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Abstract

Pre-training plays a vital role in various vision tasks, such as object recognition
and detection. Commonly used pre-training methods, which typically rely on
randomized approaches like uniform or Gaussian distributions to initialize model
parameters, often fall short when confronted with long-tailed distributions, espe-
cially in detection tasks. This is largely due to extreme data imbalance and the
issue of simplicity bias. In this paper, we introduce a novel pre-training frame-
work for object detection, called Dynamic Rebalancing Contrastive Learning with
Dual Reconstruction (2DRCL). Our method builds on a Holistic-Local Contrastive
Learning mechanism, which aligns pre-training with object detection by captur-
ing both global contextual semantics and detailed local patterns. To tackle the
imbalance inherent in long-tailed data, we design a dynamic rebalancing strategy
that adjusts the sampling of underrepresented instances throughout the pre-training
process, ensuring better representation of tail classes. Moreover, Dual Recon-
struction addresses simplicity bias by enforcing a reconstruction task aligned with
the self-consistency principle, specifically benefiting underrepresented tail classes.
Experiments on COCO and LVIS v1.0 datasets demonstrate the effectiveness of
our method, particularly in improving the mAP/AP scores for tail classes.

1 Introduction

With the advancement of deep learning, computer vision has seen significant progress, particularly in
the development of large-scale pre-training and fine-tuning optimization paradigms [53, 57, 61, 63].
Numerous pre-training methods have been designed to capture domain-specific or task-relevant
concepts, thereby boosting performance on downstream tasks [5, 12, 13, 25, 28–30, 46, 50]. In
the field of object detection, current methods typically leverage ImageNet [8] and COCO [33] for
pre-training, allowing partial model components, such as the backbone, to achieve satisfactory pre-
training. However, these pre-training paradigms leave some key detection components randomly
initialized and tend to overlook the suboptimal performance issues caused by long-tailed distributions
during pre-training process.

In the traditional supervised pre-training paradigm, models are constrained by the distribution
of labeled data, making it difficult for them to perform well in long-tailed settings. While self-
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supervised learning has demonstrated potential in enabling models to learn richer and more effective
feature representations without relying on labeled data [10, 13, 20, 25, 50], significant challenges
remain. An often-overlooked but crucial challenge in long-tailed object detection is simplicity
bias [21, 41, 44, 51, 52], where deep neural networks tend to rely on simpler predictive patterns
while overlooking complex features that are crucial for model generalization. This bias is especially
problematic for tail classes, as their limited examples make them more likely to be ignored by models
that prioritize simpler patterns. To address these challenges, this work aims not only to develop a
pre-training strategy that aligns with the unique demands of object detection but also to ensure its
effectiveness across both balanced and long-tailed data distributions.

Motivated by this, we propose a novel pre-training framework called Dynamic Rebalancing Con-
trastive Learning with Dual Reconstruction (2DRCL), specifically designed for long-tailed object
detection pre-training. Our method incorporates Holistic-Local Contrastive Learning, which com-
bines holistic and local feature learning to better align the pre-training process with the fine-tuning
phase. To address the issues of long-tailed distributions during pre-training, 2DRCL integrates a
dynamic rebalancing strategy that improves the accuracy of tail classes. Unlike traditional resampling
methods, our dynamic rebalancing sampler considers instance-level imbalance, offering more precise
control over class distribution and ensuring that tail classes are adequately represented. Additionally,
by introducing Dual Reconstruction, our method effectively mitigates simplicity bias, enabling the
model to capture both complex patterns and nuanced features that are essential for long-tailed object
detection. This dual mechanism ensures that the model not only retains detailed visual information
but also grasps deeper semantic relationships, which is particularly crucial for accurately recognizing
and distinguishing tail classes with limited examples.

To evaluate the effectiveness of our method, we conduct extensive experiments on two benchmark
datasets, i.e., COCO [33] and LVIS v1.0 [11]. Experiments on these datasets from both quantitative
and qualitative perspectives validate the effectiveness of our proposed method.

2 Related Work

Pre-training for Object Detection. Pre-training is a critical step in object detection, often involving
the use of large-scale datasets to learn transferable representations. Commonly, CNNs pre-trained
on image classification datasets like ImageNet [8] are fine-tuned for object detection tasks. Self-
supervised pre-training methods [2, 4, 5, 13] have gained traction in recent years. These methods do
not require labeled data and aim to learn useful representations through contrastive learning. To bridge
the gap between pre-training and fine-tuning, dense-level contrastive learning methods [6, 18, 26, 49,
50, 55] explored local feature similarities between views, enhancing target perception and feature
learning. Recognizing the insufficiency of pre-training solely the backbone, SoCo [50] advocated
pre-training additional modules like FPN to process intricate scene-level information. In object
detection, methods like UP-DETR [7] and DETReg [1] pre-trained entire DETR-like detectors with
region matching and feature reconstruction tasks, while AlignDet [25] froze a pre-trained backbone
during detection pre-training, achieving satisfactory results with fewer epochs. Nonetheless, these
approaches still struggled with effectively addressing long-tailed distribution challenges.

Long-tailed Object Detection. In the literature [57, 61], repeat factor sampling [11, 56] aims
to balance the data distribution by sampling tail classes more frequently. In object detection and
segmentation tasks, achieving sample balance solely through straightforward resampling strategies is
challenging due to the complexity of the scenes. Special loss functions represent another technical
direction for tackling the long-tailed problem. EQL [43] protected tail classes from being over-
suppressed by ignoring negative gradients from head samples, while EQL v2 [42] balanced gradients
from head and tail classes. Seesaw loss [45] rebalanced the positive and negative gradients of
each class using two reweighting factors. ECM loss [22] provided a theoretical understanding
of the long-tailed tracking detection problem and introduced a novel alternative objective that
optimized the margin-based binary classification error. Beyond these loss functions, methods such
as supervised contrastive learning [46, 64], decoupled training [9, 38] and expert-based classifier
training [54, 60, 62] have also demonstrated effectiveness under long-tailed settings. While these
methods often implicitly reshape decision boundaries to protect tail classes, their indirect nature may
limit their effectiveness in more complex long-tailed scenarios.
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Figure 1: Illustration of the proposed Dynamic Rebalancing Contrastive Learning with Dual Recon-
struction (2DRCL) method, which consists of the Holistic Contrastive Learning (Section 3.1.1), the
Local Contrastive Learning (Section 3.1.2), and the Dual Reconstruction (Section 3.3). The whole
network can be trained in an end-to-end manner.

3 Methodology

Our goal is to develop a pre-training approach tailored to the specific requirements of object detection,
while maintaining robustness across both balanced and long-tailed data distributions. To this end, we
introduce a novel method called Dynamic Rebalancing Contrastive Learning with Dual Reconstruction
(2DRCL), specifically designed for pre-training in long-tailed object detection scenarios. In 2DRCL,
we exploit a Holistic-Local Contrastive Learning (HLCL) paradigm to coordinate holistic and local
feature learning to better align the pre-training with the fine-tuning phase. Building on this, a dynamic
rebalancing strategy is incorporated, which emphasizes tail classes at both the image and instance
(object proposal) levels to address data imbalance during pre-training. By integrating HLCL with this
dynamic rebalancing strategy, we introduce a Dual Reconstruction component aimed at mitigating
simplicity bias, enabling the model to concurrently capture both complex and subtle feature patterns
essential for long-tailed object detection. Below, we present details of the three parts in 2DRCL.

3.1 Holistic-Local Contrastive Learning

In 2DRCL, the HLCL mechanism serves as the foundation for pre-training object detection models.
The HLCL framework encompasses two key components: Holistic Contrastive Learning (HCL) and
Local Contrastive Learning (LCL). HCL focuses on learning generic visual representations, enabling
the backbone model to capture comprehensive image patterns and general semantic abstractions
effectively. To integrate object-level representations into the pre-training process, LCL is introduced
to guide both the backbone and the detection head toward object-level details within the image. By
pre-training all network components used in object detectors, LCL ensures that the model is more
precisely aligned with object detection tasks, while also enhancing its ability to capture fine-grained
object-level features.

3.1.1 Holistic Contrastive Learning

We present HCL mechanism in Fig. 1. As illustrated, we follow the typical CL framework, i.e.,
MoCo [5, 13], to realize the holistic CL in our proposed 2DRCL framework. Typically, for an image I ,
we apply different image views to obtain x and x+ as inputs for the encoder and momentum encoder
in HCL. Each view is randomly and independently augmented. Notice that the scale and location of
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the same object proposal are different across the augmented image views, which enables the model to
learn translation-invariant and scale-invariant object-level representations in the following LCL part,
which we will elaborate next.

Subsequently, x and x+ are transformed via separate projectors, generating holistic-level representa-
tions, z and z+, which are then ℓ2-normalized. Subsequently, we employ the InfoNCE loss [13, 36]
to drive the network training, formally:

LHCL = − log
exp (z · z+/τ)

exp (z · z+/τ) +
∑K

i=1 exp (z · zi/τ)
, (1)

where τ is a temperature hyper-parameter usually set as 0.2. For each input image, we use one positive
and K negative samples for HCL, where K is fixed as 65,536. For the update of momentum encoder
in Fig. 1, we use the same Exponential Moving Average (EMA) strategy as that in MoCo [5, 13].
Through HCL, the model is trained to effectively learn generic visual representations and capture
comprehensive image patterns. However, solely relying on image-level pre-training may lead to an
overemphasis on holistic representations, potentially neglecting features that are critical for object
detection tasks.

3.1.2 Local Contrastive Learning

To introduce object-level representations into pre-training, we incorporate the LCL mechanism to
bridge the gap between pre-training process and fine-tuning phase w.r.t object detection, as illustrated
in Fig. 1. Specially, we employ a class-agnostic detector [24] to generate a series of proposals as
bounding boxes B = {b1, b2, . . . , bn}, where bi denotes the i-th bounding box within the augmented
input image x. The object-level representation of a proposal is then obtained via object detection heads
(e.g., RoI [15]), denoted as zbb. The LCL loss for the local-level representation can be formulated as:

LLCL = − log
exp

(
zbb · zbb+/τ

)
exp

(
zbb · zbb+/τ

)
+
∑K

i=1 exp (zbb · zbbi/τ)
. (2)

where zbb+ means a corresponding positive object proposal within another augmented input image
x+. The K negative proposals means any potential proposals within other unrelated images during
training. To construct a dictionary comprising a large number of object proposals from different input
images, we utilize a queue-based structure. Sequences from the current mini-batch are enqueued,
while the oldest mini-batch sequences are dequeued, ensuring that the dictionary size is independent
of the mini-batch size. LCL mechanism maximizes the similarity between object proposals across
augmented views, enabling the model to learn comprehensive representations for diverse object
proposals, thus enhancing its robustness in object detection tasks.

Finally, the objective w.r.t the HLCL mechanism can be formulated as:

LHLCL = αcLHCL + βcLLCL , (3)

where αc and βc are the weights of HCL and LCL loss, respectively.

3.2 Dynamic Rebalancing

To precisely control class distribution and ensure adequate representation of tail classes, we propose
a dynamic resampling method that considers both images and object proposals. Unlike traditional
resampling strategies, such as Repeat Factor Sampling (RFS) [11], which primarily emphasize class-
balanced sampling, our approach aims to prioritize tail classes more effectively through resampling
at both the image level and the object-proposal level. Given that object detection requires the
identification and localization of specific objects, addressing instance-level imbalance in addition to
image-level imbalance is expected to achieve a more balanced representation, particularly benefiting
tail classes.

The proposed resampling method incorporates a dynamic adjustment mechanism, enabling the model
to initially learn the overall distribution of the dataset and progressively shift its focus towards tail
classes as pre-training advances. Specifically, for each category c, we calculate image-level and
instance-level scores, denoted as f im

c and f in
c , respectively. Here, f im

c indicates the proportion of
images belonging to the c-th category in the entire dataset, while f in

c represents the proportion of
object proposals associated with the c-th category across the dataset. These two scores reflect the

4



imbalance ratio for category c, following the approach used in RFS [11]. The combined score for
each category, fc, is then defined as the harmonic mean of these two scores:

fc =
f im
c · f in

c

αdf im
c + (1− αd) f in

c

. (4)

where the hyper-parameter αd changes dynamically throughout pre-training, defined as αd = T
Tmax

,
where T is the current epoch and Tmax is the total number of pre-training epochs. As pre-training
progresses, the value of αd increases, gradually shifting the focus from image-level balancing to
instance-level balancing, enabling the model to increasingly emphasize tail classes.

To achieve balanced sampling, we define the category-level repeat factor rc based on the score fc

using the formula rc = max
(
1,
√
t/fc

)
, where t is a fixed hyper-parameter set at 0.001. This repeat

factor ensures that categories with lower scores (typically tail classes) are sampled more frequently
during training. The dynamic resampling strategy effectively addresses data imbalance at both the
image and instance levels, enhancing focus on tail classes while mitigating the risk of overfitting due
to excessive repetition of rare instances.

3.3 Dual Reconstruction

Building on the HLCL and dynamic resampling mechanisms, which provide the foundation for
pre-training object detection and mitigate instance imbalance, respectively, our proposed 2DRCL
framework introduces a Dual Reconstruction component to address simplicity bias. This component
enables the model to concurrently capture both complex and subtle feature patterns, which are vital
for effective long-tailed object detection.

3.3.1 Simplicity Bias

Simplicity bias [21, 41, 44] is a phenomenon where models tend to favor simpler predictive patterns,
often neglecting complex features that are critical for effective generalization. This issue is particularly
prevalent in long-tailed distributions, where it significantly affects the performance on tail classes. In
such scenarios, models struggle to learn the intricate and unique characteristics of these tail classes,
further exacerbating the class imbalance problem.

To bridge this gap, we propose a Dual Reconstruction (DRC) component aimed at mitigating
simplicity bias by enhancing feature discrimination for both head and tail classes. As shown in Fig. 1,
DRC comprises two key elements: Appearance Reconstruction (AR) and Semantic Reconstruction
(SR). The AR component enforces pixel-level reconstruction, compelling the model to capture as
many subtle details as possible for each input image. In contrast, the SR component ensures semantic
consistency between the features of the original input image and those of a corresponding randomly
occluded image. We hypothesize that the effective implementation of DRC will enable the model
to retain fine-grained visual information while also capturing deeper semantic relationships. This
capability is particularly important for accurately recognizing and distinguishing tail classes, which
often have limited training examples. This strategy ensures accurate visual representation while
promoting a deeper semantic focus, enabling the model to better handle tail classes in long-tailed
object detection.

3.3.2 Appearance Reconstruction

To enforce appearance consistency, we utilize an auto-encoding structure specifically designed for
high-fidelity reconstruction of input images. The encoder f , parameterized by θ, maps an input
image x into a dense feature space, represented as z = f (x). A generator g, parameterized by η,
then attempts to invert this mapping, producing a reconstructed version: x̂ = g (f (x)). Through
pixel-wise image reconstruction, the Appearance Reconstruction (AR) component compels the latent
features, f (x), to capture as many subtle details as possible for each input image.

AR is not merely replicating the input image; rather, it acts as an auxiliary regularization mechanism
that focuses on distilling discriminative visual features relevant to the primary object detection task
for each input image. By enforcing image reconstruction, AR enables the model to effectively
capture both prominent and nuanced details present in the input data. The AR loss is formulated as a
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pixel-wise mean-squared error (MSE), expressed as:

LAR = ∥x− g (f (x))∥22 . (5)

3.3.3 Semantic Reconstruction

While AR ensures that the model captures fine-grained visual details essential for accurately rep-
resenting and distinguishing between different objects, especially in cases with limited examples
of tail classes, it is equally important to maintain semantic integrity in the reconstructed images.
This semantic consistency allows the model to focus on the underlying meaning and context of the
image, rather than merely surface-level details, thereby promoting a more robust and generalized
understanding of each input.

To address this need, we introduce Semantic Reconstruction (SR), which incorporates controlled
perturbations during the reconstruction process. SR is designed to preserve the semantic content of
the original image while allowing the model to learn to recognize and reconstruct meaningful features
even when certain parts of the image are altered or obscured. This approach ensures that the model
develops a deeper understanding of each input’s inherent structure and context.

Specifically, we apply a mask to a fixed percentage (e.g., 25%) of an object proposal within the
reconstructed image g (f (x)), resulting in a masked version, denoted as M (g (f (x))), where M
means image masking operation. This masked image is then re-encoded by the encoder to generate
the corresponding latent features, ẑ = f (M (g (f (x)))). The Semantic Reconstruction (SR) loss is
computed by measuring the congruence between the feature representations of the vanilla images
and those of the masked reconstructed images, evaluated across multiple layers of the network. This
approach ensures that the model maintains semantic consistency while learning to recognize and
reconstruct meaningful features.

LSR =

P∑
p=1

∥f (x)− f (M (g (f (x))))∥22 , (6)

where P represents the number of feature layers considered, and the SR loss, LSR, is defined as
the Euclidean distance between the original (vanilla) features and the reconstructed features across
these layers. The SR component ensures that even in the presence of visual disruptions, the essential
semantic features are preserved, allowing the model to learn robust, invariant features that go beyond
superficial visual similarities. This approach enhances the model’s ability to generalize by focusing
on meaningful semantic information rather than just appearance.

Conclusively, our proposed DRC leverages both appearance and semantic consistency to address
simplicity bias, encouraging the model to learn rich and complex feature representations essential
for accurate and robust detection of tail classes. The interplay between the two reconstruction losses
enhances the model’s sensitivity to both fundamental visual details and higher-level semantic features,
leading to a more versatile and effective detection paradigm. This combined approach ensures that the
model not only captures detailed visual information but also grasps abstract semantic relationships,
improving its overall performance in long-tailed object detection tasks.

The total loss for the Dual Reconstruction combines the AR and SR losses can be formulated as:
LDRC = αrLAR + (1− αr)LSR , (7)

where αr balances the trade-off between visual fidelity and semantic accuracy. This dual-focus
strategy force the model to reconstruct the image/features for both the head and the tail classes. This,
DRC enhances the model’s ability to represent and detect tail classes effectively.

Overall, the final loss function of our method is optimized by:
L = LHLCL + LDRC + Ldet , (8)

where Ldet denotes the loss of object detection that makes the pre-training consistent with the task.
For simplicity, the weights of all losses in L are set to 1.

4 Experiments

In this section, we outline the experimental settings, implementation details, and main results.
Additionally, a comprehensive description of the experimental settings is provided in Section A.1 of
the Appendix.
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Table 1: Comparisons with state-of-the-art methods on COCO (Mask R-CNN with R50-FPN).

Backbone Initialization Methods APbb APbb
50 APbb

75 APmk APmk
50 APmk

75

From scratch

DenseCL [49] 39.6 59.3 43.3 - - -
Self-EMD [34] 40.4 61.1 43.7 37.4 56.5 39.7
SoCo [50] 40.6 61.1 44.4 - - -
SlotCon [55] 41.0 61.1 45.0 - - -

ImageNet pre-trained backbone
Surpervised 38.3 58.0 42.1 34.3 54.9 36.6
AlignDet [25] 39.4 59.2 43.2 35.3 56.1 37.7
Ours 41.4 61.3 45.8 37.4 57.2 39.4

4.1 Experimental Configurations

Datasets. We conduct experiments on two representative datasets: COCO [33] and LVIS v1.0 [11].
The COCO dataset is a standard benchmark for object detection, segmentation, and captioning tasks,
comprising 80 classes with a relatively balanced distribution, including 118k training images and 5k
validation images. Given the balanced nature of the class distribution in COCO, we use this dataset to
evaluate the performance of the proposed 2DRCL under balanced settings. In addition, we utilize the
LVIS v1.0 dataset to benchmark long-tailed object detection scenarios. LVIS features 1,203 classes
with a highly imbalanced distribution, containing 100k training images and 19.8k validation images.
The classes in LVIS are categorized into three groups based on their frequency of occurrence [11]: rare
(1~10 instances), common (11~100 instances), and frequent (>100 instances). This categorization
allows for a comprehensive assessment of 2DRCL’s performance under long-tailed data distributions.

Implementation Details. Experiments are conducted with both Faster R-CNN and Mask R-CNN
frameworks. For a comprehensive comparison, we use both ResNet-50 and ResNet-101 backbones.
All models are implemented using the MMDetection toolbox [3]. We pre-train the models on 8
RTX3090 GPUs with a batch size of 16. Unless otherwise specified, pre-training follows the 1×
schedule (12 epochs), starting with an initial learning rate of 0.02, which is reduced by a factor of 10
after the 8th and 11th epochs. For 2× schedule, models are trained with 24 epochs, and the learning
rate decays at the end of epoch 16 and 22. In our experiments, the hyper-parameters are set as follows:
αc is set to 0.1, βc is set to 0.05, αr is set to 0.1. When conducting experimental comparisons on the
LVIS v1.0 dataset in Table 3, we first use our 2DRCL for pre-training, followed by the application
of existing long-tailed methods for fine-tuning to further enhance performance. Finally, we select
‘ECM [22]+2DRCL’ as ‘Ours’ for comparison with state-of-the-art methods.

4.2 Quantitative Results

Table 2: Comparisons with pre-trained
methods on LVIS v1.0 with a 1× sched-
uler using Mask R-CNN.

Method APbb APbb
r APbb

c APbb
f

MoCo v2 [5] 14.5 3.9 12.4 21.6
SimCLR [4] 19.9 8.0 18.1 27.1
BYOL [10] 15.3 5.4 13.2 21.9
SoCo [50] 17.6 5.3 15.9 24.9
AlignDet [25] 22.6 10.3 20.8 29.9
Ours 23.9 11.9 22.3 31.0

Mask R-CNN with R50-FPN on COCO dataset.
Table 1 presents the comparison, where all methods
are pre-trained on the COCO training dataset and eval-
uated on the COCO validation dataset. Typically, the
backbone can be initialized either from scratch or us-
ing an ImageNet pre-trained model. Methods such as
DenseCL [49], Self-EMD [34], and SoCo [50], which
are initialized from scratch, achieve an APbb ranging
from 39.6% to 41.0%. Notably, these methods rely on
200~800 epochs for training. As a comparison, meth-
ods that utilize an ImageNet pre-trained style, including
AlignDet and our proposed 2DRCL, require only 12
epochs for pre-training. Among the compared methods
in Table 1, our 2DRCL demonstrates superior object
detection performance, achieving the highest APbb of 41.4% and APmk of 37.3%, significantly
outperforming both AlignDet and the supervised baseline. This improvement can be attributed to
2DRCL’s capability to narrow the gap between pre-training and fine-tuning. By effectively bridging
this gap, 2DRCL is able to leverage the benefits of the pre-trained model more efficiently for object
detection tasks.
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Table 3: Comparisons with state-of-the-art methods on LVIS v1.0 with a 2× schedule.

(a) Faster R-CNN with R50-FPN.

Method APbb APbb
r APbb

c APbb
f

BCE [40] 19.5 1.6 16.6 30.6
RFS [11] 24.2 14.2 22.3 30.6
DropLoss [19] 21.8 5.2 21.8 29.1
PCB [17] 23.0 6.2 21.5 32.2
EQLv2 [42] 25.4 15.8 23.5 31.7
Seesaw [45] 26.4 16.8 25.1 32.2
BAGS [27] 23.7 14.2 22.2 29.6
ACSL [48] 22.2 9.9 21.3 28.5
LOCE [9] 25.1 15.7 24.2 30.1
BACL [38] 26.1 16.0 25.7 30.9
ECM [22] 26.7 17.5 25.7 32.2
Ours 27.3 18.6 25.8 32.6

(b) Mask R-CNN with ResNet-50/101.

Backbone Method AP APr APc APf APbb

R50-FPN

CE 18.7 0.4 16.5 29.3 19.7
RFS [11] 23.7 14.2 22.9 29.3 24.7
EQLv2 [42] 25.2 17.4 24.1 29.9 26.0
LOCE [9] 26.6 18.5 26.2 30.7 27.4
SeeSaw [45] 26.9 19.6 26.8 30.5 27.3
ECM [22] 27.4 19.7 27.0 31.1 27.9
Ours 27.7 20.4 27.1 31.4 28.3

R101-FPN

CE 25.5 16.6 24.5 30.6 26.6
EQLv2 [42] 27.2 20.6 25.9 31.4 27.9
SeeSaw [45] 28.2 20.3 28.1 31.8 29.0
ECM [22] 28.7 21.9 28.4 32.2 29.4
Ours 28.8 21.1 28.7 32.3 29.6

Comparisons with Pre-trained Methods on LVIS v1.0. In Table 2, we present a comparison
of our method with several state-of-the-art pre-trained methods on the LVIS v1.0 dataset using the
Mask R-CNN framework with a 1× scheduler. The results obviously illustrate the limitations of
existing pre-training approaches in addressing the challenges posed by long-tailed distributions w.r.t
the object detection tasks. Specifically, traditional pre-training methods consistently demonstrate
inferior performance on tail classes, as evidenced by their relatively low APbb

r scores. For instance,
MoCo v2 [5] and BYOL [10] achieve APbb

r scores of 3.9% and 5.3%, respectively, indicating a
obvious deficiency in precisely detect the target objects w.r.t the long-tailed classes. Our proposed
2DRCL is specially designed for long-tailed object detection pre-training and shows consistent
superiority in Table 2. By dynamically rebalancing the data distribution and incorporating Dual
Reconstruction mechanisms, 2DRCL effectively captures object-level characteristics for both head
and tail classes. The superior performance of the proposed 2DRCL highlights its efficacy in addressing
long-tailed object detection challenges, demonstrating a strong capability to focus on tail classes and
alleviate the inherent imbalance issues in such datasets.

Comparisons with State-of-the-art Long-tailed Object Detection Methods on LVIS v1.0. To
evaluate the effectiveness of our method for long-tailed object detection, we compare 2DRCL with
state-of-the-art techniques across different object detection frameworks (Faster R-CNN and Mask
R-CNN) and backbone networks (ResNet-50 and ResNet-101) on the LVIS v1.0 dataset. As shown in
Table 3, our method achieves the highest accuracy in both APbb and AP. Specifically, for the Faster
R-CNN framework, our pre-training technique outperforms all the competitors, particularly in APbb

and APbb
r . This advantage is consistently observed with the Mask R-CNN framework as well. We

attribute this improved performance, particularly for tail classes, to 2DRCL’s dynamic rebalancing of
the data distribution and the introduction of Dual Reconstruction mechanisms. The effectiveness of
2DRCL stems from its ability to significantly mitigate extreme imbalance and simplicity bias for tail
classes during the pre-training phase. We will investigate the contribution for each of components in
2DRCL in Section 4.2.

Discussions. To address concerns that the performance gains might be attributed to longer training
durations, we evaluate the COCO dataset using various fine-tuning schedules, with the results
presented in Table 4a. The findings demonstrate that even with 1× fine-tuning (12 epochs), our
method surpasses the baseline trained with 4× fine-tuning, indicating that the observed performance
improvements of 2DRCL are not merely due to extended training epochs. Furthermore, Table 4b
shows results on the LVIS v1.0 dataset, where all methods are compared under the same total number
of training epochs for a fair evaluation. Specifically, while long-tailed methods are fine-tuned for 12
epochs, our 2DRCL employs 6 epochs pre-training followed by 6 epochs fine-tuning, maintaining
an equivalent overall training duration. The results reveal an average improvement of 0.5% in APbb

and 1.3% in APbb
r with 2DRCL’s pre-training strategy, underscoring the effectiveness of 2DRCL in

enhancing long-tailed object detection performance.
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Table 4: Comparisons w.r.t different training/fine-tuning epochs.

(a) Comparisons under different fine-tuning epochs
on COCO. The preceding four methods exploit
ImageNet pre-trained backbone.

Fine-tuning Schedule APbb APbb
50 APbb

75

1× 38.3 58.0 42.1
2× 38.8 58.4 42.4
3× 39.0 58.7 42.9
4× 39.2 59.5 42.9

1× (Ours) 41.4 61.3 45.8

(b) Results on LVIS v1.0 with same training epochs.

Methods APbb APbb
r APbb

c APbb
f

RFS 22.7 9.1 21.5 30.0
+Ours 23.3 10.3 21.7 30.3
EQL 24.9 14.8 24.1 30.4
+Ours 25.2 15.9 24.3 30.3
Seesaw 24.7 14.7 23.6 30.4
+Ours 25.2 15.6 24.2 30.5
ECM 26.5 17.0 25.4 31.7
+Ours 27.0 19.0 25.8 31.9

Table 5: Ablations for various components in
our 2DRCL on LVIS v1.0.

HCL LCL DRB AR SR APbb APbb
r APbb

c APbb
f

% % % % % 22.7 9.1 21.5 30.0
" % % % % 22.5 10.5 21.0 29.3
% " % % % 21.9 9.8 20.8 28.7
" " % % % 22.4 10.8 21.1 29.0
" " " % % 23.8 14.3 22.3 30.1
" " " " % 24.2 14.9 22.6 30.3
" " " " " 24.4 15.2 22.7 30.3

Ablation Analysis across 2DRCL Components.
To investigate the contribution for each component
in 2DRCL, we evaluate our 2DRCL on the LVIS
v1.0 dataset. As shown in Table 5, incorporating
HLCL, which combines HCL and LCL, results in a
1.7% improvement in APbb

r over the baseline. HCL
focuses on learning generic visual representations,
enabling the backbone to capture comprehensive
image patterns and semantic abstractions, while
LCL ensures precise alignment with object detec-
tion tasks and enhances the capture of fine-grained
object-level features. Additionally, DRB dynami-
cally rebalances the data distribution and helps to significantly boosts performance for tail classes,
leading to a 3.5% improvement in APrbb. The Dual Reconstruction (DRC) mechanism, comprising
AR and SR, brings the total improvement to 6.1%. AR enforces pixel-level reconstruction, compelling
the model to capture subtle visual details, while SR ensures semantic consistency between the original
and occluded images. This combination allows the model to retain intricate visual information while
capturing deeper semantic relationships, resulting in enriched and coherent feature representations.

51.8%

11.9%

4.6%

21.3%

10.7%

62.9%
19.4%

10.6%

4.2% 2.9%

60.1%17.2%

6.8%

11.3%
4.6%

53.5%

11.8%

3.3%

20.9%

10.5%

62.2%
19.7%

10.9%

4.3% 3.0%

59.7%17.1%

7.1%

11.3%

4.8%

Correct Location Error Background Error Classification Error Other

Rare Common Frequency

Baseline

2DRCL (Ours)

Figure 2: Error analyses comparisons. 2DRCL achieves superior performance on tail classes without
significantly compromising accuracy for the more frequent classes.

4.3 Further Analysis

In this section, we conduct a thorough analysis of our proposed 2DRCL, emphasizing its role in
mitigating simplicity bias and enhancing feature representation through DRC mechanism.

Error Analyses. To determine which error types our 2DRCL method effectively mitigates, we
conducted an error analysis experiment. Following the error categorization paradigm from YOLO [39],
we classify the top N predictions for each class into five error types. The pie charts in Figure 2 show
the distribution of these errors for rare, common, and frequent classes on the LVIS v1.0 validation
set. As shown in Figure 2, our 2DRCL shows noticeable improvements for rare object classes,
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with correct predictions increasing from 51.8% in the baseline to 53.5%, alongside a reduction in
both non-background classification errors and background prediction errors. This suggests that our
2DRCL enhances the model’s ability to accurately classify the rare objects and accurately distinguish
them from the background. Although there is a slight accuracy decrease for common and frequent
classes, this trade-off is minimal, with the gains in rare class detection outweighing these minor losses.
This demonstrates that our method effectively addresses long-tailed object detection challenges by
improving performance on tail classes without obviously compromising accuracy for other frequent
classes across the dataset.

Simplicity Bias Analyses. To explicitly illustrate how our method addresses simplicity bias, we
present a visualization of the activations corresponding to randomly sampled test images from
the LVIS v1.0 dataset in Figure 3. The results demonstrate that 2DRCL effectively mitigates
simplicity bias in long-tailed object detection by learning more comprehensive patterns that encompass
informative regions, particularly for images belonging to tail classes. In comparison, 2DRCL
consistently identifies more critical regions than ECM [22], highlighting the superiority of our
approach in addressing simplicity bias. The comparisons presented in the fourth and fifth rows
underscore the effectiveness of the proposed DRC mechanism, revealing that the introduction of the
DRC mechanism significantly enhances feature attention on tail classes while reducing background
interference. This finding further indicates that the DRC plays a crucial role in mitigating simplicity
bias, enabling the model to retain intricate visual details and capture deeper semantic relationships,
thereby producing enriched and coherent feature representations.
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Figure 3: Attention map comparisons w.r.t Baseline [11], ECM [22], 2DRCL (w/o DRC) and 2DRCL
(our method) on LVIS dataset. The top row shows the corresponding class names of the input images.
Best viewed in color.

5 Conclusions and Limitations

We proposed Dynamic Rebalancing Contrastive Learning with Dual Reconstruction (2DRCL) to
address the challenges posed by long-tailed distributions in object detection pre-training. By inte-
grating holistic and local contrastive learning with dynamic rebalancing and dual reconstruction,
2DRCL aligned the pre-training strategy with the specific demands of object detection, ensuring ef-
fectiveness across both balanced and long-tailed data. It successfully mitigated simplicity bias for tail
classes, enhancing their feature representations and overall performance. Experiments demonstrated
significant improvements in attention to tail classes and reduced background errors, as confirmed by
both quantitative and qualitative analyses. However, our method had limitations, particularly in its
relatively high computational costs. Future work will focus on optimizing computational efficiency.
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A Appendix / supplemental material

In the supplementary materials, we present further information about the proposed 2DRCL pre-
training framework, including: 1) More detailed experimental settings, including the specifics of
pre-training and downstream fine-tuning, as well as the setup for error analysis; 2) Additional
experimental results for further analysis.

A.1 Implementation Details

Pre-training Settings. First, we generate a series of high-quality bounding boxes using a class-
agnostic detector [24]. Then, we randomly select 8 bounding boxes from this set for subsequent
pre-training. Through the introduction of object proposals, the architectural discrepancy is reduced be-
tween pre-training and downstream detection fine-tuning. Faster R-CNN [40] and Mask R-CNN [14]
are commonly adopted frameworks to evaluate transfer performance. We employ MMDetection [3]
as our detection framework to conduct our experiment. Both the projection network and prediction
network are 2-layer MLPs which consist of a linear layer with output size 256 followed by batch
normalization [23], rectified linear units (ReLU) [35], and a final linear layer with output dimension
256. Once all views are constructed, we employ the data augmentation pipeline of MoCo [5, 13].
Our generator architecture consists of four deconvolutional layers with dimensions (2048, 512), (512,
256), (256, 64), and (64, 3), respectively, and each layer uses a kernel size of 4. ReLU is used for
non-linear activation between the layers. Specifically, we apply random horizontal flip, random
crop, color distortion, Gaussian blur, and the solarization operation. The models are trained with a
total batch size of 16 on 8 GPUs (RTX3090 with 24 GB VRAM). Unless otherwise specified, all
pre-training follows the default 1× (12 epochs) schedule. In each stage, the learning rate starts at 0.02
and decreases by 0.1 after 8 and 11 epochs, respectively. If not specified, the supervised pre-trained
ResNet [16] in PyTorch [37] is used by default for both the pre-training and fine-tuning stages.

Training Details. We reproduce multiple methods with different paradigms as our baselines,
including end-to-end and decoupled methods, such as RFS [11], SeeSaw [45], ECM [22], ROG [58],
LOCE [9] and BACL [38], following their default experiment settings. In terms of the model
architecture, we opt for the popular ResNet [16] with FPN [31] as the backbone and train detection
models of Faster-RCNN and Mask-RCNN for 1× or 2× scheduler. We trained the models using
SGD with 0.9 momentum. The batch size and learning rate are set as 16 and 0.02, and the data
augmentation strictly follows previous long-tailed detection methods [22, 45]. For 1× schedule
with 12 training epochs, the learning rate is initialized as 0.02, and then decays by 0.1 at the end of
epoch 8 and 11. For 2× schedule, models are trained with 24 epochs, and the learning rate decays
at the end of epoch 16 and 22. We evaluated our models using both COCO and LVIS metrics. For
COCO, we report object detection metrics including average precision for bounding boxes (APbb),
AP with an IoU threshold of 50% (APbb

50), and AP with an IoU threshold of 75% (APbb
75). For instance

segmentation, we report APmk (AP for masks), APmk
50 , and APmk

75 . The LVIS evaluation includes
mean average precision (mAP), AP at an IoU of 50% (AP50), AP at an IoU of 75% (AP75), as well
as AP for rare (APr), common (APc), and frequent classes (APf ). For Mask R-CNN, we report AP

for instance segmentation and APbb for object detection.

The Setting of Error Analyses. Following the settings of [39], we choose the top N predictions
for each category during inference time. Each prediction is classified based on the type of error:

- Correct: correct class and IOU > 0.5
- Location Error: correct class and 0.1 < IOU < 0.5
- Background Error: IOU < 0.1 for any object
- Classification Error: class is wrong and IOU > 0.5
- Other: class is wrong and 0.1 < IOU < 0.5

A.2 Additional Experiment

Consistent Improvements. We evaluate the effectiveness of our method on the LVIS v1.0 dataset
by combing the proposed 2DRCL method with existing long-tailed object detection methods. As
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Table A.1: Experiments on LVIS v1.0. We combine eight existing methods with our method
‘2DRCL’. The ResNet-50-FPN and ResNet-101-FPN are adopted as backbones for Mask R-CNN. We
reproduced all methods using their official code and trained with a 1× schedule, totaling 12 epochs.

Strategy Schedules Methods +Ours
LVIS v1.0 (ResNet-50-FPN) LVIS v1.0 (ResNet-101-FPN)
APbb APbb

r APbb
c APbb

f APbb APbb
r APbb

c APbb
f

End-to-end 12 epochs

RFS [11]
no 22.7 9.1 21.5 30.0 24.8 12.1 23.4 31.9
yes 23.9 11.9 22.3 31.0 25.1 12.7 23.5 32.4

IRFS [56]
no 24.4 14.3 22.6 30.8 26.3 16.5 24.5 32.5
yes 24.7 14.3 22.9 31.3 26.5 16.7 24.6 32.8

EQLv2 [42]
no 24.9 14.8 24.1 30.4 26.3 17.7 24.4 31.2
yes 25.7 16.5 24.5 31.0 26.9 18.9 25.1 32.5

SeeSaw [45]
no 24.7 14.7 23.6 30.4 26.3 15.1 25.4 32.2
yes 26.2 17.5 25.0 31.5 27.0 17.6 25.6 32.6

ECM [22]
no 26.5 17.0 25.4 31.7 27.9 19.2 26.5 33.5
yes 27.3 19.2 25.9 32.5 28.0 19.5 26.2 33.7

ROG [58]
no 25.7 16.4 24.4 31.2 27.3 18.5 26.2 32.5
yes 26.2 16.9 24.8 31.8 27.6 18.8 26.3 32.9

Decoupled
24+6 epochs LOCE [9]

no 27.2 18.7 25.7 32.6 28.5 19.0 27.0 34.3
yes 27.6 18.9 26.5 33.0 28.7 20.2 26.8 34.4

12+12 epochs BACL [38]
no 26.1 16.0 25.7 30.9 27.2 16.7 26.8 32.3
yes 27.0 17.5 25.9 32.5 28.4 18.9 27.3 33.7

Table A.2: One-stage object detection results on LVIS v1.0 validation set. We compare different
methods with ResNet-50 backbone on 2× schedule using ATSS.

Methods APbb APbb
r APbb

c APbb
f

Focal Loss [32] 25.6 14.5 24.3 31.8
ECM [22] 26.1 16.6 25.2 31.3
Ours 26.4 17.7 25.4 30.8

shown in Table A.1, using 2DRCL leads to consistent APbb improvement over existing classification-
based methods, surpassing all of them with large margins. Interestingly, combining our methods
can be observed further growth in multiple paradigms. The method ‘ECM+2DRCL’ (which trained
with a 1× schedule) can almost achieve the same rare object detection accuracy as the LOCE [9]
method, and surpasses BACL [38] for about 1.0% APbb

r . Therefore, we speculate that by using
2DRCL during training, the model can generate more balanced feature representations, allowing it
to achieve comparable results to the decoupled method with minimal training when combined with
end-to-end approaches.

Comparison on ATSS Framework. Table A.2 presents the performance comparison of our method
against the baseline Focal Loss [32] and ECM Loss [22] on the ATSS [59] detection framework.
Our method achieves the highest overall average precision (APbb) at 26.4%, outperforming both
Focal Loss and ECM Loss. Notably, for rare classes, our method significantly improves performance
with an APbb

r of 17.7%, compared to 14.5% for Focal Loss and 16.6% for ECM Loss. Our method
also shows consistent improvement for common classes, surpassing both Focal Loss and ECM
Loss. Although Focal Loss achieves the highest precision for frequent classes, our method maintains
competitive performance across all categories.

Results on COCO-LT. To further verify the generalization ability of our 2DRCL, we construct
a long-tailed distribution dataset COCO-LT by sampling images and annotations from COCO [33]
train 2017 split. Following [47], we divide 80 classes into 4 groups with < 20, 20-400, 400-8000,
and >= 8000 training instances and report the accuracy for each group as AP1, AP2, AP3, AP4. In
Table A.3, we compare our 2DRCL method with the baseline model and several state-of-the-art long-
tailed detection methods on the COCO-LT dataset. The results demonstrate that 2DRCL consistently
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Table A.3: Results on COCO-LT dataset. All experiments were conducted using the Mask R-CNN
framework with a ResNet-50-FPN backbone and a 1× training schedule.

Methods AP AP1 AP2 AP3 AP4

CE 18.7 0.0 8.2 24.4 26.0
BAGS [27] 21.5 13.4 17.7 22.5 26.0
EQLv2 [42] 23.1 3.8 17.4 25.8 29.4
Seesaw [45] 22.7 3.4 15.5 26.2 28.5
ECM [22] 22.9 11.0 18.7 25.7 28.7
Ours 24.4 14.4 20.2 26.1 29.4

Table A.4: Efficiency evaluation of Mask R-CNN with ResNet50-FPN.

Methods VRAM Training Time APbb APbb
r

ECM (12 epochs) 94 GB 16.1 h 26.5 17.0
+AlignDet (6+6 epochs) 103 GB 19.5 h 26.2 16.7
+Ours (6+6 epochs) 106 GB 20.6 h 27.0 19.0

outperforms the baseline model by a notable 5.7% in overall AP. Notably, 2DRCL achieves the
highest AP across both group 1 and group 2, outperforming the closest competitor, ECM, by 3.4%
and 1.5% AP, respectively. We attribute these improvements to 2DRCL’s ability to mitigate the
simplicity bias toward tail classes during pre-training, which contrasts with methods such as Seesaw
and ECM that primarily address the issue of unequal competition between foreground classes without
sufficiently addressing the inherent bias in representation learning. By directly confronting these
biases, our method demonstrates substantial gains in tail category performance while maintaining
strong results across the full distribution.

Efficiency Evaluations. Table A.4 compares the VRAM usage, training time, and performance
of different methods for long-tailed object detection. Our method, which includes 6 epochs of pre-
training followed by 6 epochs of fine-tuning, utilizes slightly more VRAM and training time compared
to AlignDet and ECM. Despite the increased computational cost, our method delivers a notable
performance boost, achieving the highest APbb of 27.0% and APbb

r of 19.0%, demonstrating a clear
performance-cost trade-off. These results indicate that while our pre-training strategy demands more
resources, it does not negatively impact fine-tuning performance and offers significant improvements
in long-tailed detection.

Qualitative results. We present additional visualization results on the LVIS dataset [11]. For
simplicity, we use RFS [11] with Cross-Entropy (CE) loss as the baseline and combine it with our
2DRCL method. As shown in Figure A.1, both the baseline and our 2DRCL detect most objects in
an image, but 2DRCL generally captures more details. For instance, 2DRCL helps discover missed
boxes, such as the horse carriage in the center-left images. Additionally, 2DRCL generates more
accurate bounding box predictions, like correctly identifying boats on the ground. While using a
basic method still results in numerous classification errors, this issue can be mitigated by carefully
designing the loss function.

Bias Analyses. We visualize how 2DRCL mitigates the weight norm bias induced by long-tailed
distributions. Figure A.2a shows the classifier weight norm distribution across classes for models
trained with the LVIS v1.0 training split. The transparent lines represent actual weight norms, while
the solid lines show polynomial fits, providing a smoothed interpretation of trends. Our 2DRCL
method achieves weight norm performance comparable to ECM [22], indicating effective bias
mitigation. Figures A.2b and A.2c further illustrate that each component of 2DRCL contributes to
reducing weight norm bias. Despite these gains, some advantages achieved at the feature level are
slightly diminished during downstream fine-tuning, limiting overall progress in final outcomes.
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Figure A.1: Visualizations of detection results before (in the left of each group) and after (in the right)
using our 2DRCL. We adopted RFS [11] as the baseline in LVIS and combined it with our 2DRCL
pre-training method. In comparison, the proposed method is good at detecting missing objects and
rectifying bounding box predictions. This figure needs to be viewed in color.
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Figure A.2: (a) and (b) are classifiers’ weight norm distribution across different classes in Mask R-
CNN models trained with the LVIS v1.0 training split [11]. The X-axis represents the sorted category
index based on category frequency. The Y-axis shows the weight norm. Transparent lines depict the
actual weight norms for each category, providing a raw look at the data distribution. The solid lines
represent polynomial curves fitted to the transparent data, offering a smoothed interpretation of trends
across classes. (a) represents the comparison with the state-of-the-art methods, while (b) represents
the comparison with the proposed components in this paper. (c) represents the average weight norm
of the classifiers for each frequency category.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: The main claims presented in the abstract and introduction accurately reflect
the contributions and scope of the paper.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: The paper discusses the limitations of the work performed by the authors.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [Yes]
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Justification: In our paper, we attribute the bias induced by the long-tailed distribution to
biases in classifier weights and feature representations (such as simplicity bias). We provide
relevant illustrations in the paper to support this claim.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: Due to page limitations, we have included more detailed experimental infor-
mation in the appendix.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [No]

Justification: We will continue to conduct further research based on this work. However, we
can consider releasing the main checkpoints for public use.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: Detailed specifics are provided in the appendix.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [No]

Justification: We have demonstrated the effectiveness of 2DRCL on the LVIS v1.0 dataset,
in particular significantly improving performance in the detection of rare classes. Although
we demonstrate the performance improvement in graphs and experiments, details of error
bars or statistical significance tests are not explicitly mentioned in Sections 4.2 and 4.3.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.
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• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: The paper specifies the use of 8 RTX3090 GPUs with 24 GB VRAM each,
and provides details on the training schedule and learning rates, ensuring reproducibility of
the experiments .

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: The research conducted in the paper adheres to the NeurIPS Code of Ethics.
All experimental procedures, data handling, and reporting practices were conducted with
full compliance to ethical standards, ensuring transparency, integrity, and respect for all
stakeholders involved.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [No]
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Justification: The proposed Dynamic Rebalancing Contrastive Learning with Dual Recon-
struction (2DRCL) method significantly improves object detection accuracy, especially for
rare objects. In autonomous systems, such as self-driving cars and drones, this improvement
can enhance the detection of critical but infrequent objects, leading to safer navigation and
operation.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pre-trained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: The paper does not release any data or models that pose a high risk for misuse.
The focus of the paper is on the development and evaluation of the 2DRCL method for
object detection, which does not involve the release of pre-trained models, language models,
image generators, or scraped datasets with high misuse potential.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]
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Justification: The paper provides appropriate credits to the creators or original owners of
the assets used, including references to code packages, datasets, and models. However, it
does not explicitly mention the licenses and terms of use for these assets. Including this
information would ensure proper respect for intellectual property and compliance with usage
terms .

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [No]

Justification: The paper does not introduce new assets.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: The paper does not involve crowdsourcing experiments or research with human
subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

23

paperswithcode.com/datasets


15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: The paper does not involve crowdsourcing experiments or research with human
subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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