2). This property, known
as consistency, is crucial: without it, empirical risk minimization may converge to arbitrarily sub-
optimal policies. While consistency has been established for k = 1 in both one-stage (Mozannar &
Sontag, 2020; Verma et al., 2022; Mao et al., 2024a) and two-stage (Narasimhan et al., 2022; Mao
et al., 2024c; Montreuil et al., 2025b), no prior results extend to the richer regime k > 1.

Theorem 4.7 (Unified Consistency for Top-k Deferral). Let A denote the set of entities. Assume
that Hπ is symmetric, complete, and regular for top-k deferral, and that in the two-stage case, Hg
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is the base predictor class. Let S := (|A| − 1)
∑

j∈A EX

[
µj(X)

]
. Suppose Φu

01 is Hπ-consistent
for top-k classification with a non-negative, non-decreasing, concave function Γ−1

u .

One-stage. Let EX [µj(X)] = αjP
(
âj(X) ̸= Y

)
+ βj . For any h ∈ Hh,

Eℓdef,k
(h)− EBℓdef,k

(Hh) + Uℓdef,k
(Hh) ≤ k S Γ−1

u

(EΦu
def,k

(h)− E∗Φu
def,k

(Hh) + UΦu
def,k

(Hh)

S

)
.

Two-stage. Let EX [µj(X)] = αjEX,Z

[
ψ
(
âj(X), Z

)]
+ βj . For any (r, g) ∈ Hr ×Hg ,

Eℓdef,k
(r, g)− EBℓdef,k

(Hr,Hg)+Uℓdef,k(Hr,Hg) ≤ EX [µ1(X)− inf
g∈Hg

µ1(X)]

+ k S Γ−1
u

(EΦu
def,k

(r)− E∗Φu
def,k

(Hr) + UΦu
def,k

(Hr)

S

)
with Γ1(v) =

1+v
2 log(1+ v) + 1−v

2 log(1− v) (logistic), Γ0(v) = 1−
√
1− v2 (exponential), and

Γ2(v) = v/|A| (MAE).

We give the proof in Appendix A.11. Theorem 4.7 provides the first consistency guarantees for
top-k deferral across both one-stage and two-stage regimes. The bounds reveal that the excess
deferral risk depends explicitly on k: consulting more entities enlarges the cost term k S. At the
same time, calibration of Φu

01 ensures that minimizing surrogate risk drives the excess true risk
to zero, establishing both Hh, (Hr,Hg), and Bayes-consistency: learned policies converge to the
Bayes-optimal top-k deferral rule from Lemma 4.5 as data grows.

In the two-stage regime, we assume the Bayes-optimal cost is attainable (or can be arbitrarily well
approximated), i.e., there exists a sequence gt ∈ Hg such that EX [µ1(X) − µB

1 (X)] → 0. Fur-
thermore, if there exists rt ∈ Hr with EΦu

def,k
(rt) − E∗Φu

def,k
(Hr) + UΦu

def,k
(Hr) → 0, then by

Theorem 4.7 and the fact that v 7→ kS Γ−1
u (v/S) is nonnegative and nondecreasing on [0,∞) with

Γ−1
u (0) = 0, we obtain Eℓdef,k

(rt, gt)−EBℓdef,k(Hr,Hg)+Uℓdef,k(Hr,Hg) → 0, which shows that
the surrogate indeed minimizes its target loss.

The minimizability gap vanishes under realizability and, more generally, whenever the hypothesis
class is sufficiently rich, for instance when Hπ = Hall

π (Steinwart, 2007). Importantly, by setting
k = 1, we recover the established Hh-consistency bounds for one-stage L2D (Mao et al., 2024a)
and (Hr,Hg)-consistency bounds for two-stage L2D (Mao et al., 2024c; 2023a; Montreuil et al.,
2025b). Thus our result strictly generalizes prior work, while covering the entire cross-entropy
surrogate family, including log-softmax, exponential, and MAE. This unification provides the first
rigorous statistical foundation for multi-expert deferral.

5 TOP-k(x): ADAPTING THE NUMBER OF ENTITIES PER QUERY

While our Top-k deferral framework enables richer allocations than prior works, it still assumes
a uniform cardinality k across all queries. In practice, input complexity varies: some instances
may require only one confident decision, while others may benefit from aggregating over multiple
entities. To address this heterogeneity, we propose an adaptive mechanism that selects a query-
specific number of entities.

Following the principle of cardinality adaptation introduced in Top-k classification (Cortes et al.,
2024), we define a cardinality function kθ : X → A, parameterized by a hypothesis classHk. For a
given input x, the function selects the cardinality level via k̂θ(x) = argmaxi∈A k(x, i) and returns
the Top-k(x) subset Πk̂θ(x)

(x) ⊆ Π|A|(x) produced by the scoring function π(x, ·).
Definition 5.1 (Cardinality-Aware Deferral Loss). Let x ∈ X , and let Πk̂θ(x)

(x) denote the adaptive
Top-k(x) subset. Let d denote a metric, ξ : R+ → R+ a non-decreasing function, and λ ≥ 0 a
regularization parameter. Then, the adaptive cardinality loss is defined as

ℓcard(Πk̂θ(x)
(x), k̂θ(x), x, z) = d(Πk̂θ(x)

(x), x, z) + λξ
( k̂θ(x)∑

i=1

β[i]↓π

)
,

8
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with surrogate Φcard(Π|A|(x), kθ, x, z) =
∑

v∈A

(
1− ℓ̃card(Πv(x), v, x, z)

)
Φu

01(kθ, x, v), where

ℓ̃card is a normalized version of the cardinality-aware loss and β[i]↓π denotes the consultation cost of
the i-th ranked entity. This surrogate is Hk–consistent, and the proof follows the same structure as
in Cortes et al. (2024).

The term d(Πk̂θ(x)
(x), x, z) captures the predictive error of the selected set and can be instantiated

using top-k accuracy, majority-voting error, or any other task-dependent aggregation metric (see
Appendix A.13 for examples). The second component penalizes costly selections, encouraging the
model to query additional entities only when the expected accuracy gain justifies the consultation
cost.

A detailed theoretical analysis of the behavior of the cardinality function kθ is provided in Ap-
pendix A.12. There, we show that the number of selected entities increases only when the anticipated
gain in predictive accuracy outweighs the additional consultation cost.

6 EXPERIMENTS

We evaluate our proposed methods—Top-k L2D and its adaptive extension Top-k(x) L2D—against
state-of-the-art one-stage (Mozannar & Sontag, 2020; Mao et al., 2024a) and two-stage (Narasimhan
et al., 2022; Mao et al., 2023a; 2024c; Montreuil et al., 2025b) baselines. Across all tasks, Top-k
and Top-k(x) consistently outperform single-expert deferral methods, demonstrating both improved
accuracy–cost trade-offs and strict generalization beyond k = 1.

In the main text, we report two-stage results on the California Housing dataset (Kelley Pace &
Barry, 1997), while deferring additional experiments for both settings on CIFAR-100 and
SVHN to Appendix B.2. For the one-stage setting, we provide detailed evaluations on CIFAR-
10 (Krizhevsky, 2009) and SVHN (Goodfellow et al., 2013) in Appendix B.3. Evaluation met-
rics are formally defined in Appendices A.13 and B.1.1. We track the expected budget β(k) =

EX [
∑k

j=1 β[j]π↓ ] and the expected number of queried entities k = EX [|Πk(X)|], where k is fixed
in Top-k L2D and input-dependent in Top-k(x) L2D. Algorithms are provided in Appendix A.4,
with illustrations in Appendix A.5.
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Figure 1: Performance of Top-k and Top-k(x) L2D across varying budgets β. Each plot reports a
different metric: (a) minimum RMSE, (b) uniform average RMSE, and (c) weighted average RMSE
(B.1.1). Our approach outperforms the Top-1 L2D baseline (Mao et al., 2024c).

Interpretation. In Figure 1a, Top-k(x) achieves a near-optimal RMSE of 6.23 with a budget of
β = 0.156 and an expected number of entities k = 4.77, whereas Top-k requires the full budget
β = 0.2 and k = 6 entities to reach a comparable score (6.21). This demonstrates the ability of Top-
k(x) to allocate resources more efficiently by querying only the necessary entities, in contrast to Top-
k, which tends to over-allocate costly or redundant ones. Additionally, our approach outperforms
the Top-1 L2D baseline (Mao et al., 2024c), confirming the limitations of single-entity deferral.

Figures 1b and 1c evaluate Top-k and Top-k(x) L2D under more restrictive metrics—RMSEavg and
RMSEw-avg—where performance is not necessarily monotonic in the number of queried entities. In
these settings, consulting too many or overly expensive entities may degrade overall performance.
Top-k(x) consistently outperforms Top-k by carefully adjusting the number of consulted entities. In
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both cases, Top-k(x) achieves optimal performance using a budget of just β = 0.095—a level that
Top-k fails to attain. For example, in Figure 1b, Top-k(x) achieves an RMSEavg = 8.53, compared
to 10.08 for Top-k. This demonstrates that our Top-k(x) L2D selectively chooses the appropriate
entities—when necessary—to enhance the overall system performance.

7 CONCLUSION

We introduced Top-k Learning-to-Defer, a generalization of the two-stage L2D framework that al-
lows deferring queries to multiple agents, and its adaptive extension, Top-k(x) L2D, which dynam-
ically selects the number of consulted agents based on input complexity, consultation costs, and the
agents’ underlying distributions. We established rigorous theoretical guarantees, including Bayes
and (Hr,Hg)-consistency, Hh-consistency, and showed that model cascades arise as a restricted
special case of our framework. Through experiments on both one-stage and two-stage regimes, we
demonstrated that Top-k and Top-k(x) L2D consistently outperforms single-agent baselines.

8 REPRODUCIBILITY STATEMENT

All code, datasets, and experimental configurations are publicly released to facilitate full repro-
ducibility. Results are reported as the mean and standard deviation over four independent runs, with
a fixed set of experts. For random baseline policies, metrics are averaged over fifty repetitions to
reduce stochastic variability. All plots include error bars indicating one standard deviation. Dataset
details are provided in Appendix B.1.3, while the training procedures for both the policy and the
cardinality function are described in Algorithm 1 and Algorithm 2. Proofs, intermediate derivations,
and explicit assumptions are included in the Appendix.
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A APPENDIX

A.1 GENERAL NOTATIONS

Table 1: Summary of main notation used throughout the paper.

Symbol Description
X Input space; x ∈ X denotes an input/query.
Z Output space; a generic outcome variable. In multiclass classification, Z =

Y = {1, . . . , n}.
Y Label space in classification, Y = {1, . . . , n}.
(X,Z) Random variables taking values in X × Z . Training examples (x, z) are

drawn i.i.d. from D.
D Unknown data distribution over X × Z .
mj , m̂j Expert j ∈ {1, . . . , J}, with prediction map m̂j : X → Y (classification) or

X → Z (general task).
g, ĝ Base predictor in the two-stage regime, ĝ : X → Z .
π, π̂ policy, π̂ : X → Z .
A Generic entity set; A denotes either A1s or A2s depending on the regime.
âj Entity map âj : X → Z associated with entity j ∈ A (label or expert

prediction) used in the unified top-k formulation.
Πk(x) Top-k selection set Πk(x) ⊆ A of size k, containing the k entities with the

largest scores under π(x, ·).
[i]↑µ Index of the i-th smallest expected cost µj(x); used to describe the Bayes-

optimal selection rule.
ℓdef,k Unified top-k true deferral loss ℓdef,k(Πk(x), z) =

∑
j∈A µj(x, z)1{j ∈

Πk(x)} (uniformized top-k deferral cost).
Φu

def,k Top-k deferral surrogate based on cross-entropy family members Φu
01, used

for training a k-independent policy π.
kθ Cardinality function kθ : X → Ak used in Top-k(x); parameterized by θ

and learned with surrogate Φcard.

ℓcard Cardinality-aware deferral loss ℓcard(Πk̂θ(x)
(x), k̂θ(x), x, z) =

d(Πk̂θ(x)
(x), x, z) + λ ξ

(∑k̂θ(x)
i=1 β[i]↓π

)
.

d Metric measuring task-specific error between the selected entity set using an
aggregation mechanism and the true outcome (used in ℓcard).

Φcard Surrogate loss for adaptive cardinality, Φcard(Π|A|(x), kθ, x, z), built from
a normalized variant ℓ̃card.

A.2 NOTATIONS FOR ORDERED SETS

Definition A.1 (Orderings on a finite set). Let Ω = {1, . . . , N} be a set of cardinality N := |Ω| and
let

f :M× Ω −→ R, (m,ω) 7→ f(m,ω),

whereM is a measurable input space (typicallyM = X orM = X × Y).

Descending permutation. For every fixed m ∈M, let

ρ↓f (m) : Ω −→ Ω

be the (tie-broken) permutation that satisfies

f
(
m, ρ↓f (m)(1)

)
≥ f

(
m, ρ↓f (m)(2)

)
≥ . . . ≥ f

(
m, ρ↓f (m)(N)

)
.
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The element occupying the i-th largest position is denoted by

[i]↓f := ρ↓f (m)(i), i = 1, . . . , N.

Ascending permutation. Analogously, define

ρ↑f (m) : Ω −→ Ω

such that

f
(
m, ρ↑f (m)(1)

)
≤ f

(
m, ρ↑f (m)(2)

)
≤ . . . ≤ f

(
m, ρ↑f (m)(N)

)
,

and set

[i]↑f := ρ↑f (m)(i), i = 1, . . . , N.

Top-k Selection Set. For k ∈ {1, . . . , J+1} and an order indicator o ∈ {↓, ↑}, the top-k selection
set is

Πk(x) :=
{
[1] of , [1]

o
f , . . . , [k]

o
f

}
.

Remark 3 (Typical instantiations). In particular:

1. Policy scores. Take Ω = A = {1, . . . , J + 1}, M = X , and fπ(x, j) := π(x, j).
Descending order (o =↓) ranks agents from most to least confident at retaining the query.

2. Agent-specific consultation costs. Fix Ω = A but enlarge the input space toM = X ×Z
and define

fc
(
(x, z), j

)
:= cj

(
âj(x), z

)
.

Ascending order (o =↑) lists agents from cheapest to most expensive for the specific pair
(x, z).

A.3 USEFUL DEFINITION

Definition A.2 (Hπ-consistency). Let Hπ be a hypothesis set and let (πt)t≥1 ⊂ Hπ . We say that
the loss Φdef isHπ-consistent with respect to the loss ℓdef,k if

EΦdef
(πt)− EBΦdef

(Hπ) + UΦdef
(Hπ) −−−→

t→∞
0

=⇒ Eℓdef,k(πt)− EBℓdef,k(Hπ) + Uℓdef,k(Hπ) −−−→
t→∞

0,

where EBΦdef
(Hπ) := infHπ∈Hπ EΦdef

(Hπ) and UΦdef
(Hπ) (resp. Uℓdef,k(Hπ)) denotes the mini-

mizability gap associated with Φdef (resp. ℓdef,k).

Definition A.3 (Hπ-calibration). Let Hπ be a hypothesis set. We say that the loss Φdef is Hπ-
calibrated with respect to the loss ℓdef,k if, for any ϵ > 0, there exists δ > 0 such that for all π ∈ Hπ

and all x ∈ X ,

CΦdef
(π, x) < C∗Φdef

(Hπ, x) + ϵ =⇒ Cℓdef,k(π, x) < CBℓdef,k(Hπ, x) + δ,

where CΦdef
(π, x) and Cℓdef,k(π, x) are the conditional risks at x, C∗Φdef

(Hπ, x) :=

infπ∈Hπ
CΦdef

(π, x), and CBℓdef,k(Hπ, x) := infπ∈Hπ
Cℓdef,k(π, x).
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A.4 ALGORITHM

Algorithm 1 Top-k L2D Training Algorithm

Input: Dataset {(xi, zi)}Ii=1, entities {âj : X → Z}j∈A, policy π ∈ Π, number of epochs
EPOCH, batch size BATCH, learning rate ν.
Initialization: Initialize policy parameters θ.
for i = 1 to EPOCH do

Shuffle dataset {(xi, zi)}Ii=1.
for each mini-batch B ⊂ {(xi, zi)}Ii=1 of size BATCH do

Extract input-output pairs (x, z) ∈ B.
Query entities {âj : X → Z}j∈A.
Compute the empirical risk minimization:
ẼΦu

def,k
(π; θ) = 1

BATCH

∑
(x,z)∈B

[
Φu

def,k(π, x, z)
]
.

Update parameters θ:
θ ← θ − ν∇θẼΦu

def,k
(π; θ). {Gradient update}

end for
end for
Return: trained policy π.

Algorithm 2 Cardinality Training Algorithm

Input: Dataset {(xi, zi)}Ii=1, trained policy π from Algorithm 1, entities {âj : X → Z}j∈A,
cardinality function kθ ∈ Hk, number of epochs EPOCH, batch size BATCH, learning rate ν.
Initialization: Initialize cardinality parameters θ.
for i = 1 to EPOCH do

Shuffle dataset {(xi, zi)}Ii=1.
for each mini-batch B ⊂ {(xi, zi)}Ii=1 of size BATCH do

Extract input-output pairs (x, y) ∈ B.
Query entities {âj : X → Z}j∈A

Compute the scores {π(x, j)}|A|
j=1 using the trained policy π.

Sort these scores and select entries to construct the top-k entity set Π|A|(x).
Compute the empirical risk minimization:
ẼΦcar(kθ; θ) =

1
BATCH

∑
(x,y)∈B

[
Φcar(Π|A|, kθ, x, y)

]
.

Update parameters θ:
θ ← θ − ν∇θẼΦcar(kθ; θ). {Gradient update}

end for
end for
Return: trained cardinality model kθ.

A.5 ILLUSTRATION OF TOP-k(x) AND TOP-k L2D

Query
x ∈ X

Scores
{π(x, j)}j∈A

Learned with Corollary 4.4

Select Entity
π
[1]

↓
π
(x)

a
[1]

↓
π
(x)

Single Entity Prediction

Prediction

Figure 2: Inference step of Top-1 L2D (Narasimhan et al., 2022; Mao et al., 2023a; 2024c; Mozannar
& Sontag, 2020; Mao et al., 2024a): Given a query, we process it through the learned policy π. We
select the entity with the highest score π̂(x) = argmaxj∈A π(x, j). Then, we query this entity and
make the final prediction.
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Query
x ∈ X

Scores
{π(x, j)}j∈A

Policy From Algorithm 1

Top-k Selection
Πk(x)

a
[1]

↓
π
(x)

a
[2]

↓
π
(x)

a
[k]

↓
π
(x)

...

Committee of k Ordered Entities

a
[k+1]

↓
π
(x)

a
[|A|]↓π

(x)

...

Decision rule

(Vote majority, etc.)

Prediction

Figure 3: Inference Step of Top-k L2D: Given a query x, we first process it through the policy
learned using Algorithm 1. Based on this, we select a fixed number k of entities to query, forming
the Top-k Selection Set Πk(x), as defined in Definition 4.1. By construction, the expected size
satisfies EX [|Πk(X)|] = k. We then aggregate predictions from the selected top-k entities using a
decision rule—such as majority vote or weighted voting. The final prediction is produced by this
committee according to the chosen rule.

Query
x ∈ X

Scores
{π(x, j)}j∈A

Policy From Algorithm 1

Cardinality
k̂θ(x) ∈ A

Cardinality function From Algorithm 2

Top-k Selection Set
Πk̂θ(x)

(x)

a
[1]

↓
π
(x)

a
[2]

↓
π
(x)

a
[k̂θ(x)]

↓
π
(x)

...

Committee of k̂θ(x) Ordered Entities

a
[k̂θ(x)+1]

↓
π
(x)

a
[|A|]↓π

(x)

...

Decision rule

(Vote majority, etc.)

Prediction

Figure 4: Inference Step of Top-k(x) L2D: Given a query x, we process it through both the policy
π, trained using Algorithm 1, and the cardinality function kθ, trained using Algorithm 2. Based
on these two functions, we construct the Top-k Selection set. By construction, its expected size
satisfies EX [|Πk̂θ(x)

(X)|] = EX [k̂θ(X)]. We then aggregate predictions from the top-k̂θ(x) entities
using a decision rule (e.g., majority vote, weighted voting). The final prediction is produced by this
committee of entities according to the chosen decision rule.

A.6 MODEL CASCADES ARE SPECIAL CASES OF TOP-k AND TOP-k(x) SELECTION

Throughout, let A be the set of entities. For j ∈ A we denote by âj : X → Z the prediction of
entity j, by π : X ×A → R a policy score, and by

Πk(x) = {π[1]↓π (x), . . . , π[k]↓π (x)}

the Top-k Selection Set containing the indices of the k largest scores.
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A.6.1 MODEL CASCADES

Definition A.4 (Evaluation order and thresholds). Fix a permutation ρ = (ρ1, . . . , ρ|A|) of A (the
evaluation order) and confidence thresholds 0 < ν1 < ν2 < · · · < ν|A| < 1. For each entity let
conf : X ×A → [0, 1] be a confidence measure.
Definition A.5 (Size–k cascade allocation). For a fixed k ∈ {1, . . . , |A|} define the cascade set

Kk(x) := {ρ1, . . . , ρk}.
The cascade evaluates the entities in the order ρ until it reaches ρk. If the confidence test
conf

(
ρk, x

)
≥ νk is satisfied, the cascade allocates the set Kk(x); otherwise it proceeds to the

next stage (see Section A.6.3 for the adaptive case).

A.6.2 EMBEDDING A FIXED-k CASCADE

Lemma A.6 (Score construction). For a fixed k define

πk(x, j) :=


2− rankKk(x)(j)

k + 1
, j ∈ Kk(x),

− rankA\Kk(x)(j)

|A|+ 1
, j /∈ Kk(x),

where rankB(j) ∈ {1, . . . , |B|} is the index of j inside the list B ordered according to ρ. Then for
every x ∈ X

Πk(x) = Kk(x).

Proof. Separation. Scores assigned to Kk(x) lie in (1, 2], while scores assigned to A \ Kk(x) lie
in [−1,− 1

|A|+1 ); hence all k largest scores belong exactly to Kk(x).

Distinctness. Within each block, consecutive ranks differ by 1/(k+1) or 1/(|A|+1), so ties cannot
occur. Therefore the permutation returns precisely the indices of Kk(x) in decreasing order, and the
Top-k Selection Set equals Kk(x).

Corollary A.7 (Cascade embedding for any fixed k). For every k ∈ {1, . . . , |A|} the policy πk of
Lemma A.6 satisfies

Πk(x) = Kk(x) ∀x ∈ X .
Consequently, the Top-k Selection coincides exactly with the size-k cascade allocation.

Proof. Immediate from Lemma A.6.

A.6.3 EMBEDDING ADAPTIVE (EARLY-EXIT) CASCADES

Let the cascade stop after a data-dependent number of stages k̂θ(x) ∈ {1, . . . , |A|}. Define the
cardinality function k̂θ(x) and reuse the score construction of Lemma A.6 with k replaced by k̂θ(x):
πk̂θ(x)

(x, ).
Lemma A.8 (Cascade embedding for adaptive cardinality). With policy πk̂θ(x)

and cardinality func-

tion k̂θ(x), the Top-k(x) Selection pipeline allocates Kk̂θ(x)
(x) for every input x. Therefore any

adaptive (early-exit) model cascade is a special case of Top-k(x) Selection.

Proof. Applying Lemma A.6 with k = k̂θ(x) yields Πk̂θ(x)
(x) = Kk̂θ(x)

(x). The cardinality

function truncates the full Top-k(x) set to its first k̂θ(x) elements—precisely Kk̂θ(x)
(x).

A.6.4 EXPRESSIVENESS: MODEL CASCADES VS. TOP-k / TOP-k(x) SELECTION

Hierarchy. Every model cascade can be realised by a suitable choice of policy scores and, for the
adaptive case, a cardinality function (see App. A.6). Hence

Model Cascades︸ ︷︷ ︸
prefix of a fixed order

⊂ Top-k Selection︸ ︷︷ ︸
constant k

⊂ Top-k(x) Selection︸ ︷︷ ︸
learned k(x)

.

The inclusion is strict, for the reasons detailed below.
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Why the inclusion is strict.

1. Non-contiguous selection. A Top-k Selection Set Πk(x) may pick any subset of size k
(e.g. {1, 2, 5}), whereas a cascade always selects a prefix {ρ1, . . . , ρk} of the evaluation
order.

2. Learned cardinality. In Top-k(x) Selection the cardinality function k̂θ(x) is trained by
minimizing a surrogate risk; Theorem 4.7 provides consistency and ensures the optimality
of Πk(x)(x). Classical cascades, by contrast, rely on fixed confidence thresholds with no
statistical guarantee.

3. Cost-aware ordering. Lemma 4.5 shows the Bayes-optimal policy orders entities by ex-
pected cost, which may vary with x. Top-k policies can realize such input-dependent or-
derings by means of the policy scores π(x, j). Cascades, in contrast, impose a single,
input-independent order ρ.

4. Multi-entity aggregation. After selecting k entities, Top-k Selection can aggregate their
predictions (majority vote, weighted vote, averaging, etc.). A cascade, however, uses only
the last entity in the prefix whose confidence test is passed. Earlier entities are effectively
discarded. Thus cascades cannot implement multi-entity aggregation rules.

Separating example. Assume |A| = 3 with entities a1, a2, a3 and consider a Top-2 Selection
policy defined by policy scores π(x, ) such that

on some x : π(x, 1) > π(x, 3) > π(x, 2) ⇒ Π2(x) = {1, 3},

on some x′ : π(x′, 1) > π(x′, 2) > π(x′, 3) ⇒ Π2(x
′) = {1, 2}.

Suppose, for contradiction, that a cascade with a fixed, input-independent order ρ realizes the same
selections as Top-2. Because Π2(x) = {1, 3} is not a prefix of any order unless 3 precedes 2, we
must have ρ satisfying

1 ≻ρ 3 ≻ρ 2.

But since Π2(x
′) = {1, 2} must also be a prefix of the same ρ, we must have

1 ≻ρ 2 ≻ρ 3,

a contradiction. Hence no fixed-order cascade can realize this Top-2 Selection Set.

Moreover, even in cases where a Top-k set is a prefix (e.g., {1, 2}), a cascade outputs the prediction
of the last confident entity in that prefix, whereas Top-k Selection may aggregate the k entities’
predictions (e.g., by a weighted vote). Therefore, cascades cannot, in general, implement Top-k
aggregation rules.

A.7 PROOF LEMMA 4.2

Definition 4.2 (Top-k True Deferral Loss). Let x ∈ X , z ∈ Z , and Πk(x) ⊆ A be the top-k
selection set. Let µj(x, z) the cost of selecting entity j for input (x, z). The uniformized top-k true
deferral loss is

ℓdef,k(Πk(x), z) =

|A|∑
j=1

µj(x, z)1{j ∈ Πk(x)},

Proof. We will prove this novel true deferral loss for both the one-stage and two-stage regime.

Two-Stage. In the standard L2D setting (see 3.2), the deferral loss utilizes the indicator function
1{π̂(x) = j} to select the most cost-efficient entity in the system. Specifically, we have π = r,
|A2s| = J + 1, and µj(x, z) = cj(x, z). We can upper-bound the standard two-stage L2D loss by
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employing the indicator function over the Top-k Selection Set Πk(x) defined in 4.1:

ℓ2sdef(π̂(x), z) =

J+1∑
j=1

cj(x, z)1{π̂(x) = j}

=

J+1∑
j=1

µj(x, z)1{π̂(x) = j}

≤
J+1∑
j=1

µj(x, z)1{j ∈ Πk(x)}

= ℓ2sdef,k(Πk(x), z).

(1)

Consider a system with two experts {m1,m2} and one main predictor g. Leading to A = {1, 2, 3},
and the Top-|A| Selection Set Π|A|(x) = {3, 2, 1}. This indicates that expert m2 has a higher
confidence score than expert m1 and predictor g, i.e., π(x, 3) ≥ π(x, 2) ≥ π(x, 1). We evaluate
ℓ2sdef,k for different values of k ≤ |A|:
For k = 1: The Selection Set is Π1(x) = {3}, which corresponds to the standard L2D setting where
deferral is made to the most confident entity (Narasimhan et al., 2022; Mao et al., 2023a; Montreuil
et al., 2025b). Thus,

ℓ2sdef,1(Π1(x), z) = µ3(x, z) = α3ψ(m̂2(x), z) + β3, (2)

recovering the same result as ℓ2sdef defined in 3.2.

For k = 2: The Selection Set expands to Π2(x) = {3, 2}, implying that both expert m2 and expert
m1 are queried. Therefore,

ℓ2sdef,2(Π2(x), z) = µ3(x, z) + µ2(x, z), (3)

correctly reflecting the computation of costs from the queried entities.

For k = 3: The Selection Set further extends to Π3(x) = {3, 2, 1}, implying that all entities in the
system are queried. Consequently,

ℓ2sdef,3(Π3(x), z) = µ3(x, z) + µ2(x, z) + µ1(x, z), (4)

incorporating the costs from all entities in the system.

One-Stage. The standard One-Stage deferral loss introduced by Mozannar & Sontag (2020) assigns
cost based on whether the model predicts or defers:

ℓ1sdef(ĥ(x), y) = 1{ĥ(x) ̸= y}1{ĥ(x) ≤ n}+
J∑

j=1

cj(x, y)1{ĥ(x) = n+ j},

This formulation handles two mutually exclusive cases: the model predicts a class label j ∈
{1, . . . , n} and is penalized if j ̸= y, or it defers to expert mj and incurs the expert-specific cost
cj(x, y). However, this formulation relies on a hard-coded distinction between prediction and defer-
ral.

To generalize and simplify the analysis, we introduce a unified cost-sensitive reformulation over the
entire entity set A = {1, . . . , n+ J}. We define

µj(x, y) =

{
αj1{j ̸= y}+ βj for j ≤ n,
αj1{m̂j−n(x) ̸= y}+ βj for j > n.

This assigns each entity—whether label or expert—a structured cost combining prediction error and
fixed usage cost. The total loss is then

ℓ2sdef(ĥ(x), y) =

n+J∑
j=1

µj(x, y)1{ĥ(x) = j}.
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We now verify that this general formulation is equivalent to the original loss when the cost parame-
ters are selected appropriately.

Consider a binary classification example with Y = {1, 2}, two experts {m1,m2}, and parameters
αj = 1, βj = 0 for all j. If the classifier h predicts label ĥ(x) = 1, then the cost is µ1(x, y) =

1{1 ̸= y}, which matches the original unit penalty for incorrect prediction. If ĥ(x) = y, the
cost becomes µy(x, y) = 1{y ̸= y} = 0, correctly yielding no penalty for correct prediction.
If instead the classifier h defers to expert m1, i.e., ĥ(x) = n + 1 = 3, then the loss becomes
µ3(x, y) = 1{m1(x) ̸= y}, matching the original expert cost.

Therefore, by using π = h and |A1s| = J + n, it follows:

ℓ1sdef(ĥ(x), y) =

J+n∑
j=1

µj(x, y)1{ĥ(x) = j}

≤
J+n∑
j=1

µj(x, y)1{j ∈ Πk(x)}

= ℓ1sdef,k(Πk(x), y).

(5)

A.8 PROOF LEMMA 4.3

Lemma 4.3 (Upper Bound on the Top-k Deferral Loss). Let x ∈ X , z ∈ Z , and let 1 ≤ k ≤ |A|.
Let Φu

01 a convex surrogate in the cross-entropy family. Then the top-k deferral loss satisfies

ℓdef,k(Πk(x), z) ≤
∑
j∈A

(∑
i̸=j

µi(x, z)

)
Φu

01(π, x, j)− (|A| − 1− k)
∑
j∈A

µj(x, z),

Proof. Let the entity set A and the policy π ∈ Hπ . For a query–label pair (x, z) denote the costs of
allocating to an entity j by µj(x, z) ≥ 0 (j = 1, . . . , |A|) and the total cost by

Ctot(x, z) =

|A|∑
j=1

µj(x, z).

Define, for each index j,

ξj(x, z) =

|A|∑
q=1
q ̸=j

µq(x, z) = Ctot(x, z)− µj(x, z).

For any k ∈ {1, . . . , |A|} and any size-k decision set Πk(x) ⊆ {1, . . . , |A|} the top-k deferral loss
is

ℓdef,k
(
Πk(x), z

)
=

|A|∑
j=1

µj(x, z)1{j ∈ Πk(x)}

Because Πk(x) and its complement Πk(x) form a disjoint partition of {1, . . . , |A|},

ℓdef,k(Πk(x), z
)
=
∑
j∈Πk

µj = Ctot −
∑
j∈Πk

µj . (6)

For every j we have µj = Ctot − ξj with ξj =
∑

i̸=j µi, whence∑
j∈Πk

µj =
∑
j∈Πk

(Ctot − ξj) = (|A| − k)Ctot −
∑
j∈Πk

ξj , (7)
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with the factor |A| − k being the cardinality of Πk. Substituting equation 7 into equation 6 yields

ℓdef,k(Πk(x), z
)
= Ctot −

[
(|A| − k)Ctot −

∑
j∈Πk

ξj

]
(8)

=

|A|∑
j=1

ξj1{j /∈ Πk} −
(
|A| − k − 1

) |A|∑
j=1

µj(x, z). (9)

Let us inspect limit cases:

1. k = 1. Then Πk has |A| − 1 indices and the constant term reduces to −(|A| − 2)Ctot;
expanding the sum shows ℓdef,1 = µπ̂(x) as expected for the classical true deferral loss
defined in 3.1 and 3.2.

2. k = |A|. The complement is empty,
∑

j /∈Π|A|
ξj = 0 and |A|−k−1 = −1, so the formula

gives ℓdef,|A| = Ctot, i.e. paying all deferral costs — again matching intuition.

Finally, Let Φu
01(π, x, j) be a multiclass surrogate that satisfies 1{j /∈ Πk(x)} ≤ Φu

01(π, x, j) for
every j. As shown by Lapin et al. (2016); Yang & Koyejo (2020); Cortes et al. (2024) the cross-
entropy family satisfy this condition. Because each weight ξj(x, z) ≥ 0, we have

ℓdef,k(Πk, x, z) ≤
|A|∑
j=1

ξj(x, z)Φ
u
01(π, x, j)−

(
|A| − k − 1

) |A|∑
j=1

µj(x, z)

=

|A|∑
j=1

(∑
i̸=j

µi(x, z)

)
Φu

01(π, x, j)−
(
|A| − k − 1

) |A|∑
j=1

µj(x, z)

(10)

We have shown the desired relationship.

A.9 PROOF LEMMA 4.5

Lemma 4.5 (Bayes-Optimal Top-k Selection). Let x ∈ X . For each entity j ∈ A, define
the expected cost µj(x) = EZ|X=x[µj(x, Z)], its Bayes-optimal expected cost as µB

j (x) =
infg∈Hg µj(x). Then the Bayes-optimal top-k selection set is

ΠB
k (x) = argmin

Πk⊆A
|Πk|=k

∑
j∈Πk

µB
j (x) = {[1]↑µB , [2]

↑
µB , . . . , [k]

↑
µB},

where [i]↑
µB denotes the index of the i-th smallest expected cost in {µB

j (x) : j ∈ A}. In the one-stage
regime, where no base predictor classHg is defined, we simply set µB

j (x) = µj(x).

Proof. Let’s consider the Top-k Deferral Loss defined by

ℓdef,k(Πk(x), z) =

|A|∑
j=1

µj(x, z)1{j ∈ Πk(x)},

where µj(x, z) = αjψ(âj(x), z) + βj in the two-stage and µj(x, z) = αj1{âj(x) ̸= y} + βj in
one-stage setting, is the cost associated with entity j ∈ A. We define the expected cost as:

µj(x) = EZ|X=x[µj(x, Z)]

Given the policy π : X → A, we have the Top-k Selection Set Πk(x) ⊆ A.

One-stage. Here µj(x, y) = αj1{âj(x) ̸= y} + βj and âj are fixed (non-optimizable) as they are
labels or experts. Thus

µj(x) = αjP(Y ̸= âj(x) | X = x) + βj

=

{
αjP(Y ̸= j | X = x) + βj if j ≤ n
αjP(Y ̸= m̂j−n(x) | X = x) + βj if j > n
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is independent of π (or h here). We introduce the conditional risk (Steinwart, 2007; Bartlett et al.,
2006) of the Top-k Deferral Loss:

Cℓdef,k(π, x) = EY |X=x

[
ℓdef,k(Πk(x), Y )

]
=

|A|∑
j=1

µj(x)1{j ∈ Πk(x)}

Hence the Bayes (conditional) risk over policies reduces to choosing a size-k subset minimizing the
sum of these expected costs:

CBℓdef,k
(Hπ, x) = inf

π∈Hπ

Cℓdef,k(π, x)

= inf
π∈Hπ

|A|∑
j=1

µj(x)1{j ∈ Πk(x)}
(11)

Let [i]↑µ denote the index of the i-th smallest expected cost, so that

µ[1]↑µ
(x, y) ≤ µ[2]↑µ

(x, y) ≤ · · · ≤ µ[n+J]↑µ
(x, y).

Then the Bayes-optimal risk is obtained by selecting the k entities with the lowest expected costs:

CBℓdef,k
(Hπ, x) =

k∑
i=1

µ[i]↑µ
(x, y).

Consequently, the Top-k Selection Set ΠB
k (x) that achieves this minimum is

ΠB
k (x) = argmin

Πk(x)⊆A
|Πk(x)|=k

∑
j∈Πk(x)

µB
j (x) = {[1]↑

µB , [2]
↑
µB , . . . , [k]

↑
µB}, (12)

meaning ΠB
k (x) selects the k entities with the lowest optimal expected costs.

Two-Stage. Here µj(x, z) = αjψ(âj(x), z) + βj and âj are fixed but we have the full control of
the predictor g ∈ Hg . Thus

µj(x) = αjEZ|X=x[ψ(âj(x), Z)] + βj

=

{
αjEZ|X=x[ψ(ĝ(x), Z)] + βj if j = 1

αjEZ|X=x[ψ(m̂j−1(x), Z)] + βj if j > 1

is independent of π (or r here) but not g ∈ Hg for µ1. We introduce the conditional risk (Steinwart,
2007; Bartlett et al., 2006) of the Top-k Deferral Loss:

Cℓdef,k(π, g, x) = EZ|X=x

[
ℓdef,k(Πk(x), Z)

]
=

|A|∑
j=1

µj(x)1{j ∈ Πk(x)}

Hence the Bayes (conditional) risk over policies reduces to choosing a size-k subset minimizing the
sum of these expected costs:

CBℓdef,k
(Hπ,Hg, x) = inf

π∈Hπ

inf
g∈Hg

Cℓdef,k(π, g, x)

= inf
π∈Hπ

|A|∑
j=1

µB
j (x)1{j ∈ Πk(x)}

(13)

with µB
1 (x) = infg∈Hg µ1(x) and for j > 1, µB

j (x) = µj(x). Let [i]↑µ denote the index of the i-th
smallest expected cost, so that

µB
[1]↑

µB
(x, z) ≤ µB

[2]↑
µB

(x, z) ≤ · · · ≤ µB
[J+1]↑

µB
(x, z).
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Then the Bayes-optimal risk is obtained by selecting the k entities with the lowest expected costs:

CBℓdef,k
(Hπ,Hg, x) =

k∑
i=1

µB
[i]↑

µB

(x, z).

Consequently, the Top-k Selection Set ΠB
k (x) that achieves this minimum is

ΠB
k (x) = argmin

Πk(x)⊆A
|Πk(x)|=k

∑
j∈Πk(x)

µj(x) = {[1]↑µ, [2]↑µ, . . . , [k]↑µ}, (14)

meaning ΠB
k (x) selects the k entities with the lowest optimal expected costs.

A.10 PROOF COROLLARY 4.6

Corollary 4.6 (Special cases for k = 1). The Bayes rule in Lemma 4.5 recovers prior Top-1 results:

1. One-stage L2D. For any entity j (labels j ≤ n and experts j > n),

µB
j (x) = αjP

(
âj(x) ̸= Y

∣∣X = x
)
+ βj ,

which yields the Top-1 Bayes policy of Mozannar & Sontag (2020).

2. Two-stage L2D. Let j = 1 denote the base predictor and j ≥ 2 the experts. Then

µB
1 (x) = α1 inf

g∈Hg

EZ|X=x

[
ψ
(
ĝ(x), Z

)]
+ β1,

and for j ≥ 2, µB
j (x) = αjEZ|X=x

[
ψ
(
m̂j−1(x), Z

)]
+ βj ,

recovering the Top-1 allocation in Narasimhan et al. (2022); Mao et al. (2023a); Montreuil
et al. (2025b).

3. Selective prediction (reject option). We take the set of label entities and augment it with
an abstain entity ⊥, defined by α⊥ = 0 and β⊥ = λ > 0, while label entities use αj =
1, βj = 0. Then

µB
j (x) = P

(
j ̸= Y

∣∣X = x
)

(j ∈ {1, . . . , n}), µB
⊥(x) = λ,

yielding the Chow’s rule (Chow, 1970).

Proof of Corollary 4.6. Set k = 1 in Lemma 4.5. Then the Bayes rule selects the single index

ΠB
1 (x) =

{
[1]↑

µB

}
=
{
argmin

j∈A
µB
j (x)

}
,

i.e., the entity with the smallest Bayes-optimized conditional expected cost at x. We verify the three
specializations.

(1) One-stage L2D. In one-stage, the entities (labels or fixed experts) do not depend on any g, and

µj(x, y) = αj1{âj(x) ̸= y}+ βj =⇒ µB
j (x) = µj(x) = αjP

(
âj(x) ̸= Y

∣∣X = x
)
+ βj .

Thus, ΠB
1 (x) = {argminj µj(x)} selects the entity with the lowest expected cost, which in the

one-stage case corresponds to choosing the label or expert with the lowest misclassification prob-
ability. This recovers exactly the Bayes-optimal Top-1 policy established in prior one-stage L2D
work (Mozannar & Sontag, 2020; Mao et al., 2024a).

(2) Two-stage L2D. Let j = 1 denote the fixed base predictor entity a1(x) = ĝ(x), and j ≥ 2
denote (fixed) experts m̂j−1(x). Then

µB
1 (x) = inf

g∈Hg

EZ|X=x

[
α1ψ

(
ĝ(x), Z

)
+ β1

]
= α1 inf

g∈Hg

EZ|X=x

[
ψ
(
ĝ(x), Z

)]
+ β1,
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while for j ≥ 2 (no g-dependence)

µB
j (x) = µj(x) = αjEZ|X=x

[
ψ
(
m̂j−1(x), Z

)]
+ βj .

Hence ΠB
1 (x) = {argminj∈A µ

B
j (x)} selects, among the base predictor and the experts, the single

entity with the smallest Bayes-optimized expected cost, which recovers the standard Top-1 allocation
in two-stage L2D (e.g., Narasimhan et al.; Mao et al.; Montreuil et al.).

(3) Selective prediction (reject option). Let the action set consist of the n label entities and a reject
action ⊥. Set αj = 1, βj = 0 for labels j ∈ {1, . . . , n}, and α⊥ = 0, β⊥ = λ > 0. Write
pj(x) := P(Y = j | X = x). Then

µB
j (x) = P(j ̸= Y | X = x) = 1− pj(x), µB

⊥(x) = λ.

Therefore
min

{
min

1≤j≤n

(
1− pj(x)

)
, λ
}
= min

{
1− max

1≤j≤n
pj(x), λ

}
.

Equivalently, predict the most probable class j⋆(x) ∈ argmaxj pj(x) if 1 − pj⋆(x) ≤ λ (i.e.,
pj⋆(x) ≥ 1 − λ), and abstain otherwise. This is precisely Chow’s rule (Chow, 1970; Geifman &
El-Yaniv, 2017; Cortes et al., 2016).

A.11 PROOF THEOREM 4.7

First, we prove an intermediate Lemma.

Lemma A.9 (Consistency of a Top-k Loss). sample A surrogate loss function Φu
01 is said to be

Hπ-consistent with respect to the top-k loss ℓk(Πk(x), j) = 1{j ∈ Πk(x)} if, for any π ∈ Hπ ,
there exists a non-decreasing, and non-negative, concave function Γ−1

u : R+ → R+ such that:

∑
j∈A

pj1{j ̸∈ Πk(x)}− inf
π∈Hπ

∑
j∈A

pj1{j ̸∈ Πk(x)} ≤ kΓ−1
u

∑
j∈A

pjΦ
u
01(π, x, j)− inf

π∈Hπ

∑
j∈A

pjΦ
u
01(π, x, j)

 ,

where p ∈ ∆|A| denotes a probability distribution over the set A and k ≤ |A|

Proof. Let the top-k loss be
ℓk(Πk(x), j) = 1{j /∈ Πk(x)},

and define its conditional risk as

Cℓk(π, x) := EZ|X=x

[
ℓk(Πk(x), Z)

]
=
∑
j∈A

pj(x)1{j /∈ Πk(x)},

where pj(x) = P(Z = j | X = x).

The excess conditional risk is

∆Cℓk(π, x) := Cℓk(π, x)− inf
π∈Hπ

Cℓk(π, x).

Assume that the following pointwise calibration inequality holds for an increasing concave function
Γ−1
u (Awasthi et al., 2022):

∑
j∈A

pj1{j ̸∈ Πk(x)}− inf
π∈Hπ

∑
j∈A

pj1{j ̸∈ Πk(x)} ≤ kΓ−1
u

∑
j∈A

pjΦ
u
01(π, x, j)− inf

π∈Hπ

∑
j∈A

pjΦ
u
01(π, x, j)

 ,

(15)
we identify the corresponding conditional risks for a distribution p ∈ ∆|A| as done by Awasthi et al.
(2022):

Cℓk(π, x)− inf
π∈Hπ

Cℓk(π, x) ≤ kΓ−1
u

(
CΦu

01
(π, x)− inf

π∈Hπ

CΦu
01
(π, x)

)
. (16)
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Using the definition from Awasthi et al. (2022), we express the expected conditional risk difference
as:

EX [∆Cℓk(π,X)] = EX

[
Cℓk(π,X)− inf

π∈Hπ

Cℓk(π,X)

]
= Eℓk(π)− EBℓk(Hπ)− Uℓk(Hπ).

(17)

Consequently, we obtain:

Cℓk(π, x)− inf
π∈Hπ

Cℓk(π, x) ≤ kΓ−1
u

(
CΦu

01
(π, x)− inf

π∈G
CΦu

01
(π, x)

)
. (18)

Applying the expectation and by the Jensen’s inequality yields:

EX [∆Cℓk(π,X)] ≤ EX

[
kΓ−1

u

(
∆CΦu

01
(π,X)

)]
EX [∆Cℓk(π,X)] ≤ kΓ−1

u

(
EX

[
∆CΦu

01
(π,X)

])
.

(19)

Then,

Eℓk(π)− EBℓk(Hπ)− Uℓk(Hπ) ≤ kΓ−1
u

(
EΦu

01
(π)− E∗Φu

01
(Hπ)− UΦu

01
(Hπ)

)
. (20)

This result implies that the surrogate loss Φu
01 is Hπ-consistent with respect to the top-k loss ℓk.

From Cortes et al. (2024); Mao et al. (2023b), we have for the cross-entropy surrogates,

Γu(v) =



(1−
√
1− v2) u = 0(

1+v
2 log[1 + v] + 1−v

2 log[1− v]
)

u = 1

1
v(n+J)v

[(
(1+v)

1
1−v +(1−v)

1
1−v

2

)1−v

− 1

]
u ∈ (0, 1)

1
n+J v u = 2.

(21)

Theorem 4.7 (Unified Consistency for Top-k Deferral). Let A denote the set of entities. Assume
that Hπ is symmetric, complete, and regular for top-k deferral, and that in the two-stage case, Hg

is the base predictor class. Let S := (|A| − 1)
∑

j∈A EX

[
µj(X)

]
. Suppose Φu

01 is Hπ-consistent
for top-k classification with a non-negative, non-decreasing, concave function Γ−1

u .

One-stage. Let EX [µj(X)] = αjP
(
âj(X) ̸= Y

)
+ βj . For any h ∈ Hh,

Eℓdef,k
(h)− EBℓdef,k

(Hh) + Uℓdef,k
(Hh) ≤ k S Γ−1

u

(EΦu
def,k

(h)− E∗Φu
def,k

(Hh) + UΦu
def,k

(Hh)

S

)
.

Two-stage. Let EX [µj(X)] = αjEX,Z

[
ψ
(
âj(X), Z

)]
+ βj . For any (r, g) ∈ Hr ×Hg ,

Eℓdef,k
(r, g)− EBℓdef,k

(Hr,Hg)+Uℓdef,k(Hr,Hg) ≤ EX [µ1(X)− inf
g∈Hg

µ1(X)]

+ k S Γ−1
u

(EΦu
def,k

(r)− E∗Φu
def,k

(Hr) + UΦu
def,k

(Hr)

S

)
with Γ1(v) =

1+v
2 log(1+ v) + 1−v

2 log(1− v) (logistic), Γ0(v) = 1−
√
1− v2 (exponential), and

Γ2(v) = v/|A| (MAE).

One-stage.

Proof. We begin by recalling the definition of the conditional deferral risk and its Bayes-optimal
counterpart:

Cℓdef,k(π, x) =

n+J∑
j=1

µj(x)1{j ∈ Πk(x)}, CBℓdef,k
(Hπ, x) =

k∑
i=1

µ[i]↑µ
(x), (22)
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where µj(x) = EY |X=x[µj(x, Y )] denotes the expected cost of selecting entity j. The calibration
gap at input x is defined as the difference between the incurred and optimal conditional risks:

∆Cℓdef,k(π, x) = Cℓdef,k(π, x)− CBℓdef,k
(Hπ, x). (23)

To connect this quantity to surrogate risk, we use the reformulation used in the Proof of Lemma 4.3
in Equation 8:

Cℓdef,k(π, x) =

n+J∑
j=1

(∑
i̸=j

µi(x)

)
1{j /∈ Πk(x)} − (n+ J − k − 1)

n+J∑
j=1

µj(x), (24)

the second term is independent of the hypothesis π ∈ Hπ . This yields: To prepare for applying an
Hπ-consistency result, we define normalized weights:

pj =

∑
i̸=j µi(x)∑n+J

j=1

(∑
i̸=j µi(x)

) ,
which form a probability distribution over entities j ∈ A. Then:

∆Cℓdef,k(π, x) =

n+J∑
j=1

(∑
i̸=j

µi(x)
)n+J∑

j=1

pj1{j /∈ Πk(x)} − inf
π∈Hπ

n+J∑
j=1

pj1{j /∈ Πk(x)}

 .

Now, we apply the Hπ-consistency guarantee of the surrogate loss Φu
01 for top-k classification

(Lemma A.9), which provides:

n+J∑
j=1

pj1{j /∈ Πk(x)} − inf
π∈Hπ

n+J∑
j=1

pj1{j /∈ Πk(x)} ≤

kΓ−1
u

n+J∑
j=1

pjΦ
u
01(π, x, j)− inf

π∈Hπ

n+J∑
j=1

pjΦ
u
01(π, x, j)

 .

Multiplying both sides by
∑n+J

j=1

(∑
i̸=j µi(x)

)
, we obtain:

∆Cℓdef,k(π, x) ≤
n+J∑
j=1

(∑
i̸=j

µi(x)
)
kΓ−1

u

∑n+J
j=1 (

∑
i̸=j µi(x)

)
Φu

01(π, x, j)− infπ∈Hπ

∑n+J
j=1 (

∑
i̸=j µi(x)

)
Φu

01(π, x, j)∑n+J
j=1

(∑
i̸=j µi(x)

)
 .

Define the calibration gap of the surrogate as:

∆CΦu
def,k

(π, x) =

n+J∑
j=1

µj(x) Φ
u
01(π, x, j)− inf

π∈Hπ

n+J∑
j=1

µj(x) Φ
u
01(π, x, j),

Then,

∆Cℓdef,k(π, x) ≤
n+J∑
j=1

(∑
i̸=j

µi(x)
)
kΓ−1

u

(
∆CΦu

def,k
(π, x)∑n+J

j=1

(∑
i̸=j µi(x)

)).
Taking expectations:

Eℓdef,k(π)− EBℓdef,k
(Hπ)− Uℓdef,k(Hπ) ≤

k

n+J∑
j=1

(∑
i̸=j

EX [µi(X)]
)
Γ−1
u

EΦu
def,k

(π)− E∗Φu
def,k

(Hπ)− UΦu
def,k

(Hπ)∑n+J
j=1

(∑
i̸=j EX [µi(X)]

)
 ,

(25)
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Note that we have
∑n+J

j=1

(∑
i̸=j EX [µi(X)]

)
= (|A| − 1)

∑
j∈A EX [µj(X)] with EX [µj(X)] =

αjP(âj(X) ̸= Y ) + βj , leading to S = (|A| − 1)
∑

j∈A

(
αjP(âj(X) ̸= Y ) + βj

)
:

Eℓdef,k(π)− EBℓdef,k
(Hπ)− Uℓdef,k(Hπ) ≤

k S Γ−1
u

(EΦu
def,k

(π)− E∗Φu
def,k

(Hπ)− UΦu
def,k

(Hπ)

S

)
,

(26)

Two-Stage.

Proof. We begin by recalling the definition of the conditional deferral risk and its Bayes-optimal
counterpart:

Cℓdef,k(π, g, x) =

J+1∑
j=1

µj(x)1{j ∈ Πk(x)}, CBℓdef,k
(Hπ,Hg, x) =

k∑
i=1

µB
[i]↑

µB

(x), (27)

where µj(x) = EZ|X=x[µj(x, Z)] denotes the expected cost of selecting entity j. Note that the
conditional risk is different because of the main predictor g. The calibration gap at input x is defined
as the difference between the incurred and optimal conditional risks:

∆Cℓdef,k(π, g, x) = Cℓdef,k(π, g, x)− CBℓdef,k(Hπ,Hg, x)

=

J+1∑
i=1

µj(x)1{j ∈ Πk(x)} −
k∑

i=1

µB
[i]↑

µB

(x)

=

J+1∑
i=1

µj(x)1{j ∈ Πk(x)} −
k∑

i=1

µ[i]↑µ
(x)

+
( k∑

i=1

µ[i]↑µ
(x)−

k∑
i=1

µB
[i]↑

µB

(x)
)
.

(28)

Observing that:
k∑

i=1

µ[i]↑µ
(x)−

k∑
i=1

µB
[i]↑

µB

(x) ≤ µ1(x)− inf
g∈Hg

µ1(x) (29)

Since the only contribution of g appears through the cost term µ1, we can rewrite the first term in
terms of conditional risks. Importantly, the minimization is carried out only over the decision rule
π ∈ Hπ .

J+1∑
i=1

µj(x)1{j ∈ Πk(x)} −
k∑

i=1

µ[i]↑µ
(x) = Cℓdef,k(π, g, x)− inf

π∈Hπ

Cℓdef,k(π, g, x). (30)

Using the explicit formulation of the top-k deferral loss in terms of the indicator function 1{j ̸∈
Πk(x)} (Equation 8), we obtain:

Cℓdef,k(π, g, x)− inf
π∈Hπ

Cℓdef,k(π, g, x) =

n+J∑
j=1

(∑
i̸=j

µi(x)
)
1{j /∈ Πk(x)}

− inf
π∈Hπ

n+J∑
j=1

(∑
i̸=j

µi(x)
)
1{j /∈ Πk(x)}.

(31)

Using the same change of variable:

pj =

∑
i̸=j µi(x)∑J+1

j=1

(∑
i̸=j µi(x)

) ,
31
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which form a probability distribution over entities j ∈ A. Then:

Cℓdef,k(π, g, x)− inf
π∈Hπ

Cℓdef,k(π, g, x) =

J+1∑
j=1

(∑
i̸=j

µi(x)
)( n+J∑

j=1

pj1{j /∈ Πk(x)}

− inf
π∈Hπ

n+J∑
j=1

pj1{j /∈ Πk(x)}
)

Since the surrogate losses Φu
01 are consistent with the top-k loss, we apply Lemma A.9:

Cℓdef,k(π, g, x)− inf
π∈Hπ

Cℓdef,k(π, g, x) ≤
J+1∑
j=1

(∑
i̸=j

µi(x)
)
kΓ−1

u

(
n+J∑
j=1

pj1{j /∈ Πk(x)}

− inf
π∈Hπ

n+J∑
j=1

pj1{j /∈ Πk(x)}
)

=

J+1∑
j=1

(∑
i̸=j

µi(x)
)
kΓ−1

u

(
CΦdef,k(π, g, x)− infπ∈Hπ

CΦdef,k(π, g, x)∑J+1
j=1

(∑
i̸=j µi(x)

) )

Earlier, we have stated:

∆Cℓdef,k(π, g, x) = Cℓdef,k(π, g, x)− CBℓdef,k(Hπ,Hg, x)

=

J+1∑
i=1

µj(x)1{j ∈ Πk(x)} −
k∑

i=1

µ[i]↑µ
(x)

+
( k∑

i=1

µ[i]↑µ
(x)−

k∑
i=1

µB
[i]↑

µB

(x)
)
.

(32)

which is

∆Cℓdef,k(π, g, x) = Cℓdef,k(π, g, x)− inf
π∈Hπ

Cℓdef,k(π, g, x)

+
( k∑

i=1

µ[i]↑µ
(x)−

k∑
i=1

µB
[i]↑

µB

(x)
)
.

≤ Cℓdef,k(π, g, x)− inf
π∈Hπ

Cℓdef,k(π, g, x) +
(
µ1(x)− µB

1 (x)
) (33)

Then,

∆Cℓdef,k(π, g, x) ≤
J+1∑
j=1

(∑
i̸=j

µi(x)
)
kΓ−1

u

(
CΦu

def,k
(π, g, x)− infπ∈Hπ

CΦu
def,k

(π, g, x)∑J+1
j=1

(∑
i̸=j µi(x)

) )

+
(
µ1(x)− µB

1 (x)
) (34)

Taking expectations,

Eℓdef,k(π, g)−EBℓdef,k
(Hπ,Hg)− Uℓdef,k(Hπ,Hg) ≤ EX [µ1(X)− µB

1 (X)]

+

J+1∑
j=1

(∑
i̸=j

EX [µi(X]
)
kΓ−1

u

(EΦu
def,k

(π)− E∗Φu
def,k

(Hπ)− UΦu
def,k

(Hπ)∑J+1
j=1

(∑
i̸=j EX [µi(X)]

) )
(35)

Similarly, we have EX [µj(X)] = αjEX,Z [ψ(âj(X), Z)] + βj . Using∑n+J
j=1

(∑
i̸=j EX [µi(X)]

)
= (|A| − 1)

∑
j∈A EX [µj(X)], leading to S = (|A| −

1)
∑

j∈A

(
αjEX,Z [ψ(âj(X), Z)] + βj

)
:
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A.12 BEHAVIOR OF THE CARDINALITY-AWARE DEFERRAL LOSS

For any x ∈ X and k ∈ {1, . . . , |A|}, the conditional risk of selecting the top-k experts is

Cℓcard(k) := E
[
ℓcard

(
Πk(x), k, x, Z

)
| X = x

]
= E

[
d
(
Πk(x), x, Z

)
| X = x

]
+ λ ξ

(
k∑

i=1

β[i]↓π

)
.

The Bayes-optimal cardinality function is therefore

kBθ (x) ∈ arg min
k∈{1,...,|A|}

{
E
[
d
(
Πk(x), x, Z

)
| X = x

]
+ λ ξ

(
k∑

i=1

β[i]↓π

)}
.

For k ≥ 2, define

δCℓcard(k) := Cℓcard(k)− Cℓcard(k − 1), Sk :=

k∑
i=1

β[i]↓π
.

A simple computation gives

δCℓcard(k) = E
[
d
(
Πk(x), x, Z

)
− d
(
Πk−1(x), x, Z

)
| X = x

]︸ ︷︷ ︸
:= δDx(k)

+ λ[ξ(Sk)− ξ(Sk−1)] .

Thus, for any k ∈ {1, . . . , |A| − 1},

Cℓcard(k + 1) ≤ Cℓcard(k) ⇐⇒ δDx(k + 1) + λ
[
ξ(Sk+1)− ξ(Sk)

]
≤ 0, (36)

that is, moving from k to k + 1 strictly decreases the conditional risk if and only if the marginal
reduction in expected error, −δDx(k + 1), is at least as large as the marginal regularization cost,
λ
[
ξ(Sk+1)− ξ(Sk)

]
.

This shows that consulting and aggregating multiple experts is not ad hoc: for any fixed aggregation
rule d, it is Bayes-optimal to choose kBθ (x) > 1 precisely when using additional experts yields a net
decrease of the conditional risk Cℓcard(k), i.e., when improving the final prediction quality is worthy
the price of consulting selected experts.

Tuning Parameters. As shown above, the parameter λ controls the trade-off between consulta-
tion cost and predictive reliability. Increasing λ makes the model more cost-sensitive, leading it to
select fewer experts. Conversely, decreasing λ places greater emphasis on reliability, resulting in the
selection of a larger set of experts when beneficial.

A.13 CHOICE OF THE METRIC d

The metric d in the cardinality-based deferral loss governs how disagreement between the final
prediction and labels is penalized, and its choice depends on application-specific priorities. For
instance, it determines how predictions from multiple entities in the Top-k Selection Set Πk(x) ⊆ A
are aggregated into a final decision. In all cases, ties are broken by selecting the entity with the
smallest index.

Classification Metrics for Cardinality Loss. In classification, common choices include:

• Top-k True Loss A binary penalty is incurred when the true label y is not present in the
prediction set:

dtop−k(Π2(x), 2, y) = 1{y /∈ {a[1]↓π (x), . . . , a[k]↓π (x)}}.

Example: let Π2(x) = {3, 1} the metric will compute dtop−k(Πk(x), k, y) = 1{y ̸∈
{a1(x), a3(x)}}.
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• Weighted Voting Loss. Each entity is weighted according to a reliability score, typically
derived from a softmax over the scores π(x, ). The predicted label is obtained via weighted
voting:

ŷ = argmax
y∈Y

∑
j∈Πk(x)

wj1{âj(x) = y}, with wj = p̂(x, j) =
exp(π(x, j))∑
j′ exp(π(x, j

′))
.

The loss is defined as dw-vl(Πk(x), k, y) = 1{y ̸= ŷ}.
• Majority Voting Loss. All entities contribute equally, and the predicted label is chosen by

majority vote:
ŷ = argmax

y∈Y

∑
j∈Πk(x)

1{âj(x) = y},

with the corresponding loss dmaj(Πk(x), k, y) = 1{y ̸= ŷ}.

Regression Metrics for Cardinality Loss. Let ℓreg(z, ẑ) ∈ R+ denote a base regression loss (e.g.,
squared error or smooth L1). Common choices include:

• Minimum Cost (Best Expert) Loss. The error is measured using the prediction from the
best-performing entity in the Top-k Selection Set:

dmin(Πk(x), k, z) = min
j∈Πk(x)

ℓreg(âj(x), z).

• Weighted Average Prediction Loss. Each entity is assigned a reliability weight based
on a softmax over scores π(x, ). The predicted output is a weighted average of entity
predictions:

ẑ =
∑

j∈Πk(x)

wj âj(x), with wj =
exp(π(x, j))∑
j′ exp(π(x, j

′))
,

and the loss is computed as dw-avg(Πk(x), k, z) = ℓreg(ẑ, z).

• Uniform Average Prediction Loss. Each entity in the Top-k Selection Set contributes
equally, and the final prediction is a simple average:

ẑ =
1

k

∑
j∈Πk(x)

âj(x), davg(Πk(x), k, z) = ℓreg(ẑ, z).

A.14 USE OF LARGE LANGUAGE MODELS

Large language models were employed exclusively as writing aids for this manuscript. In particular,
we used them to refine the text with respect to vocabulary choice, orthography, and grammar. All
conceptual contributions, technical results, proofs, and experiments are original to the authors. The
LLMs were not used to generate research ideas, mathematical derivations, or experimental analyses.

B EXPERIMENTS

B.1 RESOURCES

All experiments were conducted on an internal cluster using an NVIDIA A100 GPU with 40 GB of
VRAM.

B.1.1 METRICS

For classification tasks, we report accuracy under three evaluation rules. The Top-k Accuracy is
defined as Acctop-k = EX [1 − dtop-k(X)], where the prediction is deemed correct if the true label
y is included in the outputs of the queried entities. The Weighted Voting Accuracy is given by
Accw-vl = EX [1− dw-vl(X)], where entity predictions are aggregated via softmax-weighted voting.
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Finally, the Majority Voting Accuracy is defined as Accmaj = EX [1− dmaj(X)], where all entities in
the Top-k Selection Set contribute equally.

For regression tasks, we report RMSE under three aggregation strategies. The Minimum Cost RMSE
is defined as RMSEmin = EX [dmin(X)], corresponding to the prediction from the best-performing
entity. The Weighted Average Prediction RMSE is given by RMSEw-avg = EX [dw-avg(X)], using a
softmax-weighted average of predictions. The Uniform Average Prediction RMSE is computed as
RMSEavg = EX [davg(X)], using the unweighted mean of entity predictions.

In addition to performance, we also report two resource-sensitive metrics. The expected budget is
defined as β(k) = EX

[∑k
j=1 β[j]↓π

]
, where βj denotes the consultation cost of entity j, and [j]↓π is

the index of the j-th ranked entity by the policy π. The expected number of queried entities is given
by k = EX [|Πk(X)|], where k is fixed for Top-k L2D and varies with x in the adaptive Top-k(x)
L2D Settings. Additional details are provided in Appendix A.13.

B.1.2 TRAINING

We assign fixed consultation costs βj to each entity. In the one-stage regime, class labels (j ≤ n)
incur no consultation cost (βj = 0), since predictions from the model itself are free. In the two-stage
regime, we similarly set β1 = 0 for the base predictor g. For experts, we use the cost schedule βj ∈
{0.05, 0.045, 0.040, 0.035, 0.03}, with m1 assigned as the most expensive. This decreasing pattern
reflects realistic setups where experts differ in reliability and cost. As the surrogate loss, we adopt

the multiclass log-softmax surrogate Φu=1
01 (q, x, j) = − log

(
eq(x,j)∑

j′∈A eq(x,j′)

)
, used both for learning

the policy π ∈ Hπ and for optimizing the adaptive cardinality function kθ. The adaptive function
kθ is trained under three evaluation protocols—Top-k Accuracy, Majority Voting, and Weighted
Voting (see A.13 and B.1.1). To balance accuracy and consultation cost, we perform a grid search
over the regularization parameter λ ∈ {10−9, 0.01, 0.05, 0.25, 0.5, 1, 1.5, . . . , 6.5}, which directly
shapes the learned values of k̂(x). Larger λ penalizes expensive deferral sets, encouraging smaller
k. When multiple values of k achieve the same loss, ties are broken by selecting the smallest index
according to a fixed ordering of entities in A.

B.1.3 DATASETS

CIFAR-10. A standard image classification benchmark with 60,000 color images of resolution
32 × 32, evenly distributed across 10 object categories (Krizhevsky, 2009). Each class has 6,000
examples, with 50,000 for training and 10,000 for testing. We follow the standard split and apply
dataset-specific normalization.

CIFAR-100. Identical setup to CIFAR-10 but with 100 categories, each containing 600 images.

SVHN. The Street View House Numbers (SVHN) dataset (Goodfellow et al., 2013) is a large-scale
digit classification benchmark comprising over 600,000 RGB images of size 32×32, extracted from
real-world street scenes. We use the standard split of 73,257 training images and 26,032 test images.
The dataset is released under a non-commercial use license.

California Housing. The California Housing dataset (Kelley Pace & Barry, 1997) is a regression
benchmark based on the 1990 U.S. Census (CC0). It contains 20,640 instances, each representing a
geographical block in California and described by eight real-valued features (e.g., median income,
average occupancy). The target is the median house value in each block, measured in hundreds of
thousands of dollars. We standardize all features and use an 80/20 train-test split.

B.2 ONE-STAGE

We compare our proposed Top-k and Top-k(x) L2D approaches against prior work (Mozannar &
Sontag, 2020; Mao et al., 2024a), as well as against random and oracle (optimal) baselines.
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B.2.1 RESULTS ON CIFAR-10

Settings. We synthetically construct a pool of 6 experts with overlapping areas of competence.
Each expert is assigned to a subset of 5 target classes, where they achieve a high probability of
correct prediction (p = 0.94). For all other (non-assigned) classes, their predictions are uniformly
random (Mozannar & Sontag, 2020; Verma et al., 2022). This design reflects a realistic setting
where experts specialize in overlapping but not disjoint regions of the input space. Table 2 reports
the classification accuracy of each expert on the CIFAR-10 validation set.

Table 2: Validation accuracy of each expert on CIFAR-10. Each expert specializes in 5 out of 10
classes with high confidence.

Expert 1 2 3 4 5 6

Accuracy (%) 52.08 52.68 52.11 52.03 52.16 52.41

Top-k One-Stage. We train the classifier h ∈ Hh using a ResNet-4 architecture (He et al., 2016),
following the procedure described in Algorithm 1 (π = h). Optimization is performed using the
Adam optimizer with a batch size of 2048, an initial learning rate of 1 × 10−3, and 200 training
epochs. The final policy h is selected based on the lowest Top-k deferral surrogate loss (Corol-
lary 4.4) on a held-out validation set. We report results across various fixed values of k ∈ A1s,
corresponding to the number of queried entities at inference.

Top-k(x) One-Stage. Given the trained classifier h, we train a cardinality function kθ ∈ Hk as de-
scribed in Algorithm A.4. This function is implemented using a CLIP-based image encoder (Radford
et al., 2021) followed by a classification head. We train k using the AdamW optimizer (Loshchilov
& Hutter, 2017) with a batch size of 128, learning rate of 1× 10−3, weight decay of 1× 10−5, and
cosine learning rate scheduling over 10 epochs. To evaluate the learned deferral strategy, we exper-
iment with different decision rules based on various metrics d; detailed definitions and evaluation
setups are provided in Appendix A.13.
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Figure 5: Comparison of Top-k and Top-k(x) One-Stage across four accuracy metrics on CIFAR-
10. Top-k(x) achieves better budget-accuracy trade-offs across all settings. For clarity, only the first
12 entities are shown. Results are averaged over 4 independent runs. The Top-1 L2D corresponds
to Mozannar & Sontag (2020); Mao et al. (2024a).

Performance Comparison. Figure 5 summarizes our results for both Top-k and adaptive Top-
k(x) One-Stage surrogates on CIFAR-10. In Figure 5b, we report the Top-k Accuracy as a function
of the average consultation budget β. As expected, the Top-1 L2D method (Mozannar & Sontag,
2020) is recovered as a special case of our Top-k framework, and is strictly outperformed as k
increases. More importantly, the adaptive Top-k(x) consistently dominates fixed-k strategies for
a given budget level across all metrics. Notably, Top-k(x) achieves its highest Majority Voting
Accuracy of 95.53% at a budget of β = 0.192, outperforming the best Top-k result of 94.7%, which
requires a higher budget of β = 0.199 (Figure 5c). A similar gain is observed under the Weighted
Voting metric: Top-k(x) again reaches 95.53% at β = 0.191, benefiting from its ability to leverage
classifier scores for soft aggregation (Figure 5d).

This performance gain arises from the ability of the learned cardinality function k(x) to select the
most cost-effective subset of entities. For simple inputs, Top-k(x) conservatively queries a small
number of entities; for complex or ambiguous instances, it expands the deferral set to improve
reliability. Additionally, we observe that increasing k indiscriminately may inflate the consultation
cost and introduce potential bias in aggregation-based predictions (e.g., through overdominance
of unreliable entities in majority voting). The Top-k(x) mechanism mitigates this by adjusting k
dynamically, thereby avoiding the inefficiencies and inaccuracies that arise from over-querying.

B.2.2 RESULTS ON SVHN

Settings. We construct a pool of six experts, each based on a ResNet-18 architecture (He et al.,
2016), trained and evaluated on different subsets of the dataset. These subsets are synthetically
generated by selecting three classes per expert, with one class overlapping between consecutive
experts to ensure partial redundancy. Each expert is trained for 20 epochs using the Adam opti-
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mizer (Kingma & Ba, 2014) with a learning rate of 1 × 10−3. Model selection is based on the
lowest validation loss computed on each expert’s respective subset. Table 3 reports the classification
accuracy of each trained expert, evaluated on the full SVHN validation set.

Table 3: Accuracy of each expert on the SVHN validation set.

Expert 1 2 3 4 5 6

Accuracy (%) 45.16 35.56 28.64 25.68 23.64 18.08

Top-k and Top-k(x) One-Stage. We adopt the same training configuration as in the CIFAR-10
experiments, including architecture, optimization settings, and evaluation protocol.

Performance Comparison. Figure 6 shows results consistent with those observed on CIFAR-10.
Our Top-k One-Stage framework successfully generalizes the standard Top-1 method (Mozannar &
Sontag, 2020). Moreover, the adaptive Top-k(x) variant consistently outperforms the fixed-k ap-
proach across all three evaluation metrics, further confirming its effectiveness in balancing accuracy
and consultation cost.
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Figure 6: Comparison of Top-k and Top-k(x) One-Stage across four accuracy metrics on SVHN.
Top-k(x) achieves better budget-accuracy trade-offs across all settings. For clarity, only the first 5
entities are shown. Results are averaged over 4 independent runs. The Top-1 L2D corresponds to
Mozannar & Sontag (2020); Mao et al. (2024a).

B.3 TWO-STAGE

We compare our proposed Top-k and Top-k(x) L2D approaches against prior work (Narasimhan
et al., 2022; Mao et al., 2023a; 2024c; Montreuil et al., 2025b), as well as against random and oracle
(optimal) baselines.
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B.3.1 RESULTS ON CALIFORNIA HOUSING.

Settings. We construct a pool of 6 regression entities (five experts and one main predictor), each
trained on a predefined, spatially localized subset of the California Housing dataset. To simulate
domain specialization, each entity is associated with a specific geographical region of California,
reflecting scenarios in which real estate professionals possess localized expertise. The training re-
gions are partially overlapping to introduce heterogeneity and ensure that no single entity has access
to all regions, thereby creating a realistic setting for deferral and expert allocation.

We train each entity using a multilayer perceptron (MLP) for 30 epochs with a batch size of 256,
a learning rate of 1 × 10−3, optimized using Adam. Model selection is based on the checkpoint
achieving the lowest RMSE on the entity’s corresponding validation subset. We report the RMSE
on the entire California validation set in Table 4.

Table 4: RMSE ×100 of each entity on the California validation set.

Entity 1 2 3 4 5 6

RMSE ×100 21.97 15.72 31.81 16.20 27.06 40.26

Top-k L2D. We train a two-layer MLP following Algorithm 1. The rejector is trained for 100
epochs with a batch size of 256, a learning rate of 5× 10−4, using the Adam optimizer and a cosine
learning rate scheduler. We select the checkpoint that achieves the lowest Top-k surrogate loss on
the validation set, yielding the final rejector r. We report Top-k L2D performance for each fixed
value k ∈ A.

Top-k(x) L2D. We train the cardinality function using the same two-layer MLP architecture, fol-
lowing Algorithm 2. The cardinality function is also trained for 100 epochs with a batch size of 256,
a learning rate of 5× 10−4, using Adam and cosine scheduling. We conduct additional experiments
using various instantiations of the metric d, as detailed in Section B.1.1.

Performance Comparison. Figures 7, compare Top-k and Top-k(x) L2D across multiple evalua-
tion metrics and budget regimes. Top-k L2D consistently outperforms random baselines and closely
approaches the oracle (optimal) strategy under the RMSEmin metric, validating the benefit of using
different entities (Table 4).

In Figure 7b, Top-k(x) achieves near-optimal performance (6.23) with a budget of β = 0.156 and
an expected number of entities k = 4.77, whereas Top-k requires the full budget β = 0.2 and k = 6
entities to reach a comparable score (6.21). This demonstrates the ability of Top-k(x) to allocate
resources more efficiently by querying only the necessary number of entities, in contrast to Top-k,
which tends to over-allocate costly or redundant experts. Additionally, our approach outperforms
the Top-1 L2D baseline (Mao et al., 2024c), confirming the limitations of single-entity deferral.

Figures 7c and 7d evaluate Top-k and Top-k(x) L2D under more restrictive metrics—RMSEavg and
RMSEw-avg—where performance is not necessarily monotonic in the number of queried entities. In
these settings, consulting too many or overly expensive entities may degrade overall performance.
Top-k(x) consistently outperforms Top-k by carefully adjusting the number of consulted entities. In
both cases, it achieves optimal performance with a budget of only β = 0.095, a level that Top-k fails
to reach. For example, in Figure 7c, Top-k(x) achieves RMSEavg = 8.53, compared to 10.08 for
Top-k. Similar trends are observed under the weighted average metric (Figure 7d), where Top-k(x)
again outperforms Top-k, suggesting that incorporating rejector-derived weights wj leads to more
effective aggregation. This demonstrates that our Top-k(x) L2D selectively chooses the appropriate
entities—when necessary—to enhance the overall system performance.

B.3.2 RESULTS ON SVHN

Settings. We construct a pool of 6 convolutional neural networks (CNNs), each trained on a ran-
domly sampled, partially overlapping subset of the SVHN dataset (20%). This setup simulates
realistic settings where entities are trained on distinct data partitions due to privacy constraints or
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(a) Comparison with Random and Optimal Baselines:
We compare Top-k L2D against random and ora-
cle baselines using the RMSEmin metric defined in
Section B.1.1. Our method consistently outperforms
both baselines and extends the Top-1 L2D formula-
tion introduced by Mao et al. (2024c).

0.025 0.050 0.075 0.100 0.125 0.150 0.175 0.200

Budget β

6

7

8

9

10

R
M
S
E

m
in
×

10
0
↓

Top-1 L2D

Optimal Number of Agents

Top-k(x) L2D

Top-k L2D

k = 1 k = 2 k = 3 k = 4 k = 5 k = 6

Expected Number of Queried Agents k

(b) Comparison of Top-k L2D and Top-k(x) L2D un-
der RMSEmin metric. We report the RMSEmin met-
ric, along with the budget and the expected number of
queried entities. Across all budgets, Top-k(x) con-
sistently outperforms Top-k L2D by achieving lower
error with fewer entities and reduced cost.
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(c) Comparison of Top-k L2D and Top-k(x) L2D un-
der RMSEavg metric.
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(d) Comparison of Top-k L2D and Top-k(x) L2D un-
der RMSEw-avg metric.

Figure 7: Results on the California dataset comparing Top-k and Top-k(x) L2D across four evalua-
tion metrics. Top-k(x) consistently achieves superior performance across all trade-offs. The Top-1
L2D corresponds to Narasimhan et al. (2022); Mao et al. (2024c).

institutional data siloing. As a result, the entities exhibit heterogeneous predictive capabilities and
error patterns.

Each entity is trained for 3 epochs using the Adam optimizer (Kingma & Ba, 2014), with a batch
size of 64 and a learning rate of 1 × 10−3. Model selection is performed based on the lowest loss
on each entity’s respective validation subset. The table 5 below reports the classification accuracy
of each trained entity, evaluated on a common held-out validation set:

Table 5: Accuracy of each entity on the SVHN validation set.

Entity 1 2 3 4 5 6

Accuracy (%) 63.51 55.53 61.56 62.60 66.66 64.26

Top-k L2D. We train the rejector using a ResNet-4 architecture (He et al., 2016), following Al-
gorithm 1. The model is trained for 50 epochs with a batch size of 256 and an initial learning rate
of 1× 10−2, scheduled via cosine annealing. Optimization is performed using the Adam optimizer.
We select the checkpoint that minimizes the Top-k surrogate loss on the validation set, yielding the
final rejector r. We report Top-k L2D performance for each fixed value k ∈ A.
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Top-k(x) L2D. We reuse the trained rejector r and follow Algorithm 2 to train a cardinality cardi-
nality function s ∈ S. The cardinality function is composed of a CLIP-based feature extractor (Rad-
ford et al., 2021) and a lightweight classification head. It is trained for 10 epochs with a batch size
of 256, a learning rate of 1× 10−3, weight decay of 1× 10−5, and cosine learning rate scheduling.
We use the AdamW optimizer (Loshchilov & Hutter, 2017) for optimization.
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(a) Comparison with Random and Optimal baselines
using Acctop-k.
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(b) Top-k(x) vs. Top-k L2D on Acctop-k.
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(c) Performance under Accmaj metric.
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(d) Performance under Accw-vl metric.

Figure 8: Comparison of Top-k and Top-k(x) L2D across four accuracy metrics on SVHN. Top-
k(x) achieves better budget-accuracy trade-offs across all settings. The Top-1 L2D corresponds to
Montreuil et al. (2025b).

Performance Comparison. Figure 8 compares our Top-k and Top-k(x) L2D approaches against
prior work (Narasimhan et al., 2022; Mao et al., 2023a), as well as oracle and random baselines.
As shown in Figure 8a, querying multiple entities significantly improves performance, with both
of our methods surpassing the Top-1 L2D baselines (Narasimhan et al., 2022; Mao et al., 2023a).
Moreover, our learned deferral strategies consistently outperform the random L2D baseline, un-
derscoring the effectiveness of our allocation policy in routing queries to appropriate entities. In
Figure 8b, Top-k(x) L2D consistently outperforms Top-k L2D, achieving better accuracy under the
same budget constraints.

For more restrictive metrics, Figures 8c and 8d show that Top-k(x) achieves notably stronger per-
formance, particularly in the low-budget regime. For example, in Figure 8c, at a budget of β = 0.41,
Top-k(x) attains Accmaj = 70.81, compared to Accmaj = 70.05 for Top-k. This performance gap
widens further at smaller budgets. Both figures also highlight that querying too many entities may
degrade accuracy due to the inclusion of low-quality predictions. In contrast, Top-k(x) identifies
a better trade-off, reaching up to Accmaj = 71.56 under majority voting and Accw-vl = 71.59 with
weighted voting. As in the California Housing experiment, weighted voting outperforms majority
voting, suggesting that leveraging rejector-derived weights improves overall decision quality.
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B.3.3 RESULTS ON CIFAR100.

entity Settings. We construct a pool of 6 entities. We train a main predictor (entity 1) using a
ResNet-4 (He et al., 2016) for 50 epochs, a batch size of 256, the Adam Optimizer (Kingma & Ba,
2014) and select the checkpoints with the lower validation loss. We synthetically create 5 experts
with strong overlapped knowledge. We assign experts to classes for which they have the probability
to be correct reaching p = 0.94 and uniform in non-assigned classes. Typically, we assign 55 classes
to each experts. We report in the Table 6 the accuracy of each entity on the validation set.

Table 6: Accuracy of each entity on the CIFAR100 validation set.

Entity 1 2 3 4 5 6

Accuracy (%) 59.74 51.96 52.58 52.21 52.32 52.25

Top-k L2D. We train the rejector model using a ResNet-4 architecture (He et al., 2016), following
the procedure described in Algorithm 1. The model is optimized using Adam with a batch size of
2048, an initial learning rate of 1× 10−3, and cosine annealing over 200 training epochs. We select
the checkpoint that minimizes the Top-k surrogate loss on the validation set, resulting in the final
rejector r. We report Top-k L2D performance for each fixed value k ∈ A.

Top-k(x) L2D. We reuse the learned rejector r and train a cardinality cardinality function s ∈ S
as described in Algorithm 2. The cardinality function is composed of a CLIP-based feature ex-
tractor (Radford et al., 2021) and a lightweight classification head. It is trained using the AdamW
optimizer (Loshchilov & Hutter, 2017) with a batch size of 128, a learning rate of 1× 10−3, weight
decay of 1 × 10−5, and cosine learning rate scheduling over 15 epochs. To evaluate performance
under different decision rules, we conduct experiments using multiple instantiations of the metric d;
detailed definitions and evaluation protocols are provided in Section B.1.1.

Performance Comparison. Figure 9b shows that Top-k L2D outperforms random query alloca-
tion, validating the benefit of learned deferral policies. As shown in Figure 9a, Top-k(x) further
improves performance over Top-k by adaptively selecting the number of entities per query. In Fig-
ures 9c and 9d, Top-k(x) consistently yields higher accuracy across all budget levels, achieving
significant gains over fixed-k strategies.

Notably, unlike in other datasets, querying additional entities in this setting does not degrade perfor-
mance. This is due to the absence of low-quality entities: each entity predicts correctly with high
probability (at least 94%) on its assigned class subset. As a result, aggregating predictions from
multiple entities improves accuracy by selectively querying them.

Nevertheless, Top-k(x) remains advantageous due to the overlap between entities and their differing
consultation costs. When several entities are likely to produce correct predictions, it is preferable
to defer to the less costly one. By exploiting this flexibility, Top-k(x) achieves a large performance
improvement over Top-k L2D while also reducing the overall budget.
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(a) Comparison with Random and Optimal baselines
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(b) Top-k(x) vs. Top-k L2D on Acctop-k.
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(c) Performance under Accmaj metric.
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Figure 9: Comparison of Top-k and Top-k(x) L2D across four accuracy metrics on CIFAR100. Top-
k(x) achieves better budget-accuracy trade-offs across all settings. The Top-1 L2D corresponds to
Narasimhan et al. (2022); Mao et al. (2023a).
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