
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

H3GNNS: HARMONIZING HETEROPHILY AND HO-
MOPHILY IN GNNS VIA SELF-SUPERVISED NODE EN-
CODING

Anonymous authors
Paper under double-blind review

ABSTRACT

Graph Neural Networks (GNNs) have made significant advances in representa-
tion learning on various types of graph-structured data. However, GNNs struggle
to simultaneously model heterophily and homophily, a challenge that is ampli-
fied under self-supervised learning (SSL) where no labels are available to guide
the training process. This paper presents H3GNNs , an end-to-end graph SSL
framework designed to harmonize heterophily and homophily through two com-
plementary innovative perspectives: (i) Representation Harmonization via Joint
Structural Node Encoding. Nodes are embedded into a unified latent space
that retains both node specificity and graph structural awareness for harmonizing
heterophily and homophily. Node specificity is learned via linear and non-linear
node feature projections. Graph structural awareness is learned via a proposed
Weighted Graph Convolutional Network (WGCN). A self-attention module enables
the model learning-to-adapt to varying levels of patterns. (ii) Objective Harmo-
nization via Predictive Architecture with Node-Difficulty–Aware Masking. A
teacher network processes the full graph. A student network receives a partially
masked graph. The student is trained end-to-end, while the teacher is an exponential
moving average of the student. The proxy task is to train the student to predict the
teacher’s embeddings for all nodes (masked and unmasked). To keep the objective
informative across the graph, two masking strategies that guide selection toward
currently hard nodes while retaining exploration are proposed. Theoretical un-
derpinnings of H3GNNs are also analyzed in detail. Comprehensive evaluations
on benchmarks demonstrate that H3GNNs achieves state-of-the-art performance
on heterophilic graphs (e.g., +7.1% on Texas, +9.6% on Roman-Empire over
the prior art) while matching SOTA on homophilic graphs, and delivering strong
computational efficiency. Code will be released upon acceptance.

1 INTRODUCTION

Representation learning on graph-structured data has emerged as a vibrant research area, serving as a
cornerstone for a wide range of graph learning tasks, including node classification, link prediction,
and graph classification (Kipf & Welling, 2016a; Gasteiger et al., 2019; Veličković et al., 2017; Wu
et al., 2019). These tasks are critical in diverse real-world domains such as recommendation systems,
molecular biology, and transportation (Tang et al., 2020; Sankar et al., 2021; Fout et al., 2017;
Wu et al., 2022; Zhang et al., 2024). Graph Neural Networks (GNNs) have become the dominant
paradigm for learning expressive node and graph representations (Hamilton, 2020; Gasteiger et al.,
2018; Veličković et al., 2017).

Traditional GNNs are typically trained in a semi-supervised manner and have demonstrated impressive
performance across numerous benchmarks (Xu et al., 2018; Li et al., 2021; Sun et al., 2021; Xue et al.,
2023a; 2024). However, these semi-supervised methods heavily rely on the availability of labeled
data, making them vulnerable to significant performance degradation when labeled data is scarce
(Xue et al., 2023b). To overcome the limitations of label scarcity, Self-Supervised Learning (SSL)
has emerged as a promising alternative. Various graph SSL methods (Velickovic et al., 2019; Zhu
et al., 2020b; Hou et al., 2022; Chen et al., 2022; Xiao et al., 2024; Tang et al., 2022; Xiao et al., 2022;
Yuan et al., 2023) have demonstrated strong performance under low-label regimes. However, current

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

Input Graph

Masked
Input Graph

Joint Structural Node Encoding

K-Hop
WGCN

Linear

MLP

1-Hop
WGCN

Teacher Network
(Exponential Moving Average

of the Student Network)

Student Network
(End-to-End Trained from Scratch)

A Transformer
Block

Node-Difficulty-Driven Dynamic Masking
(after warm-up with random masking)

4-token

Hierarchical
Fusion

StopGrad

Loss: All-Node
Feature

Prediction

retain node specificity

retain structure awareness

Figure 1: Illustration of our proposed H3GNNs . See text for details. Figure 2: T-SNE on Wisconsin.

SSL paradigms—whether contrastive or generative—suffer from their own drawbacks. Contrastive
methods often rely on complex training pipelines and carefully crafted data augmentations, while
generative methods are prone to reconstruction-space mismatches. A more comprehensive review of
related work is provided in Appendix A.

More importantly, real-world graphs exhibit complex mixed structural patterns, where homophily
(the tendency of connected nodes to share similar labels) and heterophily (the presence of dissimilar
labels among connected nodes) coexist at both local and global scales. We provide a visualization
in Fig. 2. And intensities are varying across datasets. For example, the Roman-Empire dataset
exhibits a homophily ratio of only 0.05, while Cora shows a ratio of 0.81 (see Table 1 for details).
Many existing graph SSL models still perform poorly on heterophilic graphs, undermining their
generalization capabilities. This is particularly troubling given SSL’s fundamental reliance on raw
graph structure and node features without explicit label guidance.

Recent efforts have attempted to address this challenge. Methods such as MUSE (Yuan et al., 2023),
GREET (Liu et al., 2022), and GraphACL (Xiao et al., 2024) have shown promise in improving SSL
performance on heterophilic graphs. However, achieving robust performance across both homophilic
and heterophilic patterns remains elusive. This persistent challenge stems from a deeper issue: the
inability of current graph SSL frameworks to harmonize the mixed structural patterns.

We propose that harmonizing homophily and heterophily within a single graph SSL framework is
key. Specifically, a unified model should achieve both objective harmonization and representation
harmonization when handling mixed structural patterns. Regarding objective harmonization, select-
ing an appropriate proxy task is crucial. Contrastive approaches in SSL rely on relative objectives
(e.g., InfoNCE) without a stable global reference, making it unclear which pattern should dominate in
mixed graphs. This region-dependent ambiguity prevents convergence to a unified latent space; Gen-
erative methods that force raw feature reconstruction yield contradictory signals when neighbors have
dissimilar attributes in heterophilic settings. In terms of representation harmonization, homophilic
regions require smoothness to capture similarity, while heterophilic regions demand distinctiveness
to preserve differences. Existing methods cannot adaptively balance these needs, and thus are biased
toward one structural pattern.

To this end, we present H3GNNs (Fig. 1), an end-to-end graph SSL framework that achieves both
objective and representation harmonization:

• Objective Harmonization via Predictive Architecture with Dynamic Masking: We exploit a
Teacher-Student framework which provides stable, holistic guidance in Graph SSL. The teacher,
with a full view of the unmasked graph, produces holistic node representations as node-encoding
anchors, capturing both homophilic and heterophilic relations. The student is then guided to predict
this stable target. Crucially, the teacher’s EMA-updated parameters ensure the learning spaces are
aligned and prevent the student from being misled by noisy, oscillating updates, which is critical
for adapting to complex structures. Due to the interconnected nature of graphs, we compute the

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

prediction loss for the entire graph (rather than only the masked nodes), thereby addressing the
severer ambiguity inherent in graph data. Furthermore, instead of random node masking, we
propose two dynamic masking strategies, which generate training tasks that are both challenging
and informative. This design yields a learning objective that harmonizes easy and hard samples as
well as homophilic and heterophilic signals.

• Representation Harmonization via Joint Structural Node Encoding: To enhance representation
learning, we combine linear and MLP-based node feature transformations (emphasizing intrin-
sic attributes) with K-hop structural projections via proposed Weighted GCN (which adaptively
aggregates neighbor information). A vanilla Transformer block integrates these representations
via self-attention, ensuring adaptability to homophily and heterophily while maintaining effi-
ciency. A novel hierarchical fusion strategy is applied to integrate/calibrate the different types of
representations. It gives the model the ability to “see” and learn different patterns.

These two components are fundamentally intertwined, and each of them is essential. The predictive
architecture provides the learning stability, the joint encoding module provides the expressive power
to handle mixed signals (see an illustration in Fig. 2), and the dynamic masking strategy provides a
challenging yet meaningful learning objective. Extensive experiments on various mixed-structure
graph benchmark datasets verify the strong performance of our H3GNNs , demonstrating improved
training effectiveness, efficiency, and generalization. The results show that a single, unified framework
can be designed to automatically navigate the full homophily-heterophily spectrum without requiring
any prior knowledge of the graph’s properties.

2 PRELIMINARY

We present a preliminary analysis demonstrating the inability of baseline methods to effectively learn
homophily and heterophily mixed patterns, which motivates our proposed H3GNNs .

Notation 1. Denote by G = (V,E), a graph with the node set V of N nodes and the edge set
E. Each node v ∈ V has a d-dim feature vector f(v) ∈ Rd. A subset V ⊆ V carries labels
ℓ(v) ∈ Y , these labels are not used during self-supervised training and used only for linear probing
and k-means evaluation with self-supervised node encoding frozen.

Homophily and Heterophily in Graphs. In graphs, homophily means that adjacent nodes (u, v)
tend to have similar features, and heterophily means the opposite, which can be reflected in the graph

normalized Laplacian quadratic form, f⊤ · Lsym · f =
∑

(u,v)∈E Auv

(
f(u)√
du

− f(v)√
dv

)2

, where Lsym

represents the symmetric normalized Laplacian, Lsym = I−D− 1
2 ·A ·D− 1

2 with the degree matrix
D, adjacency matrix A, and an identity matrix I. du and dv are the node degrees. In a homophilic
graph, f(u) ≈ f(v) for adjacent nodes, making f⊤ · Lsym · f small. Conversely, in heterophilic

graphs, the differences
(

f(u)√
du

− f(v)√
dv

)2

are larger. The coexistence of homophiliy and heterophily in
real-world graph data challenges representation learning, especially via graph SSL.

Figure 3: Impacts of homophily ratios.

Control Experiments using Synthetic Graphs. To il-
lustrate the impacts of varying homophily ratios in graph
data, we leverage synthetic graphs (Zhu et al., 2020a) with
controlled homophily ratios, h (h = 0.1 indicates strong
heterophily and h = 0.7 corresponds to homophily) in
training GNNs under supervised learning setting. We train
classic GCN and GAT, and a simple baseline node-based
MLP (with graph structure not used) which is found useful
in (Chen et al., 2022).

Fig. 3 shows the results. As expected, GCN and GAT
show much stronger performance on homophilic graphs
than heterophilic ones. The baseline MLP significantly
improves performance on heterophilic graphs, thanks to
its capability of retaining node specificity, at the expense of degrading performance on homophilic
graphs (due to lacking graph structural awareness). So, we can clearly see the advantage of adaptively
harnessing the strength of node-specificity representation and graph structural awareness, which
motivates our H3GNNs .

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

3 METHOD

We first present details of Objective Harmonization and Representation Harmonization in our
H3GNNs in Sec. 3.1 and 3.2 respectively, followed by theoretical underpinnings comparing our
H3GNNs to existing methods to highlight the strengths of our H3GNNs in Sec. 3.3.

3.1 OBJECTIVE HARMONIZATION

The choice of proxy task in SSL is critical. Inappropriate tasks can actually degrade performance (see
details in Appendix A). In our H3GNNs , we first adopt masked node modeling as our primary proxy
task, leveraging its proven success across diverse domains such as computer vision and language
understanding. We then employ a teacher–student predictive architecture to eliminate the need
for complex negative sampling and to prevent representation collapsing, while ensuring both feature
prediction in an aligned latent space and stable representation learning (see Sec 3.3). Moreover, we
introduce two novel node-difficulty-driven dynamic masking strategies that enables the model to
learn more robust and generalizable representations.

Masked Node Modeling with Teacher-Student Predictive Architecture. For an input graph
G = (V,E) and a given node-wise mask M, let Vm = { v ∈ V | M(v) = 1} be the subset of
masked nodes, and Vu = V \ Vm the subset of remaining unmasked nodes. For the masked nodes
in Vm, we replace their raw input features by learnable parameters with random initialization, e.g.,
from the white noise distribution, f(v) ∼ N (0, 1), ∀v ∈ Vm. Let G = (Vu ∪ Vm, E) denote the
partially masked input graph, which is generated at each training iteration by sampling a node-wise
mask M. To facilitate learning a proper latent space, we leverage a teacher-student predictive
architecture. Denote the student and the teacher network by S(·; Φ) and T (·; Ψ), parameterized by
Φ and Ψ respectively. The student network sees the masked input graph G, while the teacher network
sees the full graph G. The teacher network has the exactly same network configuration as the student,
and is not trained, but uses the exponential moving average (EMA) of the student network to ensure
the stability of training and the convergence of the same latent space (He et al., 2020; Assran et al.,
2023; Bardes et al., 2024).

All-Node Feature Prediction in the Latent Space. To estimate the student network’s parameters
Φ, a proxy or pretext task is entailed. One common approach is to consider masked nodes feature
prediction in Vm only. However, graph nodes are inherently more ambiguous because their intercon-
nections create strong dependencies, leading to interactions between masked and unmasked nodes to
be captured. Predicting only masked nodes’ features between the student and the teacher network is
thus suboptimal for learning a more meaningful latent space. For a node v ∈ V = Vm ∪ Vu, denote
the outputs from the student and teacher network by S(v; Φ) ∈ RD and T (v; Ψ) ∈ RD respectively.
We propose to compute the prediction loss in the latent space based on the entire graph,

L(Φ) = 1

N

∑
v∈V

||S(v; Φ)− T (v; Ψ)||22. (1)

Node-Difficulty-Driven Dynamic Node Masking. Masking strategies are critical for the success
of SSL. In general, random masking with sufficient high masking ratios (Devlin et al., 2019; He
et al., 2022) leads to hard proxy tasks to be solved via learning meaningful representations. However,
given the complex and often unknown topological properties of graphs, random masking alone is
insufficient to guide effective SSL. Hence, we propose two novel dynamic masking strategies to
compute the mask Mi at each iteration. These strategies adaptively consider each node’s learning
difficulty based on the prediction loss in Eqn. 1, ensuring that the prediction task is sufficiently
challenging to learn robust representations with excellent generalization capabilities.

Denote by R be the overall node masking ratio hyperparameter (R ∈ (0, 1)). We mask M =
⌊N × R⌋ = |Vm| nodes in total. We warm up the training with purely random masking for a
predefined number of epochs. Afterwards, we adopt the exploitation-exploration strategy, where we
exploit two node-difficulty-driven dynamic masking approaches, combined with the purely random
exploration-based masking. Let r be the exploitation ratio (r ∈ [0, 1]), we first select m = ⌊M × r⌋
nodes using the exploitation approach, and the remaining M −m nodes are randomly sampled from
the set of available N −m nodes (without replacement).

• H3GNNs +Diffi: Node Feature Prediction Loss Driven Masking. Based on Eqn. 1, we define
the difficulty score of a node v after the current iteration by,

Diffi(v) = ||S(v)− T (v)||22, (2)

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

which is used to compute the mask for the next iteration. We sort the nodes v ∈ V based on Diffi(v)
in a decreasing order, and then select the first m nodes to mask. This approach ensures that the model
focuses on nodes where the student network’s understanding is significantly lacking compared to the
teacher network, thereby driving the student network to improve its representations where it is most
deficient. However, this approach does not entirely prevent the issue of over-focusing on a small
subset of high-difficulty nodes while neglecting the overall data diversity. To address this, we seek a
probabilistic solution in the next approach.

• H3GNNs +Prob: Masking via Bernoulli Sampling with Node-Difficulty Informed Success
Rate. Let pv be the success rate of the Bernoulli distribution used for selecting the node v ∈ V to be
masked, i.e., M(v) ∼ Bernoulli(pv). We have,

pv = p0 + δv, p0 = (1− r)×R, δv =

(
Diffi(v)
Diffimax

)
× r ×R, (3)

where p0 is the base success rate subject to the exploration approach, and it is the same for all nodes.
δv is the node-difficulty based exploitation with Diffimax the maximum value of the node difficulty
score among all nodes. This approach ensures that all nodes have a base probability p0 of being
masked, while higher-difficulty nodes are masked with a greater chance, effectively guiding the
model to focus more on learning from these challenging nodes. Since this approach is a node-wise
Bernoulli sampling, to prevent the worst cases in which either too few nodes or too many nodes
(much greater than M) are actually masked, we do sanity check in the sampling process by either
repeatedly sampling (if too few nodes have been masked) or early stopping.

3.2 REPRESENTATION HARMONIZATION

With the above architectural designs and loss function choices, we seek node encoding scheme
towards the expressivity of node features in graph SSL in terms of inducing heterophily and homophily
awareness and adaptivity in S(v) against the raw input features f(v) for downstream tasks.

Learning Weighted GCN for Heterophily-Preserved Homophily Awareness. The traditional
GCN has been proven to act as a simple and efficient smoothing operator (Kipf & Welling, 2016a) ,
making it good for homophilic graphs, but becoming less effective for heterophilic graphs (see Fig. 3).
To address this, we introduce Weighted GCN (WGCN), which learns weights for edges and thus
adaptively controls message passing—balancing smoothing and sharpening—to handle diverse graph
structures more effectively, avoid complex design choices and preserve high efficiency. Formally, a
WGCN’s layer is given by,

H(l+1) = σ(A ·H(l) ·W (l)), (4)
where Aij is a learnable parameter that adjusts the edge weight dynamically, meaning the model
learns how much influence each neighbor should have, instead of treating all edges equally. It
is initialized from Ã = D̃−1/2(A + I)D̃−1/2, the normalized adjacency matrix with self-loops.
H(l) ∈ RN×C is the node feature matrix at layer l with the output dimension C is chosen to control
model complexity. W (l) is the trainable weight matrix. In homophilic regions, WGCN retains high
weights for similar neighbors; in heterophilic regions, it downweights dissimilar ones, preventing
oversmoothing and capturing complex structures more effectively.

Projecting Node-Wise Features for Heterophily-Targeted Awareness. From Fig. 3, we can see the
base MLP can retain node specificity for achieving good performance on heterophilic graphs. So,
we introduce a nonlinear projection f (Mlp)(v) on the node features. Additionally, the node features
themselves play crucial roles, especially when neighborhoods exhibit high heterophily (Yuan et al.,
2023). Hence, we also apply a linear projection f (Linear)(v).

Learning Multi-Head Self-Attention for Heterophily and Homophily Adaptivity. To adaptively
capture both homophily and heterophily, for a node v ∈ V , we map it into a joint latent space. For
example, we can simply combine the four types of features,

f(v) =
[
f (Linear)(v)⊕ f (Mlp)(v)⊕H(ℓ)(v)⊕H(ℓ′)(v)

]
, where f(v) ∈ R4×C (5)

where · ⊕ · denotes stacking operation, ℓ and ℓ′ denote WGCN layers, which can be tuned easily. To
mix and re-calibrate the different types of features per node to induce heterophily and homophily
awareness and adaptivity, we treat the each projection output as a “token" (e.g., 4 tokens as illustrated
in Fig. 1), and apply a vanilla Transformer block (Vaswani et al., 2017) with pre-norm settings. By
doing so, we maintain the efficiency with our novel feature level attention mechanism, which is

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

different from existing graph transformer works that aim to capture node-wise attention and suffer
from scalability caused by the quadratic complexity of the Transformer model w.r.t. the number of
nodes N .

Fusing and Selecting Tokens Hierarchically as SSL Node Encoding. The four tokens in Eqn. 5,
after passing through Transformer block, provide complementary representations of each node.
Instead of flattening them all at once, we fuse the most closely related encoded tokens first and
propagate the result upward, which (i) keeps the parameter count low, (ii) eases gradient flow, and
(iii) lets the model learn a coarse-to-fine weighting of homophilic and heterophilic patterns. We first
fuse the two encoded tokens generated by WGCN; we then iteratively merge this result with each of
the remaining two encoded projection tokens to produce the final output.

S(v) = σ (Linear (X0,C ||σ (Linear (X1,C ||σ (Linear (X2,C ||X3,C)))))) , S(v) ∈ RC , (6)
where Xi,C represents the output of f (Linear), f (Mlp), H(l) and H(l′) from the Transformer block
for i = 0, 1, 2, 3 respectively. Additionally, we also offer several strategies for deriving the final
output, such as taking the mean, the max, and simply selecting X0,C . We provide an ablation study
about the encoded token selection in Appendix M.

3.3 THEORETICAL UNDERPINNINGS

In this section, we provide theoretical underpinnings of graph SSL convergence analyses for our
H3GNNs and alternative encoder-decoder based graph SSL methods such as GraphMAE (Hou et al.,
2022; 2023) (which aim to directly reconstruct raw input features of masked nodes).

The encoder-decoder SSL architecture consists of an encoder network E(·; Θenc) and a separate
decoder network D(·; Θdec). Let θ = (Θenc,Θdec) collects all parameters. Given a masked graph
signal f̄ from the input graph signal f of N nodes using a mask M, its objective is to minimize,

LE−D(θ) =
1

N
||D

(
E(f̄ ; Θenc); Θdec

)
− f ||22 . (7)

The convergence rates of encoder-decoder methods and our H3GNNs (Eqn. 1) can be bounded in the
main theorem as follows.

Theorem 1. Consider the optimization of encoder-decoder based graph SSL in Eqn. 7 and our pro-
posed H3GNNs in Eqn. 1 under the same encoder architecture and following assumptions/conditions:
i Smoothness & Lipschitz: The encoder E(·; Θenc) and decoder D(·; Θdec) are β-smooth and
L-Lipschitz; ii Boundedness: Gradients of the encoder ∥∇E(·; Θ(t)

enc)∥, gradients of the decoder
∥∇D

(
E(·; Θ(t)

enc); Θ
(t)
dec

)
∥, and reconstruction errors ∥D

(
E(f̄ ; Θ

(t)
enc); Θ

(t)
dec

)
− f∥ are bounded; iii

Strong convexity: Both the encoder E(·; Θenc) and decoder D(·; Θdec) are µ-strongly convex in their
parameters; iv Approximation: With only unmasked inputs, the encoder–decoder (or teacher–student
in H3GNNs) incurs approximation error ϵE−D (or ϵT−S). See assumptions details in Appendix G.
Then, the following three results hold:

• A. Linear Convergence Bounds Under Strong Convexity. For our H3GNNs ,

∥Φ(t+1) − Φ∗∥2 ≤ (1− µ2
E

β2
E

) · ∥Φ(t) − Φ∗∥2 (8)

For the encoder-decoder models,

∥θ(t+1) − θ∗∥2 ≤
(
1− min(µ2

E , µ
2
D)

max(β2
E , β

2
D)

)
· ∥θ(t) − θ∗∥2 (9)

from which we can see our H3GNNs converges to the optimal solution Φ∗ faster than the encoder-
decoder counterpart to their optimal solutions Θ∗ due to a smaller contraction factor

(
1− µ2

E

β2
E

)
<(

1− min(µ2
E ,µ2

D)

max(β2
E ,β2

D)

)
. This implies that H3GNNs can achieve a faster convergence.

• B. Proxy Task Loss Bounds under a Lipschitz-dependent assumption between the masked graph
signal and the raw graph signal, ∥f̄ − f∥ ≤ δ. For our H3GNNs ,

∥S(f̄ ; Φ)− T (f ; Ψ)∥ ≤ LE · δ + ϵT−S . (10)
For the encoder-decoder models,

∥D
(
E(f̄ ; Φenc); Θdec

)
− f∥ ≤ LE · LD · δ + ϵE−D. (11)

W.L.O.G., assume ϵE−D = ϵT−S , our H3GNNs has a smaller error upper bound, indicating that
our teacher–student model is closer to the optimal solution Φ∗ during training, which in turn

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

implies that its parameter updates are more stable and its convergence speed is faster (as shown in
the first result above).

• C. Gradient-Difference Bounds in Encoder-Decoder Models Showing Coupling Effects of Parame-
ter Updating,

∥∇LE−D(Θ
(t+1)
enc)−∇LE−D(Θ(t)

enc)∥ ≤ 2BReconst

(
βEBD +BELDLE

)
∥Θ(t+1)

enc −Θ(t)
enc∥+

2BEBReconstβD∥Θ(t+1)
dec −Θ

(t)
dec∥+ 4BEBDBReconst, (12)

∥∇LE−D(Θ
(t+1)
dec)−∇LE−D(Θ

(t)
dec)∥ ≤ 2BReconstβDLE∥Θ(t+1)

enc −Θ(t)
enc∥+

2BReconstβD||Θ(t+1)
dec −Θ

(t)
dec||+ 4BDBReconst, (13)

where the coupling effects in Encoder-Decoder models may lead to instability in learning. The
proofs are provided in the Appendix G, H and I.

4 EXPERIMENTS

Datasets. We evaluate our model on a suite of real-world benchmarks: four widely adopted
homophilic graphs (Cora, CiteSeer, PubMed, and ArXiv) (Sen et al., 2008; Hu et al., 2021) and
seven heterophilic graphs (including Cornell, Texas, Wisconsin, Actor, Chameleon, Squirrel and
Roman-Empire) (Pei et al., 2020; Platonov et al., 2023). These datasets encompass various aspects
and span both small-scale and large-scale networks, ensuring our experiments are diverse and
comprehensive. Note that, as original Chameleon and Squirrel are known to be problematic (Platonov
et al., 2023), we use their filtered versions to ensure an accurate assessment of model performance.
We also provide the homo ratio in the table. Details of these datasets are summarized in Appendix O.

Baselines. To make fair comparisons with other baselines, we adopt the widely used node classifi-
cation task as our main downstream evaluation. We also conduct the experiment of node clustering
in Appendix D. Here, we primarily compare against two groups of SSL baselines (see Appendix C
for semi-supervised comparisons): (1) Traditional SSL methods: DGI (Velickovic et al., 2019),
GMI (Peng et al., 2020), MVGRL (Hassani & Khasahmadi, 2020), BGRL (Thakoor et al., 2021),
GRACE (Zhu et al., 2020b), and GraphMAE (Hou et al., 2022); (2) SSL methods tailored for
heterophilic graphs: DSSL (Xiao et al., 2022), NWR-GAE (Tang et al., 2022), HGRL (Chen et al.,
2022), GraphACL (Xiao et al., 2024), S3GCL (Wan et al., 2024), GREET (Liu et al., 2022) and
MUSE (Yuan et al., 2023). We also provide comparisons with additional baselines in Appendix F.

For evaluation, we follow the same protocol as all other baselines (Liu et al., 2022; Yuan et al., 2023)
by freezing the trained SSL model and utilizing the generated embeddings for a downstream linear
classifier. Note that we reproduce the results of major baselines (Liu et al., 2022; Hou et al., 2022;
Xiao et al., 2024; Yuan et al., 2023) using the hyperparameters provided in their official repositories,
and we ensure that the data split is consistent across all models. However, for those models among
them that do not provide dataset-specific hyperparameters, such as MUSE, we conducted our own
fine-tuning. For other baselines, we derive the results from their original papers or baseline papers
(Yuan et al., 2023; Xiao et al., 2024; Wan et al., 2024). For hyperparameter settings, see Appendix P.

4.1 LINEAR PROBING RESULTS OF OUR H3GNNS

We present the performance comparisons of our H3GNNs with state-of-the-art baseline methods
across benchmarks in Table 1 and Table 2. The following observations can be made:

Our H3GNNs achieves significant improvement on heterophilic graph datasets, while retaining
overall on-par performance on homophilic graph datasets. On heterophilic graph datasets,
compared to previous state-of-the-art graph SSL methods, our method outperforms all baselines—for
example, by 7.12% on the Texas dataset, by 9.6% on the Roman-empire dataset, and by 1.27% on
Actor. Similar observations hold when compared with previous SL methods; see Appendix C for a
detailed analysis.

On the four homophilic graph datasets, our H3GNNs obtains better performance on Cora and Arxiv,
on-par performance on CiteSeer and PubMed (with negligible performance drops that are within the
standard deviations). The overall strong performance shows that our H3GNNs is effective for both
types of graphs.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Table 1: Results of node classification (in percent ± standard deviation across 10 splits). The best
and the runner-up results are highlighted in red and blue respectively in terms of the mean accuracy.

Methods / Datasets Heterophilic Homophilic

Cornell Texas Wisconsin Actor Cora CiteSeer PubMed Arxiv

Homo Ratio 0.30 0.11 0.21 0.22 0.81 0.74 0.80 0.66

DGI 63.35±4.61 60.59±7.56 55.41±5.96 29.82±0.69 82.29±0.56 71.49±0.14 77.43±0.84 70.19±0.73
GMI 54.76±5.06 50.49±2.21 45.98±2.76 30.11±1.92 82.51±1.47 71.56±0.56 79.83±0.90 69.23±0.79
MVGRL 64.30±5.43 62.38±5.61 62.37±4.32 30.02±0.70 83.03±0.27 72.75±0.46 79.63±0.38 70.88±0.51
BGRL 57.30±5.51 59.19±5.85 52.35±4.12 29.86±0.75 81.08±0.17 71.59±0.42 79.97±0.36 71.24±0.35
GRACE 54.86±6.95 57.57±5.68 50.00±5.83 29.01±0.78 80.08±0.53 71.41±0.38 80.15±0.34 70.96±0.31
GraphMAE 61.93±4.59 67.80±3.37 58.25±4.87 31.48±0.56 84.20±0.40 73.20±0.39 81.10±0.34 71.75±0.17

DSSL 53.15±1.28 62.11±1.53 56.29±4.42 28.36±0.65 83.06±0.53 73.20±0.51 81.25±0.31 70.13±0.25
NWR-GAE 58.64±5.61 69.62±6.66 68.23±6.11 30.17±0.17 83.62±1.61 71.45±2.41 83.44±0.92 71.18±0.62
HGRL 77.62±3.25 77.69±2.42 77.51±4.03 36.66±0.35 80.66±0.43 68.56±1.10 80.35±0.58 68.55±0.38
GraphACL 59.33±1.48 71.08±2.34 69.22±5.69 30.03±1.03 84.20±0.31 73.63±0.22 82.02±0.15 71.72±0.26
⋆ S3GCL 81.27±3.67 86.12±3.91 84.56±2.71 36.88±0.34 ⋆— ⋆— ⋆— 71.36±0.60
†MUSE 82.00±3.42 83.98±2.81 88.24±3.19 36.15±1.21 82.22±0.21 71.14±0.40 82.90±0.40 70.98±0.32
GREET 73.51±3.15 83.80±2.91 82.94±5.69 35.79±1.04 83.84±0.71 73.25 ±1.14 80.29±1.00 71.09±0.43

H3GNNs +Diffi (Ours) 85.41±1.79 93.24±2.77 92.74±2.91 37.93±0.56 84.70±0.56 73.36±0.33 83.42±0.26 71.56±0.28
H3GNNs +Prob (Ours) 85.68±2.11 92.45±3.78 93.13±3.42 38.15±0.71 84.82±0.23 73.12±0.28 83.25±0.16 71.97±0.12

† MUSE only provides hyperparameters for Cornell in their official repo; however, their results were not reproducible based on the provided

codes. And, no hyperparameters were provided for other datasets. We tried our best to tune its hyperparameters in comparisons.
⋆ S3GCL’s official repo is under construction with codes to be factored and organized, so we directly report its published performance on

all datasets except Cora, Citeseer, and Pubmed, for which different splits were used with higher label rates in linear probing.

Table 2: Results of node classification on three
heterophilic graph datasets.
Methods Chameleon(filtered) Squirrel(filtered) Roman-Empire

Homo Ratio 0.24 0.21 0.05

DGI 32.61±2.92 38.78±2.34 43.16±0.78
BGRL 32.55±4.65 35.67±1.42 52.16±0.25
GRACE 35.39±3.58 36.21±2.81 51.58±0.98

MUSE 46.48±2.51 41.57±1.44 66.26±0.53
GREET 44.67±2.98 39.69±1.85 63.37±1.91

H3GNNs +Diffi (Ours) 47.50±3.27 44.68 ±1.68 75.51 ±0.54
H3GNNs +Prob (Ours) 48.91±3.86 45.49±2.13 75.86±0.47

The two node-difficulty driven
masking strategies in our
H3GNNs perform similarly. The
Bernoulli sampling based approach
(i.e., H3GNNs +Prob) is slightly
better, thanks to its balance between
exploration and exploitation. As we
shall show in ablation studies (see
Table 5), our proposed node-difficulty
driven mask strategies are signifi-
cantly better than the purely random
masking strategy.

4.2 k-MEAN CLUSTERING RESULTS OF OUR H3GNNS

From the clustering results in the Appendix D, our H3GNNs achieves significantly better performance
than all baselines, including the state-of-the-art model MUSE, by a large margin on the Texas and Cor-
nell datasets, with improvements of 11.26% and 12.51%, respectively. Moreover, H3GNNs slightly
outperforms MUSE on Actor due to the complex mixed structural patterns, as introduced in Ap-
pendix N. It also attains comparable performance on Citeseer. These findings are consistent with
those observed in linear probing based node classification tasks. Overall, our results demonstrate that
H3GNNs can generate high-quality embeddings regardless of the downstream tasks and effectively
handle both heterophilic and homophilic patterns, highlighting its strong generalization capability in
graph representation learning.

4.3 COMPUTE AND MEMORY COMPARISONS

Table 3: Compute and Memory Comparisons
Datasets GPU MEMORY(MB) EPOCH TIME(S/EPOCH) TOTAL TIME(S)

MUSE GREET H3GNN MUSE GREET H3GNN MUSE GREET H3GNN

Actor 8786 4316 8608 0.43 0.56 0.23 53.64 64.32 28.98
Roman 34791 36425 29886 2.47 2.83 2.13 301.87 378.34 280.66

To verify the efficiency of our pro-
posed approach, we conducted an em-
pirical analysis comparing our method
to two major state-of-the-art SSL base-
lines: GREET and MUSE. As shown
in Table 3, we measured memory usage, training time per epoch and total training time until con-
vergence on two large scale datasets, Actor and Roman-Empire, that exhibit a complex mixture of
patterns and require substantial computational resources. We utilized the optimal hyperparameters for
each respective model. The results show that our H3GNNs ’s memory usage is on par with GREET
(with only a slight increase for Actor at 4 GB) and remains lower than MUSE. Regarding running
time, our H3GNNs requires much less running time of the other two SOTA models while achieving

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

Table 4: Results on Ablating Three Components.
Methods Cornell Texas Wisconsin Actor Roman Cora Citeseer Pubmed Arxiv

H3GNNs (Full) 85.68±2.11 92.45±3.78 93.13±3.42 38.15±0.71 75.86±0.47 84.70±0.56 73.36±0.33 83.42±0.26 71.56±0.28

w/o DynMsk 84.26±2.15 90.16±3.51 90.08±3.36 36.98±0.87 74.01±0.50 84.10±0.85 72.90±0.53 81.98±0.63 71.00±0.56
w/o T-S & DynMsk 81.78±3.66 85.59±4.19 88.56±3.56 35.86±0.87 72.87±1.78 83.10±0.78 71.68±0.60 80.08±0.66 70.02±0.50
w/o T-S & DynMsk & Attn 79.86±3.82 82.46±5.05 86.98±3.60 34.11±0.92 70.12±1.89 78.36±0.80 69.60±0.56 78.05±0.60 68.65±0.58

much better performance, as shown in Table 1. This efficiency improvement is attributed to the fact
that both GREET and MUSE employ an alternating training strategy for contrastive learning, which
clearly highlights the advantages of our H3GNNs .

Regarding the total training time until model convergence in the last column, our model is sig-
nificantly faster than two baselines. By model convergence time, it means the time at which the
best model is selected (out of the total number epochs that is the same for all models). This rapid
convergence is attributable to the consistency in the latent space during reconstruction and end-to-end
training—advantages that the baselines do not achieve.

4.4 ABLATION STUDIES

Ablating Three Components Our H3GNNs has three key components: a teacher-student predictive
architecture (referred to T-S), node-difficulty driven dynamic masking strategies (referred to DynMsk),
and encoding self-attention (referred to Attn). To evaluate the contribution of each individual
component, we conduct an ablation study by progressively removing one component at a time. The
results are shown in Table 4 and in Appendix E, we can observe,

• DynMsk can lead to performance decreases by up to 3.05% across the datasets when removed,
which shows the effectiveness of the proposed node-difficulty driven masking strategies against
purely random masking.

• T-S predictive architecture also plays a significant role, as performance drops considerably (1% -
4.57%) when we directly reconstruct the features in the raw input space using latent space features,
as done in the encoder-decoder models, leading to a learning space mismatch. This observation is
consistent with the theorem proposed in Sec. 3.3.

• Substituting Attn with a simple MLP also leads to performance drops noticeably. This indicates
that attention fusion can also help adaptively assign weights to different components, allowing the
model to effectively handle various patterns in graphs.

Table 5: The effects of r (Eqn. 3)
Ratio r Cornell Actor Roman

1 84.56±2.67 37.13±0.55 74.66±0.68
0.8 85.68±2.11 37.93±0.61 75.34±0.45
0.5 85.34±2.75 38.15±0.71 75.86±0.47
0.3 84.40±2.60 37.70±0.78 74.88±0.48
0 84.26±2.15 36.98±0.87 74.01±0.50

Exploitation Ratio r We also evaluate performance un-
der different exploitation ratios across datasets (Table 5)
using the probabilistic masking scheme (Eqn. 3). Although
the optimal masking ratio varies by dataset, dynamic mask-
ing consistently outperforms pure random masking (r=0),
underscoring the need for our proposed dynamic masking
and its integration with random masking.

More Studies and Analysis More ablation studies covering WGCN impacts (App. K), the overall
masking ratio (App. L), token-selection strategies (App. M) are provided in the Appendices.

5 CONCLUSION

In this paper we have presented H3GNNs , a self-supervised framework designed to harmonize
heterophily and homophily in GNNs. Through our joint structural node encoding, which integrates
linear and non-linear feature transformations with K-hop structural embeddings, H3GNNs adapts
effectively to both homophilic and heterophilic graphs. Moreover, our teacher-student predictive
paradigm, coupled with dynamic node-difficulty-based masking, further enhances robustness by
providing progressively more challenging training signals. Comprehensive theoretical analysis and
empirical results across benchmark datasets demonstrate that H3GNNs consistently achieves state-of-
the-art performance under heterophilic conditions using both linear probing and k-mean clustering
evaluation protocols, while matching top methods on homophilic datasets. These findings under-
score H3GNNs ’s capability to address the key challenges of capturing mixed structural properties,
achieving superior performance without sacrificing efficiency.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

REFERENCES

Sami Abu-El-Haija, Bryan Perozzi, Amol Kapoor, Nazanin Alipourfard, Kristina Lerman, Hrayr
Harutyunyan, Greg Ver Steeg, and Aram Galstyan. Mixhop: Higher-order graph convolutional
architectures via sparsified neighborhood mixing. In international conference on machine learning,
pp. 21–29. PMLR, 2019.

Kristen M Altenburger and Johan Ugander. Monophily in social networks introduces similarity
among friends-of-friends. Nature human behaviour, 2(4):284–290, 2018.

Mahmoud Assran, Quentin Duval, Ishan Misra, Piotr Bojanowski, Pascal Vincent, Michael Rabbat,
Yann LeCun, and Nicolas Ballas. Self-supervised learning from images with a joint-embedding
predictive architecture. In Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pp. 15619–15629, 2023.

Adrien Bardes, Quentin Garrido, Jean Ponce, Michael Rabbat, Yann LeCun, Mahmoud Assran,
and Nicolas Ballas. Revisiting feature prediction for learning visual representations from video.
arXiv:2404.08471, 2024.

Deyu Bo, Xiao Wang, Chuan Shi, Meiqi Zhu, Emiao Lu, and Peng Cui. Structural deep clustering
network. In Proceedings of the web conference 2020, pp. 1400–1410, 2020.

Deyu Bo, Xiao Wang, Chuan Shi, and Huawei Shen. Beyond low-frequency information in graph con-
volutional networks. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 35,
pp. 3950–3957, 2021.

Jingfan Chen, Guanghui Zhu, Yifan Qi, Chunfeng Yuan, and Yihua Huang. Towards self-supervised
learning on graphs with heterophily. In Proceedings of the 31st ACM International Conference on
Information & Knowledge Management, pp. 201–211, 2022.

Ming Chen, Zhewei Wei, Zengfeng Huang, Bolin Ding, and Yaliang Li. Simple and deep graph
convolutional networks. In International Conference on Machine Learning, pp. 1725–1735. PMLR,
2020.

Eli Chien, Jianhao Peng, Pan Li, and Olgica Milenkovic. Adaptive universal generalized pagerank
graph neural network. arXiv preprint arXiv:2006.07988, 2020.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of deep
bidirectional transformers for language understanding. In NAACL, pp. 4171–4186, 2019.

Alex Fout, Jonathon Byrd, Basir Shariat, and Asa Ben-Hur. Protein interface prediction using graph
convolutional networks. Advances in neural information processing systems, 30, 2017.

Johannes Gasteiger, Aleksandar Bojchevski, and Stephan Günnemann. Predict then propagate: Graph
neural networks meet personalized pagerank. arXiv preprint arXiv:1810.05997, 2018.

Johannes Gasteiger, Aleksandar Bojchevski, and Stephan Günnemann. Combining neural networks
with personalized pagerank for classification on graphs. In International Conference on Learning
Representations, 2019. URL https://openreview.net/forum?id=H1gL-2A9Ym.

Jean-Bastien Grill, Florian Strub, Florent Altché, Corentin Tallec, Pierre H Richemond, Elena
Buchatskaya, Carl Doersch, Bernardo Avila Pires, Zhaohan Daniel Guo, Mohammad Gheshlaghi
Azar, et al. Bootstrap your own latent: A new approach to self-supervised learning. In NeurIPS,
2020.

Aditya Grover and Jure Leskovec. node2vec: Scalable feature learning for networks. In Proceedings
of the 22nd ACM SIGKDD international conference on Knowledge discovery and data mining, pp.
855–864, 2016.

Will Hamilton, Zhitao Ying, and Jure Leskovec. Inductive representation learning on large graphs.
Advances in neural information processing systems, 30, 2017.

William L Hamilton. Graph representation learning. Synthesis Lectures on Artifical Intelligence and
Machine Learning, 14(3):1–159, 2020.

10

https://openreview.net/forum?id=H1gL-2A9Ym

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Kaveh Hassani and Amir Hosein Khasahmadi. Contrastive multi-view representation learning on
graphs. In International conference on machine learning, pp. 4116–4126. PMLR, 2020.

Kaiming He, Haoqi Fan, Yuxin Wu, Saining Xie, and Ross Girshick. Momentum contrast for
unsupervised visual representation learning. In CVPR, 2020.

Kaiming He, Xinlei Chen, Saining Xie, Yanghao Li, Piotr Dollár, and Ross Girshick. Masked
autoencoders are scalable vision learners. In CVPR, 2022.

Geoffrey E Hinton and Ruslan R Salakhutdinov. Reducing the dimensionality of data with neural
networks. science, 313(5786):504–507, 2006.

Zhenyu Hou, Xiao Liu, Yukuo Cen, Yuxiao Dong, Hongxia Yang, Chunjie Wang, and Jie Tang.
Graphmae: Self-supervised masked graph autoencoders. In KDD, 2022.

Zhenyu Hou, Yufei He, Yukuo Cen, Xiao Liu, Yuxiao Dong, Evgeny Kharlamov, and Jie Tang.
Graphmae2: A decoding-enhanced masked self-supervised graph learner. In Proceedings of the
ACM web conference 2023, pp. 737–746, 2023.

Weihua Hu, Matthias Fey, Hongyu Ren, Maho Nakata, Yuxiao Dong, and Jure Leskovec. Ogb-lsc: A
large-scale challenge for machine learning on graphs. arXiv preprint arXiv:2103.09430, 2021.

Thomas N Kipf and Max Welling. Semi-supervised classification with graph convolutional networks.
arXiv preprint arXiv:1609.02907, 2016a.

Thomas N Kipf and Max Welling. Variational graph auto-encoders. arXiv preprint arXiv:1611.07308,
2016b.

Soo Yong Lee, Fanchen Bu, Jaemin Yoo, and Kijung Shin. Towards deep attention in graph neural
networks: Problems and remedies. In International conference on machine learning, pp. 18774–
18795. PMLR, 2023.

Bingheng Li, Erlin Pan, and Zhao Kang. Pc-conv: Unifying homophily and heterophily with two-
fold filtering. In Proceedings of the AAAI conference on artificial intelligence, volume 38, pp.
13437–13445, 2024.

Guohao Li, Matthias Müller, Bernard Ghanem, and Vladlen Koltun. Training graph neural networks
with 1000 layers. In International conference on machine learning, pp. 6437–6449. PMLR, 2021.

Xiang Li, Renyu Zhu, Yao Cheng, Caihua Shan, Siqiang Luo, Dongsheng Li, and Weining Qian.
Finding global homophily in graph neural networks when meeting heterophily. In International
Conference on Machine Learning, pp. 13242–13256. PMLR, 2022.

Meng Liu, Zhengyang Wang, and Shuiwang Ji. Non-local graph neural networks. IEEE transactions
on pattern analysis and machine intelligence, 44(12):10270–10276, 2021.

Yixin Liu, Yizhen Zheng, Daokun Zhang, Vincent Lee, and Shirui Pan. Beyond smoothing: Un-
supervised graph representation learning with edge heterophily discriminating. arXiv preprint
arXiv:2211.14065, 2022.

Sitao Luan, Chenqing Hua, Qincheng Lu, Jiaqi Zhu, Mingde Zhao, Shuyuan Zhang, Xiao-Wen
Chang, and Doina Precup. Is heterophily a real nightmare for graph neural networks to do node
classification? arXiv preprint arXiv:2109.05641, 2021.

Shashank Pandit, Duen Horng Chau, Samuel Wang, and Christos Faloutsos. Netprobe: a fast
and scalable system for fraud detection in online auction networks. In Proceedings of the 16th
international conference on World Wide Web, pp. 201–210, 2007.

Hongbin Pei, Bingzhe Wei, Kevin Chen-Chuan Chang, Yu Lei, and Bo Yang. Geom-gcn: Geometric
graph convolutional networks. arXiv preprint arXiv:2002.05287, 2020.

Zhen Peng, Wenbing Huang, Minnan Luo, Qinghua Zheng, Yu Rong, Tingyang Xu, and Junzhou
Huang. Graph representation learning via graphical mutual information maximization. In Proceed-
ings of The Web Conference 2020, pp. 259–270, 2020.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Oleg Platonov, Denis Kuznedelev, Michael Diskin, Artem Babenko, and Liudmila Prokhorenkova. A
critical look at the evaluation of gnns under heterophily: Are we really making progress? arXiv
preprint arXiv:2302.11640, 2023.

Jiezhong Qiu, Qibin Chen, Yuxiao Dong, Jing Zhang, Hongxia Yang, Ming Ding, Kuansan Wang,
and Jie Tang. Gcc: Graph contrastive coding for graph neural network pre-training. In Proceedings
of the 26th ACM SIGKDD international conference on knowledge discovery & data mining, pp.
1150–1160, 2020.

Leonardo FR Ribeiro, Pedro HP Saverese, and Daniel R Figueiredo. struc2vec: Learning node
representations from structural identity. In Proceedings of the 23rd ACM SIGKDD international
conference on knowledge discovery and data mining, pp. 385–394, 2017.

T Konstantin Rusch, Benjamin P Chamberlain, Michael W Mahoney, Michael M Bronstein, and
Siddhartha Mishra. Gradient gating for deep multi-rate learning on graphs. arXiv preprint
arXiv:2210.00513, 2022.

Aravind Sankar, Yozen Liu, Jun Yu, and Neil Shah. Graph neural networks for friend ranking in
large-scale social platforms. In Proceedings of the Web Conference 2021, pp. 2535–2546, 2021.

Prithviraj Sen, Galileo Namata, Mustafa Bilgic, Lise Getoor, Brian Galligher, and Tina Eliassi-Rad.
Collective classification in network data. AI magazine, 29(3):93–93, 2008.

Chuxiong Sun, Hongming Gu, and Jie Hu. Scalable and adaptive graph neural networks with
self-label-enhanced training. arXiv preprint arXiv:2104.09376, 2021.

Fan-Yun Sun, Jordan Hoffmann, Vikas Verma, and Jian Tang. Infograph: Unsupervised and semi-
supervised graph-level representation learning via mutual information maximization. In ICLR’20,
2020.

Susheel Suresh, Vinith Budde, Jennifer Neville, Pan Li, and Jianzhu Ma. Breaking the limit of graph
neural networks by improving the assortativity of graphs with local mixing patterns. arXiv preprint
arXiv:2106.06586, 2021.

Qiaoyu Tan, Ninghao Liu, Xiao Huang, Soo-Hyun Choi, Li Li, Rui Chen, and Xia Hu. S2gae:
Self-supervised graph autoencoders are generalizable learners with graph masking. In Proceedings
of the sixteenth ACM international conference on web search and data mining, pp. 787–795, 2023.

Jian Tang, Meng Qu, Mingzhe Wang, Ming Zhang, Jun Yan, and Qiaozhu Mei. Line: Large-scale
information network embedding. In Proceedings of the 24th international conference on world
wide web, pp. 1067–1077, 2015.

Mingyue Tang, Carl Yang, and Pan Li. Graph auto-encoder via neighborhood wasserstein reconstruc-
tion. arXiv preprint arXiv:2202.09025, 2022.

Xianfeng Tang, Yozen Liu, Neil Shah, Xiaolin Shi, Prasenjit Mitra, and Suhang Wang. Knowing
your fate: Friendship, action and temporal explanations for user engagement prediction on social
apps. In Proceedings of the 26th ACM SIGKDD international conference on knowledge discovery
& data mining, pp. 2269–2279, 2020.

Shantanu Thakoor, Corentin Tallec, Mohammad Gheshlaghi Azar, Mehdi Azabou, Eva L Dyer, Remi
Munos, Petar Veličković, and Michal Valko. Large-scale representation learning on graphs via
bootstrapping. arXiv preprint arXiv:2102.06514, 2021.

Shantanu Thakoor, Corentin Tallec, Mohammad Gheshlaghi Azar, Rémi Munos, Petar Veličković,
and Michal Valko. Large-scale representation learning on graphs via bootstrapping. In ICLR, 2022.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. Attention is all you need. Advances in neural information processing
systems, 30, 2017.

Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Lio, and Yoshua
Bengio. Graph attention networks. arXiv preprint arXiv:1710.10903, 2017.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Petar Veličković, William Fedus, William L Hamilton, Pietro Liò, Yoshua Bengio, and R Devon
Hjelm. Deep graph infomax. In ICLR, 2018.

Petar Velickovic, William Fedus, William L Hamilton, Pietro Liò, Yoshua Bengio, and R Devon
Hjelm. Deep graph infomax. ICLR (Poster), 2(3):4, 2019.

Guancheng Wan, Yijun Tian, Wenke Huang, Nitesh V Chawla, and Mang Ye. S3gcl: Spectral, swift,
spatial graph contrastive learning. In Forty-first International Conference on Machine Learning,
2024.

Chun Wang, Shirui Pan, Guodong Long, Xingquan Zhu, and Jing Jiang. Mgae: Marginalized graph
autoencoder for graph clustering. In Proceedings of the 2017 ACM on Conference on Information
and Knowledge Management, pp. 889–898, 2017.

Felix Wu, Amauri Souza, Tianyi Zhang, Christopher Fifty, Tao Yu, and Kilian Weinberger. Sim-
plifying graph convolutional networks. In International conference on machine learning, pp.
6861–6871. PMLR, 2019.

Shiwen Wu, Fei Sun, Wentao Zhang, Xu Xie, and Bin Cui. Graph neural networks in recommender
systems: a survey. ACM Computing Surveys, 55(5):1–37, 2022.

Teng Xiao, Zhengyu Chen, Zhimeng Guo, Zeyang Zhuang, and Suhang Wang. Decoupled self-
supervised learning for graphs. Advances in Neural Information Processing Systems, 35:620–634,
2022.

Teng Xiao, Huaisheng Zhu, Zhengyu Chen, and Suhang Wang. Simple and asymmetric graph
contrastive learning without augmentations. Advances in Neural Information Processing Systems,
36, 2024.

Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. How powerful are graph neural
networks? arXiv preprint arXiv:1810.00826, 2018.

Rui Xue, Haoyu Han, MohamadAli Torkamani, Jian Pei, and Xiaorui Liu. Lazygnn: Large-scale
graph neural networks via lazy propagation. In International Conference on Machine Learning, pp.
38926–38937. PMLR, 2023a.

Rui Xue, Xipeng Shen, Ruozhou Yu, and Xiaorui Liu. Efficient large language models fine-tuning on
graphs. arXiv preprint arXiv:2312.04737, 2023b.

Rui Xue, Tong Zhao, Neil Shah, and Xiaorui Liu. Haste makes waste: A simple approach for scaling
graph neural networks. arXiv preprint arXiv:2410.05416, 2024.

Yujun Yan, Milad Hashemi, Kevin Swersky, Yaoqing Yang, and Danai Koutra. Two sides of the
same coin: Heterophily and oversmoothing in graph convolutional neural networks. arXiv preprint
arXiv:2102.06462, 2021.

Yuning You, Tianlong Chen, Yongduo Sui, Ting Chen, Zhangyang Wang, and Yang Shen. Graph
contrastive learning with augmentations. Advances in neural information processing systems, 33:
5812–5823, 2020.

Mengyi Yuan, Minjie Chen, and Xiang Li. Muse: Multi-view contrastive learning for heterophilic
graphs. In Proceedings of the 32nd ACM International Conference on Information and Knowledge
Management, pp. 3094–3103, 2023.

Hengrui Zhang, Qitian Wu, Junchi Yan, David Wipf, and Philip S Yu. From canonical correlation
analysis to self-supervised graph neural networks. In NeurIPS, 2021.

Jiahao Zhang, Rui Xue, Wenqi Fan, Xin Xu, Qing Li, Jian Pei, and Xiaorui Liu. Linear-time graph
neural networks for scalable recommendations. In Proceedings of the ACM on Web Conference
2024, pp. 3533–3544, 2024.

Jiong Zhu, Yujun Yan, Lingxiao Zhao, Mark Heimann, Leman Akoglu, and Danai Koutra. Beyond
homophily in graph neural networks: Current limitations and effective designs. Advances in neural
information processing systems, 33:7793–7804, 2020a.

Yanqiao Zhu, Yichen Xu, Feng Yu, Qiang Liu, Shu Wu, and Liang Wang. Deep graph contrastive
representation learning. arXiv preprint arXiv:2006.04131, 2020b.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

A RELATED WORK

A.1 LEARNING ON HETEROPHILIC GRAPHS

Heterophilic graphs are prevalent in various domains, such as online transaction networks (Pandit
et al., 2007), dating networks (Altenburger & Ugander, 2018), and molecular networks (Zhu et al.,
2020a). Recently, significant efforts have been made to design novel GNNs that effectively capture
information in heterophilic settings, where connected nodes possess dissimilar features and belong to
different classes.

Some studies propose capturing information from long-range neighbors from various distance (Li
et al., 2022; Liu et al., 2021; Abu-El-Haija et al., 2019; Pei et al., 2020; Suresh et al., 2021). For
example, MixHop (Abu-El-Haija et al., 2019) concatenates information from multi-hop neighbors at
each GNN layer. Geom-GCN (Pei et al., 2020) identifies potential neighbors in a continuous latent
space. WRGAT (Suresh et al., 2021) captures information from distant nodes by defining the type
and weight of edges across the entire graph to reconstruct a computation graph.

Other approaches focus on modifying traditional GNN architectures to achieve adaptive message
passing from the neighborhood (Chen et al., 2020; Chien et al., 2020; Yan et al., 2021; Zhu et al.,
2020a). For instance, GPR-GNN (Chien et al., 2020) incorporates learnable weights into the
representations of each layer using the Generalized PageRank (GPR) technique, while H2GCN (Zhu
et al., 2020a) removes self-loop connections and employs a non-mixing operation in the GNN layer
to emphasize the features of the ego node.

Additionally, some papers approach the problem from spectral graph theory (Luan et al., 2021; Bo
et al., 2021), claiming that high-pass filters can be beneficial in heterophilic graphs by sharpening the
node features between neighbors and preserving high-frequency graph signals.

However, these methods still heavily rely on labeled data, which is impractical for real-world datasets
due to the significant manual effort required and the necessity of ensuring label quality. Furthermore,
they are limited in their ability to effectively learn from the data itself without extensive supervision.

A.2 GRAPH REPRESENTATION LEARNING VIA SSL

As discussed in Section 1. traditional supervised learning on graphs suffers from performance degra-
dation when labeled data is scarce. However, collecting and annotating manual labels in large-scale
datasets (e.g., citation and social networks) is prohibitively expensive, or requires substantial domain
expertise (e.g., chemistry and medicine). Additionally, these models are vulnerable to label-related
noise, further undermining the robustness of graph semi-supervised learning. Self-supervised learning
(SSL) has achieved widespread adoption in the fields of natural language processing (NLP) (Devlin
et al., 2019) and computer vision (CV) (He et al., 2022). Unlike traditional supervised learning,
which relies heavily on large amounts of labeled data, SSL leverages unlabeled data by creating
proxy/pretext tasks that exploit intrinsic structures of raw data themselves as labels (such as the next
word/token prediction, and masked word/image modeling). This approach not only addresses the
dependency on the quantity of labeled data but also efficiently utilizes the inherent patterns and rela-
tionships within the data, enabling the development of richer representations without need for explicit
annotations. Furthermore, they can also encourage the model to learn more robust representations,
thereby reducing its sensitivity to noise and/or labeling bias. Building on these advantages, they have
shown remarkable promise in various graph representation learning applications.

Because of the advantages mentioned above, self-supervised learning has also attracted significant
attention in the field of graph representation learning. Graph SSL approaches are generally divided
into two primary categories: graph contrastive learning and graph generative learning. (1) Contrastive
Losses in Contrastive learning : The model is encouraged to bring representations of similar nodes (or
augmented views) closer while pushing apart those of dissimilar nodes; (2) Feature/edge Reconstruc-
tion in generative learning: Given a masked input, the model is trained to reconstruct the original node
features /predict the existence or weight of edges. However, both approaches become problematic
under certain circumstances. Contrastive learning’s success hinges on relatively complex training
strategies, including the careful design of negative samples and a strong reliance on high-quality
data augmentation (Grill et al., 2020). However, these requirements are often challenging to meet
in graph settings (Hou et al., 2022), which limits the broader application of contrastive learning in

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

this domain. They can also suffer from representation collapse, where the network converges to a
state where all outputs become similar, rendering the learned features uninformative. On the other
hand, generative learning methods aim to reconstruct graph data but often face challenges due to
reconstruction space mismatch. This arises because the decoder demands intricate design choices and
frequently struggles to fully recover the original feature space (Hou et al., 2022; 2023). The decoder
can also potentially inflate the model’s parameter count and GPU memory footprint during training.
Moreover, these methods are also prone to well-known issues such as training instability, overfitting,
and mode collapse.

A.2.1 GRAPH CONTRASTIVE LEARNING

Contrast-based methods generate representations from multiple views of a graph and aim to maximize
their agreement, demonstrating effective practices in recent research. For example, DGI (Veličković
et al., 2018) and InfoGraph (Sun et al., 2020) utilize node-graph mutual information maximization to
capture both local and global information. MVGRL (Hassani & Khasahmadi, 2020) leverages graph
diffusion to create an additional view of the graph and contrasts node-graph representations across
these distinct views. GCC (Qiu et al., 2020) employs subgraph-based instance discrimination and
adopts the InfoNCE loss as its pre-training objective. GRACE (Zhu et al., 2020b) and GraphCL (You
et al., 2020) learn node or graph representations by maximizing the agreement between different
augmentations while treating other nodes or graphs as negative instances. BGRL (Thakoor et al.,
2022) contrasts two augmented versions using inter-view representations without relying on negative
samples. Additionally, CCA-SSG (Zhang et al., 2021) adopts a feature-level objective for graph SSL,
aiming to reduce the correlation between different views. These contrast-based approaches effectively
harness the structural and feature information inherent in graph data, contributing to the advancement
of self-supervised learning on graphs.

However, most of these methods are based on the homophily assumption. Recent works have
demonstrated that SSL can also benefit heterophilic graphs. For instance, HGRL (Chen et al., 2022)
enhances node representations on heterophilic graphs by reconstructing similarity matrices to generate
two types of feature augmentations based on topology and features. GraphACL (Xiao et al., 2024)
predicts the original neighborhood signal of each node using a predictor. MUSE (Yuan et al., 2023)
constructs contrastive views by perturbing both the features and the graph topology, and it learns
a graph-structure-based combiner. GREET (Liu et al., 2022) employs an edge discriminator to
separate the graph into homophilic and heterophilic components, then applies low-pass and high-pass
filters accordingly. However, these methods rely on the meticulous design of negative samples to
provide effective contrastive signals. Moreover, although some approaches such as GREET and
MUSE achieve impressive results, they require alternative training. This significantly increases
computational overhead and may lead to suboptimal performance.

Note that, the fundamental goal of contrastive learning is to shape an embedding space in which
similar (positive) samples are pulled together while dissimilar (negative) samples are pushed apart.
For our H3GNNs :

• No Negative Sampling. Our method requires no negative samples or positive–negative pair
construction. This is a unique advantage of our model, as highlighted in Sec. 1. The student
network’s objective is to predict the teacher’s output representations for all nodes, rather than to
contrast pairs. We explicitly mention that we eliminate negative sampling, a core component of
contrastive learning.

• No Contrastive Loss. We do not use contrastive loss functions (e.g., InfoNCE or NT-Xent). Equ.
1 defines a predictive loss in an aligned latent space, NOT a contrastive loss. We predict teacher
network outputs for ALL nodes (both masked and unmasked), which is completely different from
contrastive learning’s paradigm of pulling positive pairs together and pushing negative pairs apart.
We also provide a comprehensive theoretical analysis of this predictive architecture.

• Adaptive Node Masking. Our node masking is not mere data augmentation or random dropout. We
introduce learnable parameters for masked nodes and adaptively select which nodes to mask based
on prediction difficulty. This creates a more challenging, informative training task compared to
uniform random node dropping.

• Teacher–Student All-Node Predictive Architecture. Only the student receives a masked view; the
teacher always observes the full graph. This setup constitutes an information-completion task, not
a dual-random-view contrastive training.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

A.2.2 GRAPH GENERATIVE LEARNING

Generation-based methods reconstruct graph data by focusing on either the features and the structure
of the graph or both. Classic generation-based approaches include GAE (Kipf & Welling, 2016b),
VGAE (Kipf & Welling, 2016b), and MGAE (Wang et al., 2017), which primarily aim to reconstruct
the structural information of the graph, as well as S2GAE (Tan et al., 2023). In contrast, GraphMAE
(Hou et al., 2022) and GraphMAE2 (Hou et al., 2023) utilize masked feature reconstruction as their
primary objective, incorporating auxiliary designs to achieve performance that is comparable to or
better than contrastive methods.

In the context of generative learning on heterophilic graphs, DSSL (Xiao et al., 2022) operates under
the assumption of a graph generation process, decoupling diverse patterns to effectively capture high-
order information. Similarly, NWR-GAE (Tang et al., 2022) jointly predicts the node degree and the
distribution of neighbor features. However, despite these innovative approaches, their performance
on node classification benchmarks is often unsatisfactory (Hou et al., 2022).

B CHALLENGES OF HETEROPHILY AND HOMOPHILY FOR GRAPH
REPRESENTATION LEARNING

In this section, we provide a preliminary analysis of the challenges involved in graph representation
learning when handling a mixture of both heterophily and homophily patterns (see Tables 6 and 7 in
the Appendix C). We examine current methods, including both semi-supervised learning (SL) and
self-supervised learning (SSL) approaches.

• SL methods: GCN and GAT that focus on low-pass graph signals work well on the homophilic graph
datasets, but suffer from significant performance drop on heterophilic graph datasets. WRGAT
and H2GCN address these issues of GCN and GAT, leading to significant performance boost on
heterophilic graph datasets, while retaining similar performance on homophilic graph datasets.
To understand what the critical part is for performance improvement on the heterophilic graphs,
and to test if high-pass signals indeed play a significant role for them, we test a vanilla MLP
which totally ignores the topology of graphs (see Table 6), and simply uses the raw input node
features. We can see the simple MLP works reasonably well on heterophilic datasets in comparisons
with WRGAT and H2GCN, which supports our earlier statement that traditional message passing
produces smoothing operations on the graph, highly relying on the homophily assumption, and
highlights that the raw node features play a critical role in GNN learning on heterophilic graphs,
whereas neighbor information is essential for learning on homophilic graphs. Overall, these
observations motivate our joint structural node encoding (Eqn. 5). Meanwhile, MLP suffers from
drastic performance drop on homophilic graph datasets, as expected.

• Previous State-of-the-art SSL methods. Those methods (DGI, GMI, MVGRL, BGRL, GRACE
and GraphMAE) that are designed for homophilic graphs achieve significant progress in terms of
bridging the SSL performance with the SL counterparts on homophilic graphs, but they inherit
the drawbacks as GCN and GAT on heterophilic graphs. More recently, methods such as MUSE,
GREET and S3GCL make promising improvement, but they do not show significant progress
against the MLP SL baseline on heterophilic graphs, especially on Actor, which exhibits complex
mixed patterns. Our H3GNNs makes a step forward by significantly improving performance on
heterophilic graphs, showing the great potential of graph SSL (see Table 1 and Table 2).

C PERFORMANCE COMPARISONS WITH SEMI-SUPERVISED LEARNING
BASELINES

Similar as Table 1 and Table 2 in Section 4, we present the performance comparison with several
prominent semi-supervised learning baselines in Tables 6 and Table 7, using the same datasets. The
experimental settings—including data splits and labeling ratios for Cora, Citeseer, and Pubmed—are
kept consistent across all experiments. For results of baselines, we use the results reported in (Platonov
et al., 2023; Yuan et al., 2023). For evaluation, we still follow the linear-probing protocol: we freeze
each model, generate embeddings, and train a downstream linear classifier for downstream node
classification. We primarily compare against two groups of semi-supervised baselines:

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

• Traditional supervised learning (SL) methods: GCN (Kipf & Welling, 2016a), GAT (Veličković
et al., 2017) and a simple MLP;

• Supervised methods specifically designed for heterophilic graphs: WRGAT (Suresh et al., 2021),
H2GCN (Zhu et al., 2020a), GPR-GNN (Chien et al., 2020) and FAGCN (Bo et al., 2021).

Table 6: Results of node classification (in percent ± standard deviation across ten splits). The best
and the runner-up results are highlighted in red and blue respectively in terms of the mean accuracy.

Methods Heterophilic Homophilic

Cornell Texas Wisconsin Actor Cora CiteSeer PubMed Arxiv

SL

GCN (Kipf & Welling, 2016a) 57.03±3.30 60.00±4.80 56.47±6.55 30.83±0.77 81.50±0.30 70.30±0.27 79.00±0.05 71.74±0.27
GAT (Veličković et al., 2017) 59.46±3.63 61.62±3.78 54.71±6.87 28.06±1.48 83.02±0.19 72.51±0.22 79.87±0.03 71.92±0.17
MLP 81.08±7.93 81.62±5.51 84.31±3.40 35.66±0.94 56.11±0.34 56.91±0.42 71.35±0.05 55.50±0.23
† WRGAT (Suresh et al., 2021) 81.62±3.90 83.62±5.50 86.98±3.78 36.53±0.77 81.97±1.50 70.85±1.98 80.86±0.55 —
† H2GCN (Zhu et al., 2020a) 82.16±4.80 84.86±6.77 86.67±4.69 35.86±1.03 81.76±1.55 70.53±2.01 80.26±0.56 —

SSL-Ours H3GNNs +Diffi (Ours) 85.41±1.79 93.24±2.77 92.74±2.91 37.93±0.56 84.70±0.56 73.36±0.33 83.42±0.26 71.56±0.28
H3GNNs +Prob (Ours) 85.68±2.11 92.45±3.78 93.13±3.42 38.15±0.71 84.82±0.23 73.12±0.28 83.25±0.16 71.97±0.12

† Neither WRGAT nor H2GCN have available hyperparameter configurations specifically tuned for the OGBN-Arxiv dataset in their

original paper or baseline papers.

Table 7: Results of node classification (in percent ± standard deviation across ten splits). The best
and the runner-up results are highlighted in red and blue respectively in terms of the mean accuracy.

Methods Chameleon(filtered) Squirrel(filtered) Roman-Empire

SL

GCN (Kipf & Welling, 2016a) 40.89±4.12 39.47±1.47 73.69±0.74
GPR-GNN (Chien et al., 2020) 39.93±3.30 38.95±1.99 64.85±0.27
FAGCN (Bo et al., 2021) 41.90±2.72 41.08±2.27 65.22±0.56
H2GCN (Zhu et al., 2020a) 26.75±3.64 35.10±1.15 60.11±0.52

SSL-Ours H3GNNs +Diffi 47.50±3.27 44.68 ±1.68 75.51 ±0.54
H3GNNs +Prob 48.91±3.86 45.49±2.13 75.86±0.47

From the results, we draw the same conclusion as in our comparison with SSL baselines in the main
text: our H3GNNs consistently outperforms all SL baselines on heterophilic datasets—including
both classical GNNs and models specifically designed for heterophily—while achieving comparable
performance on homophilic datasets. For example, H3GNNs surpasses the strongest baselines by
8.38% on Texas, 6.15% on Wisconsin 4.41% on filtered squirrel and by 7.01% on filtered Chameleon,
demonstrating its ability to learn complex mixed patterns in graphs. Moreover, when comparing the
two masking strategies, probabilistic masking consistently outperforms difficulty-based masking.
This suggests that applying a base masking probability to all nodes—rather than focusing solely
on difficult ones during training—more effectively balances exploration and exploitation. This
observation is consistent with the conclusion drawn in the main text.

D PERFORMANCE COMPARISON FOR NODE CLUSTERING

In this section, we present a performance comparison for node clustering. We compare our model
with four groups of baseline methods:

• Traditional Unsupervised Clustering Methods: AE (Hinton & Salakhutdinov, 2006), node2vec
(Grover & Leskovec, 2016), struc2vec (Ribeiro et al., 2017), and LINE (Tang et al., 2015).

• Attributed Graph Clustering Methods: GAE (VGAE) (Kipf & Welling, 2016b), GraphSAGE
(Hamilton et al., 2017), and SDCN (Bo et al., 2020).

• Self Supervised Methods for Homophilic Graphs: MVGRL (Hassani & Khasahmadi, 2020),
GRACE (Zhu et al., 2020b), and BGRL (Thakoor et al., 2021).

• Self Supervised Methods for Heterophilic Graphs: DSSL (Xiao et al., 2022), HGRL (Chen et al.,
2022), and MUSE (Yuan et al., 2023).

Following the same protocol as with other baselines, we freeze the model and use the generated
embeddings for k-means clustering. We reproduce MUSE (Yuan et al., 2023), as it has been proven
to be the state-of-the-art model for node clustering. However, the original paper does not provide any
hyperparameters for node clustering on any dataset, we perform hyperparameter tuning ourselves.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

Table 8: Clustering results (ACC in percent ± standard deviation). The best and runner-up results are
highlighted with red and blue, respectively.

Methods Texas Actor Cornell CiteSeer
ACC ACC ACC ACC

AE (Hinton & Salakhutdinov, 2006) 50.49±0.01 24.19±0.11 52.19±0.01 58.79±0.19
node2vec (Grover & Leskovec, 2016) 48.80±1.93 25.02±0.04 50.98±0.01 20.76±0.27
struc2vec (Ribeiro et al., 2017) 49.73±0.01 22.49±0.34 32.68±0.01 21.22±0.45
LINE (Tang et al., 2015) 49.40±2.08 22.70±0.08 34.10±0.77 28.42±0.88

GAE (Kipf & Welling, 2016b) 42.02±1.22 23.45±0.04 43.72±1.25 48.37±0.37
VGAE (Kipf & Welling, 2016b) 50.27±1.87 23.30±0.22 43.39±0.99 55.67±0.13
GraphSAGE (Hamilton et al., 2017) 56.83±0.56 23.08±0.29 44.70±2.00 49.28±1.18
SDCN (Bo et al., 2020) 44.04±0.56 23.67±0.29 36.94±2.00 59.86±1.18

MVGRL (Hassani & Khasahmadi, 2020) 62.79±2.33 28.58±1.03 43.77±3.03 45.67±9.08
GRACE (Zhu et al., 2020b) 56.99±2.23 25.87±0.45 43.55±4.60 54.66±5.41
BGRL (Thakoor et al., 2021) 58.68±1.80 28.20±0.27 55.08±1.68 64.27±1.68

DSSL (Xiao et al., 2022) 57.43±3.51 26.15±0.46 44.70±2.44 54.32±3.69
HGRL (Chen et al., 2022) 61.97±3.10 29.79±1.11 60.56±3.72 61.14±1.49
† MUSE (Yuan et al., 2023) 65.79±4.36 31.05±0.72 62.35±2.38 66.03±2.33

H3GNNs +Diffi 76.50±1.50 31.22±0.76 73.22±3.45 65.80±2.32
H3GNNs +Prob 77.05±2.66 32.10±1.51 74.86±2.09 66.56±3.56

† MUSE doesn’t provide any hyperparameters for node clustering.

For the other baselines, we report the results from baseline papers (Chen et al., 2022; Yuan et al.,
2023). The hyperparameters search space can be found in Appendix P. The results are shown in
Table 8.

From the results, we can achieve the similar conclusions as node classification:

• Our H3GNNs achieves significantly better performance than all baselines, including the state-of-
the-art model MUSE, by a large margin on the Texas and Cornell datasets, with improvements of
11.26% and 12.51%, respectively. Moreover, H3GNNs slightly outperforms MUSE on Actor due
to the complex mixed structural patterns, as introduced in Appendix N. It also attains comparable
performance on Citeseer. These findings are consistent with those observed in node classification
tasks. Overall, our results demonstrate that H3GNNs can generate high-quality embeddings re-
gardless of the downstream tasks and effectively handle both heterophilic and homophilic patterns,
highlighting its strong generalization capability in graph representation learning.

• Regarding the two masking strategies, probabilistic masking consistently outperforms difficulty
masking. This finding aligns with our observations in node classification and can be attributed to a
better balance between exploration and exploitation.

E ABLATION STUDY ON PROPOSED TECHNIQUES

We perform an ablation to illustrate the interactions between our masking strategies and the other
model components in Table 9.

Results show that dynamic masking and the teacher–student predictive architecture usually interact:
the performance drop from removing both is not simply the sum of their individual effects, under-
scoring their interdependence. As noted in the Sec. 3.1, masking strategies are critical to SSL’s
success.

However, dynamic masking and attention usually operate orthogonally: dynamic masking informs
SSL of complex, often unknown topological properties of graphs, while attention fuses multiple
filters to capture complex structural patterns. The results in the table also align with our expectations.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

Table 9: Ablation study on heterophilic datasets. Accuracy (%) with mean ± std.

Methods Cornell Texas Wisconsin Actor Roman

H3GNNs (Full) 85.68±2.11 92.45±3.78 93.13±3.42 38.15±0.71 75.86±0.47
w/o DynMsk 84.26±2.15 90.16±3.51 90.08±3.36 36.98±0.87 74.01±0.50
w/o T-S 82.09±2.85 87.96±3.87 89.02±3.12 36.08±1.02 73.11±1.12
w/o Attn 82.85±2.33 88.96±4.00 90.23±3.26 37.02±0.62 73.53±1.36
w/o T-S & DynMsk 81.78±3.66 85.59±4.19 88.56±3.56 35.86±0.87 72.87±1.78
w/o T-S & DynMsk & Attn 79.86±3.82 82.46±5.05 86.98±3.60 34.11±0.92 70.12±1.89

F PERFORMANCE COMPARISON WITH RECENT BASELINES

In this section, we present a performance comparison of node classification using recent and strong
state-of-the-art SL baselines, namely PCNet (Li et al., 2024), AEROGNN (Lee et al., 2023), and G2

(Rusch et al., 2022). We report the results as provided in their respective original papers. Because
prior works evaluate on different datasets (e.g., G2 only on heterophilic graphs, while PC-Conv adopts
different splits on homophilic benchmarks), we restrict our comparisons to identical settings for
fairness. Therefore, we report results for all methods on heterophilic datasets and include AeroGNN
on three homophilic datasets, as it is the only method evaluated under the same experimental protocol
as ours and presented in Table 1. As shown in Table 10 and 11, Our H3GNNs achieves state-of-
the-art performance on the Wisconsin, Texas, and Actor datasets, as well as on three homophilic
benchmarks, while maintaining competitive results on Cornell. This indicates H3GNNs ’s ability to
handle complex mixed patterns in graphs.

Table 10: Results of node classification (in percent ± standard deviation across ten splits). The best
and the runner-up results are highlighted in red and blue respectively in terms of the mean accuracy.

Methods Cornell Texas Wisconsin Actor
ACC ACC ACC ACC

PCNet (Li et al., 2024) 82.16± 2.70 88.11±2.17 88.63± 2.75 37.80± 0.64
AEROGNN (Lee et al., 2023) 81.24±6.80 84.35±5.20 84.80±3.30 36.57±1.10
† G2 (Rusch et al., 2022) 86.22±4.90 87.57±3.86 87.84±3.49 —
S3GCL (Wan et al., 2024) 81.27±3.67 86.12±3.91 84.56±2.71 36.88±0.34

H3GNNs +Diffi (Ours) 85.41±1.79 93.24±2.77 92.74±2.91 37.93±0.56
H3GNNs +Prob (Ours) 85.68±2.11 92.45±3.78 93.13±3.42 38.15±0.71

† G2 has no reported performance on the Actor dataset.

Table 11: Results of node classification (in percent ± standard deviation across ten splits). The best
and the runner-up results are highlighted in red and blue respectively in terms of the mean accuracy.

Methods Cora Citeseer Pubmed
AEROGNN lee2023towards 83.90± 0.50 73.20± 0.60 80.59± 0.50
H3GNNs + Diff 84.70± 0.56 73.36± 0.33 83.42± 0.26
H3GNNs + Prob 84.82± 0.23 73.12± 0.28 83.25± 0.16

G PROOF OF GRADIENT-DIFFERENCE BOUNDS

Theorem 2. Consider the optimization of encoder-decoder based graph SSL in Eqn. 7 and our pro-
posed H3GNNs in Eqn. 1 under the same encoder architecture and following assumptions/conditions:

• Gradient Smoothness and Lipschitz Continuity for the encoder, the decoder, E.g., the encoder
E(·; Θenc) has gradient βE-smoothness (i.e., each gradient from iteration t to t + 1 changes at
most linearly with respect to parameter shifts in Θenc with a coefficient βE) and is LE-Lipschitz
continuous with respect to its input and/or parameters (i.e., differences such as ||E(·; Θ(t+1)

enc)−
E(·; Θ(t)

enc)|| can be bounded from the above as linear functions of ||Θ(t+1)
enc − Θ

(t)
enc|| with a

coefficient LE). Similarly, we have (βD, LD) defined for the decoder.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

• Boundedness from the above for gradients of the encoder, gradients of the decoder, and reconstruc-
tion errors of the combined encoder-decoder.

So, ∥∇E(·; Θ(t)
enc)∥ ≤ BE , ∥∇D

(
E(·; Θ(t)

enc); Θ
(t)
dec

)
∥ ≤ BD, and ∥D

(
E(f̄ ; Θ

(t)
enc); Θ

(t)
dec

)
− f∥ ≤

BReconst .

• Strong Convexity for the encoder, the decoder, and the student (and the teacher) in their parameters.

E.g., the encoder E(·; Θenc) is µE-strongly convex in their parameters Θenc, i.e.,
⟨∇E(f̄ ; Θ

(t+1)
enc) − ∇E(f̄ ; Θ

(t)
enc),Θ

(t+1)
enc − Θ

(t)
enc⟩ ≥ µE · ∥Θ(t+1)

enc − Θ
(t)
enc∥2. Similarly, we

have µD defined for the decoder.

• Approximation Error. When only unmasked inputs are used, the composite functions, either the
encoder-decoder or the teacher-student in our H3GNNs , achieve an approximation error ϵE−D

(or ϵT−S).

Then, the following three results hold:

• Linear Convergence Bounds Under Strong Convexity. For our H3GNNs ,

∥Φ(t+1) − Φ∗∥2 ≤ (1− µ2
E

β2
E

) · ∥Φ(t) − Φ∗∥2 (14)

For the encoder-decoder models,

∥θ(t+1) − θ∗∥2 ≤
(
1− min(µ2

E , µ
2
D)

max(β2
E , β

2
D)

)
∥θ(t) − θ∗∥2 (15)

from which we can see our H3GNNs converges to the optimal solution Φ∗ faster than the encoder-
decoder counterpart to their optimal solutions Θ∗ due to a smaller contraction factor

(
1− µ2

E

β2
E

)
<(

1− min(µ2
E ,µ2

D)

max(β2
E ,β2

D)

)
. This implies that H3GNNs can achieve a faster convergence.

• Proxy Task Loss Bounds under a Lipschitz-dependent assumption between the masked graph
signal and the raw graph signal, ∥f̄ − f∥ ≤ δ. For our H3GNNs ,

∥S(f̄ ; Φ)− T (f ; Ψ)∥ ≤ LE · δ + ϵT−S . (16)
For the encoder-decoder models,

∥D
(
E(f̄ ; Φenc); Θdec

)
− f∥ ≤ LE · LD · δ + ϵE−D. (17)

W.L.O.G., assume ϵE−D = ϵT−S , our H3GNNs has a smaller error upper bound, indicating that
our teacher–student model is closer to the optimal solution θ∗ during training, which in turn implies
that its parameter updates are more stable and its convergence speed is faster (as shown in the first
result above).

• Gradient-Difference Bounds in Encoder-Decoder Models Showing Coupling Effects of Parameter
Updating,

∥∇LE−D(Θ
(t+1)
enc)−∇LE−D(Θ(t)

enc)∥ ≤ 2BReconst

(
βEBD +BELDLE

)
∥Θ(t+1)

enc −Θ(t)
enc∥

(18)

+ 2BEBReconstβD∥Θ(t+1)
dec −Θ

(t)
dec∥+ 4BEBDBReconst,

∥∇LE−D(Θ
(t+1)
dec)−∇LE−D(Θ

(t)
dec)∥ ≤ 2BReconst βD LE ∥Θ(t+1)

enc −Θ(t)
enc∥ (19)

+ 2BReconstβD||Θ(t+1)
dec −Θ

(t)
dec||+ 4BDBReconst,

where the coupling effects in Encoder-Decoder models may lead to instability in learning.

In this section, we first provide the proof of the Gradient Difference Upper Bound:

G.1 ENCODER GRADIENT DIFFERENCE UPPER BOUND IN ENCODER-DECODER MODEL:

Consider the encoder-decoder model loss function

LE−D(Θ) =
1

N
||D

(
E(f̄ ; Θenc); Θdec

)
− f ||22 (20)

Assume the following:

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

1. Encoder Smoothness:
∥∇E(·; Θ(t+1)

enc)−∇E(·; Θ(t)
enc)∥ ≤ βE ∥Θ(t+1)

enc −Θ(t)
enc∥. (21)

2. Decoder Gradient Smoothness: For any fixed input (e.g. fθf (x)),∥∥∥∇D(t+1)
(
E(·; Θ(t+1)

enc))
)
−∇D

(
E(·; Θ(t)

enc); Θ
(t)
dec

)∥∥∥ ≤ βD ∥Θ(t+1)
dec −Θ

(t)
dec∥ (22)

+ LDLE ∥Θ(t+1)
enc −Θ(t)

enc∥,
3. Encoder Gradient Bound:

∥∇E(·; Θ(t)
enc)∥ ≤ BE . (23)

4. Decoder Gradient Bound: ∥∥∥∇D
(
E(·; Θ(t)

enc); Θ
(t)
dec)

∥∥∥ ≤ BD. (24)

We use the simplified notation in our proof:∥∥∥∇D(t)
(
E(·; Θ(t)

enc))
∥∥∥ ≤ BD (25)

5. Reconstruction Error Bound:∥∥∥D(
E(·; Θ(t)

enc); Θ
(t)
dec − f

∥∥∥ ≤ BReconst. (26)

6. Encoder Lipschitz (with respect to parameters): There exists LE > 0 such that
∥E(·; Θ(t+1)

enc)− E(·; Θ(t)
enc)∥ ≤ LE ∥Θ(t+1)

enc −Θ(t)
enc∥. (27)

Then, the gradient difference with respect to the encoder parameters between two consecutive
iterations is bounded by∥∥∥∇LE−D(Θ

(t+1)
enc)−∇LE−D(Θ(t)

enc)
∥∥∥ ≤ C1 ∥Θ(t+1)

enc −Θ(t)
enc∥+ C2 ∥Θ(t+1)

dec −Θ
(t)
dec∥+ C3,

(28)
where
C1 = 2BReconst

(
βEBD +BELDLE

)
, C2 = 2BE βD BReconst, C3 = 4BEBDBReconst

(29)

Proof. We start with the expression for the gradient with respect to the encoder parameters at iteration
t:

∇LE−D(Θ
(t)
enc) = 2

[
D(t)

(
E(·; Θ(t)

enc)
)
− f

]
∇E(·; Θ(t)

enc)∇D(t)
(
E(·; Θ(t)

enc)
)
. (30)

Similarly, at iteration t+ 1,

∇LE−D(Θ
(t+1)
enc) = 2

[
D(t+1)

(
E(·; Θ(t+1)

enc)
)
− f

]
∇E(·; Θ(t+1)

enc)∇D(t+1)
(
E(·; Θ(t+1)

enc)
)
. (31)

Define the difference:
∆f =

∥∥∥∇LE−D(Θ
(t+1)
enc)−∇LE−D(Θ(t)

enc)
∥∥∥. (32)

Thus,
∆f =

∥∥∥ 2∇E(·; Θ(t+1)
enc)∇D(t+1)

(
E(·; Θ(t+1)

enc)
)[
D(t+1)

(
E(·; Θ(t+1)

enc)
)
− f

]
− 2

[
D(t)

(
E(·; Θ(t)

enc)
)
− f

]
∇E(·; Θ(t)

enc)∇D(t)
(
E(·; Θ(t)

enc)
)∥∥∥. (33)

To handle this difference, we add and subtract the intermediate term
2∇E(·; Θ(t)

enc)∇D(t+1)
(
E(·; Θ(t+1)

enc)
)[
D(t+1)

(
E(·; Θ(t+1)

enc)
)
− f

]
, (34)

so that
∆f =

∥∥∥ 2[∇E(·; Θ(t+1)
enc)−∇E(·; Θ(t)

enc)
]
∇D(t+1)

(
E(·; Θ(t+1)

enc)
)(

D(t+1)
(
E(·; Θ(t+1)

enc)
)
− f

)
+ 2∇E(·; Θ(t)

enc)
{
∇D(t+1)

(
E(·; Θ(t+1)

enc)
)
−∇D(t)(E(·; Θ(t)

enc))
}(

D(t+1)
(
E(·; Θ(t+1)

enc)
)
− f

)
+ 2∇E(·; Θ(t)

enc)∇D(t)(E(·; Θ(t)
enc))

{(
D(t+1)

(
E(·; Θ(t+1)

enc)
)
− f

)
−
(
D(t)

(
E(·; Θ(t)

enc)
)
− f

)}∥∥∥.
(35)

Applying the triangle inequality yields:
∆f ≤ T1 + T2 + T3, (36)

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

with
T1 = 2

∥∥∥∇E(·; Θ(t+1)
enc)−∇E(·; Θ(t)

enc)
∥∥∥ ∥∥∥∇D(t+1)

(
E(·; Θ(t+1)

enc))
∥∥∥∥∥∥D(t+1)

(
E(·; Θ(t+1)

enc))− f
∥∥∥,

(37)
and
T2 = 2

∥∥∥∇E(·; Θ(t)
enc)

∥∥∥∥∥∥∇D(t+1)
(
E(·; Θ(t+1)

enc))−∇D(t)
(
E(·; Θ(t)

enc))
∥∥∥∥∥∥D(t+1)

(
E(·; Θ(t+1)

enc)− f
∥∥∥.

(38)
and
T3 = 2∥∇E(·; Θ(t)

enc)∇D(t)(E(·; Θ(t)
enc))

{(
D(t+1)

(
E(·; Θ(t+1)

enc)
)
− f

)
−

(
D(t)

(
E(·; Θ(t)

enc)
)
− f

)}∥∥∥.
(39)

Bounding T1: By the encoder smoothness assumption,
∥∇E(·; Θ(t+1)

enc)−∇E(·; Θ(t)
enc)∥ ≤ βE ∥Θ(t+1)

enc −Θ(t)
enc∥, (40)

and by the decoder gradient bound,∥∥∥∇D(t+1)
(
E(·; Θ(t+1)

enc))
∥∥∥ ≤ BD, (41)

and the reconstruction error bound,∥∥∥D(t+1)
(
E(·; Θ(t+1)

enc))− f
∥∥∥ ≤ BReconst. (42)

Thus,
T1 ≤ 2βE BD BReconst ∥Θ(t+1)

enc −Θ(t)
enc∥. (43)

Bounding T2: We now decompose the term
∇D(t+1)

(
E(·; Θ(t+1)

enc))−∇D(t)
(
E(·; Θ(t)

enc)). (44)

By adding and subtracting the term ∇D(t+1)((E(·; Θ(t)
enc))), we obtain:∥∥∥∇D(t+1)

(
E(·; Θ(t+1)

enc))−∇D(t)
(
E(·; Θ(t)

enc))
∥∥∥

≤
∥∥∥∇D(t+1)

(
E(·; Θ(t+1)

enc))−∇D(t+1)((E(·; Θ(t)
enc)))

∥∥∥
+
∥∥∥∇D(t+1)((E(·; Θ(t)

enc)))−∇D(t)
(
E(·; Θ(t)

enc))
∥∥∥.

(45)

By the decoder’s Lipschitz continuity with respect to its input, we have:∥∥∥∇D(t+1)
(
E(·; Θ(t+1)

enc))−∇D(t+1)((E(·; Θ(t)
enc)))

∥∥∥ ≤ LD ∥E(·; Θ(t+1)
enc)− E(·; Θ(t)

enc)∥, (46)

and by the encoder Lipschitz condition,
∥E(·; Θ(t+1)

enc)− E(·; Θ(t)
enc)∥ ≤ LE ∥Θ(t+1)

enc −Θ(t)
enc∥. (47)

Thus, the first term is bounded by:
LDLE ∥Θ(t+1)

enc −Θ(t)
enc∥. (48)

For the second term, the decoder gradient smoothness gives:∥∥∥∇D(t+1)((E(·; Θ(t)
enc)))−∇D(t)((E(·; Θ(t)

enc)))
∥∥∥ ≤ βD ∥Θ(t+1)

dec −Θ
(t)
dec∥. (49)

Thus,∥∥∥∇D(t+1)
(
E(·; Θ(t+1)

enc))−∇D(t)
(
E(·; Θ(t)

enc))
∥∥∥ ≤ LDLE ∥Θ(t+1)

enc −Θ(t)
enc∥+ βD ∥Θ(t+1)

dec −Θ
(t)
dec∥.

(50)

Now, using the encoder gradient bound, ∥∇E(·; Θ(t)
enc)∥ ≤ BE , and the reconstruction error bound

∥D(t+1)
(
E(·; Θ(t+1)

enc))− f∥ ≤ BReconst, we have:

T2 ≤ 2BE BReconst

(
LDLE ∥Θ(t+1)

enc −Θ(t)
enc∥+ βD ∥Θ(t+1)

dec −Θ
(t)
dec∥

)
. (51)

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

Bounding T3:
T3 = 2∥∇E(·; Θ(t)

enc)∇D(t)(E(·; Θ(t)
enc))

{(
D(t+1)

(
E(·; Θ(t+1)

enc)
)
− f

)
−

(
D(t)

(
E(·; Θ(t)

enc)
)
− f

)}∥∥∥
(52)

≤ 2∥∇E(·; Θ(t)
enc)∥ · ∥∇D(t)(E(·; Θ(t)

enc))∥ · ∥
(
D(t+1)

(
E(·; Θ(t+1)

enc)
)
− f

)
−
(
D(t)

(
E(·; Θ(t)

enc)
)
− f

)
∥

(53)
≤ 2BE ·BD · 2BReconst (54)
= 4BEBDBReconst (55)

Combining T1, T2 and T3:
∆f ≤ T1 + T2 + T3

≤ 2βEBDBReconst ∥Θ(t+1)
enc −Θ(t)

enc∥+ 2BEBReconstLDLE ∥Θ(t+1)
enc −Θ(t)

enc∥

+ 2BEBReconstβD ∥Θ(t+1)
dec −Θ

(t)
dec∥+ 4BEBDBReconst

=
[
2BReconst

(
βEBD +BELDLE

)]
∥Θ(t+1)

enc −Θ(t)
enc∥+ 2BEBReconstβD ∥Θ(t+1)

dec −Θ
(t)
dec∥

+ 4BEBDBReconst.

Define
C1 = 2BReconst

(
βEBD +BELDLE

)
and C2 = 2BEBReconstβD and C3 = 4BEBDBReconst.

(56)
Then, the final bound is:∥∥∥∇LE−D(Θ

(t+1)
enc)−∇LE−D(Θ(t)

enc)
∥∥∥ ≤ C1 ∥Θ(t+1)

enc −Θ(t)
enc∥+ C2 ∥Θ(t+1)

dec −Θ
(t)
dec∥+ 4BEBDBReconst.

(57)
This completes the proof for the encoder gradient difference bound.

G.2 DECODER GRADIENT DIFFERENCE UPPER BOUND

For decoder, assume that:

1. Decoder Lipschitz Continuity:
∥D(t+1) −D(t)∥ ≤ LD ∥Θ(t+1)

dec −Θ
(t)
dec∥. (58)

2. Decoder Gradient Smoothness:∥∥∥∇D(t+1) −∇D(t)
∥∥∥ ≤ βD ∥Θ(t+1)

dec −Θ
(t)
dec∥. (59)

For simpility, we also assume βD-smooth with respect to its input which helps to keep the proof
concise: ∥∥∇D(f1; Θdec) − ∇D(f2; Θdec)

∥∥ ≤ βD

∥∥f1 − f2
∥∥. (60)

3. Boundedness: There exist constants BD and BReconst such that
∥∇D(t+1)

(
E(·; Θ(t+1)

enc))∥ ≤ BD, (61)
and ∥∥∥D(t+1)

(
E(·; Θ(t+1)

enc))− f
∥∥∥ ≤ BReconst. (62)

4. Encoder Influence: The encoder is LE-Lipschitz with respect to its parameters; that is,
∥E(·; Θ(t+1)

enc)− E(·; Θ(t)
enc)∥ ≤ LE ∥Θ(t+1)

enc −Θ(t)
enc∥. (63)

Then the gradient difference with respect to the decoder parameters satisfies
∥∇LE−D(Θ

(t+1)
dec)−∇LE−D(Θ

(t)
dec)∥ ≤ 2BReconst βD LE ∥Θ(t+1)

enc −Θ(t)
enc∥ (64)

+ 2BReconstβD||Θ(t+1)
dec −Θ

(t)
dec||+ 4BDBReconst

Proof. We begin with the gradient with respect to the decoder parameters at iteration t, so that

∇LE−D(Θ
(t)
dec) = 2

[
D(t)

(
E(·; Θ(t)

enc)
)
− f

]
∇D(t)

(
E(·; Θ(t)

enc)
)
. (65)

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

Similarly, at iteration t+ 1,

∇LE−D(Θ
(t+1)
dec) = 2

[
D(t+1)

(
E(·; Θ(t+1)

enc)
)
− f

]
∇D(t+1)

(
E(·; Θ(t+1)

enc)
)
. (66)

Define the difference:
∆g =

∥∥∥∇LE−D(Θ
(t+1)
dec)−∇LE−D(Θ

(t)
dec)

∥∥∥. (67)

Thus,
∆g =

∥∥∥2[D(t+1)
(
E(·; Θ(t+1)

enc)
)
− f

]
∇D(t+1)

(
E(·; Θ(t+1)

enc)
)

− 2
[
D(t)

(
E(·; Θ(t)

enc)
)
− f

]
∇D(t)

(
E(·; Θ(t)

enc)
)∥∥∥. (68)

To proceed, we add and subtract the intermediate term

2
[
D(t+1)

(
E(·; Θ(t+1)

enc)
)
− f

]
∇D(t+1)

(
E(·; Θ(t)

enc)
)

(69)

to obtain:
∆g =

∥∥∥ 2[D(t+1)
(
E(·; Θ(t+1)

enc)
)
− f

](
∇D(t+1)

(
E(·; Θ(t+1)

enc)
)
−∇D(t+1)

(
E(·; Θ(t)

enc)
))

+ 2
([

D(t+1)
(
E(·; Θ(t+1)

enc)
)
− f

])(
∇D(t+1)

(
E(·; Θ(t)

enc)
)
−∇D(t)

(
E(·; Θ(t)

enc)
∥∥∥

+ 2
([

D(t+1)
(
E(·; Θ(t+1)

enc)
)
− f

]
−
[
D(t)

(
E(·; Θ(t)

enc)
)
− f

])
∇D(t)

(
E(·; Θ(t)

enc)
)∥∥∥.

(70)
Applying the triangle inequality, we have:

∆g ≤ TA + TB + Tc, (71)
where
TA = 2

∥∥∥[D(t+1)
(
E(·; Θ(t+1)

enc))− f
](

∇D(t+1)
(
E(·; Θ(t+1)

enc)
)
−∇D(t+1)

(
E(·; Θ(t)

enc)
))∥∥∥, (72)

and
TB = 2

∥∥∥([D(t+1)
(
E(·; Θ(t+1)

enc)
)
− f

])(
∇D(t+1)

(
E(·; Θ(t)

enc)
)
−∇D(t)

(
E(·; Θ(t)

enc)
∥∥∥. (73)

and
TC = 2

([
D(t+1)

(
E(·; Θ(t+1)

enc)
)
− f

]
−

[
D(t)

(
E(·; Θ(t)

enc)
)
− f

])
∇D(t)

(
E(·; Θ(t)

enc)
)∥∥∥ (74)

Bounding TA: Using the decoder gradient bound, we have∥∥∥∇D(t+1)
(
E(·; Θ(t+1)

enc)
)
−∇D(t+1)

(
E(·; Θ(t)

enc)
)∥∥∥ ≤ βD

∥∥∥E(·; Θ(t+1)
enc)− E(·; Θ(t)

enc)
∥∥∥. (75)

By the encoder Lipschitz property,∥∥∥E(·; Θ(t+1)
enc)− E(·; Θ(t)

enc)
∥∥∥ ≤ LE ∥Θ(t+1)

enc −Θ(t)
enc∥. (76)

Also, by the reconstruction error bound,∥∥∥D(t+1)
(
E(·; Θ(t+1)

enc))− f
∥∥∥ ≤ BReconst. (77)

Therefore,
TA ≤ 2BReconst βD LE ∥Θ(t+1)

enc −Θ(t)
enc∥. (78)

Bounding TB: For TB , we have∥∥∥∇D(t+1)
(
E(·; Θ(t)enc)

)
−∇D(t)

(
E(·; Θ(t)enc)

)∥∥∥ ≤ βD

∥∥∥Θ(t+1)
dec −Θ

(t)
dec

∥∥∥ (79)

Since: ∥∥∥D(t+1)
(
E(·; Θ(t+1)enc))− f

∥∥∥ ≤ BReconst (80)

Thus, it follows that
TB ≤ 2BReconstβD||Θ(t+1)

dec −Θ
(t)
dec|| (81)

Bounding TC: We have:

∥∥∥[D(t+1)
(
E(·; Θ(t+1)enc))− f

]
−
[
D(t)(E(·; Θ(t)enc))− f

]∥∥∥ ≤ 2BReconst (82)

and

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

∥∇D(t+1)
(
E(·; Θ(t+1)

enc))∥ ≤ BD, (83)

Thus:
TC ≤ 4BDBReconst (84)

Combining TA, TB and TC: We then have:
∆g ≤ TA + TB + TC

≤ 2BReconst βD LE ∥Θ(t+1)
enc −Θ(t)

enc∥+ 2BReconstβD||Θ(t+1)
dec −Θ

(t)
dec||+ 4BDBReconst

(85)
This completes the proof for the decoder-side gradient difference bound.

H PROOF OF PROXY TASK LOSS BOUNDS

Theorem 3. Proxy Task Loss Bounds under a Lipschitz-dependent assumption between the masked
graph signal and the raw graph signal, ∥f̄ − f∥ ≤ δ. For our H3GNNs ,

∥S(f̄ ; Φ)− T (f ; Ψ)∥ ≤ LE · δ + ϵT−S . (86)
For the encoder-decoder models,

∥D
(
E(f̄ ; Φenc); Θdec

)
− f∥ ≤ LE · LD · δ + ϵE−D. (87)

W.L.O.G., assume ϵE−D = ϵT−S , our H3GNNs has a smaller error upper bound, indicating that our
teacher–student model is closer to the optimal solution Φ∗ during training, which in turn implies that
its parameter updates are more stable and its convergence speed is faster (as shown in the first result
above).

Proof.
||D

(
E(f̄ ; Φenc); Θdec

)
− f || ≤ ||f −D

(
E(f ; Φenc); Θdec

)
|| (88)

+ ||D
(
E(f ; Φenc); Θdec

)
−D

(
E(f̄ ; Φenc); Θdec

)
||

≤ ϵE−D + LELD||f − f̄ || (89)
≤ ϵE−D + LE · LD · δ (90)

∣∣∣∣S(f̄ ; Φ)− T (f ; Ψ)
∣∣∣∣ ≤ ∣∣∣∣S(f̄ ; Φ)− S(f ; Φ)

∣∣∣∣+ ||S(f ; Φ)− T (f ; Ψ)|| (91)

≤ LE

∣∣∣∣f̄ − f
∣∣∣∣+ ϵT−S (92)

≤ LEδ + ϵT−S (93)

I PROOF OF LINEAR CONVERGENCE BOUNDS

I.1 ENCODER-DECODER:

Theorem 4. Linear Convergence Bounds Under Strong Convexity. For our H3GNNs ,

∥Φ(t+1) − Φ∗∥2 ≤ (1− µ2
E

β2
E

) · ∥Φ(t) − Φ∗∥2 (94)

For the encoder-decoder models,

∥θ(t+1) − θ∗∥2 ≤
(
1− min(µ2

E , µ
2
D)

max(β2
E , β

2
D)

)
∥θ(t) − θ∗∥2 (95)

from which we can see our H3GNNs converges to the optimal solution Φ∗ faster than the encoder-
decoder counterpart to their optimal solutions Θ∗ due to a smaller contraction factor

(
1− µ2

E

β2
E

)
<(

1− min(µ2
E ,µ2

D)

max(β2
E ,β2

D)

)
. This implies that H3GNNs can achieve a faster convergence.

Proof. From above, We can get the smoothness assumptions:

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2026

∥∇E(·; Θ(t+1)
enc)−∇E(·; Θ(t)

enc)∥ ≤ βE ∥Θ(t+1)
enc −Θ(t)

enc∥. (96)

and ∥∥∥∇D(t+1) −∇D(t)
∥∥∥ ≤ βD ∥Θ(t+1)

dec −Θ
(t)
dec∥. (97)

Besides, we also assume strong convexity:

1. µE-strong convexity of encoder:
⟨∇E(f̄ ; Θ(t+1)

enc)−∇E(f̄ ; Θ(t)
enc),Θ

(t+1)
enc −Θ(t)

enc⟩ ≥ µE · ∥Θ(t+1)
enc −Θ(t)

enc∥2 (98)

2. µD-strong convexity of decoder:
⟨∇D(f̄ ; Θ

(t+1)
dec)−∇D(f̄ ; Θ

(t)
dec),Θ

(t+1)
dec −Θ

(t)
dec⟩ ≥ µD · ∥Θ(t+1)

dec −Θ
(t)
dec∥

2 (99)

When combining an encoder and decoder, the overall strong convexity constant is often at most
min(µE , µD) in a conservative sense.

Then for the encoder–decoder model, we define θ =
(
Θenc,Θdec

)
for simplicity, where θ is used as

a generic parameter vector for the entire model. The gradient descent update is given by:
θt+1 = θt − η∇LED(θt) (100)

Following the gradient analysis:
∥θt+1 − θ∗∥2 = ∥(θt − η∇LED(θt))− θ∗∥2 (101)

= ∥θt − θ∗∥2 − 2η⟨∇LED(θt), θt − θ∗⟩+ η2∥∇LED(θt)∥2 (102)

For ⟨∇LED(θt), θt − θ∗⟩:
Since µ-strongly convex, the following inequality holds:

L(θ′) ≥ L(θ) +∇L(θ)⊤(θ′ − θ) +
µ

2
∥θ′ − θ∥2. (103)

Let θ∗ denote the global optimum of L(θ), i.e.,
θ∗ = argmin

θ
L(θ). (104)

then:
∇L(θ∗) = 0. (105)

Substituting θ′ = θ∗ into the strong convexity definition, we obtain:

L(θ∗) ≥ L(θt) +∇L(θt)
⊤(θ∗ − θt) +

µ

2
∥θ∗ − θt∥2. (106)

Rearranging the terms, we have:

L(θ∗)− L(θt) ≥ ∇L(θt)
⊤(θ∗ − θt) +

µ

2
∥θ∗ − θt∥2. (107)

Since θ∗ is the global minimum, it follows that L(θ∗) ≤ L(θt). Therefore:
L(θ∗)− L(θt) ≤ 0. (108)

Combining the two inequalities:

0 ≥ ∇L(θt)
⊤(θ∗ − θt) +

µ

2
∥θ∗ − θt∥2. (109)

∇L(θt)
⊤(θt − θ∗) ≥ µ

2
∥θt − θ∗∥2. (110)

In general, the encoder and decoder are each µE-strongly convex and µD-strongly convex with
respect to their parameters, respectively, then the composition can only guarantee a smaller strong
convexity coefficient min(µE , µD) in the worst case, then:

⟨∇LED(θt), θt − θ∗⟩ ≥ min(µE , µD)∥θt − θ∗∥2

Similarly, for ∥∇LED(θt)∥2, since ∇LED(θ∗) = 0, then

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2026

∥∇LED(θ)∥ = ∥∇LED(θ)−∇LED(θ∗)∥ ≤ β ∥θ − θ∗∥. (111)

∥∇LED(θ)∥2 ≤ β2 ∥θ − θ∗∥2. (112)

In Encoder-Decoder, we have two sets of parameters (Θenc,Θdec) and we typically argue that

LED(θ) is at most (βE-smooth)× (βD-smooth), (113)

For simplicity, let LED(θ) is max(βE , βD)-smooth:
∥∇LED(θt)∥2 ≤ max(β2

E , β
2
D)∥θt − θ∗∥2

Then we can get:
∥θt+1 − θ∗∥2 ≤ (1− 2ηmin(µE , µD) + η2 max(β2

E , β
2
D))∥θt − θ∗∥2 (114)

We want to find the minimum of (1− 2ηmin(µE , µD) + η2 max(β2
E , β

2
D)):

−2min(µE , µD) + 2ηmax(β2
E , β

2
D) = 0 (115)

η =
min(µE , µD)

max(β2
E , β

2
D)

(116)

With optimal learning rate η = min(µE ,µD)
max(βE ,βD) , we obtain:

∥θt+1 − θ∗∥2 ≤ (1− min(µ2
E , µ

2
D)

max(β2
E , β

2
D)

)∥θt − θ∗∥2 (117)

I.2 H3GNN:

For our method, analyzing one step:
∥Φt+1 − Φ∗∥2 = ∥(Φt − η̃∇LTS(Φt))− Φ∗∥2 (118)

Similarly as above, with optimal learning rate η̃ = µE/βE :

∥Φt+1 − Φ∗∥2 ≤ (1− µ2
E

β2
E

)∥Φt − Φ∗∥2 (119)

Clearly, our proposed method achieves better convergence because:
µ2
E

β2
E

>
min(µ2

E , µ
2
D)

max(β2
E , β

2
D)

(120)

This inequality holds because:

1. µ2
E ≥ min(µ2

E , µ
2
D)

2. β2
E ≤ max(β2

E , β
2
D)

Obviously, our model yields a faster convergence rate.

J PERFORMANCE PLOT

In this section, we present a radar plot to illustrate the advantages of our proposed H3 GNN compared
to major baselines across all datasets as shown in Figure 4. This figure clearly demonstrates our
model’s effectiveness.

K WEIGHTED GCN VERSUS VANILLA GCN

In this section, we compare our proposed Weighted GCN (WGCN) against the standard GCN as low-
pass filters for capturing homophilic patterns in graphs. Specifically, we evaluate both models across

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2026

Figure 4: Performance comparison across all datasets

different numbers of layers ℓ, ℓ′ and hidden-dimension sizes h on datasets of varying scale—Cornell,
Actor, and Roman-Empire—and report the results in Table 12.

From the results, we can see that when the dimension of the model is smaller, WGCN consistently
outperforms vanilla GCN. This is because WGCN can adapt message passing flexibly, assigning
higher weights to similar neighbors while downweighting dissimilar ones in heterophilic regions.
However, when heavier models are used, GCN can achieve comparable and even better performance
than WGCN. We conclude that this is because the deeper GCN has sufficient learning capacity,
whereas the larger number of learnable parameters in WGCN potentially causing overfitting. Ad-
ditionally, we observe that WGCN still provides advantages when the graph has complex mixed
patterns, such as in the Actor and Roman-Empire datasets.

In summary, when computational resources are limited and graphs exhibit complex structures, WGCN
can learn better representations. These findings prove the effectiveness of our proposed WGCN
approach.

Table 12: The effects of WGCN over Vanilla GCN

Cornell Actor Roman-Empire
WGCN GCN WGCN GCN WGCN GCN

ℓ=1, ℓ′=2, h=32 84.86±2.48 83.78±2.71 37.00±0.91 36.67±0.78 73.36±0.41 72.83±0.34
ℓ=2, ℓ′=3, h=32 85.03±2.00 84.32±2.31 37.23±0.77 36.95±0.95 74.02±0.38 73.85±0.57
ℓ=1, ℓ′=2, h=256 85.40±1.79 85.68±2.11 37.80±0.56 37.83±0.75 74.32±0.48 74.64±0.56
ℓ=2, ℓ′=3, h=256 85.21±1.89 85.21±2.01 38.15±0.71 38.10±0.53 75.86±0.47 75.60±0.57

28

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2026

L OVERALL MASKING RATIO R

In this section, we provide an analysis of the overall masking ratio R, which determines the total
percentage of nodes being masked for the student model during training. We present the results in
Table 13. From the results, we can observe that different datasets require different optimal masking
ratios, which is consistent with our conclusions in the main text. For datasets with more complicated
patterns, such as Actor and Roman Empire, a smaller masking ratio proves beneficial. This prevents
excessive node masking, which would otherwise prevent the student model from effectively capturing
the teacher model’s representations.

Table 13: The effects of the overall masking ratio R (Eqn. 3)

Ratio R Cornell Actor Roman-Empire
1 84.98±3.01 36.88±0.98 73.65±0.47

0.8 85.68±2.11 37.32±0.66 74.40±0.42
0.5 85.26±2.25 38.15±0.71 75.86±0.47
0.3 84.86±1.93 37.53±0.56 75.32±0.34

M ENCODED TOKEN SELECTION STRATEGIES

In this section, we present a study on the token selection strategies mentioned in our main text.
Specifically, we evaluate four strategies:

• Directly selecting the first token X0,C

• Taking the mean across all tokens
• Taking the maximum across all tokens
• Performing hierarchical token fusion as described in Eqn. 6

Our results demonstrate that the proposed hierarchical token combination performs best among all
strategies when dealing with large, complex graphs. This is because it can combine the similar
encoded tokens first and dynamically learns their combination weights in a coarse-to-fine manner,
which demonstrates the effectiveness of this design. Simply selecting the first encoded token results
in significant information loss and performs worse than basic aggregation methods like mean and
max pooling, as evidenced in the Roman Empire dataset. However, for smaller datasets, simpler
selection methods are sufficient since hierarchical learning can potentially cause overfitting.

In our proposed method, the selection of these strategies is treated as a hyperparameter that can
be easily adjusted based on the specific properties of the dataset. This flexibility highlights the
adaptability of our model design to different graph scenarios.

Table 14: The effects of different token selection strategies (Eqn. 6)
Cornell Actor Roman-Empire

First Token 85.68±2.11 37.00±0.82 72.46±0.57
Mean 85.32±2.53 37.30±0.72 75.12±0.40
Max 85.26±2.88 37.56±0.88 74.87±0.79

Hierarchical 84.98±2.22 38.15±0.71 75.86±0.47

N HETEROPHILY AND HOMOPHILY IN GRAPHS

N.1 DATASETS DESCRIPTIONS

We provide a basic introduction of heterophilic datasets used in our experiments (Pei et al., 2020;
Platonov et al., 2023) and present T-SNE visualizations of four representative examples—Cornell,
Texas, Wisconsin, and Actor—to illustrate their complex mixing patterns.

WebKB. The WebKB1 dataset is a collection of web pages. Cornell, Wisconsin and Texas are three
sub-datasets of it. Nodes represent web pages and edges denote hyperlinks between them. The node

29

1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2026

features are bag-of-words representations of the web pages, which are manually categorized into five
classes: student, project, course, staff, and faculty.

Actor Co-occurrence Network. This dataset is derived from the film-director-actor-writer network.
In this network, each node corresponds to an actor, and an edge between two nodes indicates that the
actors co-occur on the same Wikipedia page. The node features consist of keywords extracted from
these Wikipedia pages, and the actors are classified into five categories based on the content of their
pages.

Roman-Empire. The Roman-empire dataset is built from the full text of the English Wikipedia
article on the Roman Empire (=22.7K words). Each word is a node, with edges connecting words that
are adjacent in the text or linked by a dependency relation. Nodes are labeled by their part-of-speech
roles (17 most frequent plus “other”), and node features are 300-dimensional fastText embeddings.
The resulting graph is extremely sparse and chain-like (avg. degree =2.9, diameter =6,824) and
exhibits strong heterophily, making it a challenging benchmark for GNNs to capture long-range and
syntactic dependencies.

Wikipedia Network. Chameleon and squirrel are two page-page networks on specific topics in
Wikipedia. Nodes represent web pages and edges represent mutual links between pages. Node
features correspond to informative nouns appearing in the Wikipedia pages. These datasets are used
for node classification tasks, where pages are classified into five categories based on their average
monthly traffic.

Upon closer examination, researchers (Platonov et al., 2023) identified a critical flaw in these widely-
used benchmark datasets: a substantial portion of nodes are duplicates with identical regression
targets and neighborhood structures. In the squirrel dataset, 57% of nodes (2,978 out of 5,201) are
duplicates, while in chameleon, duplicates account for 61% of nodes (1,387 out of 2,277). These
duplicates create problematic train-test data leakage, as they appear across training, validation, and
testing splits.

To remedy this issue, researchers developed filtered versions by removing nodes that had no incoming
edges and shared both the same monthly traffic value and outgoing edge set with another node in the
graph. Testing on these filtered datasets revealed dramatically different results - many models that
performed exceptionally well on the original datasets showed significant performance degradation,
and the relative rankings of different models changed substantially. This finding suggests that previous
evaluations based on the original datasets were unreliable, as models may have been exploiting data
leakage rather than learning meaningful graph patterns.

N.2 PATTERN ANALYSIS

Wisconsin, Texas and Cornell: These three datasets are relatively small and exhibit high heterophily.
In the raw feature visualizations (left), nodes of different labels are highly mixed, with significant
overlap between categories. After applying H3GNNs , the right-side visualizations reveal a more
distinct clustering structure, where nodes of the same label are more compactly grouped. For instance,
in Texas and Cornell, purple nodes appear more concentrated, and red nodes are better distinguished
from other categories, indicating that the model effectively captures the structural patterns. In
Wisconsin, the node clusters become more distinguishable, with clearer boundaries between different
categories. This demonstrates the model’s ability to learn meaningful representations that enhance
classification and clustering tasks.

Actor: This dataset contains a large number of nodes with an imbalanced label distribution (with red
nodes being dominant). In the raw feature space (left), although red nodes are mainly centered, other
colored nodes remain scattered without clear boundaries. Notably, the outer ring of nodes effectively
represents the mixed structural pattern, which accounts for the relatively low accuracy observed in
both node classification and node clustering tasks across all models. In the H3GNNs embedding space
(right), red nodes are more tightly clustered, while nodes of other labels form relatively well-separated
subclusters. This suggests that the model improves class separation and enhances discrimination
among different node categories.

Overall, these visualizations demonstrate that in the H3GNNs embedding space, nodes of different
categories form more distinguishable clusters compared to the raw feature space. This intuitively
explains why our model achieves great performance in both node classification and node clustering

30

1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

Under review as a conference paper at ICLR 2026

tasks. Furthermore, it highlights the model’s strong representation learning capability across various
graph structures, whether homophilic or heterophilic.

Figure 5: T-SNE visualizations of Wisconsin datasets.

Figure 6: T-SNE visualizations of Texas datasets.

O DATASETS STATISTICS

We provide the deatils of datasets used in our experiment here. The homophily ratio, denoted as
homo, represents the proportion of edges that connect two nodes within the same class out of all
edges in the graph. Consequently, graphs with a strong homophily ratio close to 1, whereas those
with a ratio near 0 exhibit strong heterophily.

homo =

∣∣{(u, v) ∈ E | yu = yv}
∣∣

|E|
(121)

31

1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727

Under review as a conference paper at ICLR 2026

Figure 7: T-SNE visualizations of Cornell datasets.

Figure 8: T-SNE visualizations of Actor datasets.

P HYPERPARAMETERS

Our model’s hyperparameters are tuned from the following search space:

• Learning rate for SSL model: {0.01, 0.005, 0.001}.
• Learning rate for classifier: {0.01, 0.005, 0.001}.
• Weight decay for SSL model: {0, 1×10−3, 5×10−3, 8×10−3, 1×10−4, 5×10−4, 8×
10−4}.

• Weight decay for classifier: {0, 5× 10−4, 5× 10−5}.
• Dropout for Filters: {0.1, 0.3, 0.5, 0.7, 0.8}.
• Dropout for Attention: {0.1, 0.3, 0.5, 0.7, 0.8}.
• Dimension of tokens: {128, 256, 512, 1024, 2048, 4096}.
• Hidden units of filters: {16, 32, 64, 128, 256, 512}.

32

1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781

Under review as a conference paper at ICLR 2026

Table 15: Datasets statistics.

Datasets Node Edges Feats Classes Homo

Cornell 183 295 1,703 5 0.30
Texas 183 309 1,703 5 0.11

Wisconsin 251 499 1,703 5 0.21
Actor 7,600 29,926 932 5 0.22

Chameleon(Filtered) 890 17708 2325 5 0.24
Squirrel(Filtered) 2223 93996 2089 5 0.21
Roman-Empire 22662 32927 300 18 0.05

Cora 2708 10,556 1,433 7 0.81
CiteSeer 3,327 9,104 3,703 6 0.74
PubMed 19,717 88,648 500 3 0.80

Ogbn-Arxiv 169343 1166243 128 40 0.66

• Total masking ratio: {0.9, 0.8, 0.5, 0.3, 0.1, 0}.
• Dynamic masking ratio: {0.9, 0.8, 0.5, 0.3, 0.1, 0}.
• Momentum: {0.9, 0.99, 0.999}.

Q THE USE OF LARGE LANGUAGE MODELS (LLMS)

We used Large Language Models (LLMs) solely to refine the writing.

33

	Introduction
	Preliminary
	Method
	Objective Harmonization
	Representation Harmonization
	Theoretical Underpinnings

	Experiments
	Linear Probing Results of Our H3GNNs
	k-Mean Clustering Results of Our H3GNNs
	Compute and Memory Comparisons
	Ablation Studies

	Conclusion
	Related Work
	Learning on Heterophilic Graphs
	Graph Representation Learning via SSL
	Graph contrastive learning
	Graph generative learning

	Challenges of Heterophily and Homophily for Graph Representation Learning
	Performance Comparisons with Semi-Supervised Learning Baselines
	Performance Comparison for Node Clustering
	Ablation Study on Proposed Techniques
	Performance Comparison with Recent Baselines
	Proof of Gradient-Difference Bounds
	Encoder Gradient Difference Upper Bound in Encoder-Decoder Model:
	Decoder Gradient Difference Upper Bound

	Proof of Proxy Task Loss Bounds
	Proof of Linear Convergence Bounds
	Encoder-Decoder:
	H3GNN:

	Performance Plot
	Weighted GCN versus Vanilla GCN
	Overall Masking Ratio R
	Encoded Token Selection Strategies
	Heterophily and Homophily in Graphs
	Datasets Descriptions
	Pattern Analysis

	Datasets Statistics
	Hyperparameters
	The Use of Large Language Models (LLMs)

