
SAP: Exact Sorting in Splatting via Screen-Aligned
Primitives

Zhanke Wang1, Zhiyan Wang1, Kaiqiang Xiong1,2, Jiahao Wu1,2, Yang Deng1, Ronggang Wang1,2∗
1Guangdong Provincial Key Laboratory of Ultra High Definition Immersive Media Technology,

Shenzhen Graduate School, Peking University, 2Peng Cheng Laboratory
{zk_wang, zywang23, xiongkaiqiang, wjh0616, dengyang}@stu.pku.edu.cn

rgwang@pkusz.edu.cn

Abstract

Recently, 3D Gaussian Splatting (3DGS) has achieved state-of-the-art rendering
results. However, its efficiency relies on simplifications that disregard the thickness
of Gaussian primitives and their overlapping interactions. These simplifications
can lead to popping artifacts due to inaccurate sorting, thereby affecting the ren-
dering quality. In this paper, we propose Screen-Aligned Primitives (SAP), an
anisotropic kernel that generates primitives parallel to the image plane for each
view. Our rasterization pipeline enables full per-pixel ordering in real time. Since
the primitives are parallel for a given viewpoint, a single global sorting operation
suffices for correct per-pixel depth ordering. We formulate 3D reconstruction as
a combination of a 3D-consistent decoder and 2D view-specific primitives, and
further propose a highly efficient decoder to ensure 3D consistency. Moreover,
within our framework, the primitive function values remain consistent between
view space and screen space, allowing arbitrary radial basis functions (RBFs) to
represent the scene without introducing projection errors. Experiments on diverse
datasets demonstrate that our method achieves state-of-the-art rendering quality
while maintaining real-time performance.

1 Introduction

Neural Radiance Fields (NeRF) (1; 2; 3; 4; 5) have demonstrated exceptional performance in 3D
scene representation and novel view synthesis, but come with high computational costs. Recently, 3D
Gaussian Splatting (3DGS) (6) has garnered widespread attention by introducing the rasterization of
primitive points, achieving real-time rendering while maintaining rendering quality. Building on this
foundation, researchers have explored various representations, including 2D planar Gaussians (7),
generalized Gaussian kernels (8), and neural Gaussians (9; 10). However, these methods rely on the
coarse sorting mechanism inherent to 3D Gaussian Splatting, which fundamentally limits their depth
ordering precision.

A critical limitation of 3DGS (6) is popping artifact, which arises from its depth sorting mechanism.
Specifically, 3DGS performs depth sorting based solely on Gaussian centers before alpha blending,
assuming that Gaussians do not overlap. For anisotropic ellipsoids, sorting based solely on centers
is inherently inaccurate in practice. As illustrated in Fig. 1(c), while Gau1 appears before Gau2 in
view-space depth ordering, certain pixels require Gau2 to be rendered first due to overlapping regions.
Several methods have been proposed to address this issue. StopThePop (11) employs the maximum
of a 1D Gaussian along the view ray as a more precise depth estimation. However, it also neglects
Gaussian overlap and lacks the capability to perform full per-pixel sorting, as shown in Fig. 1(d).
EVER (12) employs ray tracing for the per-pixel rendering accuracy, but at the cost of doubling the

∗Corresponding author

39th Conference on Neural Information Processing Systems (NeurIPS 2025).

ݒ

ଵݐ
ଶݐ

(c) Depth Sort

Image Plane

3DGS

ݒ

ଵݐ
ଶݐ

(d) Ray Sort

View Space

ݒ

ଵݐ
ଶݐ

(b) Ours

SAP

ݒ

(a) Exact Sort

Ground Truth PSNR:35.03dB (Ours) PSNR:32.66dB (3DGS) PSNR:32.74dB (StopThePop)

Figure 1: Comparative analysis of sorting strategies: (a) Precise per-pixel sorting ensures the
correct rendering order for every individual pixel. (b) Our Screen-Aligned Primitives guarantee
accurate per-pixel ordering through a single sorting pass, inherently eliminating overlap artifacts. (c)
View-space depth ordering (6) prioritizes Gau1 over Gau2 across all overlapping pixels when
Gaussians intersect. (d) Sorting by maximum pulse intensity of 1D Gaussians (11) places Gau2 first,
yet fails to distinguish per-pixel coverage.

rendering overhead. In this work, we improve the original representation of 3DGS by constraining the
primitives to be parallel to the image plane. To fundamentally eliminate overlaps between different
primitives, our primitives are parallel thin slices, ensuring that they do not intersect. Under this
condition, depth sorting along the z-axis becomes equivalent to exact per-pixel sorting, enabling
accurate ordering without introducing additional computational overhead. Another drawback of
3DGS is that it uses an affine projection approximated by the Jacobian matrix (13) to construct the
2D Gaussian plane in the screen space, which introduces projection errors. Our parallel primitives
eliminate this projection error because there is no variation in depth within the same primitive. We
can perform exact projection through simple geometric scaling, while enabling exploration of more
flexible and varied kernel representations.

If we directly define an explicit representation, it is impossible to determine a primitive that remains
parallel to the image plane across all viewing directions. By leveraging anchor-based Gaussians
(10; 9; 14), we introduce neural networks to generate primitives aligned parallel to each specific plane.
This design ensures that our Screen-Aligned Primitives maintain strict parallelism with the image
plane across all perspectives. We design a 3D-consistent decoder based on the FiLM architecture (15),
which is widely used in controllable image generation (16). Unlike conventional usage, we condition
the decoder on the viewing direction to learn a direction-aware 3D representation. In summary,
our framework employs a 3D-consistent decoder to model view-dependent representations while
utilizing 2D primitives for each viewpoint. Since our representation is anisotropic, the conventional
densification strategy may fail under large viewpoint variations. To address this, we introduce a
maximum positional gradient-based densification method to improve reconstruction quality.

In summary, the main contributions of our paper are as follows:

• We introduce a 3D-consistent decoder which enables our framework to be constructed on a
3D feature network combined with 2D reconstruction primitives.

• We propose Screen-Aligned Primitives (SAP) representation that ensures more accurate
sorting.

• We demonstrate that our framework supports accurate and unbiased projection, allowing for
the use of more flexible and expressive kernel representations.

• We present a densification strategy based on the maximum positional gradient, which in-
creases point density in regions with significant view-dependent variation, thereby enhancing
reconstruction quality.

2 Related Work

Novel View Synthesis. NVS has emerged as a pivotal task in the fields of computer vision and
graphics, with significant implications for applications such as media generation (17), virtual reality

2

(18), and autonomous driving. Over the past few years, NeRF (1) has demonstrated remarkable
performance in this field, attracting widespread attention. NeRF employs a multilayer perceptron
(MLP) to model scenes and utilizes ray marching for image rendering. However, NeRF requires
multiple queries to the neural network for each pixel, leading to considerable computational overhead.
Although various approaches (19; 20; 21; 22; 23) have been proposed to accelerate the speed of
NeRF, they continue to face notable limitations.

Gaussian Splatting. 3D Gaussian Splatting (3DGS) (6) represents scenes as collections of
anisotropic Gaussian ellipsoids , achieving photorealistic rendering quality and real-time perfor-
mance through an efficient tile-based rasterizer. It relies on the splatting method (13) to construct
2D Gaussians from 3D Gaussians. Subsequent research rapidly expanded the capabilities of 3DGS
across various tasks, such as anti-aliasing (24; 25), 3D generative modeling (26; 27; 28), dynamic
modeling (29; 30; 31; 32), surface reconstruction (33; 7; 34; 35), and densification improvement
(36; 37; 38; 39). These methods optimize 3DGS from various perspectives, allowing it to adapt to
different applications.

At the same time, some works are dedicated to exploring better scene representation methods. Among
them, several (7; 40; 41) focus on modifying the kernel expressions of the functions to address more
complex scenes and tasks. Although these methods offer more flexible representations, they all adopt
the original sorting approach of 3DGS. We propose a new framework in which arbitrary kernels can
be used without considering projection errors. Additionally, we extend the Gaussian kernel (8) in our
framework to achieve a more compact representation.

Popping Artifact and Sorting. The original work on splatting was presented by (42). Popping
artifacts persist as an intrinsic limitation of such projective rendering paradigms. 3D Gaussian
Splatting (6) employs EWA splatting (13) to project anisotropic 3D Gaussians onto the imaging
plane. (43) introduced aligning sheet buffers parallel to the image plane, and (44; 45) introduced
slice-based volume rendering methods that do not suffer from popping artifacts. Although 2DGS (7)
uses Gaussian planes to represent the scene, it still does not address the intersection issues between
different primitives. Unlike traditional methods based on explicit graphical primitives, we leverage
deep learning to fit a rendering primitive that is parallel to any viewpoint.

Recently, several methods based on 3DGS (6) have been dedicated to mitigate popping artifact.
StopThePop (11) uses the maximum value of a 1D Gaussian as depth, improving popping artifacts
during view rotation. 3DGRT (46)and EVER (12) accurately determine the intersection points
between primitives and rays by ray tracing. Sort-Free (47) calculates alpha blending using order-
independent transparency and (48) approximates the integration of values along the ray to calculate
transmittance more accurately. However, these methods still involve many approximations in their
computations, and ray-tracing-based approaches incur significantly higher computational cost. In
contrast, our method achieves outstanding results while retaining the original fast rasterization
pipeline.

3 Preliminaries

3.1 3D Gaussian Splatting

3D Gaussian splatting represents scenes as a set of differentiable semi-transparent particles defined
by their kernel function and renders images by rasterizing the projected 2D counterparts. Each 3D
Gaussian G3D centered at a point µ ∈ R3 with covariance matrix Σ ∈ R3×3 is given by:

G3D(x) = e−
1
2 (x−µ)TΣ−1(x−µ),Σ = RSSTRT , (1)

where x ∈ R3 is arbitrary position within the scene, R ∈ R3×3 is a rotation and S ∈ R3×3 a scaling
matrix.

The view-dependent appearance of each 3D Gaussian is modeled by third-order spherical harmonics
(SH) coefficients F ∈ R3×16, combined with opacity σ ∈ R. To render an image, we need to project
our 3D Gaussian G3D to 2D as a 2D Gaussian G2D for rendering. The 2D covariance matrix Σ′ is
given as follows:

Σ′ = JWΣWTJT , (2)

3

where W is a viewing transformation and J is the Jacobian of the affine approximation of the
projective transformation. The tile-based rasterizer employs depth t ∈ R sorting in viewspace to
render 3D Gaussian primitives and employs α-blending to compute the color of pixel x′.

3.2 Anchor-Based Gaussian Splatting

To obtain primitives parallel to the plane from different viewpoints, we employ anchor-based Gaussian
splatting (9; 10) to characterize Gaussian attributes. Each k anchor carries a position coordinate
xv ∈ R3, a local feature f̂a ∈ R32, and la ∈ R3 is a scaling factor controlling the predicted offsets
O ∈ Rk×3. The positions µ of neural Gaussians are calculated as:

{µ0, ..., µk−1} = xv + {O0, ...Ok−1} · lv. (3)

Additionally, a corresponding tiny MLP F decodes the opacities, scales, rotations, and colors from
the anchor features, as well as the distance between the anchor and the camera δvc and the viewing
direction dcv .

From anchor-based Gaussian Splatting, we derive a key observation: if entirely distinct primitives are
generated for each view, and each viewpoint only observes a single face of the 3D Gaussians, then
the necessity of maintaining a full 3D representation becomes questionable. This insight motivates
our exploration of 2D primitives as an alternative.

4 Methodology

݀⃗ଵ

݀⃗ଶ

݀⃗௜

௢ܦ → ܿܽ݌݋
௖ܦ → ܾ݃ݎ
୰ܦ → ܽݐℎ݁ݐ
௦ܦ → ݈݁ܽܿݏ

࣡௜

View Space

anchor

fመ௔

D
ec
od
er

Encoding

FiLM

,ߛ ߚ

Figure 2: Schematic illustration of SAP. For each
input viewpoint, we generate screen-aligned prim-
itives directly in view space using anchor-based
decoding. A lightweight decoder takes the anchor
features and a directional encoding of the view-
ing direction as input, and outputs 2D primitives
aligned with the corresponding view plane. Un-
like prior methods that typically operate in world
space, our approach generates primitives that are
consistently aligned with the viewing direction.

To achieve exact sorting during primitive render-
ing, we first introduce a 3D-consistent decoder
that generates planar primitives for each view-
ing direction (Sec. 4.1). Based on this decoder,
we further propose a Screen-Aligned Primitives
(SAP) framework to address Gaussian sorting
and overlap issues without incurring additional
time overhead (Sec. 4.2). Leveraging the SAP
framework, we enable unbiased projection, en-
abling the use of flexible kernel functions to
represent the scene more accurately (Sec. 4.3).
Finally, we detail the training procedure and
densification strategy (Sec. 4.4).

4.1 3D-Consistent Decoder

We decompose the 3D reconstruction process
into a 3D-consistent decoder and a 2D primitive-
based renderer. In this section, we present the
design and formulation of our 3D-consistent de-
coder. In NeRF (1), researchers typically em-
ploy positional encoding combined with view-
ing directions as input to an MLP for color and
density prediction. Subsequent works such as
Instant-NGP (19) improve upon this by introducing hash-based encoding, while PlenOctree (23)
incorporates spherical harmonics to assist directional learning. Similarly, in Gaussian representations
based on anchors (9; 10), local anchor features concatenated with viewing directions are fed into a
lightweight MLP for decoding.

Directional encoding. In this paper, we employ a direction decoding framework based on the FiLM
network (15), where the direction serves as a control signal, as shown in Fig. 2. Additionally, we
explore the impact of different directional encodings on the results. Our experiments reveal that using
spherical harmonic direction encoding significantly improves the decoding and rendering quality. We
employ real-valued spherical harmonics (SH) to encode the input unit direction vector d⃗ = (x, y, z).
The spherical harmonics encoding up to degree l are defined as:

SH(d⃗) =
[
Y 0
0 (d⃗), Y

−1
1 (d⃗), . . . , Y l

l (d⃗)
]
,

4

where Y m
l (·) denotes the basis function of the real spherical harmonics of degree l and order m,

evaluated in direction d⃗.

Direction-modulated MLP. We use a Direction-modulated MLP as the 3D decoder D. Given an
input feature f̂a and a viewing direction d, our network first transforms the input via a linear layer:

h1 = W1f̂a + b1, (4)

then applies feature-wise linear modulation using scale and shift parameters derived from the direction
encoding SH(d⃗):

γ,β = MLPdir(SH(d⃗)), h2 = ϕ(γ ⊙ h1 + β), (5)
where ϕ(·) is a non-linear activation, and ⊙ denotes element-wise multiplication. Finally, the output
is predicted via a second linear layer:

θ, s = sigmoid(W2h2 + b2). (6)

where θ and s denote the rotation and anisotropic scale parameters, respectively, and sigmoid(·) is
the element-wise sigmoid activation function. For the learning of other parameters, we follow the
settings of Scaffold-GS (9).

4.2 Screen-Aligned Primitives

3DGS (6) performs a global sort of Gaussians based on the view-space z-coordinate ti = µ
(z)
i of

their mean. However, since each 3D Gaussian is defined by a covariance matrix Σi, which defines
an anisotropic ellipsoid in a 3D space. When Gaussians overlap, their per-pixel depth orders may
contradict the global sorting, resulting in rendering artifacts such as incorrect transparency blending.

We construct a plane parallel to the screen through the center of the viewpoint space, thereby
constraining all primitives to be parallel. As shown in Fig. 2, for each specific viewpoint, our
rendering primitives are all parallel. This planar alignment enables single-pass global sorting to
guarantee pixel-accurate depth ordering, as all primitives share identical orientation relative to the
view direction. Within this parallel plane, each primitive is parameterized by 2D rotation θ ∈ [0, 2π)
and scaling s = (sx, sy). We do not perform 3D rotations; instead, we construct 2D transformations
within the local plane. We explicitly construct the view-space covariance matrix Σv through a
composition of 2D scaling matrix Sv ∈ R2×2 and rotation matrix Rv ∈ R2×2 , as detailed below:

Σv = RvSvS
T
v R

T
v . (7)

For a given viewpoint, we effectively use 2D primitives to reconstruct the 2D image. In this case,
our rendering method is similar to (49), where a 2D Gaussian function is used to reconstruct the 2D
image.

In summary, our framework employs a 3D-consistent decoder to generate view-specific 2D shape
parameters for Screen-Aligned Primitives, which are then sorted by depth t.

4.3 Unbiased Projection

Screen-Aligned Primitives Splatting. Gaussian Splatting (6) projects 3D ellipsoids onto the imaging
plane as 2D Gaussians. To preserve the differentiability, it employs an affine approximation (13)
constructed via the Jacobian matrix, Eq. 2. However, this approximation introduces geometric
distortions, particularly under perspective projection with significant depth variations or strong
parallax effects.The affine projection considers only the depth at the center, making it accurate
only near the center point, with increasing error as the distance from the center grows. Some
works (50; 51; 52; 53) have analyzed this projection error and introduced more accurate projection
computations.

Since our parallel primitives exhibit no depth variation, their projection onto the imaging plane
simplifies to a geometric scaling centered at the original depth t:

P =

[fx
t 0

0
fy
t

]
, (8)

where fx,fy are the horizontal and vertical focal lengths of the camera, respectively.Therefore, our
screen-space covariance matrix Σs is constructed as Σs = PΣvP

T .

5

In fact, the view-space Mahalanobis distance and screen-space Mahalanobis distance in our framework
are equivalent, as proven in Appendix B.5. Specifically:

(xv − µv)
TΣ−1

v (xv − µv) = (xs − µs)
TΣ−1

s (xs − µs). (9)

where (·)v and (·)s represent variables in the view coordinate system and the screen coordinate
system, respectively. Therefore, the distributions in view space Gv and screen space Gs are equivalent
under our parameterization, i.e.,

Gv(µv,Σv) ≡ Gs(µs,Σs). (10)

Versatile Kernel Representation. The edge distribution of a 3D Gaussian is still Gaussian, which
simplifies the computation of splatting. Ges (8) utilizes a generalized Gaussian kernel, but due
to projection errors, it approximates the kernel by introducing a scaling parameter in place of the
exact generalized Gaussian kernel function. However, in our framework, the distribution in the view
space and the screen space are equivalent, allowing us to define any kernel. Formally, let K(·) be an
arbitrary differentiable kernel function; our projective isomorphism guarantees:

Kv(xv;µv,Σv) ≡ Ks(xs;µs,Σs). (11)

Building upon this equivalence, we generalize the Gaussian kernels. Let the Mahalanobis distance be
defined as M(x;µ,Σ) = (x − µ)TΣ−1(x − µ) and p ∈ (0,∞),our generalized kernel function is
expressed as:

KGes(x;µ,Σ) = e−
1
2M

p(x;µ,Σ), M(x;µ,Σ) ∈ [0,∞), (12)
The Generalized Gaussian kernel KGes defines more flexible primitives, allowing us to achieve
similar rendering quality with fewer primitives. At the same time, we restrict the value range of the
generalized Gaussian kernel KGes to within a 31/p long axis range, with a detailed proof available in
Appendix B.5.

4.4 Optimization

Improved Densification. Similar to prior methods (6; 9), we utilize positional gradients as a criterion
for dynamic anchor growth. However, previous approaches used averaging positional gradients across
all training views. This uniform averaging fails to prioritize underoptimized viewpoints with high
gradient variance, leading to insufficient anchor growth in regions that are poorly reconstructed from
specific perspectives. To address this, we introduce max-gradient ∇max that prioritizes the most
significant positional gradients across viewpoints V:

∥∇max∥ = max
k∈V

∥ ∂Lk

∂µ2D
∥. (13)

When using average position gradient densification, some regions are prone to gradient vanishing,
resulting in holes or blurriness. To balance the robustness of the average gradients and the sensitivity
of the maximum gradients, our densification condition combines both metrics. Growth occurs when
either the average gradient magnitude exceeds τ1 or the maximum gradient magnitude exceeds τ2. τ1
and τ2 are the predefined thresholds.

Loss. We retain the original loss function of 3DGS (6). As our primitives do not overlap, scaling
regularization (9) is not necessary. The loss function integrates an L1 metric combined with a loss of
structural similarity (SSIM) Lssim:

L = λ1L1 + λssimLssim (14)

5 Experiments

5.1 Experimental Setup

Dataset and Metrics. We evaluated Screen-Aligned Primitives (SAP) on a diverse set of real-world
datasets to demonstrate its superior visual quality. Specifically, we tested our approach on various
public datasets, including 9 scenes from MipNeRF360 (3), 2 scenes from Tanks&Temples (54), 2

6

Table 1: Quantitative evaluation on the Mip-NeRF360 (3), Tanks&Temples (54), and Deep
Blending (55) datasets. Our method achieves the best rendering quality on most datasets. We follow
the experimental settings and dataset partitioning of Scaffold-GS (9).

Dataset Tanks&Temples Mip-NeRF 360 Deep Blending
Method PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓

Mip-NeRF 360 (3) 22.22 0.758 0.257 27.56 0.793 0.234 29.40 0.900 0.245
3D-GS (6) 23.71 0.845 0.178 27.43 0.813 0.217 29.46 0.900 0.247
2DGS (7) 22.96 0.825 0.217 27.03 0.804 0.239 29.49 0.899 0.259

Scaffold-GS (9) 24.19 0.854 0.174 27.55 0.810 0.232 30.28 0.909 0.239
StopThePop (11) 23.21 0.843 0.173 27.28 0.810 0.213 29.86 0.904 0.234

DisC-GS (58) 24.96 0.866 0.120 28.01 0.833 0.189 30.42 0.907 0.199
3DGS-MCMC (39) 24.29 0.860 0.190 28.00 0.831 0.178 29.67 0.890 0.320

SAP (Ours) 25.04 0.870 0.145 28.05 0.835 0.208 30.02 0.910 0.236

Table 2: Ablation on the Tanks&Temples Dataset (54). We evaluate the performance of two
different rendering primitives: 3D Gaussian Primitives (6; 9) and Screen-Aligned Primitives, Sec. 4.2;
FiLM: FiLM-modulated MLP, Sec. 4.1; SH encoding: real-valued spherical harmonics(SH) encoding,
Sec. 4.1; ∇max: maximum view-direction gradient threshold, Sec. 4.4. The numerical difference from
the best-performing result is shown in the bottom-right corner.

Components 3DGaussian Primitives Screen-Aligned Primitives
FiLM SH encoding ∇max PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓

24.15-0.89 0.858-0.012 0.163+0.018 24.59-0.45 0.846-0.024 0.181+0.036

✔ 24.25-0.79 0.858-0.012 0.165+0.020 24.67-0.37 0.847-0.023 0.179+0.034

✔ 24.45-0.59 0.859-0.011 0.163+0.018 24.79-0.25 0.853-0.017 0.175+0.030

✔ 24.30-0.74 0.862-0.008 0.154+0.009 24.68-0.36 0.859-0.011 0.161+0.016

✔ ✔ 24.52-0.52 0.860-0.010 0.165+0.020 24.74-0.30 0.852-0.018 0.176+0.031

✔ ✔ 24.42-0.62 0.861-0.009 0.156+0.011 24.80-0.24 0.860-0.010 0.161+0.016

✔ ✔ 24.51-0.53 0.863-0.007 0.155+0.010 24.89-0.15 0.858-0.012 0.164+0.019

✔ ✔ ✔ 24.56-0.48 0.864-0.006 0.155+0.010 25.04 0.870 0.145

scenes from DeepBlending (55). These datasets cover a range of environments, from bounded indoor
spaces to unbounded outdoor settings, providing a comprehensive evaluation of the performance of
our method. We adopt the experimental settings and dataset partitioning as established in Scaffold-GS
(9). In particular, for the MipNeRF 360 dataset (3), scenes with resolutions exceeding 1600 are
downsampled to 1600. Consistent with previous studies, we assess reconstruction quality using three
metrics: PSNR ↑, SSIM ↑ (56), and LPIPS ↓ (57). We color each cell as best , second best , and
third best . We refer to our Screen-Aligned Gaussian kernel as SAP.

Implementation Details. Our PyTorch implementation is built upon the Scaffold-GS (9) framework,
in which we re-implement the 3D-consistent decoder. We modified the CUDA kernel to replace
spatial primitives with screen-aligned primitives. These modifications do not affect the original
rendering efficiency; in fact, by reducing matrix computations (from 3D matrices to 2D matrices),
our approach achieves a slight speed-up over the baseline in constant time. We retained most of the
parameter settings from Scaffold-GS to ensure a fair comparison. The difference is that our parallel
kernel leverages the prior along the z-axis. Therefore, instead of using the anchor view direction,
we modify the input of the Decoder for covariance to be the camera’s z-axis direction. Detailed
hyperparameter settings and model architecture are provided in Appendix B.2 and Appendix B.3.
We conducted all experiments on a single NVIDIA L40S GPU.

5.2 Results and Comparisons

Quantitative results. We evaluated SAP against various state-of-the-art techniques in both novel
view synthesis tasks. The quantitative results on three datasets (55; 3; 54) are presented in Table 1,
with additional details per scene available in Appendix B.9. We sequentially compare MipNeRF360
(3), 3DGS (6), 2DGS (7), Stop-the-Pop (11), Scaffold-GS (9), DisC-GS (58) and 3DGS-MCMC

7

Ground Truth 3DGS StopThePop Scaffold-GS Ours

23.93 23.77 25.04
25.04

19.70 19.86 20.12 20.58

27.35 27.65 27.82 28.19

24.03 24.21 23.87 24.86

27.52 27.27 27.28 27.78

22.39 23.25 24.84 26.50

23.93 23.77 25.04 25.69

Figure 3: Qualitative comparisons across diverse datasets (55; 3; 54). We compare 3DGS (6),
Stop-the-Pop (11), and Scaffold-GS (9) sequentially. Regions where our method outperforms others
are highlighted in red. Additionally, the PSNR of each image is annotated in the top-left corner.
Our approach achieves high-quality reconstruction even in several challenging areas, whereas other
methods commonly exhibit blurriness, floating artifacts, and other inconsistencies in these regions.
This can be attributed to the accuracy of our parallel primitive ordering and our effective densification
strategy.

Table 3: Comparison of different encodings. We conduct a comparative evaluation of various
encoding methods, namely: no positional encoding, MLP encoding (MLP), Fourier encoding (FE),
and spherical harmonics encoding (SH), on the Tanks&Temples Dataset (54).

no encoding MLP FE SH
PSNR↑ / SSIM↑ / LPIPS↓ PSNR↑ / SSIM↑ / LPIPS↓ PSNR↑ / SSIM↑ / LPIPS↓ PSNR↑ / SSIM↑ / LPIPS↓

24.74 / 0.852 / 0.176 24.80 / 0.856 / 0.169 24.88 / 0.863 / 0.161 25.04 / 0.870 / 0.145

(39). As shown in Table 1, our SAP achieves the best results on Tanks & Temples as well as
Mip-NeRF360, ranking first or second in nearly all metrics. The table indicates that although
2DGS (7) improve geometric accuracy, they compromise rendering quality. Our 2D screen-aligned
primitive representation, however, not only preserves but also significantly boosts rendering quality,
outperforming even the state-of-the-art 3DGS baseline.

Qualitative results. In Fig. 3, we showcase the comparisons between our method and other
approaches. We can observe that our method significantly reduces artifacts and aliasing compared to
previous approaches. For example, in the fifth row, other methods produce artifacts, whereas ours
avoids them. This improvement is due to the accurate ordering of our primitives, which prevents
interference between different primitives during rendering, ensuring that primitives intended for
one region are not mistakenly rendered in another. Additionally, our method reduces blurriness, as

8

Figure 4: Comparison of the effects of two splitting methods. We have magnified the rendered
image and the point distribution of the highlighted region. In the left two columns, the original
average position gradient is employed, which results in numerous voids leading to blurring; in the
right two columns, the combination of average and maximum position gradients effectively fills these
voids, yielding improved rendering quality.

Table 4: Comparison of different kernels. We compare Anchor-3DGS (9), Anchor-2DGS (10; 7),
Ges (8), and our three different kernels, on the Tanks&Temples Dataset (54).

Scaffold-GS (9) Anchor 2DGS (7; 10) Ges (8) SAP-Epa SAP-Ges SAP-Gaussian
PSNR↑ / SSIM↑ / LPIPS↓ PSNR↑ / SSIM↑ / LPIPS↓ PSNR↑ / SSIM↑ / LPIPS↓ PSNR↑ / SSIM↑ / LPIPS↓ PSNR↑ / SSIM↑ / LPIPS↓ PSNR↑ / SSIM↑ / LPIPS↓

24.19 / 0.854 / 0.174 23.52 / 0.835 / 0.199 23.35 / 0.836 / 0.198 20.53 / 0.667 / 0.409 24.75 / 0.861 / 0.166 25.04 / 0.870 / 0.145

shown in the fourth row of Fig. 3, particularly on the ground. This improvement is attributed to our
densification strategy, which effectively fills in the gaps. As illustrated in Fig. 4, we zoomed in on
the red-boxed area and separately presented the rendering results and the distribution of primitive
points. It can be intuitively observed from the figure that our densification strategy can improve scene
rendering.

5.3 Ablation Studies

Efficacy of Screen-Aligned Primitives. Table. 2 evaluates the impact of various configurations and
kernel choices on the rendering quality for the Tanks&Temples dataset. We conduct a comprehensive
evaluation of the rendering quality variations resulting from different combinations of our SAP
and 3D Gaussian primitives with other system components. Each of our components achieves
improvements over the baseline, among which directional encoding and the SAP kernel yield the
largest enhancements. Our FiLM decoder also achieves better 3D-consistent decoding performance
compared to the MLP decoder. We believe that employing FiLM for directional modulation enables
more effective learning of direction-dependent attributes than simply concatenating direction vectors
with features as input to an MLP. Furthermore, our maximum densification of the position gradient
∇max effectively improves the quality of the scene reconstruction. The original densification strategy
tends to fail when there is a significant viewpoint difference, whereas maximum position gradient
densification alleviates this issue effectively.

Results of different directional encoding. We explore how various directional encoding strategies
affect the rendering quality in Table 3. In particular, we compare four methods: (1) no directional
encoding; (2) a simple MLP that encodes the direction into a 32-dimensional feature vector; (3)
Fourier encoding adopted from NeRF (1); and (4) hard-coded spherical harmonics encoding. Our
results show that the spherical harmonics encoding yields the best performance. This can be attributed
to the inherent design of spherical harmonic functions, which are well-suited for capturing directional
properties, making them particularly effective as control signals for enforcing 3D consistency and
learning direction-dependent attributes.

Results of different kernels. We compared the rendering quality for different kernels in Table 4.
Scaffold-GS (9), also known as Anchor-3DGS. In Octree-GS (10) , Anchor-2DGS was implemented
by combining sliced-plane Gaussian sheets (7) with anchors. Ges (8) provides a generalized Gaussian
kernel. In our comparisons, SAP-Epa adopts the generalized Epanechnikov kernel (59). For clarity,
SAP-Ges utilizes a 2D generalized Gaussian kernel (8), as defined in Eq. 12, whereas the standard
SAP-Gaussian employs 2D Gaussian primitives. Specifically, we tested SAP-Ges with p as a learnable
parameter. SAP-Gaussian is a special case of SAP-Ges when p = 1. Our SAP-Gaussian achieves
the best reconstruction quality. Our experimental results show that, although Ges is a superset of

9

Gaussian kernels, it performs worse than the standard Gaussian kernel in rendering quality. We
believe this to be likely because Gaussian Splatting serves as a mixture of multiple primitives, and
when the number of primitives is sufficient, the specific shape of each kernel has limited impact on
rendering quality. Additionally, the higher complexity of the Ges representations complicates the
optimization process, making it harder to identify the best learning parameters.

6 Limitations and conclusions

Limitations. Although our method explores two different kernel behaviors, both are radial basis
functions constructed based on Mahalanobis distance. In fact, within our framework, we can
experiment with a wider range of kernels, not limited to radial basis functions, such as asymmetric
kernels (60; 40). Furthermore, since our approach does not take surface normals (7) into account, it
may present challenges in mesh extraction. This limitation will be addressed in future work.

Conclusions. In this work, we introduce Screen-Aligned Primitives (SAP), a novel framework for
3D representation. Our approach employs a neural network decoder to enforce parallel alignment
between each primitive and the rendered plane, enabling accurate primitive ordering at a reduced
computational cost. Our framework decomposes the 3D representation into a combination of a 3D
decoder and 2D primitive representations. Additionally, we demonstrate that our primitives are
adaptable to various kernel functions. Extensive experiments on several challenging datasets validate
that SAP achieves real-time rendering performance.

Acknowledgments. This work is financially supported by Guangdong Provincial Key Laboratory of
Ultra High Definition Immersive Media Technology(Grant No. 2024B1212010006), this work is also
financially supported for Outstanding Talents Training Fund in Shenzhen, Shenzhen Science and Tech-
nology Program(Grant No. SYSPG20241211173440004 and Grant No. RCJC20200714114435057).

References
[1] B. Mildenhall, P. P. Srinivasan, M. Tancik, J. T. Barron, R. Ramamoorthi, and R. Ng, “Nerf:

Representing scenes as neural radiance fields for view synthesis,” Communications of the ACM,
vol. 65, no. 1, pp. 99–106, 2021.

[2] J. T. Barron, B. Mildenhall, M. Tancik, P. Hedman, R. Martin-Brualla, and P. P. Srinivasan,
“Mip-nerf: A multiscale representation for anti-aliasing neural radiance fields,” in Proceedings
of the IEEE/CVF international conference on computer vision, 2021, pp. 5855–5864.

[3] J. T. Barron, B. Mildenhall, D. Verbin, P. P. Srinivasan, and P. Hedman, “Mip-nerf 360:
Unbounded anti-aliased neural radiance fields,” in Proceedings of the IEEE/CVF conference on
computer vision and pattern recognition, 2022, pp. 5470–5479.

[4] ——, “Zip-nerf: Anti-aliased grid-based neural radiance fields,” in Proceedings of the
IEEE/CVF International Conference on Computer Vision, 2023, pp. 19 697–19 705.

[5] D. Verbin, P. Hedman, B. Mildenhall, T. Zickler, J. T. Barron, and P. P. Srinivasan, “Ref-
nerf: Structured view-dependent appearance for neural radiance fields,” in 2022 IEEE/CVF
Conference on Computer Vision and Pattern Recognition (CVPR). IEEE, 2022, pp. 5481–5490.

[6] B. Kerbl, G. Kopanas, T. Leimkühler, and G. Drettakis, “3d gaussian splatting for real-time
radiance field rendering.” ACM Trans. Graph., vol. 42, no. 4, pp. 139–1, 2023.

[7] B. Huang, Z. Yu, A. Chen, A. Geiger, and S. Gao, “2d gaussian splatting for geometrically
accurate radiance fields,” in ACM SIGGRAPH 2024 conference papers, 2024, pp. 1–11.

[8] A. Hamdi, L. Melas-Kyriazi, J. Mai, G. Qian, R. Liu, C. Vondrick, B. Ghanem, and A. Vedaldi,
“Ges: Generalized exponential splatting for efficient radiance field rendering,” in Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2024, pp. 19 812–
19 822.

10

[9] T. Lu, M. Yu, L. Xu, Y. Xiangli, L. Wang, D. Lin, and B. Dai, “Scaffold-gs: Structured
3d gaussians for view-adaptive rendering,” in Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, 2024, pp. 20 654–20 664.

[10] K. Ren, L. Jiang, T. Lu, M. Yu, L. Xu, Z. Ni, and B. Dai, “Octree-gs: Towards consistent
real-time rendering with lod-structured 3d gaussians,” arXiv preprint arXiv:2403.17898, 2024.

[11] L. Radl, M. Steiner, M. Parger, A. Weinrauch, B. Kerbl, and M. Steinberger, “Stopthepop: Sorted
gaussian splatting for view-consistent real-time rendering,” ACM Transactions on Graphics
(TOG), vol. 43, no. 4, pp. 1–17, 2024.

[12] A. Mai, P. Hedman, G. Kopanas, D. Verbin, D. Futschik, Q. Xu, F. Kuester, J. T. Barron, and
Y. Zhang, “Ever: Exact volumetric ellipsoid rendering for real-time view synthesis,” arXiv
preprint arXiv:2410.01804, 2024.

[13] M. Zwicker, H. Pfister, J. Van Baar, and M. Gross, “Ewa splatting,” IEEE Transactions on
Visualization and Computer Graphics, vol. 8, no. 3, pp. 223–238, 2002.

[14] Z. Yang, X. Gao, Y.-T. Sun, Y. Huang, X. Lyu, W. Zhou, S. Jiao, X. Qi, and X. Jin, “Spec-
gaussian: Anisotropic view-dependent appearance for 3d gaussian splatting,” Advances in
Neural Information Processing Systems, vol. 37, pp. 61 192–61 216, 2025.

[15] E. Perez, F. Strub, H. De Vries, V. Dumoulin, and A. Courville, “Film: Visual reasoning with a
general conditioning layer,” in Proceedings of the AAAI conference on artificial intelligence,
vol. 32, no. 1, 2018.

[16] W. Peebles and S. Xie, “Scalable diffusion models with transformers,” in Proceedings of the
IEEE/CVF international conference on computer vision, 2023, pp. 4195–4205.

[17] J. Ren, L. Pan, J. Tang, C. Zhang, A. Cao, G. Zeng, and Z. Liu, “Dreamgaussian4d: Generative
4d gaussian splatting,” arXiv preprint arXiv:2312.17142, 2023.

[18] Z. Li, Z. Zheng, L. Wang, and Y. Liu, “Animatable gaussians: Learning pose-dependent gaussian
maps for high-fidelity human avatar modeling,” in Proceedings of the IEEE/CVF conference on
computer vision and pattern recognition, 2024, pp. 19 711–19 722.

[19] T. Müller, A. Evans, C. Schied, and A. Keller, “Instant neural graphics primitives with a
multiresolution hash encoding,” ACM transactions on graphics (TOG), vol. 41, no. 4, pp. 1–15,
2022.

[20] Q. Xu, Z. Xu, J. Philip, S. Bi, Z. Shu, K. Sunkavalli, and U. Neumann, “Point-nerf: Point-based
neural radiance fields,” in Proceedings of the IEEE/CVF conference on computer vision and
pattern recognition, 2022, pp. 5438–5448.

[21] A. Chen, Z. Xu, A. Geiger, J. Yu, and H. Su, “Tensorf: Tensorial radiance fields,” in European
conference on computer vision. Springer, 2022, pp. 333–350.

[22] S. Fridovich-Keil, A. Yu, M. Tancik, Q. Chen, B. Recht, and A. Kanazawa, “Plenoxels: Radiance
fields without neural networks,” in Proceedings of the IEEE/CVF conference on computer vision
and pattern recognition, 2022, pp. 5501–5510.

[23] A. Yu, R. Li, M. Tancik, H. Li, R. Ng, and A. Kanazawa, “Plenoctrees for real-time rendering of
neural radiance fields,” in Proceedings of the IEEE/CVF international conference on computer
vision, 2021, pp. 5752–5761.

[24] Z. Yu, A. Chen, B. Huang, T. Sattler, and A. Geiger, “Mip-splatting: Alias-free 3d gaussian splat-
ting,” in Proceedings of the IEEE/CVF conference on computer vision and pattern recognition,
2024, pp. 19 447–19 456.

[25] Z. Liang, Q. Zhang, W. Hu, L. Zhu, Y. Feng, and K. Jia, “Analytic-splatting: Anti-aliased
3d gaussian splatting via analytic integration,” in European conference on computer vision.
Springer, 2024, pp. 281–297.

[26] J. Tang, J. Ren, H. Zhou, Z. Liu, and G. Zeng, “Dreamgaussian: Generative gaussian splatting
for efficient 3d content creation,” arXiv preprint arXiv:2309.16653, 2023.

11

[27] J. Chung, S. Lee, H. Nam, J. Lee, and K. M. Lee, “Luciddreamer: Domain-free generation of
3d gaussian splatting scenes,” arXiv preprint arXiv:2311.13384, 2023.

[28] J. Tang, Z. Chen, X. Chen, T. Wang, G. Zeng, and Z. Liu, “Lgm: Large multi-view gaussian
model for high-resolution 3d content creation,” in European Conference on Computer Vision.
Springer, 2024, pp. 1–18.

[29] Z. Yang, X. Gao, W. Zhou, S. Jiao, Y. Zhang, and X. Jin, “Deformable 3d gaussians for high-
fidelity monocular dynamic scene reconstruction,” in Proceedings of the IEEE/CVF conference
on computer vision and pattern recognition, 2024, pp. 20 331–20 341.

[30] J. Yan, R. Peng, L. Tang, and R. Wang, “4d gaussian splatting with scale-aware residual field
and adaptive optimization for real-time rendering of temporally complex dynamic scenes,” in
Proceedings of the 32nd ACM International Conference on Multimedia, 2024, pp. 7871–7880.

[31] J. Wu, R. Peng, Z. Wang, L. Xiao, L. Tang, J. Yan, K. Xiong, and R. Wang, “Swift4d: Adaptive
divide-and-conquer gaussian splatting for compact and efficient reconstruction of dynamic
scene,” in The Thirteenth International Conference on Learning Representations.

[32] G. Wu, T. Yi, J. Fang, L. Xie, X. Zhang, W. Wei, W. Liu, Q. Tian, and X. Wang, “4d gaussian
splatting for real-time dynamic scene rendering,” in Proceedings of the IEEE/CVF conference
on computer vision and pattern recognition, 2024, pp. 20 310–20 320.

[33] A. Guédon and V. Lepetit, “Sugar: Surface-aligned gaussian splatting for efficient 3d mesh
reconstruction and high-quality mesh rendering,” in Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, 2024, pp. 5354–5363.

[34] M. Yu, T. Lu, L. Xu, L. Jiang, Y. Xiangli, and B. Dai, “Gsdf: 3dgs meets sdf for improved
rendering and reconstruction,” arXiv preprint arXiv:2403.16964, 2024.

[35] Z. Yu, T. Sattler, and A. Geiger, “Gaussian opacity fields: Efficient adaptive surface reconstruc-
tion in unbounded scenes,” ACM Transactions on Graphics (TOG), vol. 43, no. 6, pp. 1–13,
2024.

[36] S. Rota Bulò, L. Porzi, and P. Kontschieder, “Revising densification in gaussian splatting,” in
European Conference on Computer Vision. Springer, 2024, pp. 347–362.

[37] Z. Zhang, W. Hu, Y. Lao, T. He, and H. Zhao, “Pixel-gs: Density control with pixel-aware
gradient for 3d gaussian splatting,” in European Conference on Computer Vision. Springer,
2024, pp. 326–342.

[38] Z. Ye, W. Li, S. Liu, P. Qiao, and Y. Dou, “Absgs: Recovering fine details in 3d gaussian
splatting,” in Proceedings of the 32nd ACM International Conference on Multimedia, 2024, pp.
1053–1061.

[39] S. Kheradmand, D. Rebain, G. Sharma, W. Sun, Y.-C. Tseng, H. Isack, A. Kar, A. Tagliasacchi,
and K. M. Yi, “3d gaussian splatting as markov chain monte carlo,” Advances in Neural
Information Processing Systems, vol. 37, pp. 80 965–80 986, 2024.

[40] R. Xu, W. Chen, J. Wang, Y. Liu, P. Wang, L. Gao, S. Xin, T. Komura, X. Li, and W. Wang,
“Supergaussians: Enhancing gaussian splatting using primitives with spatially varying colors,”
arXiv preprint arXiv:2411.18966, 2024.

[41] R. Liu, D. Sun, M. Chen, Y. Wang, and A. Feng, “Deformable beta splatting,” arXiv preprint
arXiv:2501.18630, 2025.

[42] L. Westover, “Interactive volume rendering,” in Proceedings of the 1989 Chapel Hill workshop
on Volume visualization, 1989, pp. 9–16.

[43] K. Mueller and R. Crawfis, “Eliminating popping artifacts in sheet buffer-based splatting,” in
Proceedings Visualization’98 (Cat. No. 98CB36276). IEEE, 1998, pp. 239–245.

[44] A. Van Gelder and K. Kim, “Direct volume rendering with shading via three-dimensional
textures,” in Proceedings of 1996 Symposium on Volume Visualization. IEEE, 1996, pp. 23–30.

12

[45] B. Cabral, N. Cam, and J. Foran, “Accelerated volume rendering and tomographic recon-
struction using texture mapping hardware,” in Proceedings of the 1994 symposium on Volume
visualization, 1994, pp. 91–98.

[46] N. Moenne-Loccoz, A. Mirzaei, O. Perel, R. de Lutio, J. Martinez Esturo, G. State, S. Fidler,
N. Sharp, and Z. Gojcic, “3d gaussian ray tracing: Fast tracing of particle scenes,” ACM
Transactions on Graphics (TOG), vol. 43, no. 6, pp. 1–19, 2024.

[47] Q. Hou, R. Rauwendaal, Z. Li, H. Le, F. Farhadzadeh, F. Porikli, A. Bourd, and A. Said,
“Sort-free gaussian splatting via weighted sum rendering,” arXiv preprint arXiv:2410.18931,
2024.

[48] C. Talegaonkar, Y. Belhe, R. Ramamoorthi, and N. Antipa, “Volumetrically consistent 3d
gaussian rasterization,” arXiv preprint arXiv:2412.03378, 2024.

[49] X. Zhang, X. Ge, T. Xu, D. He, Y. Wang, H. Qin, G. Lu, J. Geng, and J. Zhang, “Gaussianim-
age: 1000 fps image representation and compression by 2d gaussian splatting,” in European
Conference on Computer Vision. Springer, 2024, pp. 327–345.

[50] L. Huang, J. Bai, J. Guo, Y. Li, and Y. Guo, “On the error analysis of 3d gaussian splatting and
an optimal projection strategy,” in European conference on computer vision. Springer, 2024,
pp. 247–263.

[51] H. Qi, T. Cai, and X. Han, “Projecting gaussian ellipsoids while avoiding affine projection
approximation,” arXiv preprint arXiv:2411.07579, 2024.

[52] F. Hahlbohm, F. Friederichs, T. Weyrich, L. Franke, M. Kappel, S. Castillo, M. Stamminger,
M. Eisemann, and M. Magnor, “Efficient perspective-correct 3d gaussian splatting using hybrid
transparency,” in Computer Graphics Forum. Wiley Online Library, 2025, p. e70014.

[53] L. Huang, J. Bai, J. Guo, Y. Li, and Y. Guo, “On the error analysis of 3d gaussian splatting and
an optimal projection strategy,” in Computer Vision – ECCV 2024. Cham: Springer Nature
Switzerland, 2025, pp. 247–263.

[54] A. Knapitsch, J. Park, Q.-Y. Zhou, and V. Koltun, “Tanks and temples: Benchmarking large-
scale scene reconstruction,” ACM Transactions on Graphics (ToG), vol. 36, no. 4, pp. 1–13,
2017.

[55] P. Hedman, J. Philip, T. Price, J.-M. Frahm, G. Drettakis, and G. Brostow, “Deep blending for
free-viewpoint image-based rendering,” ACM Transactions on Graphics (ToG), vol. 37, no. 6,
pp. 1–15, 2018.

[56] Z. Wang, A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli, “Image quality assessment: from
error visibility to structural similarity,” IEEE transactions on image processing, vol. 13, no. 4,
pp. 600–612, 2004.

[57] R. Zhang, P. Isola, A. A. Efros, E. Shechtman, and O. Wang, “The unreasonable effectiveness
of deep features as a perceptual metric,” in Proceedings of the IEEE conference on computer
vision and pattern recognition, 2018, pp. 586–595.

[58] H. Qu, Z. Li, H. Rahmani, Y. Cai, and J. Liu, “Disc-gs: Discontinuity-aware gaussian splatting,”
Advances in Neural Information Processing Systems, vol. 37, pp. 112 284–112 309, 2024.

[59] J. Condor, S. Speierer, L. Bode, A. Bozic, S. Green, P. Didyk, and A. Jarabo, “Don’t splat your
gaussians: Volumetric ray-traced primitives for modeling and rendering scattering and emissive
media,” ACM Transactions on Graphics, 2025.

[60] H. Li, J. Liu, M. Sznaier, and O. Camps, “3d-hgs: 3d half-gaussian splatting,” arXiv preprint
arXiv:2406.02720, 2024.

[61] Z. Yu, T. Sattler, and A. Geiger, “Gaussian opacity fields: Efficient adaptive surface reconstruc-
tion in unbounded scenes,” ACM Transactions on Graphics, 2024.

13

NeurIPS Paper Checklist

The checklist is designed to encourage best practices for responsible machine learning research,
addressing issues of reproducibility, transparency, research ethics, and societal impact. Do not remove
the checklist: The papers not including the checklist will be desk rejected. The checklist should
follow the references and follow the (optional) supplemental material. The checklist does NOT count
towards the page limit.

Please read the checklist guidelines carefully for information on how to answer these questions. For
each question in the checklist:

• You should answer [Yes] , [No] , or [NA] .

• [NA] means either that the question is Not Applicable for that particular paper or the
relevant information is Not Available.

• Please provide a short (1–2 sentence) justification right after your answer (even for NA).

The checklist answers are an integral part of your paper submission. They are visible to the
reviewers, area chairs, senior area chairs, and ethics reviewers. You will be asked to also include it
(after eventual revisions) with the final version of your paper, and its final version will be published
with the paper.

The reviewers of your paper will be asked to use the checklist as one of the factors in their evaluation.
While "[Yes] " is generally preferable to "[No] ", it is perfectly acceptable to answer "[No] " provided a
proper justification is given (e.g., "error bars are not reported because it would be too computationally
expensive" or "we were unable to find the license for the dataset we used"). In general, answering
"[No] " or "[NA] " is not grounds for rejection. While the questions are phrased in a binary way, we
acknowledge that the true answer is often more nuanced, so please just use your best judgment and
write a justification to elaborate. All supporting evidence can appear either in the main paper or the
supplemental material, provided in appendix. If you answer [Yes] to a question, in the justification
please point to the section(s) where related material for the question can be found.

IMPORTANT, please:

• Delete this instruction block, but keep the section heading “NeurIPS Paper Checklist",

• Keep the checklist subsection headings, questions/answers and guidelines below.
• Do not modify the questions and only use the provided macros for your answers.

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The title and abstract clearly articulate the core contributions and structure of
the proposed framework; please see Abstract and Introduction.

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

14

Justification: The paper ends with a concise discussion of its current limitations and outlines
possible future improvements, Sec. 6.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [Yes]
Justification: We provide a mathematical derivation on our algorithm in Appendix B.5 and
Sec. 4, and the proposed method is validated through comprehensive experimental results.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: We clearly differentiates the configurations of each module in detail in Ap-
pendix B.2 and B.3 .

15

Guidelines:
• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [No]
Justification: We will provide our CUDA code, which is our SAP and the core component
of our method. With only minor modifications, it can be integrated into existing frameworks.
We also commit to releasing the full code after the paper is accepted.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

16

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: We provide detailed descriptions of the experimental setup in Sec. 5 and the
Appendix B.2.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: The experiments are conducted under sufficiently general settings, effectively
minimizing randomness, Table 2.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: The Appendix B.7 provides detailed runtime conditions.

Guidelines:

17

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: We confirm that our work complies with the NeurIPS Code of Ethics.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]
Justification: We discuss broader impacts in Appendix A.1.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]

18

https://neurips.cc/public/EthicsGuidelines

Justification: This work does not introduce any known or foreseeable risks, our method is a
3D reconstruction method, hence we are not releasing any model.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: All code and datasets employed in this work originate from open-source
sources or public databases, and have been appropriately cited to ensure compliance, see
Sec. 5.1.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: We do not introduce new assets.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects

19

paperswithcode.com/datasets

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: This paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: This paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: The method proposed in this paper does not involve the use of large language
models (LLMs) as a component.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.

20

https://neurips.cc/Conferences/2025/LLM

Appendix

A Broader Impacts and Limitation

A.1 Broader Impacts

Our method focuses on exploring a novel representation for 3D reconstruction and improving the
rendering quality of 3D reconstruction. It does not have a direct social impact. However, it may trigger
a chain reaction in some downstream applications. For example, when using 3DGS to reconstruct
digital humans, if the rendering quality is high enough to make it difficult for people to distinguish
between real and fake, it may raise social and ethical concerns, as well as issues related to the forgery
of personal portrait assets. Our method can improve the quality of 3D rendering in certain scenarios,
which may exacerbate such risks. This is a concern that any technology should take into account, and
we urge users to carefully consider the potential consequences when applying our method.

A.2 Limitation

Our method is applicable to various kernel representations, not limited to Gaussian kernels. In
this paper, we only explore the Gaussian kernel and the generalized Gaussian kernel; however,
our approach is, in fact, generalizable to the vast majority of kernels. Many existing works have
investigated alternative kernel representations (60; 40), many of which are based on 2DGS (7) to
leverage its inherent 2D structure and the convenience of projection-based computation. Similarly,
our method adopts a 2D representation and is compatible with many of these approaches, which
could provide significant inspiration for future research in this field.

Our method focuses on improving the quality of 3D rendering without incorporating normals to
enhance the geometric consistency, such as (7; 61). This may cause difficulties in applications like
surface reconstruction and mesh extraction.

Our method does not address lighting and physical reflection. Prior works (14) have shown that
fitting complex lighting conditions can significantly improve rendering quality. We consider this to
be a valuable direction for future research.

B More Technical Details

B.1 Overview

This appendix is organized as follows: (Sec. B.2) Experimental Setup; (Sec. B.3) Network Archi-
tecture; (Sec. B.4) Proof of Unbiased Projection; (Sec. B.5) More Details of SAP-Ges; (Sec. B.6)
Experiments on Computational Resources; (Sec. B.7) View-dependent Gaussian Attribute Decoding;
(Sec. B.8) More Ablation on Kernels; (Sec. B.9) Additional Results;

B.2 Experimental Setup

Experimental Setup on the Mip-NeRF360 Dataset. It is worth noting that in Scaffold-GS (9),
images with resolutions larger than 1600 are downsampled to 1600. In contrast, some methods such
as 3DGS-MCMC (39) downsample outdoor scenes by a factor of 4 and indoor scenes by a factor of 2.
These differences in preprocessing can lead to slight variations in the results. In this paper, we follow
the experimental setup of Scaffold-GS.

Hyperparameter Settings. Most of our hyperparameter settings follow those of Scaffold-GS.
Specifically, we used 10 neural Gaussians for each anchor; We set the threshold for the average
gradient magnitude (τ1) to 0.0002, and the threshold for the maximum gradient magnitude (τ2) to
0.0015; The initial learning rate of our 3D-consistent decoder is set at 0.004 and gradually annealed
to 0.00004 during training; the learning rate for the features is set to 0.0025. All other hyperparameter
settings follow those of Scaffold-GS to ensure a fair comparison.

21

௔ܨ

݀⃗ ݊ × 3
SH Encoding

݊ × 32

݊ × 32
L (32, 32)

݊ × 32

L (32, 32*2)

݊ × 32

݊ × 32Encoding

β

γ

FiLM
݊ × 32

ReLU
݊ × (݇) × 3

L (32, k*3)

Sigmoid

Sigmoid × ߨ

Scale

Rotation

݊ × (݇) × 2

݊ × (݇) × 1

݊ × 32
 ܨ

×

+

݊ × 32
 ܨ

FiLM

3D-Consistent Decoder

Figure 5: Illustration of the 3D-Consistent Decoder. The top shows the direction modulator, while
the bottom depicts the full decoder architecture. Here, L(·) denotes a linear layer.

B.3 Network Architecture

Our 3D-Consistent Decoder architecture is illustrated in Fig. 5. We condition the network on the
viewing direction, which is first encoded and passed through a linear layer to generate modulation
parameters. These parameters are then used to linearly modulate the features to produce the final
output. The rest of our network architecture remains consistent with that of Scaffold-GS (9).

B.4 Proof of Unbiased Projection

As shown in Fig. 6, 3DGS (6) introduces errors due to the use of an approximate affine projection,
whereas our method can effectively avoid this issue.

In our projection framework, the function values of the screen-space kernel and the view-space kernel
are equivalent. If we ignore the z-axis depth, assuming the view-space mean point is (µv

x, µ
v
y) and

the screen-space mean point is (µs
x, µ

s
y). For a given depth t and horizontal and vertical focal lengths

fx = width
2∗tanFovx ,fy = height

2∗tanFovy , the transformation matrix from space to screen, based on our geometric
scaling projection, can be expressed as:

P =

[fx
t 0

0
fy
t

]
. (15)

The relationship between the covariance matrices Σv and Σs can be expressed as:

Σs = PΣvPT . (16)

For the camera model established in 3DGS, the perspective projection matrix Mperspective can be
expressed as: 

2∗znear

right−left 0 right+left
right−left 0

0 2∗znear

top−bottom
top+bottom
top−bottom 0

0 0
zfar

zfar−znear

−zfar∗znear

zfar−znear

0 0 1 0

 . (17)

With the additional conditions: bottom = −top; left = −right; znear = 0.1; zfar = 100 ; top =
tanFovx · znear ; right = tanFovy · znear. We can simplify it to:

1
tanFovx 0 0 0
0 1

tanFovy 0 0

0 0 1 −0.01
0 0 1 0

 . (18)

22

xy

z

o

3D-Gaussian

xy

z

o

SAP

Accurate ProjectionAffine Projection

Figure 6: A simplified diagram of different projection methods. On the left is the projection
process of the 3D Gaussian sphere: the blue represents the standard perspective projection, while the
red represents the affine projection approximated by the Jacobian matrix. On the right is our 2D slice
transformation, where our projection is an affine transformation that achieves the same effect as the
exact projection.

Therefore, for any view-space coordinates (xv, yv, t, 1), the transformation to screen space can be
written as:

xn

yn

zn

wn

 = Mperspective

x
v

yv

t
1

 (19)

where wn = t and (xn, yn, zb, wn) are the NDC coordinates.. Therefore, the normalized coordinates
xn and yn in screen space are given by xn

t and yn

t , respectively. That is,[
xn

yn

]
=

[
xv

tanFovx∗t
xv

tanFovx∗t

]
(20)

According to the defined NDC transformation:[
xs

ys

]
=

[
(xn+1)∗width−1

2
(yn+1)∗height−1

2

]
(21)

Therefore, for any given (xs, ys), and (µs
x, µ

s
y),[

xs − µs
x

ys − µs
y

]
=

[fx
t ∗ (xv − µv

x)
fy
t ∗ (yv − µv

y)

]
(22)

The relationship between them is: [
xs − µs

x
ys − µs

y

]
= P

[
xv − µv

x
yv − µv

y

]
(23)

Finally, the distance function value in screen space is:[
xs − µs

x
ys − µs

y

]T
Σ−s

[
xs − µs

x
ys − µs

y

]
=

[
xv − µv

x
yv − µv

y

]T
PTP−TΣ−vP−1P

[
xv − µv

x
yv − µv

y

]
=

[
xv − µv

x
yv − µv

y

]T
Σ−v

[
xv − µv

x
yv − µv

y

] (24)

In summary, in our framework, we can define any functional kernel using the Mahalanobis distance.
At this point, the function values in screen space and view space are equivalent. For 3DGS, an affine
projection, approximated by the Jacobian matrix, is used to approximate the covariance. Since the
projection from 3D to 2D is non-invertible, this identity does not hold.

23

Figure 7: Generalized kernal Function.

Table 5: Timings. We compare the training and inference time of our method with that of Scaffold-GS
(9), evaluating both with and without our proposed densification strategy, for the "Train" scene in
Tanks&Temples dataset (54).

Train Ours Ours Scaffold-GS (9) Scaffold-GS
Metrics Method wo ∇max w ∇max wo ∇max w ∇max

PSNR ↑ 23.56 23.76 22.77 22.89
#Anchor(k) ↓ 393.8 584.4 353.3 520.0

Training Time ↓ 26 minutes 32 minutes 24 minutes 29 minutes
Rendering FPS ↑ 80 75 88 79

B.5 More Details of SAP-Ges

In this paper, we extend the generalized Gaussian kernel:

KGes(x;µ,Σ) = e−
1
2M

p(x) M(x) ∈ [0,∞). (25)

Its illustration is shown in the first row of Fig. 7. For 3DGS, its pixel radius is 3λ, where λ is the
largest eigenvalue of the covariance matrix, which corresponds to the major axis. To ensure that
(3λ, 0)TΣ−s(3λ, 0) ≤ 9, 3DGS imposes a condition on the covariance matrix Σs. This condition
guarantees that the squared Mahalanobis distance for the point (3λ, 0) is less than or equal to 9,
ensuring that the distance function does not exceed a certain threshold. To ensure that the distance
value is less than 9, we take the radius of the generalized Gaussian kernel as 31/pλ. The specific
formula is: ((

31/pλ, 0
)T

Σ−s
(
31/pλ, 0

))p

≤ 9. (26)

When p > 1, the generalized Gaussian kernel is more compact than the Gaussian kernel. When
p < 1, the radius of the generalized Gaussian kernel becomes larger.

B.6 Experiments on Computational Resources

Our method shares a rendering pipeline that is highly similar to 3DGS (6), so the training and
rendering times are approximately equivalent given the same number of primitives. However, because
of potential differences in the gradients produced by our method compared to the original one,
different numbers of points may be generated under the corresponding densification strategies. While
the number of points is approximately proportional to the computation time, our method demonstrates
superior rendering quality under a comparable point count. We report the training and rendering
overhead of our method and the baseline under two different densification strategies, as shown in
Table 5.

B.7 View-dependent Gaussian Attribute Decoding

We visualized our Gaussian attribute decoder, as shown in Fig. 8. Specifically, we uniformly sampled
directions on the sphere and used these as input to the decoder, obtaining the corresponding decoded
attributes for each direction. We visualized properties such as color, opacity, rotation, and scale. As

24

(a) Color (b) opacity (c) rotation (d) scale

Figure 8: View-dependent Gaussian attribute decoding. We uniformly sample directions on the
sphere to evaluate the performance of our attribute decoder.

Table 6: Comparison of different kernels. We compared different parameter designs of SAP-Ges.

SAP-Ges(p = 2) SAP-Ges(p = 0.5) SAP-Ges(plearnable) SAP-Gaussian(p = 1)
PSNR↑ / Mem↓ / FPS↑ PSNR↑ / Mem↓ / FPS↑ PSNR↑ / Mem↓ / FPS↑ PSNR↑ / Mem↓ / FPS↑

24.65 / 124.61 / 90 24.43 / 86.83 / 70 24.52 / 99.89 / 76 25.04 / 103.53 / 82

illustrated, our decoder maintains a degree of continuity across adjacent viewpoints while exhibiting
anisotropic characteristics.

B.8 More Ablation on Kernels

We conducted experiments on SAP-Ges with different parameter settings, on the Tanks&Temples
Dataset (54), Table 6:

• p = 2: This produces a more compact kernel than the Gaussian, resulting in more points
and higher memory usage, but faster rendering.

• p = 0.5: This leads to a wider kernel range with fewer points and the lowest memory
consumption. However, rendering is the slowest because of large Gaussian extents.

• Learnable p: The results lie between the above two. We attribute this to the challenge of
finding an optimal learning rate for p.

• Gaussian kernel (p = 1): This setting achieves the best rendering performance with a good
trade-off between memory and speed.

B.9 Additional Results

Here we list the error metrics used in our evaluation across all methods and scenes considered, as
shown in Tab. 7 8.

25

Table 7: Quantitative evaluation of rendering efficiency per scene in Mip-NeRF360(3).
PSNR↑

bicycle flowers garden stump treehill room counter kitchen bonsai Avg.

Mip-NeRF360(3) 24.40 21.64 26.94 26.36 22.81 31.40 29.44 32.02 33.11 27.57
3D-GS (6) 25.18 21.48 27.24 26.62 22.45 31.49 28.98 31.35 32.10 27.43
2D-GS (7) 24.82 20.99 26.91 26.41 22.52 30.86 28.45 30.62 31.64 27.03

StopThePop (11) 25.20 21.50 27.16 26.69 22.43 30.83 28.59 31.13 31.93 27.28
Scaffold-GS (9) 24.81 21.42 27.17 26.27 23.08 31.93 29.34 31.30 32.70 27.55
DisC-GS (58) - - - - - - - - - 28.01

3DGS-MCMC (39) 25.67 22.09 27.65 27.47 23.2 32.32 29.26 31.82 32.54 28.00
SAP(Ours) 25.26 21.48 27.48 26.76 23.02 32.88 29.94 31.90 33.73 28.05

SSIM↑
bicycle flowers garden stump treehill room counter kitchen bonsai Avg.

Mip-NeRF360 0.693 0.583 0.816 0.746 0.632 0.913 0.895 0.920 0.939 0.793
3D-GS 0.763 0.603 0.862 0.772 0.632 0.917 0.906 0.925 0.939 0.814
2D-GS 0.731 0.573 0.845 0.764 0.630 0.918 0.908 0.927 0.940 0.804

StopThePop 0.767 0.604 0.862 0.775 0.635 0.917 0.903 0.925 0.939 0.814
Scaffold-GS 0.725 0.587 0.842 0.784 0.644 0.925 0.914 0.928 0.946 0.810

DisC-GS - - - - - - - - - 0.833
3DGS-MCMC 0.784 0.609 0.866 0.810 0.665 0.934 0.921 0.937 0.950 0.831

SAP(Ours) 0.758 0.631 0.875 0.780 0.707 0.945 0.915 0.939 0.962 0.835

LPIPS↓
bicycle flowers garden stump treehill room counter kitchen bonsai Avg.

Mip-NeRF360 0.289 0.345 0.164 0.254 0.338 0.211 0.203 0.126 0.177 0.234
3D-GS 0.213 0.338 0.109 0.216 0.327 0.221 0.202 0.127 0.206 0.217
2D-GS 0.271 0.378 0.138 0.263 0.369 0.214 0.197 0.125 0.194 0.239

StopThePop 0.206 0.335 0.107 0.210 0.319 0.216 0.200 0.126 0.202 0.213
Scaffold-GS 0.256 0.359 0.146 0.284 0.338 0.202 0.191 0.126 0.185 0.232

DisC-GS - - - - - - - - - 0.189
3DGS-MCMC 0.202 0.246 0.112 0.194 0.300 0.181 0.174 0.114 0.176 0.188

SAP(Ours) 0.227 0.314 0.123 0.248 0.305 0.173 0.192 0.123 0.169 0.208

26

Table 8: Quantitative evaluation of rendering efficiency per scene in Tanks
&Temples Dataset (54) and Deep Blending (55) .

PSNR↑
Truck Train Avg. Dr Johnson Playroom Avg.

Mip-NeRF360 24.91 19.52 22.22 29.14 29.66 29.40
3D-GS 25.39 22.04 23.71 29.06 29.86 29.46
2D-GS - - 22.96 - - 29.49

StopThePop 24.93 21.48 23.21 29.42 30.31 29.86
Scaffold-GS 25.89 22.48 24.19 29.73 30.83 30.28

DisC-GS - - 24.96 - - 30.42
3DGS-MCMC 26.11 22.47 24.29 29.00 30.33 29.67

SAP(Ours) 26.31 23.76 25.04 29.62 30.41 30.02

SSIM↑
Truck Train Avg. Dr Johnson Playroom Avg.

Mip-NeRF360 0.857 0.660 0.758 0.901 0.900 0.900
3D-GS 0.878 0.813 0.845 0.898 0.901 0.900
2D-GS - - 0.825 - - 0.899

StopThePop 0.878 0.808 0.843 0.903 0.905 0.904
Scaffold-GS 0.885 0.822 0.854 0.910 0.907 0.909

DisC-GS - - 0.866 - - 0.907
3DGS-MCMC 0.890 0.830 0.860 0.890 0.900 0.895

SAP(Ours) 0.905 0.835 0.870 0.908 0.911 0.910

LPIPS↓
Truck Train Avg. Dr Johnson Playroom Avg.

Mip-NeRF360 0.159 0.354 0.257 0.237 0.252 0.245
3D-GS 0.148 0.208 0.189 0.247 0.246 0.247
2D-GS - - 0.217 - - 0.259

StopThePop 0.142 0.204 0.173 0.234 0.235 0.234
Scaffold-GS 0.143 0.204 0.174 0.235 0.242 0.239

DisC-GS - - 0.120 - - 0.199
3DGS-MCMC 0.140 0.240 0.190 0.330 0.310 0.320

SAP(Ours) 0.114 0.175 0.145 0.228 0.244 0.236

27

	Introduction
	Related Work
	Preliminaries
	3D Gaussian Splatting
	Anchor-Based Gaussian Splatting

	Methodology
	3D-Consistent Decoder
	Screen-Aligned Primitives
	Unbiased Projection
	Optimization

	Experiments
	Experimental Setup
	Results and Comparisons
	Ablation Studies

	Limitations and conclusions
	Appendix
	Broader Impacts and Limitation
	Broader Impacts
	Limitation

	More Technical Details
	Overview
	Experimental Setup
	Network Architecture
	Proof of Unbiased Projection
	More Details of SAP-Ges
	Experiments on Computational Resources
	View-dependent Gaussian Attribute Decoding
	More Ablation on Kernels
	Additional Results

