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DIT360: HIGH-FIDELITY PANORAMIC IMAGE GEN-
ERATION VIA HYBRID TRAINING
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Figure 1: Visualization of DiT360’s results. The shown examples include text-to-panorama genera-
tion, inpainting, and outpainting, together with comparisons against existing methods.

ABSTRACT

In this work, we propose DiT360, a DiT-based framework that performs hybrid
training on perspective and panoramic data for panoramic image generation. For
the issues of maintaining geometric fidelity and photorealism in generation qual-
ity, we attribute the main reason to the lack of large-scale, high-quality, real-world
panoramic data, where such a data-centric view differs from prior methods that
focus on model design. Basically, DiT360 has several key modules for inter-
domain transformation and intra-domain augmentation, applied at both the pre-
VAE image level and the post-VAE token level. At the image level, we incorpo-
rate cross-domain knowledge through perspective image guidance and panoramic
refinement, which enhance perceptual quality while regularizing diversity and
photorealism. At the token level, hybrid supervision is applied across multiple
modules, which include circular padding for boundary continuity, yaw loss for
rotational robustness, and cube loss for distortion awareness. Extensive exper-
iments on text-to-panorama, inpainting, and outpainting tasks demonstrate that
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our method achieves better boundary consistency and image fidelity across eleven
quantitative metrics. Our code, trained models, and curated data will be available.

1 INTRODUCTION

With the growing demand for spatial intelligence (Yang et al., 2025a; Chen et al., 2024; Wu et al.,
2025), panoramic image generation (Lin et al., 2025) has become critical considering its ability to
capture the full 360° field of view. Unlike conventional image generation on perspective views (Esser
et al., 2024; Podell et al., 2023; Tian et al., 2024; Black Forest Labs, 2024), panoramic image gener-
ation remains challenging due to its unique characteristics such as severe distortions in polar regions,
which in turn hinders its wider deployment in applications such as AR/VR and autonomous driving.

To address this issue, existing methods usually focus on specific model design based on equirect-
angular projection (ERP) (Ye et al., 2024; Huang et al., 2025; Kalischek et al., 2025; Zhang et al.,
2024; Xie, 2025; Sun et al., 2025; Team et al., 2025; Ni et al., 2025; Sun et al., 2025), with or with-
out the assistance of cubemaps (CP) (Bar-Tal et al., 2023; Li & Bansal, 2023; Shi et al., 2023; Tang
et al., 2023; Park et al., 2025; Yang et al., 2025b), where both ERP and CP are common panoramic
representations. Despite the success achieved, these works still struggle with perceptual realism and
geometric fidelity due to the scarcity of high-quality real-world panoramic data and the over-reliance
on simulated one.

A heuristic solution is to exploit 360° data from media platforms such as YouTube, but its direct use
for training is impractical since panoramic data requires domain-specific curation, including horizon
correction and aesthetic filtering, which remain largely unexplored. Thus, one question raised: how
can models be endowed with real-world knowledge when only limited panoramic data is available?

By this motivation, we propose DiT360, a DiT-based framework (Peebles & Xie, 2023), which
adopts a hybrid training strategy that combines limited synthetic panoramic data with well-curated,
high-quality perspective images to enhance photorealism and geometric fidelity simultaneously. To
fully realize the merit of this hybrid paradigm, it is essential to leverage knowledge from the two
domains at different representation levels. Accordingly, the DiT360 incorporates several key mod-
ules for inter-domain transformation and intra-domain augmentation, applied at both the pre-VAE
image level and the post-VAE token level. At the image level, the focus is on regularization across
different domains, where existing panoramic data is regularized through masking and inpainting
to remove spatial-variant artifacts in polar regions, while perspective data is regularized into the
panoramic space through projection-aware methods to provide photorealistic guidance. At the to-
ken level, the focus is on geometry-aware supervision in the latent space. Circular padding aims to
address the boundary continuity problem of ERP images, where the left/right edge correspond to
inherently periodic 0°/360° longitude. In addition, global rotational consistency is enforced through
rotation-consistent yaw loss, while distortion-aware cube loss provides complementary supervision
beyond ERP that guides the model toward consistent and high-fidelity panoramic representations.

The extensive experiments demonstrate that DiT360 with hybrid training can perform better than ex-
isting text-to-panorama methods in boundary consistency and image fidelity, as evidenced by both
quantitative metrics and qualitative visualizations. For example, DiT360 achieves state-of-the-art
performance on the Matterport3D validation set, surpassing prior methods across nine metrics like
FID, Inception Score, and BRISQUE. Beyond text-to-panorama generation, DiT360 naturally sup-
ports inpainting and outpainting tasks without additional finetuning enabled by its built-in masking
and inpainting strategy. Furthermore, our method can produce high-resolution and photo-realistic
panoramic images benefited by high-quality perspective data. Our main contributions are summa-
rized as follows:

• We present DiT360, a DiT-based framework with hybrid training that leverages both perspective
and panoramic data to preserve photorealism and geometric fidelity. Unlike prior approaches that
primarily focus on model design, DiT360 emphasizes the effective utilization of multi-domain
data to achieve superior generation quality.

• The proposed hybrid paradigm is realized through multi-level mechanisms, where image-level
regularization refines existing panoramas and leverages perspective data to enhance diversity and
photorealism, while token-level supervision in the latent space enforces geometric consistency
through rotation- and distortion-aware constraints.
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• Extensive quantitative and qualitative experiments on three tasks including text to image, inpaint-
ing and outpainting demonstrate that DiT360 outperforms existing methods in boundary consis-
tency, image fidelity, and overall perceptual quality. The user study conducted further confirms
that our method aligns better with human preferences.

2 RELATED WORK

Text-to-Image Diffusion Models. Diffusion models have replaced earlier approaches (Kingma &
Welling, 2022; Goodfellow et al., 2020) as the dominant paradigm in image generation, achiev-
ing high-quality and diverse synthesis by reversing a gradual noising process (Dhariwal & Nichol,
2021; Nichol et al., 2022; Saharia et al., 2022; Rombach et al., 2022; Ramesh et al., 2022). Among
these, the Latent Diffusion Model (LDM) (Rombach et al., 2022) wrapped with UNet structure in-
troduced denoising in the latent space, enabling scalable high-resolution generation (Podell et al.,
2023). More recently, transformer-based architectures (Peebles & Xie, 2023; Vaswani et al., 2017)
have been adopted using explicit positional encoding and attention operation to further improve
performance (Black Forest Labs, 2024; Esser et al., 2024; Yu et al., 2025; Ma et al., 2024), and
are emerging as a new paradigm for better scalability and stronger results. We note that both of
UNet- and transformer-based structures are benefited by the large-scale perspective datasets. Moti-
vated by this, we leverage perspective data to compensate for the limited scale of panoramic data by
inter-domain transformation and projection.

Panoramic image Generation. Early panoramic image generation mainly relied on outpainting-
based methods (Akimoto et al., 2022; Dastjerdi et al., 2022; Wang et al., 2022; 2023; Wu et al.,
2023b;c; Lu et al., 2024), which reconstruct a full 360° view from partial observations, such as
narrow field of view (NFoV), but often suffer from limited flexibility and content diversity. With
advances in text-to-image generation, research has shifted towards text-to-panorama generation for
more controllable results and can be broadly divided into two categories. The first kinds of ap-
proaches (Fang et al., 2023; Höllein et al., 2023; Yu et al., 2023; Bar-Tal et al., 2023; Lee et al.,
2023; Li & Bansal, 2023; Shi et al., 2023; Tang et al., 2023; Park et al., 2025; Yang et al., 2025b)
generate panoramic images by stitching multiple perspective views. However, they often suffer from
limited perceptual realism because of repeated objects and poor geometric fidelity, such as discon-
tinuities. To alleviate this problem, some work (Song et al., 2023; Ye et al., 2024; Huang et al.,
2025; Kalischek et al., 2025) adopts cube mapping, which better aligns with the spherical geometry
of panoramic images; yet discontinuities across cube faces remain unresolved, along with additional
computational and temporal overhead. Another line of work (Chen et al., 2022; Shum et al., 2023;
Zhang et al., 2023; Feng et al., 2023; Ai et al., 2024; Wang et al., 2024; Yang et al., 2024a; Zhang
et al., 2024; Xie, 2025; Sun et al., 2025; Team et al., 2025; Ni et al., 2025; Wang et al., 2025; Lu et al.,
2025) trains models directly on equirectangular images, preserving global continuity and allowing
the model to learn distortion patterns. However, these methods struggle to maintain boundary con-
sistency that requires seamless alignment at the 0°/360° longitude and degrade in regions with severe
polar distortion, leading to reduced geometric fidelity. Although recent works (Sun et al., 2025; Park
et al., 2025; Zhang et al., 2024) attempt to alleviate these issues through alternative convolutional
designs, they remain limited in practice and are less compatible with pre-trained models. In addition,
all these methods are constrained by the limited quality of panoramic datasets, often inheriting polar
degradation and producing rendered-like appearances that lack perceptual realism. In contrast, we
employ a hybrid training strategy that enables the generation of high-resolution panoramic images
with high perceptual realism, producing sharp and detailed content and strong geometric fidelity,
ensuring correct polar distortion and seamless boundaries.

3 METHOD

As illustrated in Fig. 2, DiT360 is a novel framework for generating panoramic images, which
improves photorealism and geometric fidelity through hybrid training at both the image and token
levels. In the following sections, We first present the preliminaries and overall design of DiT360 in
Sec. 3.1. We then introduce several key modules of the hybrid paradigm from two complementary
perspectives: image-level regularization in Sec. 3.2, and token-level supervision in Sec. 3.3. Finally,
we show that DiT360 natively supports extended generation tasks such as inpainting and outpainting
without additional training, as detailed in Sec. 3.4.
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Figure 2: Overview of the DiT360 hybrid training pipeline. For the perspective branch, we employ
(a) perspective image re-projection to transfer perspective knowledge to panoramic domain. For
the panoramic branch, we first apply (b) panoramic refinement to remove polar blurring and then
introduce (c) position-aware circular padding, (d) rotation-consistent yaw loss and (e) distortion-
aware cube loss for token-level hybrid supervision.

3.1 DIT360

Revisit Diffusion Transformer (DiT). Recent diffusion models increasingly adopt the DiT ar-
chitecture (Peebles & Xie, 2023), which uses a transformer (Dosovitskiy, 2020) to process latent
sequences of post-VAE image tokens X ∈ RN×d, where N is the sequence length and d denotes
the embedding dimension. To capture spatial structure, DiT employs Rotary Positional Embeddings
(RoPE) (Su et al., 2024), which inject coordinate-dependent rotations into the image tokens, thereby
allowing the model to effectively encode both relative and absolute positional information. In addi-
tion, DiT adopts a flow-based scheduler to progressively denoise the latent representation, typically
conditioned on a text promp c. Its training objective is the standard denoising score-matching loss,
computed as:

L = EX,c,ϵ,t

[
∥ϵ− ϵθ(Xt, c, t)∥22

]
, (1)

where Xt denotes the noise latent in timestep t, ϵ is the added Gaussian noise and ϵθ represents the
predicted noise of the model.

Overview of DiT360. Building upon DiT, we introduce DiT360 for panoramic image genera-
tion. Fig. 2 illustrates the proposed framework, which adopts a hybrid paradigm to jointly exploit
perspective and panoramic data through two training branches. The key modules enabling hybrid
training are categorized into image-level regularization and token-level supervision. At the image
level, perspective image guidance and panoramic refinement introduce cross-domain knowledge to
enhance perceptual quality while regularizing diversity and photorealism. At the token level, hybrid
supervision across multiple objectives is conducted, which includes circular padding for boundary
continuity, yaw loss for rotational robustness, and cube loss for distortion awareness. Together, this
hybrid design operates across multiple representation levels to achieve perceptual photorealism and
geometric fidelity.

3.2 IMAGE-LEVEL REGULARIZATION

At the image level, we adopt a hybrid regularization strategy that improves generation quality
through inter-domain transformation, combining refinement of existing panoramas with the transfer
of photorealistic knowledge from perspective views.

Panoramic image refinement. The availability of high-quality, real-world panoramic datasets re-
mains severely restricted, with Matterport3D (Chang et al., 2017) being one of the most widely
adopted due to its large scale and high fidelity. Nevertheless, images in this dataset frequently
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Figure 3: Panoramic image refinement pipeline. The ERP panorama is converted into a cubemap,
where pre-defined masks are applied to the central regions of the top and bottom faces. These
masked regions are then reconstructed with an inpainting model and reprojected to ERP. In the
figure, orange boxes represent blurry areas, and red dashed boxes indicate inpainted cubes.

exhibit blurring in the polar regions, as shown in Fig. 3, which in turn hampers the quality of down-
stream panoramic image generation. To mitigate blurring artifacts in the polar regions, we transform
panoramic ERPs into cubemap representations, where well-established perspective-domain inpaint-
ing can be directly applied. We first fix a binary mask M for each blurred cube face I to localize the
inpainting area. Specifically, for H = W = 1024, we mask out the central region:

M(u, v) =

{
0, if 256 ≤ u, v < 768,

1, otherwise,
(2)

where (u, v) denotes pixel coordinates. The masked image is then obtained as

Imask = I ⊙M + (1−M) · Imiss, (3)

where ⊙ denotes element-wise multiplication and Imiss is a white image of the same resolution.
Finally, the inpainting model (Labs et al., 2025) is then applied to Imask to reconstruct the missing
region and produce Î , which is then transformed back into the ERP space to obtain blur-free, high-
fidelity panoramas.. This process serves as an image-quality regularization step, yielding clearer
training images while constraining panoramas to retain inherent distortion characteristics, as illus-
trated in Fig. 3.

Perspective image guidance. In addition, we leverage high-quality realistic perspective images
from the Internet to regularize the panoramic domain by transferring photorealistic knowledge.
Specifically, as illustrated in Fig. 2a, a perspective image is regarded as a cubemap lateral face
and then converted back into the ERP representation with a corresponding mask M. We restrict the
re-projection to the lateral faces, as the top and bottom faces usually correspond to sky or ground
regions, which require perspective images from uncommon viewing angles that are rarely covered
in the dataset. During training, we directly apply the mean squre error (MSE) loss from Flux (Black
Forest Labs, 2024) to the re-projected ERP, restricting it to the masked regions to avoid contamina-
tion from unrelated panoramic areas, yielding:

Lperspective = LMSE(ϵ⊙M, ϵ̂θ ⊙M), (4)

where ϵ and ϵ̂θ denote the sampled noise and the reparameterized predicted noise, respectively.
This strategy provides effective image-level guidance through cross-domain knowledge adaptation,
exposing the model to more diverse scenes and thereby increasing the generation diversity. More
importantly, the incorporated perspective knowledge regularizes the model toward photorealistic
fidelity, which remains underexplored in prior works.

3.3 TOKEN-LEVEL SUPERVISION

At the token level, DiT360 adopts a hybrid training strategy that balances complementary super-
vision at the post-VAE token level, simultaneously enhancing boundary continuity, rotational ro-
bustness, distortion awareness and perceptual quality. Specifically, we introduce three mechanisms
applied to noisy tokens of panoramic inputs: position-aware circular padding for seamless boundary
coherence, yaw loss for global rotation consistency, and cube loss for precise supervision of ERP
distortion patterns. Together, we propose a hybrid loss design to ensure fine-grained token-level
supervision while maintaining balanced generation quality across multiple dimensions.
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Position-aware Circular Padding. Panoramic images cover the full 360° horizontal field, making
it critical to maintain continuity across image boundaries. To address this challenge, we propose a
token-based circular padding mechanism specific to DiT-based frameworks that takes advantage of
the inherent correspondence between explicit positional encoding and image content. This property
ensures that latent tokens at the same spatial position generate consistent visual features, which
we exploit to enhance boundary coherence without introducing additional architectural complexity.
Specifically, as illustrated in Fig. 2c, after the VAE compression and the subsequent noise injection,
we reshape the latent tokens Xt ∈ RN×d into Xt ∈ RH×W×d. We then apply a circular padding
along the width dimension. Formally, let X0 and X−1 denote the first and last column features,
respectively. We then concatenate them to obtain the padded tensor

X̃t =
[
X−1, Xt, X0

]
∈ RH×(W+2)×d. (5)

The same operation is applied to the positional encoding, which encourages the model to learn
continuity specifically between adjacent columns across the boundary.

Rotation-consistent Yaw Loss. To enforce global rotational robustness, we introduce yaw loss
that offers token-level supervision on the model’s behavior under spherical rotations along the yaw
axis, as illustrated in Fig. 2d. Unlike the standard diffusion loss, the corresponding yaw loss captures
the non-linear effects of yaw rotations and constrains the model to produce consistent predictions
across different viewing angles. Formally, with the reparameterized noise ϵ and predicted noise ϵθ,
we randomly select a yaw rotation angle a and define the rotated features as:

ϵyaw = Rotate(Xt − ϵ, a), ϵθ,yaw = Rotate(ϵθ, a), (6)

where Rotate(·, a) denotes the equirectangular panorama rotated by angle a along the yaw axis.

The yaw loss is then computed as the mean squared error (MSE) between the predicted and target
rotated noise features:

Lyaw = E
[
|ϵθ,yaw − ϵyaw|22

]
. (7)

Distortion-aware Cube Loss. To effectively model distortion patterns and preserve fine details,
we introduce a cube loss based on the cubemap representation of panoramasas, as shown in Fig. 2e.
Direct supervision on equirectangular projections often causes the model to reproduce similar dis-
torted appearances rather than learn the precise structural patterns, which leads to incorrect gener-
ation details with dealing with polar-region distortions. To address this challenge, we project both
sampled and predicted noise onto cube faces and apply face-wise supervision, thereby transferring
model’s strength in perspective priors to the panoramic domain to preserve structural distortion pat-
terns. Further analysis are provided in appendix A. Formally, let Xt denote the noisy latent at time
step t in the forward diffusion process, ϵ denote the reparameterized Gaussian noise, and ϵθ denote
the noise predicted by the model. We define the cube-space features by applying a cube-mapping
operation:

ϵcube = CubeMap(Xt − ϵ), ϵθ,cube = CubeMap(ϵθ), (8)
where CubeMap(·) transforms an equirectangular panorama into six cube faces. Then, the cube loss
is computed as the MSE between the predicted and target cube-space noise features:

Lcube = E
[
|ϵθ,cube − ϵcube|22

]
. (9)

It is worth noting that we apply both cube and yaw losses directly in the latent noise space. While a
natural alternative is to compute them in the latent token space—by predicting latents from noise and
comparing with ground-truth latents—our experiments show that noise predictions already encode
rich spatial and structural information due to the coupling of noise and semantics in the diffusion
objective, making them suitable for spatial supervision. In addition, operating in the noise space
aligns the auxiliary losses with the flow-based scheduler, thereby improving training stability.

Hybrid Loss Design. To better balance geometric fidelity and perceptual quality, we adopt a hy-
brid loss design that retains the MSE loss from Flux (Black Forest Labs, 2024) as the principal
objective and augment it with yaw loss and cube loss described above. The overall training loss
Lpano for the panoramic branch is then calculated as:

Lpano = LMSE + λ1Lcube + λ2Lyaw, (10)
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Figure 4: Qualitative comparisons on panorama generation. The representative artifacts are high-
lighted with red boxes. More complete results are provided in appendix D.

where λ1 and λ2 represent the balancing coefficients. This token-level hybrid supervision ensures
that general perceptual quality, rotational robustness and distortion fidelity are jointly preserved
within a unified training framework.

3.4 MORE APPLICATIONS

Benefiting from the strong robustness of our method, we perform feature replacement via inver-
sion (Feng et al., 2025) to enable image inpainting and outpainting without additional training.
In addition, our model natively supports high-resolution generation, with all training conducted at
1024×2048 resolution. The results in Fig. 1 demonstrate the generalization capability of our ap-
proach beyond the primary generation task, with more analysis and results provided in appendix B.

4 EXPERIMENTS

4.1 SETUP

DiT360 is developed on top of Flux (Black Forest Labs, 2024) with LoRA (Hu et al., 2021) incor-
porated into the attention layers. For improved perceptual realism and geometric fidelity, we design

7
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Figure 5: Ablation results of different settings. Artifacts are marked by color-coded bounding boxes:
red for spurious details, yellow for boundary discontinuities, and green for incorrect distortions.

Table 1: Quantitative comparison results on text-to-panorama generation. We highlight the best
result in bold and the second best with underline.

Methods FID↓ FIDclip↓ FIDpole↓ FIDequ↓ FAED↓ IS↑ CS↑ QAquality↑ QAaesthetic↑ BRISQUE↓ NIQE↓
PanFusion 124.87 120.75 182.09 108.12 11.06 1.30 28.35 3.83 3.56 27.38 4.31
MVDiffusion 108.19 117.26 - - 4.39 1.58 34.65 3.97 3.25 44.79 4.91
SMGD 46.72 45.04 65.69 34.84 3.29 1.40 31.14 4.05 3.77 30.35 4.75
PAR 47.72 47.26 76.93 27.39 2.97 1.34 33.85 3.91 3.54 32.26 4.38
WorldGen 67.11 62.97 79.32 33.45 3.29 1.40 34.61 4.30 3.59 32.31 4.82
Matrix-3D 60.91 56.70 77.21 26.73 3.08 1.56 34.59 4.48 3.78 16.37 3.95
LayerPano3D 62.82 60.34 80.37 38.67 2.98 1.50 34.40 4.73 3.93 33.91 3.79
HunyuanWorld 76.75 75.65 106.58 41.75 2.91 1.53 34.73 4.67 3.85 39.12 5.18

Ours 42.88 41.60 50.88 24.77 2.91 1.60 34.68 4.69 4.19 10.25 3.72

a hybrid training strategy that combines high-quality Internet landscape images with large-scale
panoramas from Matterport3D (Chang et al., 2017). To assess the effectiveness of our approach,
we adopt a diverse set of complementary metrics covering realism, diversity, text–image alignment,
and perceptual quality, ensuring a comprehensive assessment of model performance. More detailed
descriptions of the implementation, dataset preprocessing, and metric definitions are in appendix C.

4.2 MAIN RESULTS AND COMPARISONS

In this section, we present our main experimental results and conduct a comprehensive comparison
with representative baselines, including PanFusion (Zhang et al., 2024), MVDiffusion (Tang et al.,
2023), SMGD (Sun et al., 2025), PAR (Wang et al., 2025), WorldGen (Xie, 2025), Matrix-3D (Lu
et al., 2025), LayerPano3D (Yang et al., 2024b), and HunyuanWorld (Team et al., 2025). These
methods span diverse architectures, enabling a comprehensive evaluation of our approach. In ad-
dition to quantitative and qualitative comparisons, we also present a user study in appendix E and
further results in appendix F.

Qualitative Comparisons. We provide qualitative comparisons with baseline methods in Fig. 4
and highlights artifacts with red boxes. SMGD (Sun et al., 2025) and PAR (Wang et al., 2025)
propose alternative paradigms—structural modifications or autoregression—but struggle with detail
fidelity, often producing cluttered or less precise results. Moreover, insufficient data quality leads to
pronounced distortions near the polar regions, resulting in poor perceptual realism. Recent advances
in Diffusion Transformers (DiT) (Peebles & Xie, 2023) have led to their adoption as backbones in
several panorama generation methods. Matrix-3D improves boundary alignment yet struggles with
fine-grained details, suffering from limited geometric fidelity. LayerPano3D (Yang et al., 2024b)
and HunyuanWorld (Team et al., 2025) leverage large amounts of synthetic data, which improves
geometric fidelity to some extent, but results in render-like appearances that compromise percep-
tual realism; additionally, iterative denoising introduces further artifacts. In contrast, our method
generates panoramas with high perceptual realism and geometric fidelity, producing sharp, detail-
preserving images with strong lateral consistency and effectively mitigated distortions.
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Table 2: Ablation study of different model components on text-to-panorama generation. Best results
are in bold, second best are underlined, and “Pi guidance” denotes perspective image guidance.

Methods FID↓ FIDclip↓ FIDpole↓ FIDequ↓ FAED↓ IS↑ CS↑ QAquality↑ QAaesthetic↑ BRISQUE↓ NIQE↓
Flux + LoRA 46.69 45.90 66.03 28.91 3.23 1.51 34.39 4.40 3.97 17.02 3.97
w/ circular padding 43.71 42.36 61.32 27.51 3.04 1.54 34.44 4.51 3.98 13.61 3.82
w/ cube loss 44.40 43.75 60.16 26.30 3.01 1.57 34.62 4.41 3.92 15.68 3.89
w/ yaw loss 44.63 43.90 64.19 26.99 2.98 1.56 34.53 4.37 3.94 15.96 3.92
w/ pi guidance 46.03 44.92 63.72 27.81 2.95 1.48 34.42 4.54 4.02 16.94 3.83

Ours (w/ all) 42.88 41.60 50.88 24.77 2.91 1.60 34.68 4.69 4.19 10.25 3.72

Quantitative Comparisons. We further conduct quantitative evaluations to validate the effective-
ness of our approach, with results reported in Tab. 1. Our method ranks first on nearly all benchmarks
and shows consistently strong performance across most metrics. Although our approach slightly un-
derperforms the top methods on CLIP Score and the quality branch of Q-Align, the gaps are marginal
and largely attributable to the fact that both metrics are designed for perspective images, which may
not fully reflect the quality and fidelity of panoramas. Collectively, the results support our quali-
tative observations and demonstrate the effectiveness and robustness of our approach in generating
high-quality panoramas.

4.3 ABLATION STUDY

To assess the contribution of each component, we conduct ablation studies using a combination of
Flux (Black Forest Labs, 2024) and LoRA (Hu et al., 2021) as the baseline. We ablate four key
modules: position-sensitive circular padding, distortion-sensitive cube loss, rotation-consistent yaw
loss, and perspective image guidance and evaluate their impact in Tab. 2 and Fig. 5.

Circular padding significantly enhances consistency across image boundaries and also improves
overall image quality, reflected in reductions of FID (Heusel et al., 2018) and BRISQUE (Mittal
et al., 2012), because the identical positional encoding on the left and right edges allows the model
to learn correct boundary correspondences.

Cube loss mainly refines fine-grained details and reduces artifacts by applying additional super-
vision on the cubemap representation, enabling the model to learn accurate panoramic distortions.
This results in substantially fewer artifacts in the polar regions and thus largely improved IS and CS
that are more related to the visual semantics.

Yaw loss improves global rotation consistency and structural coherence, explaining its superior
performance on FAED (Oh et al., 2021) where the autoencoders used are pre-trained by panoramic
images. This is because that we supervise the model on rotated tokens to explicitly enforce full-
image rotation consistency.

Perspective image guidance further enhances local details, enriches visual diversity and effectively
mitigates detail-related artifacts, as evidenced in the QAquality and QAaesthetic metrics that are more
sensitive to the visual style.

Overall, the components contribute to the perceptual realism and geometric fidelity, and their com-
bination delivers the strongest performance, validating the effectiveness of our framework.

5 CONCLUSION

In this paper, we proposed DiT360, a framework for geometry-aware and photorealistic panoramic
image generation, built upon a hybrid training strategy that combines limited high-quality panoramic
data with large-scale perspective images to enhance both realism and generalization. To fully lever-
age this hybrid paradigm, we introduce multiple modules across different representation levels,
where image-level regularization refines existing panoramas and leverages perspective data to en-
hance diversity and photorealism, while token-level supervision in the latent space enforces geomet-
ric consistency through rotation- and distortion-aware constraints. Extensive experiments on text-
to-panorama generation, inpainting, and outpainting demonstrate superior image fidelity, boundary
consistency, and visual quality. By bridging perspective and panoramic domains across multiple rep-
resentation levels, DiT360 establishes a strong baseline for future research in 3D scene generation
and large-scale open-world environments.
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APPENDIX

A EFFECT OF SUPERVISION ON POLAR DISTORTIONS

In this section, we further illustrate the effect of cube loss in addressing severe distortions around
the polar regions. Figure 6 compares results generated from the same prompt without and with this
supervision, showing that incorporating cube loss leads to clearer structures and fewer artifacts in
the polar regions.

Figure 6: Qualitative comparison of generated panoramas and their top/bottom cube faces without
(left) and with (right) cube loss. Red boxes mark regions where polar artifacts are significantly
reduced when supervision is applied.

B INPAINTING AND OUTPAINTING

DiT360 demonstrates native inpainting and outpainting capabilities without requiring additional
training, thereby establishing a unified framework for panoramic image generation. Specifically,
inspired by (Feng et al., 2025), we first perform inversion on the input image to obtain its initial
noise representation. At the same time, we extract reference image tokens without positional en-
codings, along with the associated subject mask. During the early denoising steps, we employ a
token replacement strategy. The tokens within the masked or extended regions are substituted with
those from the reference image, while preserving the original positional encodings. This time-step-
adaptive replacement mechanism ensures faithful reproduction of subject details and spatial consis-
tency. It anchors subject identity in the early phase of generation and naturally guides the model
toward coherent content completion. As a result, DiT360 produces consistent and semantically rich
results in both inpainting and outpainting tasks. More results are provided in Fig. 7.

C EXPERIMENT SETTINGS

Implementation Details. We developed DiT360 on top of Flux (Black Forest Labs, 2024), inte-
grating LoRA (Hu et al., 2021) into the attention layers. The model was fine-tuned on 5 H20 GPUs
using AdamW (Loshchilov & Hutter, 2019) with a learning rate of 2× 10−5 for 20 epochs, a batch
size per GPU of 1, and a gradient accumulation of 3. Our experiments revealed that the guidance
scale plays a crucial role in convergence, with 1.0 yielding the most stable training. For inference,
we set the guidance scale to 3.0 and employed 28 sampling steps.
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Figure 7: More results on inpainting and outpainting.

Dataset. We adopt a hybrid training strategy that combines perspective and panoramic data. For
the perspective branch, we curate 40k high-quality landscape images from the Internet, center-crop
them to a 1:1 ratio, and project them onto random panoramic regions. For the panoramic branch,
we follow PanFusion (Zhang et al., 2024) and utilize Matterport3D (Chang et al., 2017), a large-
scale RGB-D dataset comprising 10,800 panoramas across 90 building-scale scenes. To mitigate
distortion, we refine the blurred polar regions and use 10k panoramas for training while reserving
the remainder for validation, consistent with prior work.

Evaluation Metrics. Following prior work, we evaluate our method with a diverse set of comple-
mentary metrics. For realism, we adopt Fréchet Inception Distance (FID) (Heusel et al., 2018) and
its variants, including FIDclip for fair comparison by excluding blurred polar regions, and FIDpole
and FIDequ following SMGD (Sun et al., 2025) to assess polar distortion and perspective projection
quality. Since FID relies on an Inception network trained on perspective images and may not fully
capture panoramic characteristics, we further employ Fréchet Auto-Encoder Distance (FAED) (Oh
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et al., 2021), a variant tailored for panoramas. For diversity, we report Inception Score (IS) (Salimans
et al., 2016), replacing the standard Inception-v3 (Szegedy et al., 2015) with a ResNet pretrained on
Places365 (He et al., 2015; Zhou et al., 2017) to better reflect the scene-centric nature of our data.
For text–image alignment, we compute CLIP Score (CS) (Radford et al., 2021), and for perceptual
quality, we report Q-Align (QA) (Wu et al., 2023a), BRISQUE (Mittal et al., 2012), and NIQE (Mit-
tal et al., 2013), following HunyuanWorld (Team et al., 2025).

D FULL COMPARISION

In this section, we present the complete qualitative comparison of text-to-panorama generation re-
sults. As shown in Fig. 8, our method demonstrates superior perceptual realism, producing sharper
and more visually authentic panoramas. In addition, it achieves higher geometric fidelity by ef-
fectively handling distortions and preserving boundary continuity, whereas baseline methods often
suffer from visible artifacts and structural inconsistencies.

E USER STUDY

Table 3: User study results on text-to-panorama generation.
Methods Text Alignment↑ Boundary Continuity↑ Realism↑ Overall Quality↑
PanFusion 21.7% 19.6% 2.1% 0.3%
Matrix-3D 24.1% 27.5% 23.7% 5.1%
HunyuanWorld 25.9% 18.9% 10.4% 13.7%
Ours 28.3% 34.0% 63.8% 80.9%

To further evaluate human preference, we conducted a user study comparing our method with several
representative baselines (Zhang et al., 2024; Lu et al., 2025; Team et al., 2025). The study focused
on four key aspects: text alignment, boundary continuity, realism, and overall quality. A total of
63 participants were asked to choose their preferred outputs from different methods on the test
set. As shown in Tab. 3, our method received the highest preference across all metrics, clearly
demonstrating its superior ability to generate realistic panoramic images with faithful alignment and
coherent boundaries.

F MORE RESULTS

We present additional results in Figs. 9 and 10 to further illustrate the performance of DiT360 on
panoramic image generation. These examples demonstrate that the model consistently produces
high-quality, semantically coherent, and visually detailed completions across a variety of scenes.

G USE OF LARGE LANGUAGE MODELS

Large Language Models were used for minor grammar and style corrections only. All technical
content, experiments, and conclusions were authored by the paper’s authors.

H LIMITATIONS AND FUTURE WORK

Despite the strong performance of DiT360 on panoramic image generation tasks, several limitations
remain. The model’s effectiveness is constrained by the diversity and scale of available datasets,
leading to suboptimal results in certain scenarios, such as those containing high-resolution human
faces or intricate scene details. Future work will focus on collecting larger and more diverse high-
quality datasets to further enhance the model’s generative capabilities and image resolution. Ad-
ditionally, leveraging synthetic data to augment training samples can facilitate further advances in
panoramic image generation. In the long term, extending the framework to three-dimensional scene
generation and understanding represents a promising research direction.
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Figure 8: The full qualitative comparison on panorama generation. We highlight representative
artifacts with red boxes.
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Figure 9: More results on text-to-panorama generation.
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Figure 10: More results on text-to-panorama generation.
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