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Abstract: Imitation learning from human demonstrations is an effective paradigm1

for robot manipulation, but acquiring large datasets is costly and resource-2

intensive, especially for long-horizon tasks. To address this issue, we propose3

SkillGen, an automated system for generating demonstration datasets from a few4

human demos. SkillGen segments human demos into manipulation skills, adapts5

these skills to new contexts, and stitches them together through free-space tran-6

sit and transfer motion. We also propose a Hybrid Skill Policy (HSP) framework7

for learning skill initiation, control, and termination components from SkillGen8

datasets, enabling skills to be sequenced using motion planning at test-time. We9

demonstrate that SkillGen greatly improves data generation and policy learning10

performance over a state-of-the-art data generation framework, resulting in the11

capability to produce data for large scene variations, including clutter, and agents12

that are on average 24% more successful. We demonstrate the efficacy of Skill-13

Gen by generating over 24K demonstrations across 18 task variants in simulation14

from just 60 human demonstrations, and training proficient, often near-perfect,15

HSP agents. Finally, we apply SkillGen to 3 real-world manipulation tasks and16

also demonstrate zero-shot sim-to-real transfer on a long-horizon assembly task.17

Videos, and more at https://skillgen.github.io.18
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1 Introduction20

Imitation learning from human demonstrations is an effective approach for training robots to perform21

different tasks [1, 2]. One popular technique is to have humans teleoperate robot arms to collect22

datasets for tasks of interest and then subsequently use the data to train robots to perform these tasks23

autonomously [3,4]. Recent efforts have demonstrated that large, diverse datasets collected by teams24

of human demonstrators result in impressive and robust robot performance, and even allow the robots25

to generalize to different objects and tasks [2, 5–8]. However, collecting large datasets in this way26

is costly and resource-intensive, often requiring multiple human operators, robots, and months of27

human effort. Acquiring datasets for challenging long-horizon tasks that require sequencing several28

manipulation behaviors together is even more difficult and costly [9].29

The need for large datasets has motivated the development of data generation systems [10–12] that30

seek to produce task demonstrations with minimal human involvement. For example, some systems31

combine teleoperation and planning within the same demonstration, partially automating the demon-32

strating process, which ultimately allows a human to teleoperate several robots in parallel [13]. Al-33

ternatively, some systems further reduce human involvement through demonstration adaptation. For34

example, MimicGen [11], uses a small number of human task demonstrations to automatically gen-35

erate large datasets by splitting the source human data into object-centric sequences of end-effector36

targets, and then selectively transforming and sequencing such segments in new settings. However,37

this and other naive strategies for composing human segments together can produce lower-quality38

demonstrations with unintended collisions in the environment, and have heterogeneous motions that39

are difficult for policy learning algorithms to learn from, especially in real-world settings.40
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Figure 1: SkillGen Overview. SkillGen trains proficient agents with minimal human effort. (left) First, a
human teleoperator first collects ⇠ 3 demonstrations of the task and annotates the start and end of the skill
segments, where each object interaction happens. (middle) Then, SkillGen automatically adapts these local
skill demonstrations to new scenes and connects them through motion planning to amplify the number of
successful demonstrations. (right) These demonstrations are used to train Hybrid Skill Policies (HSP), agents
that alternate between closed-loop reactive skills and coarse transit motions carried out by motion planning.

We also seek to minimize the number of required human demonstrations but improve the flexibility41

and efficacy of adapted demonstrations. To that end, we first observe that control difficulty is often42

not uniformly spread across a task. Specifically, in order to solve many manipulation tasks, the robot43

must first move itself in free space in order to reach a state where it can manipulate the world through44

contact. For example, consider the cleanup task in Fig. 1. The robot must move through free space45

before picking the butter and also before inserting the butter into the trash can. This kind of free46

space motion can be easy for planning systems, and greatly reduce the burden on policy learning.47

From this observation, we propose SkillGen, a system that leverages the notion of a manipulation48

skill to isolate demonstration adaptation to just contact-rich segments. At data-generation time,49

SkillGen synthesizes candidate demonstrations by executing several adapted skill segments in se-50

quence, connected through motion planning. At test-time, SkillGen not only learns control policies51

for these skills but also initiation and termination conditions, enabling them to be sequenced using52

planning in a similar manner but without any requirements regarding state observability.53

We make the following contributions:54

• We introduce SkillGen, an automated system for generating demonstration datasets through de-55

composing tasks into motion segments and skill segments that are adapted from a few human demos.56

• We propose a Hybrid Skill Policy (HSP) framework that learns skill initiation, control, and termi-57

nation components, enabling skills to combined in sequence at at test time using motion planning.58

• We show that SkillGen improves data generation and policy learning performance over an existing59

state-of-the-art data generation framework. Specifically, SkillGen is robust to large scene variation,60

such as clutter, and produces policies that on average are 24% more successful than MimicGen [11].61

• We demonstrate the efficacy of SkillGen by generating 24K+ demonstrations from 60 human62

demonstrations across 18 task variants in simulation and training proficient, often near-perfect, high-63

performing HSP agents. Finally, we successfully apply SkillGen to 3 real-world manipulation tasks,64

and also demonstrate zero-shot sim-to-real transfer on a long-horizon assembly task.65

2 Related Work66

Data Collection for Robotics. Robot teleoperation [3, 4, 14–23] is a popular method for collecting67

task demonstrations – here, humans use a teleoperation device to control a robot and guide it through68

tasks. The robot sensor streams and control actions during operation are logged to a dataset. Sev-69

eral efforts [2, 5–8] have scaled this paradigm up by using a large number of human operators and70

robot arms over extended periods of time (e.g. months). Some works have also allowed for robot-71

free data collection with specialized hardware [24, 25], but human effort is still required for data72

collection. In contrast, SkillGen automatically generates data with just a handful of human demon-73

strations. Other works seek to generate datasets automatically using pre-programmed demonstrators74

in simulation [10, 26–31], but scaling these approaches to a larger variety of tasks can be difficult.75

Imitation Learning and Data Augmentation. Behavioral Cloning (BC) [32] is a typical method76

for learning policies offline from demonstrations, and has been widely used in robot manipulation [3,77

16, 27, 33–45]. Some works leverage offline data augmentation to increase the size of the training78

dataset for learning policies [1, 46–57]. Instead, SkillGen collects new datasets online.79
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Imitation Learning with Hybrid Controllers. SayCan [6] composes skills learned from demon-80

strations using a language model and learns when to begin and end each skill However, each skill81

starts when the previous one ends – in contrast, our learned skills are local manipulation behaviors82

and transit is carried out via motion planning. Other works [58–60] learn “keyframe” pose actions83

from demonstrations and execute them using motion planning, but they lack closed-loop control us-84

ing learned policies. Some imitation learning methods decompose learning into coarse-grained and85

fine-grained motions [13,61–64], but most use naive linear interpolation to carry out coarse-grained86

motions [61, 62], which is susceptible to collisions. Others [63–65] learn open-loop segments for87

fine-grained motions, instead of closed-loop skills like our methods. Wang et al. [66] learn paramet-88

ric skills using Gaussian Processes and deploy them in a Task and Motion Planning (TAMP) [67]89

system. In HITL-TAMP [13], a TAMP planner decides when to employ an agent trained with im-90

itation learning for skill segments; however, it is TAMP-gated, meaning that skill start and end91

conditions are engineering into the TAMP model instead of learned.92

MimicGen. MimicGen [11] is a data generation system that takes a small source set of human93

demonstrations on a task and generates larger sets of demonstrations. It builds on replay-based im-94

itation learning methods [65, 68–74], which address new task instances by adapting and replaying95

motion from existing human data. MimicGen segments the source demonstrations into a contiguous96

set of object-centric subtask segments. Then, given a new task instance, MimicGen transforms and97

replays open-loop subtask segments from the source data one-by-one to generate a new demonstra-98

tion. However, because MimicGen naively stitches source demonstrations with linear interpolation,99

it can produce lower quality demonstrations that collide with the environment, and have heteroge-100

neous motions difficult for policy learning. By instead adopting a skill-based framework, SkillGen101

avoids these pitfalls at data generation time and produces more robust behavior at deployment time.102

3 Prerequisites103

Imitation Learning. Each robot manipulation task is modeled as a Partially Observable104

Markov Decision Process (POMDP). We are given a dataset of N demonstrations D =105

{(si0, o
i
0, a

i
0, s

i
1, o

i
1, a

i
1, ..., s

i
Hi

)}Ni=1 consisting of states s 2 S , observations o 2 O, and actions106

a 2 A. Each initial state s
i
0 ⇠ D is sampled from the initial state distribution D ✓ S . We107

aim to learn a robot control policy ⇡ : O ! A that maps observation space O to a distribu-108

tion over action space A. Behavioral Cloning (BC) [32] is a common method to obtain such a109

policy – it uses optimization to find a policy that maximizes the likelihood of producing the data110

argmax✓ E(s,o,a)⇠D[log ⇡✓(a | o)]. In this work, we train policies via BC and combine them with111

various mechanisms to exchange control between a learned policy and a motion planner.112

Assumptions. Similar to prior work [11], we make the following assumptions. (A1): The policy113

action space A consists of continuous pose commands for an end effector controller along with114

a discrete gripper command. This allows us to treat the actions in a human demonstration as a115

sequence of target poses for a task-space end-effector controller. (A2): The task involves a set116

of manipulable objects {O1, ..., Ok}. (A3): During data collection, the pose of an object can be117

observed or estimated prior to the robot making contact with that object.118

4 Method119

We seek to learn visuomotor policies from demonstrations with minimal human effort by adapting a120

small number of human demonstrations to a large set of system states to facilitate automated demon-121

stration generation. However, at both demonstration and deployment time, control difficulty is not122

uniformly spread across an episode. Specifically, in order to solve many manipulation tasks, the123

robot must first move itself in free space in order to reach a state where it can manipulate the world124

through contact. Free space motion can easily be carried out via motion planning and greatly reduce125

the policy learning burden. Thus, we propose decomposing tasks into motion and skill segments in126

order to isolate both demonstration generation and learning to just the skill segments, which will127

improve the quality of demonstrations and learned policies. We accomplish this by learning local128

manipulation skills that we combine in sequence using motion planning (Section 4.1). We show how129

adopting a skill-based framework allows for more focused demonstration replay (Section 4.4) and130

ultimately improved policy performance during deployment (Section 4.6).131

3



q0 !!(#) %!(#)

&!(#)

Skill ψ" Skill ψ#

&!(#)!!(#) %!(#)

Figure 2: HSP Deployment. At test-time SkillGen, executes several learned skills in sequence, using motion
planning to connect the termination state of the last skill with an initiation state of the next skill. Each skill
consists of the initiation condition I✓ , the closed-loop controller ⇡✓ , and the termination condition T✓ .

4.1 Skills Framework132

Building off of the options [75] formalism from reinforcement learning, we define a skill  =133

hO, I,⇡, T i as a tuple consisting of an object to be manipulated O, initiation condition I, policy134

⇡, and a termination condition T . The initiation condition I defines a set of states where control135

using policy ⇡ can begin. The termination condition T defines a set of terminal states for policy136

⇡. We will use this skill abstraction to model all three phases of SkillGen, namely the initial tele-137

operation demonstrations (Section 4.3), the automated demonstration adaptation and amplification138

(Section 4.4), and the system execution at deployment time (Section 4.6).139

4.2 Transit and Transfer Motion140

Most tasks require performing multiple skills in sequence to complete them, such as the task in141

Fig. 2, which involves a pick skill to grasp the coffee pod and an insert skill load the pod in the142

coffee machine. In order to first reach the pick skill and then move the pod to the pod holder for143

the insert skill, the robot must perform two kinds of classical free-space motion [76,77]. The first is144

transit motion, where the robot moves by itself without modifying the world. The second is transfer145

motion, where the robot is grasping an object approximately rigidly and transports the object as it146

moves. Thus, at both demonstration generation (Section 4.4) and system deployment (Section 4.6)147

time, SkillGen alternates between transit or transfer motion and manipulation skills.148

SkillGen is a bilevel hierarchy where the skill initiation and termination induce the start and end149

robot configurations (q and q⇤) for the motion segments. Namely, the termination condition Ti from150

the prior skill  i governs the robot configuration q prior to the motion, and the initiation condition151

Ii+1 of the next skill  i+1 defines the set of target end-effector poses TE
W 2 Ii+1 ✓ SE(3), where E152

is the end-effector frame and W is the world frame. To generate these motions, we first convert task-153

space pose T
E
W to joint-space configuration q⇤ using inverse kinematics and then plan and execute a154

joint-space path from current configuration q to q⇤ with a motion planner.155

4.3 Source Demonstrations156

We assume a small source dataset of human demonstrations Dsrc collected on the task and our aim157

is to automatically generate a large dataset D on either the same task or a task variant. We start158

by annotating each trajectory in the source dataset ⌧ 2 Dsrc with the start and end of each skill.159

This decomposes the demonstration into an alternating sequence of motion and skill trajectories160

⌧ = (⌧1m, ⌧1s, ..., ⌧Nm, ⌧Ns), where ⌧im and ⌧is denote motion and skill segments respectively.161

For source demonstrations provided by conventional teleoperation, these annotations can easily be162

annotated by a human. In our experiments, we choose to use demonstrations from the HITL-TAMP163

system [13], where the human only demonstrates local skill segments of each task, and the rest is164

handled by a TAMP system. In this case, annotations can be extracted automatically – each ⌧im and165

⌧is is a TAMP and human segment respectively. Within each skill segment ⌧is, each end-effector166

pose action T
At

W (Sec. 3, A1) is stored in the frame of skill object Oi as TAt

Oi
 (TOi

W )�1
T

At

W , where167

T
Oi

W is the pose of object Oi observed prior to the skill. The first robot end effector pose in the skill168

demonstration T
E0
Oi
 ⌧is[0] is the initiation state and that will be the target end-effector pose for169
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transit and transfer motion planning. The last pose in the demonstration T
EK

Oi
implicitly defines the170

termination state, which will be learned through binary classification.171

4.4 Demonstration Generation172

The demonstrations D are generated through an automated trial-and-error process. Given a new173

initial state, SkillGen adapts existing skill segments to the new initial state and executes them in174

sequence with motion segments to generate a new demonstration. First, a reference skill segment ⌧is175

is sampled. Next, the corresponding initiation state T
E0
Oi

is used along with the pose T
O0

i

W of object176

Oi in the new scene to obtain an end-effector pose for where the new skill segment should start,177

T
E0

0
W  T

O0
i

W T
E0
Oi

. Next, the reference skill segment, expressed as a sequence of end-effector pose178

actions, ⌧is = (TA0
Oi

, ..., T
AK

Oi
) is transformed to ⌧ 0is = (T

A0
0

W , ..., T
A0

K

W ) where TA0
t

W  T
O0

i

W T
At

Oi
. This179

transformation preserves the new end-effector pose actions with respect to the object frame [11].180

The new skill segment ⌧ 0is is executed by the end-effector controller. The steps above repeat for181

each skill, and then SkillGen checks for task success and only keeps the demonstration if it was182

successful. Seed Appendix O for pseudocode displaying the demonstration generation process.183

4.5 Initiation Augmentation184

At test time, learned skills trained on the generated data will be responsible for predicting both185

initiation targets for the motion planner and skill segments by employing a closed-loop agent that186

decides when to terminate. However, small differences in target pose predictions as well as motion187

plan tracking errors can cause learned policies to start out-of-distribution, thus reducing their ac-188

curacy. To mitigate such issues, SkillGen optionally adds noise to initiation states TE0
W , producing189

new initiation states T
E0

0
W , during data generation to broaden the support of the initiation set. To190

account for changing the initiation state, we consequently plan a recovery segment at the start of ⌧ 0is,191

consisting of a sequence of pose actions that moves from new T
E0

0
W pose to the original pose T

E0
W .192

This ensures that the new initiation state T
E0

0
W is connected to the demonstration segment ⌧ 0is when193

training closed-loop skill policies. See Appendix G for full details.194

4.6 Policy Learning195

Hybrid Skill Policy (HSP): We learn parameterized skills  ✓ = hO, I✓,⇡✓, T✓i using the generated196

datasets (parameterized by ✓). The initiation condition I✓ : O!SE(3) is trained to predict initiation197

states T
E0
W from the last observation o on the prior skill. The policy ⇡✓ : O!A is trained on198

direct observation and action pairs ho, ai with BC (see Sec. 5). The termination condition T✓ :199

O!{0, 1} is a classifier that predicts whether the skill is at a termination state based on the most200

recent observation o. During task deployment (Fig. 2), for each skill  ✓ 2  in a given sequence of201

skills  , SkillGen predicts the initiation state T
E0

0
W  I✓(o), plans and executes a path to it using a202

motion planner, and rolls out the learned policy by predicting actions a ⇡✓(o) until T✓(o) predicts203

policy termination. Then, this process repeats with the next skill (pseudocode in Appendix O).204

HSP Variants: We consider two approaches for learning initiation conditions I✓: HSP-Reg and205

HSP-Class. HSP-Reg formulates learning as a regression problem and directly predicts an initia-206

tion pose from the last observation. HSP-Class frames learning as classification problem over the207

initiation states in the source dataset Dsrc, where the classifier predicts which source demonstration208

spawned the generated demonstration. Once classified, HSP-Class adapts the predicted initiation209

state to the current state using the pose adaptation procedure previously described in Section 4.4.210

However, recall that this requires the current pose T
O0

W of object O, and thus HSP-Class assumes211

that object poses are known or can be estimated at the start of each skill segment. Ultimately,212

HSP-Class requires an additional observability assumption over HSP-Reg; however, this enables213

HSP-Class to perform discrete prediction over known pose candidates instead of continuous predic-214

tion over SE(3). Finally, we also consider HSP-TAMP, which deploys just the learned policies ⇡✓215

within HITL-TAMP [13], without the learned initiation and termination conditions.216
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(a) Square (b) Threading (c) Piece Assembly

(d) Coffee (e) Coffee Prep (f) Nut Assembly

(g) Pick-Place-Milk (h) Cleanup-Butter-Trash

(i) Coffee (j) Nut-Assembly-Real

Figure 3: Tasks. We deploy SkillGen on 6 simulation tasks (18 task variants, see Appendix J) (a-f) and 4 real-
world tasks (g-j). These tasks involve fine-grained insertion (a-d), composing several manipulation behaviors
together (e, f), real-world data generation and training (g-i) and zero-shot sim-to-real policy transfer (j).

5 Experiment Setup217

Tasks and Task Variants. We applied SkillGen to a broad range of tasks (see Fig. 3, full details in218

Appendix J) and task variants. Each task has a nominal reset distribution (D0), and broader, more219

challenging reset distributions (D1, D2) [11]. All simulation tasks are implemented in robosuite [78]220

using its MuJoCo backend [79]. We experiment on simulated Fine-Grained Tasks (Square, Thread-221

ing, Coffee, Piece Assembly) that require insertion, pulling, and pushing as well as Long-Horizon222

Tasks (Nut Assembly, Coffee Prep) that require chaining multiple behaviors together. Additionally,223

we experiment on Real-Robot Tasks (Pick-Place-Milk, Cleanup-Butter-Trash, Coffee), and Sim-224

to-Real Tasks (Nut-Assembly-Sim, Nut-Assembly-Real) to investigate SkillGen’s propensity for225

zero-shot sim-to-real policy deployment.226

Data Generation and Imitation Learning. For most of the experiments, a source dataset of 10227

demonstrations was collected for each task on the D0 variant by a single human operator using the228

HITL-TAMP teleoperation system [13]. SkillGen was used to generate 1000 successful demon-229

strations for each task variant (D0, D1, D2) (see Appendix J for details), using each task’s source230

dataset. Motion augmentation (Sec. 4) is only used to generate data to train HSC-Reg agents; HSC-231

TAMP and HSC-Class agents are trained on datasets generated without motion augmentation. See232

Appendix H for full policy learning details. The agent control policies used in the hybrid control233

policies (⇡✓) were trained using BC with an RNN architecture [1] with the same hyperparameters234

from MimicGen. Policy performance is reported as the maximum success rate across all policy235

evaluations as in Mandlekar et al. [1]. All agents are trained with front-view and wrist-view RGB236

observations along with robot proprioception. Apart from the new task variants, we report the base-237

line data generation and agent performance statistics present in the MimicGen paper [11].238

Motion Planning. In both the simulation and real-world tasks, we use TRAC-IK [80] for inverse239

kinematics, RRT-Connect [81] for joint-space motion planning, and Operational-Space Control240

(OSC) for task-space control [82]. In simulation, we check collisions during planning using the241

ground-truth obstacle collision geometries. In the real world, because collision geometries are not242

known, we use point-cloud-based collision checking using the segmented point cloud.243

6 Experiments244

6.1 SkillGen Features245

SkillGen improves data generation rates over MimicGen substantially. MimicGen uses replay-246

based data generation for the entire trajectory, while SkillGen only uses replay for short skill seg-247

ments, deferring larger transit motions to a motion planner. This results in substantially higher data248

generation success rates compared to MimicGen (average 75.4% vs. 40.7%, see Appendix F), espe-249

cially when the reset distribution is large compared to the source demonstrations. Some compelling250

examples include Square D2 (87.7% vs. 31.8%), Threading D2 (74.3% vs. 21.6%), Three Piece251

Assembly D2 (69.3% vs. 31.3%), and Coffee D2 (70.0% vs. 27.7%).252

SkillGen data collection is robust to large object rearrangements and clutter. In Coffee Prep253

D2, the drawer containing the coffee pod and the mug are on opposite ends of the table compared to254

D0 (source demos), and MimicGen is unable to collect any demonstrations while SkillGen achieves255

59.9% data generation success. Additionally, in the Clutter variants of Square and Coffee (Ap-256
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Task Variant Src MG HSP-T HSP-C HSP-R
Square D0 50.0 90.7 100.0 100.0 94.0
Square D1 - 73.3 100.0 98.0 62.0
Square D2 - 49.3 94.0 94.0 52.0

Threading D0 64.0 98.0 100.0 92.0 94.0
Threading D1 - 60.7 72.0 66.0 60.0
Threading D2 - 38.0 62.0 50.0 62.0

Piece Assembly D0 28.0 82.0 96.0 80.0 86.0
Piece Assembly D1 - 62.7 88.0 78.0 78.0
Piece Assembly D2 - 13.3 84.0 74.0 50.0

Coffee D0 100.0 100.0 100.0 100.0 100.0
Coffee D1 - 90.7 100.0 100.0 100.0
Coffee D2 - 77.3 94.0 100.0 98.0

Nut Assembly D0 22.0 60.0 100.0 92.0 94.0
Nut Assembly D1 - 16.0 72.0 78.0 20.0
Nut Assembly D2 - 12.0 54.0 50.0 24.0

Coffee Prep D0 2.0 97.3 92.0 92.0 84.0
Coffee Prep D1 - 42.0 54.0 74.0 64.0
Coffee Prep D2 - 0.0 80.0 74.0 84.0

Average - 59.1 85.7 82.9 72.6

Task MimicGen [11] SkillGen
Milk-Bin - 95.0
Butter-Trash - 95.0
Coffee 14.0 65.0

Nut-Assembly [Sim] 72.0 92.0
Square-Assembly 5.0 35.0
Nut-Assembly 0.0 35.0

Figure 4: (left) Agent Performance on SkillGen Datasets. Success rates of agents trained on source demon-
strations (with HSP-TAMP), MimicGen [11] data (with BC-RNN [1]), and SkillGen data (with all HSP vari-
ants). SkillGen data greatly improves agent performance on D0 compared to the source data, and SkillGen
agents substantially outperform MimicGen agents, especially on more challenging task variants. (upper right)
Training Data Comparison. HSC-TAMP agent performance is comparable on 200 SkillGen demos and 200
human demos, despite SkillGen using just 10 human demos for generation. Generating more SkillGen demon-
strations can result in significant performance improvement (also see Appendix E). (lower right) Real-World
Manipulation Results. HSC-Class agents trained on SkillGen data generated in the real world are proficient,
and substantially outperform using MimicGen data. They can also be transferred zero-shot from sim-to-real.

pendix D), a large object is placed randomly on the table. SkillGen achieves data generation rates257

from 49.0% to 72.0% while MimicGen only achieves 4.0% to 16.5%.258

SkillGen greatly improves agent performance on the source task. Comparing HSP-TAMP agents259

trained on the source data vs. on SkillGen data on D0, we see dramatic improvement (Fig. 4) – some260

examples include Three Piece Assembly (28% to 96%) and Nut Assembly (22% to 100%).261

SkillGen produces more proficient agents through its use of hybrid control. Averaged across262

all tasks, HSP-TAMP, HSP-Class, and HSP-Reg achieve 85.7%, 82.9%, and 72.6% success rates263

respectively, compared to 59.1% for agents trained on MimicGen data (Fig. 4). Furthermore, HSP-264

Class and HSP-Reg make fewer assumptions than HSP-TAMP (see Sec. 4) while retaining the ben-265

efits of hybrid control. On Nut Assembly D1 and D2, HSP agents trained on SkillGen data outper-266

form agents trained on MimicGen data by up to 62%, and SkillGen is able to train proficient agents267

(74% to 84%) on Coffee Prep D2, while MimicGen fails to generate data for this variant (Fig. 4).268

SkillGen effectively adapts demonstrations across robots. We use source demonstrations col-269

lected on the Panda arm and generate demonstrations for the Sawyer arm. As shown in Appendix N,270

data generation rates and policy performances are much higher for SkillGen than MimicGen.271

6.2 SkillGen Analysis272

Can agent performance on SkillGen data match agent performance on an equal amount of273

human demonstrations? We collected 200 demonstrations with the HITL-TAMP system [13] on274

each of 4 tasks and compared HSP-TAMP agent performance (the same method from HITL-TAMP)275

on the 200 human demos vs. 200 SkillGen demos (Fig. 4) generated from just 10 HITL-TAMP276

demos (which took less than 4 minutes per task to collect, compared to 37-71 minutes). Performance277

is comparable across all 4 tasks – 10% is the largest deviation, showing that SkillGen generated data278

is as effective as an equal number of human demos but only requires a small fraction of the effort.279

Does agent performance improve by generating more demonstrations? We compared the per-280

formance of the different HSP algorithms on 200, 1000, and 5000 SkillGen demonstrations across281

the same 4 tasks from above – the results are presented in Fig. 4 (HSP-TAMP), and Appendix E282

(HSP-Class, HSP-Reg). All tasks and methods receive a significant increase from 200 to 1000 de-283

mos, and some tasks benefit strongly from 1000 to 5000 demos, notably Square D2 (52% to 72%284

on HSP-Reg) and Threading D1 (60% to 76% on HSP-Reg).285
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How does performance compare between the different hybrid control learning algorithms?286

Average task performance between HSP-TAMP and HSP-Class is similar (85.7% vs. 82.9%), and287

only slightly lower for HSP-Reg (72.2%) despite HSP-Class and HSP-Reg making much fewer288

assumptions (Fig. 4). HSP-Reg results could improve with more SkillGen data (Appendix E).289

6.3 Real World Evaluation290

We first demonstrate that SkillGen data generation can be deployed in the real-world and the data291

enables proficient policies to be learned. Next, we transfer agents trained in simulation with SkillGen292

zero-shot to the real-world on a long-horizon task, demonstrating that combining SkillGen with293

more sophisticated sim-to-real approaches is a promising method for robots to acquire real-world294

manipulation capabilities with minimal human effort. Results are summarized in Fig. 4 (lower right).295

Setup. We use a Panda robot arm, a front-view RealSense D415 camera, and a wrist-view RealSense296

D435 camera. Pose estimates are obtained using FoundationPose [83]. Agents use proprioception297

and 120x160 camera images (except for sim-to-real agents) and are evaluated over 20 rollouts.298

SkillGen Data Generation and Policy Learning in the Real World. We collect 3 source demon-299

strations with HITL-TAMP teleoperation on each of our tasks (Pick-Place-Milk, Cleanup-Butter-300

Trash, and Coffee), use SkillGen to generate 100 demonstrations, and train HSP-Class agents on301

the generated data (Appendix J has full details). These agents obtain near-perfect success rates302

on the Pick-Place-Milk and Cleanup-Butter-Trash tasks despite large amounts of spatial variation.303

HSP-Class also obtains 65% on the challenging Coffee task, while the BC-RNN agent trained on304

MimicGen data from [11] could only obtain 14%. This result is comparable with the 74% reported305

in HITL-TAMP [13] for an HSP-TAMP agent trained with 100 HITL-TAMP demos. We note the306

lower human effort (3 human demos vs. 100), that our Coffee task is more challenging (requires307

agent to learn to grasp the pod, unlike [13]) and our HSP-Class agent makes less assumptions.308

Zero-Shot Sim-to-Real Deployment of SkillGen Policies. We designed a simulation task (Nut-309

Assembly [Sim]) that mirrors our real-world “Nut Assembly” task, where the robot must grasp a310

square and round nut and fit them onto corresponding square and round pegs. We train agents311

in simulation by collecting 1 source demo (with HITL-TAMP for SkillGen and with conventional312

teleoperation for MimicGen), generate 1000 demonstrations with SkillGen and MimicGen, and sub-313

sequently train an HSP-Class agent and a MimicGen (BC-RNN) agent (see Fig. 4, lower right). This314

task is challenging even in simulation, as the trained simulation agents are imperfect (HSP-Class:315

92%, MimicGen: 72%). When deployed on the real-world task, the MimicGen agent manages to316

solve the first insertion task (Square-Assembly) with 5% success rate, but never solves the full task317

while the HSP-Class agent is able to achieve 35% success rate. This shows the value of SkillGen’s318

hybrid control paradigm in aiding sim-to-real transfer through decomposing tasks into a sequence319

of local behaviors that are more likely to transfer [84]. More details and discussion in Appendix K.320

7 Limitations321

SkillGen requires knowledge of a fixed sequence of skills that can complete a task. It assumes that322

object poses can be observed at the start of each skill segment during data generation. SkillGen was323

demonstrated on quasi-static tasks involving rigid objects. SkillGen produces the best results when324

using source human demonstrations collected with the HITL-TAMP system – improving results325

with conventional teleoperation is left for future work. In the sim-to-real experiment, the agents had326

limited observability. Namely, agents only observe changes in proprioception, as no pose tracking327

or visual observations are used during execution. See Appendix C for full discussion.328

8 Conclusion329

We introduced SkillGen, a data generation system that synthesizes large datasets by adapting select330

skill segments from a handful of human demonstrations, and a Hybrid Skill Policy (HSP) learning331

framework to learn from the generated datasets by enabling closed-loop skills to be sequenced using332

a motion planner. We showed that SkillGen improves over a state-of-the-art data generation sys-333

tem, in both data generation capability and the ability to learn proficient agents from the data. We334

demonstrated SkillGen on real-world manipulation tasks, including zero-shot sim-to-real transfer.335
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