

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 FORMALMATH: BENCHMARKING FORMAL MATHEMATICAL REASONING OF LARGE LANGUAGE MODELS

Anonymous authors

Paper under double-blind review

ABSTRACT

Formal mathematical reasoning remains a significant challenge for artificial intelligence, constrained by the limited scope and scale of existing benchmarks. To address this, we introduce FormalMATH, a comprehensive Lean4 benchmark consisting of 5,560 formally verified problems, meticulously curated through human-in-the-loop methods. This benchmark encompasses a broad range, from high-school Olympiad challenges to undergraduate-level theorems across diverse domains, including algebra, applied mathematics, calculus, number theory, and discrete mathematics. Our evaluation of state-of-the-art LLM-based theorem provers reveals notable limitations: even the leading model, DeepSeek-Prover-V2, achieves only a 28.31% success rate under practical sampling budgets, displaying marked domain bias (e.g., excelling in algebra while struggling with calculus) and an over-reliance on simplified automation tactics. We find that test-time scaling (e.g., Pass@1024) offers only marginal performance gains on FormalMATH, pointing to a critical lack of exploration during training. Additionally, we observe a counterintuitive inverse relationship between natural-language solution guidance and proof success in chain-of-thought reasoning scenarios, indicating that human-written informal reasoning introduces noise rather than clarity in formal contexts. Analysis of common error patterns among existing provers highlights issues such as the misuse of automatic tactics (e.g., `aesop`), difficulties in managing complex inequalities, and redundant hypothesis introduction. We assert that FormalMATH provides a robust platform for benchmarking formal mathematical reasoning capabilities.

1 INTRODUCTION

Formal mathematical reasoning (FMR) (Yang et al., 2024) represents a specialized form of mathematical practice grounded in formal systems (Leino, 2010; Mathlib Community, 2020; Barras et al., 1997), which provides a rigorous axiomatic framework essential for automated proof validation. However, FMR is inherently challenging for humans. For instance, the Liquid Tensor Experiment (Scholze, 2022) and the Polynomial Freiman-Ruzsa Conjecture (Tao, 2023) have taken years of effort by human experts to formalize and yet remain incomplete. Recent works have leveraged self-supervised learning (Polu & Sutskever, 2020), chain-of-thought (CoT) finetuning (Xin et al., 2024), and scalable tree-search (Xin et al., 2025) to explore complex proof strategies, demonstrating the significant potential of large language models (LLMs) for FMR. While there are several formal mathematics benchmarks, such as MiniF2F (Zheng et al., 2021) and ProofNet (Azerbaiyev et al., 2023) that are widely used to evaluate the FMR capabilities of LLMs, they still present a few critical limitations: (1) Scope limitation: Existing benchmarks are narrowly scoped. For instance, MiniF2F is restricted to high school-level algebra and number theory, while ProofNet focuses narrowly on undergraduate-level analysis and algebra. Their narrow scopes limit the capacity to evaluate holistic FMR capabilities across diverse mathematical domains. (2) Dataset size: Formal mathematics benchmarks remain relatively small in scale. MiniF2F contains merely 244 problems in its test set, and ProofNet includes only 186. This constrains benchmarking robustness and hinders the development of generalizable FMR systems. (3) Performance Saturation: State-of-the-art theorem provers, such as Kimina-Prover (Wang et al., 2025), now achieve success rates exceeding 80.7%, signaling that existing benchmarks may be nearing their practical utility limits.

To address these limitations, we introduce FormalMATH, a large-scale Lean4 (Moura & Ullrich, 2021)-based benchmark containing 5,560 formally verified mathematical statements. FormalMATH

Figure 1: (a) Performance comparison of existing theorem provers on the full FormalMATH benchmark. Results show Pass@1 \times 32 \times 100 accuracy for best-first-search-based (BFS) methods, including BFS-Prover and InternLM-Prover, and Pass@32 accuracy via single-pass generations (SPG) for the other provers, including Kinima-Prover, STP, Goedel-Prover, DeepSeek-V1.5-RL, and DeepSeek-V1.5-SFT. (b) Funnel chart illustrating the percentage of data that is preserved after each filtering stage in our human-in-the-loop pipeline.

includes a broad spectrum of mathematical domains, such as algebra, geometry, calculus, number theory, discrete mathematics, and more, while simultaneously spanning multiple difficulty levels, ranging from high school olympiad problems to undergraduate-level theorems.

We evaluate state-of-the-art LLM-based theorem provers on the FormalMATH benchmark, revealing significant challenges for these systems. For instance, the best-performing model — Kinima-Prover (Wang et al., 2025) achieves only 16.46% on FormalMATH under the pass@32 metric, while BFS-Prover (Xin et al., 2025) attains just 11.13% using a best-first search with a sampling budget of $1 \times 32 \times 100$. Our analysis of these results yields several intriguing insights. First, existing provers exhibit a pronounced domain bias, excelling primarily in high-school-level algebra and applied mathematics while struggling with other mathematical domains. This highlights critical gaps in their cross-domain generalizability. Second, the provers frequently reduce multi-step reasoning to single-tactic invocations (*e.g.*, “aesop” (Limpurg & From, 2023) and “linearith”), bypassing necessary deductive rigor. Third, while CoT reasoning (Wei et al., 2022) enhances performance on FormalMATH statements, adding natural language solutions reduces success rates, suggesting such guidance introduces ambiguity rather than clarity. Our contributions include:

- **A Large and Comprehensive Lean4 Benchmark:** We present FormalMATH, a benchmark comprising 5,560 formally verified mathematical statements covering diverse subdomains, including high-school olympiad and college-level problems. The dataset is dual-reviewed by 12 human experts with multiple large language models in the loop to ensure correctness. FormalMATH is $22.8 \times$ larger than the widely used MiniF2F benchmark.
- **Comprehensive Evaluation of LLM-based Theorem Provers:** Our systematic evaluation highlights key limitations in state-of-the-art theorem provers: 1. Even the best-performing model achieves only a 28.31% success rate on FormalMATH, 2. Existing provers show significant domain bias, excelling in areas like algebra but underperforming in others, such as calculus, 3. A counterintuitive inverse relationship emerges where providing natural language solution guidance reduces proof success rates in chain-of-thought scenarios.
- **Identification of Common Error Patterns in Lean4 Proving** 1. Provers often resort to inappropriate automatic tactics when facing unsolvable problems. 2. Provers frequently produce incomplete proofs with meaningless placeholders to simplify tail behavior, rather than rigorously addressing them. 3. Provers struggle to solve complex inequalities using tools like `nlinarith`. 4. Provers tend to generate redundant hypotheses. These limitations highlight key areas for enhancing LLM-based provers.

2 RELATED WORK

Formal Mathematical Reasoning. (Xin et al., 2024; Lin et al., 2025; Dong & Ma, 2025) utilize LLMs to generate entire proofs directly. These methods then typically employ techniques like best-of-N sampling to scale up test-time computation, often achieving results comparable to proof-search methods. As a SPG method, Kinima-prover (Wang et al., 2025) employs long-CoT (Guo et al., 2025) with a think prompt template during reinforcement learning (Team et al., 2025), achieving impressive performance. Section 5.1 compares various sampling approaches on FormalMATH.

108 109 110 111 112 113 114 115	Domain	Undergraduate Domains						
		Int	Pre	Alg	Diff	MC	SS	Other
	Percentage (%)	30.8	18.9	15.9	11.0	9.6	8.9	4.9
High School Domains								
Domain	Alg	NT	AM	DM	Geo	Pre	Cal	
Percentage (%)	50.2	22.3	9.0	8.6	5.8	1.9	1.9	

Table 2: Domain distribution in FormalMATH-Lite dataset. Abbreviations: Int=Integral, Pre=Precalculus, Alg=Algebra, Diff=Differentiation, MC=Multivariable calculus, SS=Sequences Series, NT=Number Theory, AM=Applied Mathematics, DM=Discrete Mathematics, Geo=Geometry, Cal=Calculus.

Benchmark	# Problems	Difficulty
MiniF2F	244	Olympiad
ProofNet	186	Undergraduate (UG)
FIMO	149	Olympiad
PutnamBench	522	Olympiad
ProverBench	325	Olympiad
FormalMATH	5,560	Olympiad & UG

Table 1: Comparison of existing Lean4 benchmarks.

Formal Theorem Proving Benchmarks. Benchmarks for assessing Lean4-based theorem-proving capabilities can be categorized based on whether they use off-the-shelf formal proofs. Benchmarks derived from existing libraries, such as LeanDojo (Yang et al., 2023), extract proofs and theorems from the off-the-shelf Lean Mathlib library (Mathlib Community, 2020). Lean-workbook (Ying et al., 2024a) is another large dataset in Lean4. It is used as a training dataset—for example, provers like InternLM-Prover (Ying et al., 2024b) use expert iteration to train on it. In contrast, benchmarks without pre-formalized proofs operate under a different paradigm. Instead of providing reference proofs, these benchmarks present only formalized problem statements, often derived from informal mathematics. Proving systems are used to generate a proof from scratch, the validity of which is then verified using the Lean compiler (Leanprover Community, 2023). As shown in Table 1, representative benchmarks include: (1) MiniF2F (Zheng et al., 2021), which compiles 244 competition-level problems from AMC, AIME, and IMO in its test dataset, (2) ProofNet (Azerbayev et al., 2023), which comprises 186 problems from undergraduate-level analysis and algebra, (3) FIMO (Liu et al., 2023), which contains 149 IMO shortlist problems, and (4) PutnamBench (Tsoukalas et al., 2024), which is a benchmark of 522 Lean4 problems from the Putnam competition. FormalMATH falls into the category of Lean4 dataset that require new proof completion, comprising 5,560 diverse problems formalized from high-school competition-level sources (e.g., Omni-Math (Gao et al., 2024) and BlueMO (Zhang et al., 2024)) and undergraduate-level problems (e.g., U-Math (Chernyshev et al., 2024), Hardmath (Fan et al., 2024), and DEMIMATH (Demidovich, 1964)).

3 FORMALMATH: A LARGE FORMAL MATHEMATICAL REASONING BENCHMARK

3.1 OVERALL DATASET STATISTICS

FormalMATH is a rigorously validated Lean4 benchmark comprising 5,560 mathematical statements, each independently verified through a hybrid pipeline combining multi-LLM semantic verification and careful review by Olympiad-level human experts. It is inherently difficult; for example, the state-of-the-art prover (e.g., DeepSeek-V2 (671B)) achieves only a 28.31% Pass@32 score on the benchmark (see Figure 1). The problems span a broad difficulty spectrum, ranging from high-school competition questions in disciplines such as algebra, number theory, discrete mathematics, and geometry, to undergraduate-level challenges in specialized areas including calculus (integration and differentiation), linear and abstract algebra, and sequences and series (see Table 2).

3.2 DATA FORMAT

FormalMATH provides a Lean4-compatible JSON format dataset (See Table 3). It supports various tasks in formal mathematical reasoning, including autoformalization, proof completions, etc.

Field	Type	Description
source	string	Origin of the problem (e.g., Omni-Math, U-Math, Hardmath, etc.)
informal_statement	string	Human-readable natural-language statement of the problem
formal_statement	string	The formal Lean 4 statement
informal_proof	string	Reference informal proof in natural language
domain	string	Mathematical domain (e.g., algebra, number theory, calculus, etc.)
difficulty	float	Difficulty score assigned by LLM following the rubric of Gao et al. (2024).

Table 3: Format of the FormalMATH dataset.

3.3 DATA COLLECTION PROCESS

We initially collected informal mathematical statements from a variety of existing high-quality sources (e.g., Omni-Math, BlueMO, HardMath, etc.). To prevent overlap with prior formalization benchmarks, we performed rigorous data decontamination, removing any statements that already appeared in datasets such as LeanWorkbook (Ying et al., 2024a) or MiniF2F (Zheng et al., 2021). The cleaned informal statements are then undergo autoformalization into Lean4 using LLMs, followed by extensive manual quality assurance through a human-in-the-loop process (detailed in Section 4).

4 THE PROPOSED HUMAN-IN-THE-LOOP PIPELINE FOR DATA COLLECTION AND FILTERING

The overall pipeline to autoformalize the dataset used in FormalMATH is exhibited in Figure 2.

Supervised Fine-tuning. During the development of FormalMATH, we find that mature, open-source autoformalization tools are scarce. To fill this gap, we build our own pipeline on top of two types of LLMs: coding-specialized LLMs (e.g., Qwen2.5-7B-Coder (Bai et al., 2023)) and pre-trained theorem-proving LLMs (e.g., Deepseek-prover-base (Xin et al., 2024)). We then generate training data by having a general-purpose LLM (e.g., GPT-4 (OpenAI, 2023)) iteratively translate natural-language statements into Lean4 statements. Each candidate statement is then passed to the Lean4 compiler, and only those that are type-checked will be kept. This straightforward “compile-and-filter” strategy yields a high-quality corpus of 9,260 paired training examples, which is eventually used to finetune our own autoformalization models.

Autoformalization. For each of the K autoformalizers (implemented by LLMs), we employ a best-of-N sampling strategy (Wang et al., 2022) to generate N formal candidate statements $\mathbf{T}_n^{(k)}$, where $k \in \{1, \dots, K\}$ denotes the autoformalizer index, and $n \in \{1, \dots, N\}$ represents the candidate statement index of the k -th autoformalizer. All candidate statements $\mathbf{T}_n^{(k)}$ are first validated for syntactic correctness using the Lean4 compiler. Only syntactically valid statements are preserved for subsequent semantic verification.

Semantic Verification via LLMs. We implement a semantic verification strategy based on multiple powerful general-purpose LLMs (e.g., o1-mini (Jaech et al., 2024), claude-3.5-Sonnet) to evaluate semantic alignment between natural language mathematics problems and their Lean4 formalizations. Each model employs chain-of-thought reasoning (See the prompt in Appendix G) to complete the following procedures: (1) back-translate Lean4 statements into natural language, (2) compare reconstructed descriptions with original problems, and (3) provide binary judgments (*i.e.*, aligned/misaligned). Importantly, only Lean4 statements that passed semantic verification performed by all the LLMs would be collected. This strategy is guided by the insight that translating Lean4 statements to natural language is a much easier task than the reverse process, and general-purpose LLMs excel at understanding natural language phrasings (Wu et al., 2022). Overall, this procedure filters out 60.7% of syntactically correct but semantically misaligned statements (*i.e.*, from 92.4% to 32.7%). Interestingly, we find distinct consensus patterns across problem difficulty levels – around 30% unanimous agreement rate for high school competition problems and significantly lower consensus for undergraduate-level formalizations (*e.g.*, 4.63% on HardMath).

Item	Value
# Annotators	12
Preservation rate	72.09%
Cost/statement	\$6.89
Total duration	22 days

Table 4: Annotation statistics.

Figure 2: A human-in-the-loop pipeline for formal mathematical statement creation and filtering.

Disproving a Statement by Proving Its Negation. Inspired by the Law of the Excluded Middle (LEM (contributors, 2025)), we further filter out certain non-provable formalizations using off-the-shelf LLM-based provers (e.g., DeepSeek-Prover-V1.5). For any formalized statement $T_n^{(k)}$, we perform the following steps: (1) construct logical negation: construct its logical negation by applying transformation rules such as De Morgan dualization to generate $\neg T_n^{(k)}$, and (2) automated proof attempts: perform automated proof attempts on $\neg T_n^{(k)}$ within the formal system \mathcal{S} (i.e., Lean4 compiler). A successful proof of $\neg T_n^{(k)}$ implies that the original statement $T_n^{(k)}$ cannot hold on \mathcal{S} . Appendix N illustrates the Lean 4 formalization of a number-theoretic conjecture and its negation. By constructing the negation of a statement and applying an LLM-based prover for disproof, the system identifies inconsistencies through boundary case testing (e.g., $n = 7$) and derives contradictions via systematic case analysis (i.e., `interval_cases`). This strategy has filtered out a few unprovable statements, accounting for 1.6% of the total statements.

Expert Verification. We recruited 12 International Mathematical Olympiad medalist-level human experts to manually verify the semantic alignment between natural language statements and their Lean4 formalizations. To ensure reliable human validation, we developed a checklist targeting common error patterns in Lean4 statements and employed the previously introduced multi-LLM-as-judge method to assist human validators. We used cross-validation among humans to further ensure consistency. Table 4 presents key metrics from the human validation stage. Our results demonstrate that the multi-LLM autoformalization and validation pipeline is highly effective, retaining 72.1% of statements from the final stage of LLM-based semantic verification (reducing the error rate from 30.1% to 21.7%) while significantly reducing manual verification efforts. Ultimately, we successfully formalized 21.7% of syntactically and semantically correct mathematical statements from a diverse collection of mathematical problems sourced from multiple data sources. See Appendix B and D for further details.

Error Category	Description
Definition	Failure to semantically map mathematical entities one-to-one with the refined statement, e.g., missing domain-specific constraints (geometry: points, lines, angles), mismatched variable types, or definitions lacking mathematical significance.
Expressions	Incorrect arithmetic/logical operations, improper variable use, or misapplication of mathematical/logical rules, e.g., misplaced quantifiers altering the logical structure of the statement.
Constraint Condition	Constraints that mismatch the problem's requirements, are omitted, or include redundant conditions not specified in the original problem.
Proof Goals	Proof goals misaligned with the original problem, overly simplified, too general, or incomplete, e.g., omitting parts of the problem like characterizing solutions achieving a maximum value.

Table 5: Error Pattern Checklist for Autoformalization

5 EXPERIMENTS AND DISCUSSIONS

5.1 EVALUATING FORMAL THEOREM PROVERS ON FORMALMATH

LLM-based Prover Settings. We focus on the following proof-generation approaches:

- **Best-First Tree-Search (BFS) Methods.** Each node in the search tree represents an intermediate proof state, and a heuristic scoring function assigns a priority to each node. We evaluate three baseline models under this category: BFS-Prover (Xin et al., 2025), DeepSeek-Prover-V1.5-RL (Xin et al., 2024), and InternLM-V2.5-Prover (Wu et al., 2024).

Method	Sampling Budget				
	1	4	8	16	32
<i>Best-First Tree Search Methods</i>					
BFS(InternLM-V2.5)	7.87	15.79	20.02	22.74	25.65
BFS(DS-Prover-V1.5-RL)	6.81	24.70	28.47	30.65	32.71
BFS(BFS-Prover)	27.10	34.04	37.56	41.75	45.88
Sampling Budget					
	32	512	1024	2048	3200
<i>Single-Pass Generation Methods</i>					
Kimina-Prover-7B	48.94	—	—	—	—
STP	48.59	51.45	52.03	52.60	53.17
DS-Prover-V1.5-SFT	40.40	44.17	45.08	46.12	46.82
DS-Prover-V1.5-RL	47.98	49.27	49.68	50.08	50.35
Goedel-Prover	46.70	48.68	49.04	49.20	49.41
DS-Prover-V2(7B)	51.76	54.11	54.11	54.82	55.06
DS-Prover-V2(671B)	56.00	60.00	61.18	61.88	61.88
Ensemble of SPG Methods	54.11	—	—	—	—

Table 6: Performance comparison of theorem prover LLMs on FormalMATH-Lite. For BFS methods, the sampling budget values should be multiplied by $N \times 32 \times 100$, where N denotes the number of best-first search attempts.

- **Single-Pass Generation Methods.** The models under this category generate a complete proof in one pass, without iterative refinement or explicit intermediate states. In our paper, we consider the following baseline models: STP (Dong & Ma, 2025), DeepSeek-Prover-V1.5-SFT (Xin et al., 2024), DeepSeek-Prover-V1.5-RL (Xin et al., 2024), Goedel-Prover (Lin et al., 2025), and Kimina-Prover-7B (Wang et al., 2025).

Metrics: Pass@K. Pass@ K measures the fraction of problems for which at least one valid proof is found among the top K generated attempts. (1) For BFS, $K = N \times S \times T$, where N denotes the number of best-first search attempts, S is the number of tactics proposed during each expansion, and T is the total number of expansion iterations. (2) For SPG, K corresponds to the total number of complete proof trajectories sampled from the model. For each problem i , we generate n_i samples and observe s_i successful proofs. The probability that at least one of K randomly selected samples is successful is given by $1 - \binom{n_i - s_i}{K} / \binom{n_i}{K}$, where $\binom{n}{k}$ denotes the binomial coefficient. Pass@ K is then computed as:

$$\text{Pass@}K = \frac{1}{n} \sum_{i=1}^n \left(1 - \frac{\binom{n_i - s_i}{K}}{\binom{n_i}{K}} \right), \quad (1)$$

where n is the total number of problems. When $n_i < K$ or $s_i = 0$, the term is set to 0.

Prompts. In the experiments, we only consider vanilla generation strategies (see Example I.1), where models directly generate Lean4 proof without explicit requirement of chain-of-thought (CoT) rationales (natural language thoughts interleaved with Lean4) or augmenting with natural language solutions.

Finding 1: Existing LLM-based Provers Are Still Far from Solving FormalMATH. Current LLM-based theorem provers demonstrate unsatisfactory performance on the FormalMATH benchmark under modest sampling budgets. Specifically, one of the current strongest SPG methods, Kimina-Prover, achieves a mere 16.46% under Pass@32, while the best BFS method, BFS-Prover, attains only 11.13% Pass@ $1 \times 32 \times 100$, demonstrating the underlying difficulties of FormalMATH. Notably, both methods use Qwen2.5-Math-7B as their base model but the performance differs dramatically: the former distills curated long-CoT proof traces from a larger LLM-based oracle, and the latter relies on expert iteration via BFS to iteratively enhance the LLM’s Lean4 proving abilities.

Model	Alg	NT	DM	AM	Geo	Pre	Cal	Other
<i>High-School Domains</i>								
DeepSeek-Prover-V1.5-SFT	11.12	5.02	4.09	14.22	5.46	9.18	1.04	0.00
DeepSeek-Prover-V1.5-RL	12.65	5.99	4.77	14.66	7.17	10.20	3.12	0.00
Goedel-Prover	17.47	7.04	5.68	16.19	9.56	13.27	5.21	6.25
STP_Lean	18.49	6.95	5.68	15.75	10.58	13.27	6.25	0.00
Kimina-Prover-7B	18.64	12.15	8.86	26.04	10.92	17.35	8.33	6.25
BFS-Prover	11.24	10.48	9.77	18.38	10.24	4.08	10.42	12.50
	Alg	Pre	Diff	MC	Int	SS	Other	
<i>Undergraduate Domains</i>								
DeepSeek-Prover-V1.5-SFT	38.67	17.98	1.92	7.14	0.00	0.00	0.00	
DeepSeek-Prover-V1.5-RL	41.33	19.10	1.92	9.52	0.00	0.00	0.00	
Goedel-Prover	54.67	33.71	1.92	14.29	0.00	4.35	2.22	
STP_Lean	49.33	31.46	1.92	11.90	0.00	4.35	2.22	
Kimina-Prover-7B	58.67	37.08	1.92	14.29	0.00	0.00	0.00	
BFS-Prover	24.00	10.11	0.00	0.00	6.21	4.35	4.44	

Table 7: Performance comparison across different mathematical domains on FormalMATH-Lite. Note: Abbreviations: Alg=Algebra, NT=Number Theory, DM=Discrete Mathematics, AM=Applied Mathematics, Geo=Geometry, Pre=Precalculus, Cal=Calculus, Diff=Differentiation, MC=Multivariable Calculus, Int=Integral, SS=Sequence Series.

Methods built upon DeepSeek-Prover-V1.5 exhibit a performance hierarchy that underscores the fundamental limitations of common post-training strategies nowadays. While the DeepSeek-V1.5-SFT baseline achieves 8.97% accuracy, its reinforcement learning (RL) variant improves only marginally to 10.18%, a mere +1.21% gain that exposes the diminishing returns of rule-based sparse reward shaping in complex theorem spaces. However, another more sophisticated training paradigm, STP’s self-play curriculum learning, achieves 13.87% (+4.89% over SFT) while Goedel-Prover’s expert iteration reaches 13.53% (+4.55% over SFT). Overall, we hypothesize these low success rates on FormalMATH suggest potential limitations of LLM-based provers: (1) reward sparseness: relying solely on binary rewards generalizes complex problems difficult, and techniques like intrinsic rewards may better guide exploration and skill acquisition. (2) combinatorial search complexity: brute-force search and dependency on limited successful reasoning traces to RL and expert iteration affects sample efficiency and effective exploration.

Finding 2: Provers’ Unbalanced Performance Across Mathematical Domains of FormalMATH. Table 7 reveals significant domain bias in existing theorem provers. Under Pass@32, Godel-Prover achieves strong performance in algebra-related domains (e.g., 17.47% in high school algebra and 50% in undergraduate algebra) but performs poorly in calculus (5.21%) and discrete mathematics (0%). This imbalance persists at the undergraduate level, with success rates in precalculus (33.71%) far exceeding those in differentiation (1.92%) and integration (0%). We attribute this bias to the training data distributions. Using FormalMATH’s domain categorization prompt (see Appendix H), we analyzed Godel-Prover’s training corpus by sampling 200 problems. As shown in Figure 6a, the dataset disproportionately emphasizes applied mathematics and algebra (68% combined), while discrete math, number theory, and precalculus collectively constitute less than 5%.

5.2 EVALUATING TEST-TIME SCALING OF FORMAL THEOREM PROVERS ON FORMALMATH-LITE

Experimental Setups. This section examines test-time scaling of formal mathematical reasoning capabilities in LLM-based theorem provers using a simpler subset of FormalMATH benchmark. For simplicity, we evaluate only BFS and SPG. For each LLM, we use a maximum context length of 32K for reasoning models (e.g., DeepSeek-Prover-V2) and 4096 for other non-reasoning models. The sampling temperature is set to 0.7.

FormalMATH-Lite. To enable scalable yet rigorous evaluation, we introduce FormalMATH-Lite, a deliberately simplified and compact subset containing only 425 problems (359 high-school level and 66 undergraduate level). Compared to the full FormalMATH-All dataset, FormalMATH-Lite is intentionally easier and lighter by carefully controlling the proportion of difficult problems and maintaining the original domain distribution. This simpler in difficulties design significantly amplifies the effect of test-time scaling when using large sampling budgets (e.g., Pass@3200).

378 **Experimental Settings.** In this experiment, we maintain identical experimental configurations to
 379 those in Section 5.1, with one critical exception: the sampling budget scales. Section 5.1 used con-
 380 strained sampling budgets (*e.g.*, Pass@32) due to computational resource limitations of the full For-
 381 malMATH benchmark. Here, leveraging FormalMATH-Lite, we deploy expanded sampling budgets
 382 (*e.g.*, up to Pass@3200 for SPG and Pass@ $32 \times 32 \times 100$ for BFS).

383 **Finding 3: Subtle Performance Enhancement via Test-time Scaling.** Table 6 reveals lim-
 384 ited returns when applying test-time scaling to formal theorem proving on FormalMATH. For in-
 385 stance, STP achieves only a 4.58% absolute improvement (from 48.59% at Pass@32 to 53.17%
 386 at Pass@3200) despite a 100 \times sampling budget increase. While BFS-Prover demonstrates bet-
 387 ter scaling dynamics, attaining an 18.78% gain (27.10% via Pass@ $1 \times 32 \times 100$ to 45.88% via
 388 Pass@ $32 \times 32 \times 100$), under a 32 \times budget expansion, however, it still underperforms SPG methods.

389 Ensembling SPG methods (*i.e.*, via composing STP, Goedel-Prover, DeepSeek-V1.5-SFT, and
 390 DeepSeek-V1.5-RL) yields only marginal gains, from 53.17% by STP alone to 54.11% – a mere
 391 0.84% uplift. This is in sharp contrast to the near-linear scaling performance increments in informal
 392 reasoning (Muenennhoff et al., 2025). In informal mathematics, pseudo-continuous reward signals
 393 during sampling create pathways where imperfect reasoning chains, despite their logical flaws, can
 394 occasionally “stumble” into correct answers. This suggests that valid conclusions may emerge even
 395 when the intermediate steps aren’t rigorously sound.

396 Formal theorem proving lacks such tolerance. A single misplaced tactic or type error invalidates
 397 the entire proof trajectory, rendering incremental sampling ineffective. While verifier-guided proof
 398 search (*e.g.*, BFS with access to intermediate proof states) theoretically mitigates this brittleness
 399 better than SPG methods, current implementations remain computationally impractical and lack
 400 scaling efficiency.

403 5.3 COT CAN ENHANCE MODEL CAPABILITIES ON FORMAL MATHEMATICAL REASONING

404 **Finding 4: Naive CoT Outperforms Natural Language Guidance in Formal Theorem Proving.**
 405 Across both SFT and RL configurations, we observe a consistent ranking of decoding strategies.
 406 Generally, naive CoT attains the highest Pass@K (from K equals 32 to 3200) accuracy, while NL-
 407 augmented CoT performs an intermediate position better than vanilla decoding. For example, under
 408 $K = 3200$, DeepSeek-V1.5-SFT achieves 50.6% with CoT and 49.2% with NL-augmented CoT
 409 and 47.0% with vanilla decoding, and DeepSeek-V1.5-RL achieves 51.7%, 51.2%, and 49.8%, re-
 410 spectively. On the other hand, it appears to be counterintuitive that NL-augmented CoT does not
 411 yield superior results compared to simple CoT. Figure 6b reveals a counterintuitive trend in per-
 412 perplexity distributions across prompting strategies: NL-augmented CoT consistently increases model
 413 uncertainty compared to naive CoT (*i.e.*, mean perplexity from 1.93 to 5.07) across Lean4 problems.

414 In Appendix O.3, the failed NL-augmented CoT proof reveals a fundamental error pattern: although
 415 the NL outline and the Lean4 script target the same semantic goal, the high-level sketch omits essen-
 416 tial parameters and case distinctions that Lean’s tactics require. We hypothesize that this discrepancy
 417 stems from an intrinsic misalignment between the action space of informal, NL reasoning and the
 418 tactic space of Lean4 formalization.

419 In this particular instance, the NL-augmented CoT followed the NL solution by working on `modulo`
 420 7, and asserting informally that $x^3 \bmod 7 \in \{0, 1, 6\}$ and $y^4 \bmod 7 \in \{0, 1, 2\}$ but does not
 421 materializes those assertions into the fifteen concrete `have ... = const` hypotheses branch that
 422 Lean4’s decision procedures demand. As a result, when the script invokes tactics (*i.e.*, `omega`)
 423 reports that the context simply lacks the linear congruences needed to derive a contradiction.

424 In contrast, naive CoT autonomously selects the larger prime modulus 13 without human-written
 425 prior, interleaves each residue-case split with explicit tactic calls producing hypotheses like `have h`
 426 : $x^3 \% 13 = 5 := \text{by simp [hxy_mod]}$, and then immediately discharges each branch
 427 with `omega`. By reconstructing its own detailed, tactic-level proof, CoT aligns semantic insight
 428 with low-level proof obligations, guaranteeing that every subgoal carries the precise numeric con-
 429 straints required for full automation—whereas the NL-augmented approach, despite being seman-
 430 tically correct at a high level, leaves critical tactical steps unstated and thus fails to complete the
 431 proof.

Figure 3: Pass@K accuracy curves for DeepSeek-V1.5 provers across different reasoning configurations.

6 DELVING INTO COMMON ERROR PATTERNS OF EXISTING PROVERS

6.1 ERROR PATTERNS ANALYSIS AND CASE STUDY

We use o4-mini to automate error diagnosis and classification through a two-step process: first extracting key verbalized features (*i.e.*, Example J), then assigning error categories via a second prompt-driven call (*i.e.*, Example K). For each prover, we randomly sampled 100 failed proofs and processed them through this pipeline. Human domain experts then manually reviewed and corrected both the extracted features and preliminary labels. We identified the four most common failure patterns—Incomplete proofs, inability to handle complex inequalities, improper use of automation tactics, and redundant hypothesis introduction, as summarized in Table 8. Note that a single proof attempt may exhibit multiple errors, so percentages do not sum to 100%.

Improper Use of Automation Tactics. Existing LLM-based Lean4 provers frequently generate proofs that rely heavily on automation tactics – such as `aesop` (Limpert & From, 2023), `simp`, and `linarith`, to streamline the low-level, step-by-step reasoning required by tactic-based proofs. For example, `aesop` performs a best-first proof search over a database of tagged lemmas and applies rewriting, splitting, and instance search to discharge goals. But these tactics depend on fixed heuristics and pre-tagged lemmas that may not match the structure of every proof: when over-invoked or misconfigured, they can dramatically expand the search space, lead to nontermination or timeouts, or even transform goals into irrelevant or unsolvable forms. In particular, automated tactics often struggle to supply the explicit constructions or witnesses required by truly constructive proofs (Smith, 1995), which may discharge the main proposition without building the underlying data, resulting in incomplete or invalid reasoning. Taking the failed proof of `omni_theorem_4000` (Table 11) as an example, it fails to construct a witness a within the correct domain that satisfies both

(1) $a \leq 1 \vee a > 0$ and (2) $f(x) = \begin{cases} 0, & \text{if } x \neq -a^2 \\ a, & \text{if } x = -a^2 \end{cases}$. Instead of performing case-by-case analysis, the proof, however, introduces the incorrect witness $a = 0$, and relies on `simp` to close off the remaining goals that are not designed to solve, without specifically analyzing the core function $(x + y^2) \cdot f(y \cdot f(x)) = x \cdot y \cdot f(y^2 + f(x))$.

Inabilities to Handle Complex Inequalities. Current provers over-rely on `linarith` and `nlinarith` to find contradictions between hypotheses that are linear and some non-linear (in)equalities. Common procedures using them require the provers to (1) mix high-degree polynomials and rational functions, (2) exploit cyclic or symmetric structure, and (3) use domain-specific lemmas (*e.g.*, rearrangements, Chebyshev, AM-GM variants). For the failed proof `algebra_528739` (Table 11), `nlinarith` must first clear denominators in the sum of fractions by introducing the common denominator: $D = (a^3 + b^3 + abc)(b^3 + c^3 + abc)(c^3 + a^3 + abc)$. However, expanding D yields a degree-9 polynomial in three variables with ~ 55 (via $\binom{9+3-1}{3-1} \approx 55$) monomials, rendering sum-of-squares or Fourier-Motzkin methods infeasible. Even if somehow the denominators are manually cleared, `nlinarith` can only handle (1) linear combinations of monomials (*via* `linarith`), (2) quadratic forms (by introducing auxiliary square variables and then linearizing),

486	Error	DeepSeek-SFT	DeepSeek-RL	Goedel	STP	Kimina
487	Redundant Hypothesis	18.0%	34.0%	27.0%	24.0%	36.0%
488	Incomplete Proof	77.0%	62.0%	86.0%	44.0%	93.0%
489	Inabilities for Inequality	8.0%	13.0%	20.0%	1.0%	20.0%
490	Misuse of Auto tactics	62.0%	65.0%	78.0%	74.0%	43.0%

Table 8: Percentage of different Lean4 error patterns in LLM-based provers.

494 and (3) simple monotonicity lemmas (*e.g.*, if $0 < x \leq y \implies \frac{1}{x} \geq \frac{1}{y}$), but only after the provers
 495 normalize the goal via `ring` or `field` first.

496 **Redundant Hypothesis Introduction.** A common error in current LLM-based theorem provers
 497 arises from introducing structurally redundant hypotheses. While these do not inherently cause
 498 logical errors, they obscure the proof’s underlying logic and reduce readability. For example, in the
 499 `aime_all_2005_II_1` proof (Table 11), the unnecessary use of `revert` followed by `reintro`
 500 exemplifies this issue. These tactics are designed to generalize variables or hypotheses—a technique
 501 critical for inductive proofs or hypothesis strengthening. However, in this case: (1) no inductive
 502 reasoning requires generalization, (2) the variables `n`, `hn`, and `h` already exist in the context and can
 503 be directly used. Thus, the tactic `revert` is redundant and can be removed to simplify the proof.

504 **Incomplete Proof.** Another common failure mode for LLM-based provers is generating unfin-
 505 ished proof attempts that leave critical subgoals unresolved or rely on placeholder tactics without
 506 justifying intermediate steps. For example, in the proof sketch for `DEMIMathAnalysis_50` (Ta-
 507 ble 11), which aims to show $\lim_{n \rightarrow \infty} \sqrt{n} \cdot \int_{-\infty}^{\infty} \frac{1}{(1+x^2)^n} dx = \sqrt{\pi}$, the prover terminates prematurely
 508 after a few tactic calls that: (1) fail to justify interchanging the limit and integral and (2) fail to es-
 509 tablish bounds on the integrand’s tail decay. The flawed proof begins with an unnecessary rewrite
 510 of `sqrt` and misapplies monotonicity lemmas like `integral_mono_on` without verifying dom-
 511 ination or integrability conditions required for the Dominated Convergence Theorem ([Wikipedia](#)
 512 [contributors](#), 2024). Worse, tactics such as `tendsto_atTop_of_eventually_const` and
 513 `filter_upwards` trivialize tail behavior instead of rigorously addressing convergence. We hy-
 514 pothesize this error stems from short-sighted heuristic selection during language modeling of theo-
 515 rem provers: prioritizing tactics that maximize immediate log-probability or heuristic scores (*e.g.*,
 516 `gcongr`, `norm_num`, `simp`) over those advancing global proof progress. Such choices syntac-
 517 tically reshape goals while burying core challenges under shallow subgoals.

518 7 CONCLUDING REMARKS

519 FormalMATH is a new, extensive benchmark for evaluating LLMs’ formal mathematical reasoning.
 520 It includes 5,560 formally verified Lean4 statements, covering topics from high-school Olympiads
 521 to undergraduate studies. We developed a human-in-the-loop autoformalization pipeline to cre-
 522 ate FormalMATH. This process uses specialized LLMs for initial Lean4 formalization, multi-LLM
 523 semantic verification to maintain fidelity to the original problems, and a negation-based disproof
 524 strategy to filter invalid statements. This significantly reduces manual review effort while achieving
 525 a 72.09% pre-verification preservation rate. Our evaluation of existing LLM-based theorem provers
 526 on FormalMATH shows considerable limitations. The best models achieve modest success, with
 527 the top performer reaching only 16.46% accuracy. The analysis also reveals strong domain biases:
 528 models perform better in areas like algebra but struggle in others, such as calculus. Furthermore, our
 529 findings suggest an over-reliance on simplified automation tactics and, surprisingly, a negative effect
 530 of natural-language solution guidance on proof success in CoT scenarios. These results underscore
 531 the difficulty of the FormalMATH benchmark and present key open problems for improving the
 532 robustness, generalizability, and reasoning complexity of automatic theorem provers.

540 ICLR PAPER CHECKLIST
541

542 1. Ethics Statement

543 **Answer:** This research fully adheres to the ICLR Code of Ethics. The study does not
544 involve human subjects or the use of personal or sensitive data. All datasets and code utili-
545 zed and released conform to their respective licenses and terms of use. If any annotation
546 tasks were involved, annotators merely labeled mathematical problems, and no risk or per-
547 sonal information was associated with their participation. The contributions in this work
548 are foundational and do not raise issues related to fairness, privacy, security, or potential
549 misuse. We confirm that all ethical considerations have been thoroughly addressed.

550 2. Reproducibility Statement

551 **Answer:** We are committed to making our work easily reproducible. All essential details
552 required to replicate our main experimental results—including data access, experimental
553 setup, model configurations, and evaluation metrics—are provided either on the designated
554 project page. Released code and datasets come with clear instructions to reproduce both
555 our proposed method and baseline experiments. We specify all training and test parameters
556 as well as compute resource requirements. Users can follow our documentation and scripts
557 to faithfully reproduce the results, ensuring transparency and scientific rigor.

558 REFERENCES
559

560 Zhangir Azerbayev, Bartosz Piotrowski, Hailey Schoelkopf, Edward W Ayers, Dragomir Radev, and
561 Jeremy Avigad. Proofnet: Autoformalizing and formally proving undergraduate-level mathemat-
562 ics. *arXiv preprint arXiv:2302.12433*, 2023. 1, 3

563 Jinze Bai, Shuai Bai, Yunfei Chu, Zeyu Cui, Kai Dang, Xiaodong Deng, Yang Fan, Wenbin Ge,
564 Yu Han, Fei Huang, et al. Qwen technical report. *arXiv preprint arXiv:2309.16609*, 2023. 4

565 Bruno Barras, Samuel Boutin, Cristina Cornes, Judicaël Courant, Jean-Christophe Filliatre, Eduardo
566 Gimenez, Hugo Herbelin, Gerard Huet, Cesar Munoz, Chetan Murthy, et al. *The Coq proof
assistant reference manual: Version 6.1*. PhD thesis, Inria, 1997. 1

567 Konstantin Chernyshev, Vitaliy Polshkov, Ekaterina Artemova, Alex Myasnikov, Vlad Stepanov,
568 Alexei Miasnikov, and Sergei Tilga. U-math: A university-level benchmark for evaluating math-
569 ematical skills in llms. *arXiv preprint arXiv:2412.03205*, 2024. 3, 14

570 Wikipedia contributors. Law of excluded middle — wikipedia, the free encyclope-
571 dia, 2025. URL https://en.wikipedia.org/w/index.php?title=Law_of_excluded_middle&oldid=174001193. Online; accessed 5-May-2025; version of 28-
572 April-2025. 5

573 B.P. Demidovich. *Problems in Mathematical Analysis. Edited by B. Demidovich. Translated
574 From the Russian by G. Yankovsky*. Russian Monographs and Texts on Advanced Mathemat-
575 ics and Physics. Mir Publishers, 1964. URL <https://books.google.com/books?id=XdmpwgEACAAJ>. 3

576 Kefan Dong and Tengyu Ma. Beyond limited data: Self-play llm theorem provers with iterative
577 conjecturing and proving. *arXiv preprint arXiv:2502.00212*, 2025. 2, 6, 27

578 Jingxuan Fan, Sarah Martinson, Erik Y Wang, Kaylie Hausknecht, Jonah Brenner, Danxian Liu, Ni-
579 anli Peng, Corey Wang, and Michael P Brenner. Hardmath: A benchmark dataset for challenging
580 problems in applied mathematics. *arXiv preprint arXiv:2410.09988*, 2024. 3, 14

581 Bofei Gao, Feifan Song, Zhe Yang, Zefan Cai, Yibo Miao, Qingxiu Dong, Lei Li, Chenghao Ma,
582 Liang Chen, Runxin Xu, et al. Omni-math: A universal olympiad level mathematic benchmark
583 for large language models. *arXiv preprint arXiv:2410.07985*, 2024. 3, 4, 14

584 Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu, Qihao Zhu,
585 Shirong Ma, Peiyi Wang, Xiao Bi, et al. Deepseek-r1: Incentivizing reasoning capability in llms
586 via reinforcement learning. *arXiv preprint arXiv:2501.12948*, 2025. 2

594 Masayoshi Hata. *Problems and solutions in real analysis*, volume 14. World Scientific Publishing
 595 Company, 2016. 14

596

597 Aaron Jaech, Adam Kalai, Adam Lerer, Adam Richardson, Ahmed El-Kishky, Aiden Low, Alec
 598 Helyar, Aleksander Madry, Alex Beutel, Alex Carney, et al. Openai o1 system card. *arXiv*
 599 *preprint arXiv:2412.16720*, 2024. 4

600 Leanprover Community. A read-eval-print-loop for Lean 4. [https://github.com/](https://github.com/leanprover-community/repl)
 601 [leanprover-community/repl](https://github.com/leanprover-community/repl), 2023. 3, 28

602

603 K Rustan M Leino. Dafny: An automatic program verifier for functional correctness. In *International*
 604 *conference on logic for programming artificial intelligence and reasoning*, 2010. 1

605 Jannis Limberg and Asta Halkjær From. Aesop: White-box best-first proof search for lean. In *ACM*
 606 *SIGPLAN International Conference on Certified Programs and Proofs*, 2023. 2, 9

607

608 Yong Lin, Shange Tang, Bohan Lyu, Jiayun Wu, Hongzhou Lin, Kaiyu Yang, Jia Li, Mengzhou Xia,
 609 Danqi Chen, Sanjeev Arora, et al. Goedel-prover: A frontier model for open-source automated
 610 theorem proving. *arXiv preprint arXiv:2502.07640*, 2025. 2, 6, 27

611 Chengwu Liu, Jianhao Shen, Huajian Xin, Zhengying Liu, Ye Yuan, Haiming Wang, Wei Ju,
 612 Chuanyang Zheng, Yichun Yin, Lin Li, et al. Fimo: A challenge formal dataset for automated
 613 theorem proving. *arXiv preprint arXiv:2309.04295*, 2023. 3

614

615 Mathlib Community. The Lean mathematical library. In *ACM SIGPLAN International Conference*
 616 *on Certified Programs and Proofs*. Association for Computing Machinery, 2020. 1, 3, 28

617

618 Leonardo de Moura and Sebastian Ullrich. The lean 4 theorem prover and programming language.
 619 In *Automated Deduction–CADE 28: 28th International Conference on Automated Deduction,*
 620 *Virtual Event, July 12–15, 2021, Proceedings 28*, pp. 625–635. Springer, 2021. 1

621 Niklas Muennighoff, Zitong Yang, Weijia Shi, Xiang Lisa Li, Li Fei-Fei, Hannaneh Hajishirzi, Luke
 622 Zettlemoyer, Percy Liang, Emmanuel Candès, and Tatsunori Hashimoto. s1: Simple test-time
 623 scaling. *arXiv preprint arXiv:2501.19393*, 2025. 8, 28

624 OpenAI. Gpt-4 technical report. *arXiv preprint arXiv:2303.08774*, 2023. 4

625

626 Benjamin C. Pierce, Arthur Azevedo de Amorim, Chris Casinghino, Marco Gaboardi, Michael
 627 Greenberg, Cătălin Hrițcu, Vilhelm Sjöberg, and Brent Yorgey. *Logical Foundations*, volume 1 of *Software Foundations*. Electronic textbook, 2025. Version 6.7, <https://softwarefoundations.cis.upenn.edu/lf-current>. 26

627

628 Stanislas Polu and Ilya Sutskever. Generative language modeling for automated theorem proving.
 629 *arXiv preprint arXiv:2009.03393*, 2020. 1

630

631 ZZ Ren, Zhihong Shao, Junxiao Song, Huajian Xin, Haocheng Wang, Wanjia Zhao, Liyue Zhang,
 632 Zhe Fu, Qihao Zhu, Dejian Yang, et al. Deepseek-prover-v2: Advancing formal mathematical rea-
 633 soning via reinforcement learning for subgoal decomposition. *arXiv preprint arXiv:2504.21801*,
 634 2025. 27

635

636 Peter Scholze. Liquid tensor experiment. *Experimental Mathematics*, 31(2):349–354, 2022. 1

637

638 Brian Smith. Constructive mathematics. *The Bulletin of Symbolic Logic*, 1(2):118–141, 1995. 9

639

640 Charlie Snell, Jaehoon Lee, Kelvin Xu, and Aviral Kumar. Scaling llm test-time compute optimally
 641 can be more effective than scaling model parameters. *arXiv preprint arXiv:2408.03314*, 2024. 28

642

643 Terence Tao. The polynomial freiman-ruzsa conjecture. <https://github.com/teorth/pf>,
 644 2023. URL <https://github.com/teorth/pf>. 1

645

646 Kimi Team, Angang Du, Bofei Gao, Bowei Xing, Changjiu Jiang, Cheng Chen, Cheng Li, Chenjun
 647 Xiao, Chenzhuang Du, Chonghua Liao, et al. Kimi k1. 5: Scaling reinforcement learning with
 llms. *arXiv preprint arXiv:2501.12599*, 2025. 2

648 George Tsoukalas, Jasper Lee, John Jennings, Jimmy Xin, Michelle Ding, Michael Jennings, Ami-
 649 tayush Thakur, and Swarat Chaudhuri. Putnambench: Evaluating neural theorem-provers on the
 650 putnam mathematical competition. *arXiv preprint arXiv:2407.11214*, 2024. 3

651 Haiming Wang, Mert Unsal, Xiaohan Lin, Mantas Baksys, Junqi Liu, Marco Dos Santos, Flood
 652 Sung, Marina Vinyes, Zhenzhe Ying, Zekai Zhu, et al. Kimina-prover preview: Towards large
 653 formal reasoning models with reinforcement learning. *arXiv preprint arXiv:2504.11354*, 2025.
 654 1, 2, 6, 27

655 Xuezhi Wang, Jason Wei, Dale Schuurmans, Quoc Le, Ed Chi, Sharan Narang, Aakanksha Chowdh-
 656 ery, and Denny Zhou. Self-consistency improves chain of thought reasoning in language models.
 657 *arXiv preprint arXiv:2203.11171*, 2022. 4

658 Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Brian Ichter, Fei Xia, Ed H Chi,
 659 Quoc V Le, and Denny Zhou. Chain-of-thought prompting elicits reasoning in large language
 660 models. In *NeurIPS*, 2022. 2

661 Wikipedia contributors. Dominated convergence theorem — Wikipedia, the free encyclo-
 662 https://en.wikipedia.org/wiki/Dominated_convergence_theorem,
 663 2024. Accessed: 2025-05-15. 10

664 Yuhuai Wu, Albert Qiaochu Jiang, Wenda Li, Markus Rabe, Charles Staats, Mateja Jamnik, and
 665 Christian Szegedy. Autoformalization with large language models. In *NeurIPS*, 2022. 4

666 Zijian Wu, Suozhi Huang, Zhejian Zhou, Huaiyuan Ying, Jiayu Wang, Dahua Lin, and Kai Chen.
 667 Internlm2. 5-stepprover: Advancing automated theorem proving via expert iteration on large-scale
 668 lean problems. *arXiv preprint arXiv:2410.15700*, 2024. 5, 27

669 Tim Z Xiao, Robert Bamler, Bernhard Schölkopf, and Weiyang Liu. Verbalized machine learning:
 670 Revisiting machine learning with language models. *arXiv preprint arXiv:2406.04344*, 2024. 28

671 Huajian Xin, ZZ Ren, Junxiao Song, Zhihong Shao, Wanjia Zhao, Haocheng Wang, Bo Liu, Liyue
 672 Zhang, Xuan Lu, Qiushi Du, et al. Deepseek-prover-v1. 5: Harnessing proof assistant feedback
 673 for reinforcement learning and monte-carlo tree search. *arXiv preprint arXiv:2408.08152*, 2024.
 674 1, 2, 4, 5, 6, 27

675 Ran Xin, Chenguang Xi, Jie Yang, Feng Chen, Hang Wu, Xia Xiao, Yifan Sun, Shen Zheng, and
 676 Kai Shen. Bfs-prover: Scalable best-first tree search for llm-based automatic theorem proving.
 677 *arXiv preprint arXiv:2502.03438*, 2025. 1, 2, 5, 27

678 Kaiyu Yang, Aidan Swope, Alex Gu, Rahul Chalamala, Peiyang Song, Shixing Yu, Saad Godil,
 679 Ryan Prenger, and Anima Anandkumar. LeanDojo: Theorem proving with retrieval-augmented
 680 language models. In *NeurIPS*, 2023. 3

681 Kaiyu Yang, Gabriel Poesia, Jingxuan He, Wenda Li, Kristin Lauter, Swarat Chaudhuri, and Dawn
 682 Song. Formal mathematical reasoning: A new frontier in ai. *arXiv preprint arXiv:2412.16075*,
 683 2024. 1

684 Huaiyuan Ying, Zijian Wu, Yihan Geng, Jiayu Wang, Dahua Lin, and Kai Chen. Lean workbook:
 685 A large-scale lean problem set formalized from natural language math problems. *arXiv preprint
 686 arXiv:2406.03847*, 2024a. 3, 4

687 Huaiyuan Ying, Shuo Zhang, Linyang Li, Zhejian Zhou, Yunfan Shao, Zhaoye Fei, Yichuan Ma,
 688 Jiawei Hong, Kuikun Liu, Ziyi Wang, et al. Internlm-math: Open math large language models
 689 toward verifiable reasoning. *arXiv preprint arXiv:2402.06332*, 2024b. 3

690 Zhouliang Yu, Yuhuan Yuan, Tim Z Xiao, Fuxiang Frank Xia, Jie Fu, Ge Zhang, Ge Lin, and
 691 Weiyang Liu. Generating symbolic world models via test-time scaling of large language models.
 692 *arXiv preprint arXiv:2502.04728*, 2025. 28

693 Yifan Zhang, Yifan Luo, and Yizhou Chen. Bluemo: A comprehensive collection of challenging
 694 mathematical olympiad problems from the little blue book series., 2024. 3, 14

695 Kunhao Zheng, Jesse Michael Han, and Stanislas Polu. Minif2f: a cross-system benchmark for
 696 formal olympiad-level mathematics. *arXiv preprint arXiv:2109.00110*, 2021. 1, 3, 4

702 A THE FORMALMATH DATASET
703
704
705
706707 The concrete dataset of FormalMATH, including FormalMATH-All and its simpler subset (*i.e.*,
708 FormalMATH-Lite), can be found at:709 https://anonymous.4open.science/r/formalmath_rebuttal-3CED710
711
712
713
714
715 B DATA SOURCES
716
717
718
719720 Table 9 presents the sources of the natural language datasets used in the FormalMATH project.
721

722 Dataset	723 Level	724 #Domains	725 Size	726 #S.Formal
723 Omni-math (Gao et al., 2024)	724 High School Olympiad	725 9	726 4.43k	727 1,210
724 Numina-Olympiad	725 High School Olympiad	726 10	727 11.8k	728 2,409
725 AIME-Math	726 High School Olympiad	727 7	728 934	729 371
726 BlueMO (Zhang et al., 2024)	727 High School Olympiad	728 8	729 3,024	730 1,099
727 U-Math (Chernyshev et al., 2024)	728 Undergraduate	729 6	730 1,100	731 358
728 Hardmath (Fan et al., 2024)	729 Undergraduate	730 3	731 1,060	732 67
729 DEMIMATH (Hata, 2016)	730 Undergraduate	731 8	732 88	733 46

731 Table 9: The sources of the datasets in FormalMATH. “#Domains” denotes the number of domains in the
732 dataset. “#S.Formal” denotes the number of samples in FormalMATH that are formalized from the dataset.733
734
735
736
737
738 C EXAMPLES OF STATEMENTS IN FORMALMATH
739
740
741
742743 Example B.1: The 27th derivative for $y = 2 \cdot x^2 \cdot \sin(x)$

744 u-math_915

745 Find the derivative of the 27th order $y^{(27)}$ for a function $y = 2 \cdot x^2 \cdot \sin(x)$. Prove that the answer
746 is: $y^{(27)} = 1404 \cdot \cos(x) - 2 \cdot x^2 \cdot \cos(x) - 108 \cdot x \cdot \sin(x)$ 747
748 Autoformalization:749
750 import Mathlib
751
752 open Real Set
753 open scoped BigOperators
754
755 theorem u-math_915 {f : ℝ → ℝ} (hf : f = $\lambda x \Rightarrow 2 \cdot x^2 \cdot \sin x$):
756 iteratedDeriv 27 f = $\lambda x \Rightarrow 1404 \cdot \cos x - 2 \cdot x^2 \cdot \cos x - 108 \cdot x \cdot \sin x$:= by

756

Example B.2: The analytical formula for $I(x)$ — A Nontrivial Polynomial-Exponential Integral

757

758

hardmath_569

759

Consider the integral

760

$$I(x) = \int_{-0.3}^{0.6} (1.2t^5 + 2.4t^4 + 1.7t^3 - 0.6 \operatorname{atan}(t) + 1.3) e^{x(1.2t^5 - 0.8t^4 - 2.7t^3 - 2.6t^2)} dt$$

761

Develop an analytical formula for $I(x)$ that is accurate as $x \rightarrow \infty$.

762

Prove that the answer is:

763

$$I(x) \approx \frac{\sqrt{65}\sqrt{\pi}\sqrt{\frac{1}{x}}}{10}.$$

764

765

Autoformalization:

766

import Mathlib

767

open Real

768

theorem hardmath_569 ($f : \mathbb{R} \rightarrow \mathbb{R}$) ($hf : f = \text{fun } x \Rightarrow \int t \text{ in } (-0.3)..0.6, (1.2 * t^5 + 2.4 * t^4 + 1.7 * t^3 - 0.6 * \arctan t + 1.3) * \exp(x * (1.2 * t^5 - 0.8 * t^4 - 2.7 * t^3 - 2.6 * t^2))$):

770

 $\forall \varepsilon > 0, \exists x, \forall y, y > x \rightarrow |f y - (\text{Real.sqrt } 65 * \text{Real.sqrt } \pi * \text{Real.sqrt } (1 / y)) / 10| < \varepsilon := \text{by}$

771

772

773

Example B.3: Find all positive integer solutions to a nonlinear divisibility equation

774

omni_theorem_4136

775

Determine all pairs (x, y) of positive integers such that $x^2y + x + y$ is divisible by $xy^2 + y + 7$.

776

Prove that the answer is: $(x, y) = (11, 1), (49, 1), (7t^2, 7t)$, t is an integer

777

778

Autoformalization:

779

import Mathlib

780

open Real

781

open scoped BigOperators

782

theorem omni_theorem_4136 : $\forall x y : \mathbb{N}, x > 0 \wedge y > 0 \rightarrow ((x^2 * y + x + y) \% (x * y^2 + y + 7) = 0 \leftrightarrow$

783

 $(x = 11 \wedge y = 1) \vee (x = 49 \wedge y = 1) \vee \exists t : \mathbb{Z}, x = 7 * t^2 \wedge y = 7 * t) := \text{by}$

784

785

786

787

788

789

790

D THE ERROR TYPES OF OUR AUTOFORMALIZATION PIPELINE

791

Error Category	Percentage (%)
Condition Error	83.3
Expression Error (Lean Syntax)	9.6
Definition Error (No Mathematical Meaning)	3.3
Domain Error	1.7
Propositional Logic Error	0.9
Lack of Geometric Background	0.6
Condition Redundancy	0.5
Algebraic Expression Error	0.2

Table 10: Error Classification Statistics (%)

802

803

804

E DOMAIN DISTRIBUTION OF FORMALMATH-LITE

805

806

807

808

809

Figure 4: The distribution of mathematical domains in our FormalMATH-Lite dataset.

F TYPICAL ERRORS IN STATEMENT AUTOFORMALIZATION

F.1 ERRORS IN DEFINITION

Definition Errors mainly occur in the failure of semantically corresponding the mathematical entities in autoformalized statements one-to-one with those in the refined statement. For instance, in a geometry problem, if the defined entities do not pertain to geometric concepts such as points, lines, and angles, it indicates a lack of domain relevance.

Mismatched Variable type is also a common issue. This type of error can lead to failure when applying tactics that are specific to a particular variable type.

Furthermore, the defined variables may lack actual mathematical significance so that the statement cannot pass the compiler.

Example E.1: Errors in Definition: Lack of Specific Mathematical Background (Geometry)

omni_theorem_2599

```
Points A, B, C, D lie on a circle in that order such that  $\frac{AB}{BC} = \frac{DA}{CD}$ . If  $AC = 3$  and  $BD = BC = 4$ ,  
find  $AD$ .  
Prove that the answer is:  $\frac{3}{2}$ 
```

Autoformalization:

```
import Mathlib

open EuclideanGeometry Real
open scoped BigOperators

theorem omni_theorem_2599
  {A B C D : EuclideanSpace ℝ (Fin 2)}
  (h0 : ∃ O, dist AO = dist BO ∧ dist BO = dist CO ∧ dist CO = dist DO)
  (h1 : dist AB / dist BC = dist DA / dist CD)
  (h2 : dist AC = 3)
  (h3 : dist BD = 4)
  (h4 : dist BC = 4) :
  dist AD = 3 / 2 := by sorry
```

The model’s formalization is deficient because it only specifies the lengths of line segments AB , BC , CD , and DA , without explicitly stating that points A , B , C , and D are in that order along circle O . This omission is critical as only segment lengths is insufficient to uniquely define a quadrilateral

864 inscribed in a circle. Different orderings of these points on the circle, even with the same segment
 865 lengths.
 866

867

868

869

870

871

Example E.2: Errors in Definition: Mismatched variable Type**omnitheorem.66**

Determine whether or not there exist two distinct sets A and B , each consisting of at most 2011² positive integers, such that for every x with $0 < x < 1$, the following inequality holds:

$$\left| \sum_{a \in A} x^a - \sum_{b \in B} x^b \right| < (1-x)^{2011}.$$

Prove that the answer is Yes.

Autoformalization:

```
import Mathlib

theorem omni_theorem_66 :
  ∃ A B : Finset ℕ,
  A ≠ B ∧
  A.card ≤ 2011^2 ∧
  B.card ≤ 2011^2 ∧
  (forall x : Set.Ioo 0 1, |sum a ∈ A, (x : ℝ)^a - sum b ∈ B, (x : ℝ)^b| < (1 - x)^2011) := by sorry
```

884

885

886

While positive integer mappings and positive integers m and n were required, the autoformalization mistakenly used natural numbers instead.

887

888

889

890

Example E.3: Errors in Definition: Meaningless Definition in Mathematical Context**omnitheorem.1024**

For a positive integer n , denote by $\tau(n)$ the number of positive integer divisors of n , and denote by $\phi(n)$ the number of positive integers that are less than or equal to n and relatively prime to n . Call a positive integer n good if $\varphi(n) + 4\tau(n) = n$. For example, the number 44 is good because $\varphi(44) + 4\tau(44) = 44$. Find the sum of all good positive integers n .
 Prove that the answer is: 172

Autoformalization:

```
import Mathlib

open Finset

def isGood(n : ℕ) := n.totient + 4 * n.divisors.card = n

theorem omni_theorem_1024 :
  sum {n | 0 < n ∧ isGood n} = 172 := by sorry
```

906

907

908

Euler's totient function, denoted as $\phi(n)$ or in Lean4 as `n.totient`, counts the number of positive integers less than or equal to n that are relatively prime to n . For $n = 0$, the function `n.totient` is not defined, which results in `isGood n` being undefined.

912

913

914

915

916

917

F.2 ERRORS IN EXPRESSIONS

This type of errors include incorrect arithmetic or logical operations, improper use of variables, or incorrect application of mathematical or logical rules.

918

Example E.4: Errors in Proposition Construction (Wrong Position of Existential Qualifier)

919

920

omni_theorem.4

921

Let p be a prime number. Prove the following **theorem** of Euler: the equation $p = x^2 + 3y^2$ has a solution with $x, y \in \mathbb{Z}$ if and only if $p = 3$ or $p \equiv 1 \pmod{3}$. (You may use the fact that the ring of integers of $\mathbb{Q}(\sqrt{-3})$ is a principal ideal domain.)

Prove that the answer is: The equation $p = x^2 + 3y^2$ has a solution with $x, y \in \mathbb{Z}$ if and only if $p = 3$ or $p \equiv 1 \pmod{3}$

922

923

924

925

926

Autoformalization:

927

```
import Mathlib
open Real
open scoped BigOperators

theorem omni_theorem_401 {p : ℕ} (hp : Nat.Prime p) :
  ∃ x y : ℤ, p = x^2 + 3*y^2 ↔ p = 3 ∨ p % 3 = 1 := by sorry
```

928

929

930

931

932

933

934

In the Lean4 code, the existential quantifier is misplaced. $\exists x, y \in \mathbb{Z}$ should quantify the entire left-hand side of the biconditional. Instead of asserting that the existence of a solution (x, y) is equivalent to the condition $p = 3 \vee p \equiv 1 \pmod{3}$, the incorrect code unintentionally suggests the existence of x and y is linked to the entire biconditional statement being true. the existential quantifier should be correctly scoped only to the left-hand side of the biconditional, as in the corrected form:

940

941

$$(\exists x, y \in \mathbb{Z}, p = x^2 + 3y^2) \leftrightarrow (p = 3 \vee p \equiv 1 \pmod{3}),$$

942

which ensures that the quantifier only applies to the equation $p = x^2 + 3y^2$.

943

944

945

946

Example E.5: Errors in Expression: Misleading Scope of the Universal Quantifier

947

948

omni_theorem.219

949

Find, with proof, all nonconstant polynomials $P(x)$ with real coefficients such that, for all nonzero real numbers z with $P(z) \neq 0$ and $P(\frac{1}{z}) \neq 0$, we have

$$\frac{1}{P(z)} + \frac{1}{P(\frac{1}{z})} = z + \frac{1}{z}$$

Prove that the answer is:

$$P(x) = \frac{x(x^{4k+2}+1)}{x^2+1}$$

950

951

952

953

954

955

Autoformalization:

956

957

958

959

960

961

962

963

964

965

966

The problem is one of logical scope and intended semantic meaning. While Lean4's type system is powerful and can often handle somewhat flexible syntax, the initial phrasing can lead to a misinterpretation of the theorem's claim. While Lean4 might parse this code without immediate syntax errors due to the right-associativity of implication, this placement leads to a misinterpretation of the theorem's intended logical structure and meaning. The original code is effectively parsed as if it were written:

972

Example E.6: Logical Parse in Original Autoformalized Statement

973

974

omni_theorem_219-autoformalization

975

$$\forall z : \mathbb{R}, (z \neq 0 \rightarrow (\text{P.eval } z \neq 0 \rightarrow (\text{P.eval } (1/z)) \neq 0 \rightarrow$$

$$(1/(\text{P.eval } z)) + 1/(\text{P.eval } (1/z)) = z + 1/z \leftrightarrow$$

$$\exists k : \mathbb{N}, P = X^*(X^{(4*k+2)+1})/(X^{2+1}) \vee$$

$$P = X^*(1 - X^{(4*k)})/(X^{2+1})))$$

976

977

978

979

980

981

The theorem should state: A nonconstant polynomial $P(x)$ satisfies the property that for all relevant nonzero z , the equation holds if and only if $P(x)$ takes one of the specified forms. To accurately reflect the intended meaning and correct the quantifier placement, we must use parentheses to explicitly define the scope of the universal quantifier.

982

983

984

985

986

987

Example E.7: Enhanced Autoformalized Statement

988

989

990

omni_theorem_219-autoformalization

991

$$\text{theorem omni_theorem_219 } \{P : \text{Polynomial } \mathbb{R}\} (hP : P.\text{degree} > 0) : \forall$$

$$(\forall z : \mathbb{R}, z \neq 0 \rightarrow \text{P.eval } z \neq 0 \rightarrow \text{P.eval } (1/z) \neq 0 \rightarrow$$

$$1/(\text{P.eval } z) + 1/(\text{P.eval } (1/z)) = z + 1/z \leftrightarrow$$

$$\exists k : \mathbb{N}, P = X^*(X^{(4*k+2)+1})/(X^{2+1}) \vee$$

$$P = X^*(1 - X^{(4*k)})/(X^{2+1}) := \text{by sorry}$$

992

993

994

995

996

997

998

999

1000

F.3 ERRORS IN CONSTRAINT CONDITION

1001

The content of the constraints may not match the requirements stated in the problem or be left out. We also notice that constraints that are not mentioned in the original problem statement may be added during formalization.

1002

1003

1004

Example E.8: Errors in Constraint Condition: Mismatch with known conditions

1005

1006

1007

omni_theorem_748:

1008

Let $f(x) = x^2 + ax + b$ and $g(x) = x^2 + cx + d$ be two distinct real polynomials such that the x -coordinate of the vertex of f is a root of g , the x -coordinate of the vertex of g is a root of f and both f and g have the same minimum value. If the graphs of the two polynomials intersect at the point $(2012, -2012)$, what is the value of $a + c$?
Prove that the answer is: -8048

1009

1010

Autoformalization:

1011

import Mathlib

1012

$$\text{theorem omni_theorem_748 } \{a b c d : \mathbb{R}\} (f g : \mathbb{R} \rightarrow \mathbb{R})$$

$$(hf : f = \text{fun } x \Rightarrow x^2 + a*x + b) (hg : g = \text{fun } x \Rightarrow x^2 + c*x + d)$$

$$(hfg : f \neq g) (hvertex : \exists x, x = -a/2 \wedge g x = 0) (hvertex' : \exists x, x = -c/2 \wedge f x = 0)$$

$$(hmin : \exists y, \forall x, f x \geq y \wedge g x \geq y) (\hintersect : f 2012 = -2012 \wedge g 2012 = -2012) :$$

$$a + c = -8048 := \text{by sorry}$$

1013

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

1025

In Autoformalization, $\text{hmin} : \exists y, \forall x, f(x) \geq y \wedge g(x) \geq y$ means that f and g have a common lower bound, rather than: f and g have the same minimum value.

1026

Example E.8: Errors in Constraint Condition: Lack of a key condition

1027

1028

omni_theorem_10:

1029

1030

1031

Given 30 students such that each student has at most 5 friends and for every 5 students there is a pair of students that are not friends, determine the maximum k such that for all such possible configurations, there exists k students who are all not friends.

Prove that the answer is: 6

1032

1033

Autoformalization:

1034

1035

1036

1037

1038

1039

1040

1041

```
import Mathlib
open Finset

theorem omni_theorem_10 (n : ℕ) (hn : n = 30) (f : Fin n → Fin n → Prop)
  (hf : ∀ i j, f i j ↔ f j i) (hfn : ∀ s : Finset (Fin n), s.card = 5 →
    ∃ i ∈ s, ∃ j ∈ s, i ≠ j ∧ ¬f i j) :
  IsGreatest {k | ∃ t : Finset (Fin n), t.card = k ∧ ∀ i ∈ t, ∀ j ∈ t, i ≠ j → ¬f i j} 6 := by sorry
```

1042

1043

1044

1045

1046

1047

The formalization fails to represent the condition “Each student has at most 5 friends”. This crucial condition is necessary for accurately capturing the problem’s constraints, and its absence may lead to a solution space that does not match the requirements of the original problem. Without this condition, the formalized statement does not fully reflect the situation described in the refined statement, potentially resulting in an incorrect or incomplete proof for determining the maximum number k of students who are all not friends.

1048

1049

Example E.9: Errors in Constraint Condition: Redundant conditions

1050

omni_theorem_1245

1051

1052

1053

The fraction $\frac{1}{2015}$ has a unique “(restricted) partial fraction decomposition” of the form $\frac{1}{2015} = \frac{a}{5} + \frac{b}{13} + \frac{c}{31}$ where a, b, c are integers with $0 \leq a < 5$ and $0 \leq b < 13$. Find $a + b$.

Prove that the answer is: 14

1054

1055

Autoformalization:

1056

1057

1058

```
import Mathlib

theorem omni_theorem_1245 {a b c : ℤ} (ha : 0 ≤ a ∧ a < 5) (hb : 0 ≤ b ∧ b < 13)
  (hc : 0 ≤ c ∧ c < 31) (h : 1 / 2015 = a / 5 + b / 13 + c / 31) : a + b = 14 := by sorry
```

1059

1060

In autoformalization, the model introduced a spurious condition: $(hc : 0 \leq c \wedge c < 31)$.

1061

1062

1063

1064

1065

1066

1067

1068

1069

1070

1071

1072

1073

1074

1075

1076

1077

1078

1079

1080 F.4 ERRORS IN PROOF GOALS
10811082 The stated proof goals may be incorrect. They could be misaligned with the original problem state-
1083 ment, overly simplified, too general or even omitted.
10841085 **Example E.10: Errors in Proof Goals: Incorrect Proposition Logic**
10861087 **omnitheorem_1362**1088 The Fibonacci sequence is defined as follows: $F_0 = 0$, $F_1 = 1$, and $F_n = F_{n-1} + F_{n-2}$ for all
1089 integers $n \geq 2$. Find the smallest positive integer m such that $F_m \equiv 0 \pmod{127}$ and
1090 $F_{m+1} \equiv 1 \pmod{127}$.
1091 Prove that the answer is: 2561092 **Autoformalization:**1093 **import** Mathlib
1094
1095 **def** fib(n : \mathbb{N}) : \mathbb{N} := **match** n **with**
1096 | 0 => 0
1097 | 1 => 1
1098 | n + 2 => fib(n + 1) + fib n
1099
1100 **theorem** omnitheorem_1362 {m : \mathbb{N} } (hm : m > 0) :
1101 fib m ≡ 0 [MOD 127] \wedge fib(m + 1) ≡ 1 [MOD 127] \leftrightarrow m = 256 := **by sorry**1101 The fundamental error in this autoformalization lies in framing the problem as an equivalence
1102 verification. The autoformalization, by using $\leftrightarrow m = 256$, transforms the problem into a claim
1103 that the given congruences hold if and only if m is exactly 256. The correct approach to for-
1104 malize the original problem would involve demonstrating that The value $m = 256$ satisfies the
1105 conditions: $\text{fib}(256) \equiv 0 \pmod{127}$ \wedge $\text{fib}(256 + 1) \equiv 1 \pmod{127}$, and that no smaller positive
1106 integer $m' < 256$ also satisfies these conditions.1107 **Example E.11: Errors in Proof Goals: Incomplete Goal**
11081109 **olympidrefbase_551**1110 Let a, b, c, d, e, f be non-negative real numbers satisfying $a + b + c + d + e + f = 6$. Find the
1111 maximal possible value of $a + b + c + d + e + f$ and determine all 6-tuples
1112 (a, b, c, d, e, f) for which this maximal value is achieved. Answer: 8. Prove that the answer is: 8
11131114 **Autoformalization:**1115 **import** Mathlib **open** Real **theorem** olympid_ref_base_551 : IsGreatest {x | $\exists a b c d e f : \mathbb{R}, a \geq 0 \wedge b \geq$
1116 $0 \wedge c \geq 0 \wedge d \geq 0 \wedge e \geq 0 \wedge f \geq 0 \wedge a + b + c + d + e + f = 6 \wedge x = a * b * c * d * e * f +$
1117 $e * f * a + f * a * b} 8 := \text{by sorry}$ 1119 The core issue lies in how the autoformalization treats the problem's objective – finding the maximal
1120 possible value – and the request to determine all 6-tuples that achieve this maximum. The original
1121 problem requires the solver to not only find the maximum value but also to characterize the set
1122 of inputs that lead to this maximum. The provided autoformalization using IsGreatest completely
1123 omits any formalization of the requirement to determine all 6-tuples. It focuses solely on verifying
1124 the maximal value (8).
1125
1126
1127
1128
1129
1130
1131
1132
1133

1134 **G PROMPT FOR SEMANTIC VERIFICATION**
11351136 To more effectively evaluate the consistency between natural language mathematics problems and
1137 their Lean4 formalizations, we adopted an LLMs group voting approach to filter entries with the
1138 same semantics. The prompt provided to the five LLMs is as follows:
11391140 **Example F.1: Prompt for Semantic Verification**
11411142 You are an expert in formalizing natural language into lean.
1143 You are given a natural language statement and a lean statement.
1144 You should judge the equivalence between the natural language statement and the lean statement by the following workflow:
1145 1. You should back-translate the lean statement into English.
1146 2. You should check if the back-translated statement is equivalent to the natural language statement.
1147 3. If they are equivalent, you should return True.
1148 4. Otherwise, you should return False.
1149 Here is the natural language statement:
1150 {refined_statement}
1151 Here is the lean statement:
1152 {lean_statement}
1153 You must remember : Return True or False directly. Accept only True/False in answer.1154 **H PROMPT FOR DOMAIN CLASSIFICATION**
11551156 **Example G.1: Prompt for Domain Classification**
11571158 # CONTEXT #
1159 I am a teacher, and I have some high-level math problems.
1160 I want to categorize the domain of these math problems.
1161
1162 # OBJECTIVE #
1163 A. Summarize the math problem in a brief sentence, describing the concepts involved in
1164 the math problem.
1165 B. Categorize the math problem into specific mathematical domains. Please provide a
1166 classification chain, for example: Mathematics -> Applied Mathematics -> Probability
1167 -> Combinations. The following is a basic classification framework in the field of
1168 mathematics.
1169 <math domains>
1170 Mathematics
1171 |
1172 |-- Applied Mathematics
1173 | |-- Math Word Problems
1174 | |-- Statistics
1175 | |-- Mathematical Statistics
1176 | |-- Probability
1177 | |-- Counting Methods
1178 | |-- Permutations
1179 | |-- Combinations
1180
1181 |-- Algebra
1182 | |-- Prealgebra
1183 | |-- Integers
1184 | |-- Fractions
1185 | |-- Decimals
1186 | |-- Simple Equations
1187 | |-- Algebra
1188 | |-- Algebraic Expressions
1189 | |-- Equations and Inequalities
1190 | |-- Factoring
1191 | |-- Polynomial Operations
1192 | |-- Intermediate Algebra
1193 | |-- Quadratic Functions
1194 | |-- Exponential Functions
1195 | |-- Logarithmic Functions
1196 | |-- Complex Numbers
1197 | |-- Linear Algebra
1198 | |-- Vectors
1199 | |-- Matrices
1200 | |-- Determinants
1201 | |-- Linear Transformations
1202 | |-- Abstract Algebra
1203 | |-- Group Theory
1204 | |-- Ring Theory
1205 | |-- Field Theory

```

1188
1189    |-- Geometry
1190    |   |-- Plane Geometry
1191    |   |-- Polygons
1192    |   |-- Angles
1193    |   |-- Area
1194    |   |-- Triangulations
1195    |   |-- Perimeter
1196    |   |-- Solid Geometry
1197    |   |-- 3D Shapes
1198    |   |-- Volume
1199    |   |-- Surface Area
1200    |   |-- Differential Geometry
1201    |   |-- Curvature
1202    |   |-- Manifolds
1203    |   |-- Geodesics
1204    |   |-- Non-Euclidean Geometry
1205    |   |-- Spherical Geometry
1206    |   |-- Hyperbolic Geometry
1207
1208    |-- Number Theory
1209    |   |-- Prime Numbers
1210    |   |-- Factorization
1211    |   |-- Congruences
1212    |   |-- Greatest Common Divisors (GCD)
1213    |   |-- Least Common Multiples (LCM)
1214
1215    |-- Precalculus
1216    |   |-- Functions
1217    |   |-- Limits
1218    |   |-- Trigonometric Functions
1219
1220    |-- Calculus
1221    |   |-- Differential Calculus
1222    |   |-- Derivatives
1223    |   |-- Applications of Derivatives
1224    |   |-- Related Rates
1225    |   |-- Integral Calculus
1226    |   |-- Integrals
1227    |   |-- Applications of Integrals
1228    |   |-- Techniques of Integration
1229    |   |-- Single-variable
1230    |   |-- Multi-variable
1231
1232    |-- Differential Equations
1233    |   |-- Ordinary Differential Equations (ODEs)
1234    |   |-- Partial Differential Equations (PDEs)
1235
1236    |-- Discrete Mathematics
1237    |   |-- Graph Theory
1238    |   |-- Combinatorics
1239    |   |-- Logic
1240    |   |-- Algorithms
1241    </math domains>
1242
1243    # STYLE #
1244    Data report.
1245
1246    # TONE #
1247    Professional, scientific.
1248
1249    # AUDIENCE #
1250    Students. Enable them to better understand the domain and difficulty of the math
1251    problems.
1252
1253    # RESPONSE: MARKDOWN REPORT # ## Summarization [Summarize the math problem in a brief
1254    paragraph.] ## Math domains [Categorize the math problem into specific mathematical
1255    domains, including major domains and subdomains.]'
1256    # ATTENTION # - The math problem can be categorized into multiple domains, but no more
1257    than three. Separate the classification chains with semicolons();.
1258    - Your classification MUST fall under one of the aforementioned subfields; if it
1259    really does not fit, please add "Other" to the corresponding branch. For example:
1260    Mathematics -> Algebra -> Intermediate Algebra -> Other. Only the LAST NODE is allowed
1261    to be "Other"; the preceding nodes must strictly conform to the existing framework.
1262    - The math domain must conform to a format of classification chain, like "Mathematics
1263    -> Applied Mathematics -> Probability -> Combinations".
1264    - Add "==== report over ===" at the end of the report.

```

```

1242
1243 <example math problem>
1244
1245 [Question]: If  $\frac{1}{9} + \frac{1}{18} = \frac{1}{\text{square}}$ , what is the number that replaces the square to make the equation true?
1246 [Solution]: We simplify the left side and express it as a fraction with numerator 1:  $\frac{1}{9} + \frac{1}{18} = \frac{2}{18} + \frac{1}{18} = \frac{3}{18} = \frac{1}{6}$ . Therefore, the number that replaces the square is 6.
1247 [Source]: 2010-Pascal
1248
1249 </example math problem>
1250 ## Summarization The problem requires finding a value that makes the equation  $\frac{1}{9} + \frac{1}{18} = \frac{1}{\text{square}}$ . This involves adding two fractions and determining the equivalent fraction.
1251 ## Math domains Mathematics -> Algebra -> Prealgebra -> Fractions;
1252
1253 === report over ===
1254
1255 <example math problem>
1256 [Question]: Let  $\mathcal{P}$  be a convex polygon with  $n$  sides,  $n \geq 3$ . Any set of  $n - 3$  diagonals of  $\mathcal{P}$  that do not intersect in the interior of the polygon determine a triangulation of  $\mathcal{P}$  into  $n - 2$  triangles. If  $\mathcal{P}$  is regular and there is a triangulation of  $\mathcal{P}$  consisting of only isosceles triangles, find all the possible values of  $n$ .
1257 [Solution]: We label the vertices of  $\mathcal{P}$  as  $P_0, P_1, P_2, \dots, P_n$ . Consider a diagonal  $d = \overline{P_a P_{a+k}}$ ,  $k \leq n/2$  in the triangulation. We show that  $k$  must have the form  $2^m$  for some nonnegative integer  $m$ . This diagonal partitions  $\mathcal{P}$  into two regions  $Q, R$ , and is the side of an isosceles triangle in both regions. Without loss of generality suppose the area of  $Q$  is less than the area of  $R$  (so the center of  $\mathcal{P}$  does not lie in the interior of  $Q$ ); it follows that the lengths of the edges and diagonals in  $Q$  are all smaller than  $d$ . Thus  $d$  must be the base of the isosceles triangle in  $Q$ , from which it follows that the isosceles triangle is  $\triangle P_a P_{a+k/2} P_{a+k}$ , and so  $2|k$ . Repeating this process on the legs of isosceles triangle  $(\overline{P_a P_{a+k/2}}, \overline{P_{a+k} P_{a+k/2}})$ , it follows that  $k = 2^m$  for some positive integer  $m$  (if we allow degeneracy, then we can also let  $m = 0$ ). Now take the isosceles triangle  $P_x P_y P_z$ ,  $0 \leq x < y < z < n$  in the triangulation that contains the center of  $\mathcal{P}$  in its interior; if a diagonal passes through the center, select either of the isosceles triangles with that diagonal as an edge. Without loss of generality, suppose  $P_x P_y = P_y P_z$ . From our previous result, it follows that there are  $2^a$  edges of  $\mathcal{P}$  on the minor arcs of  $P_x P_y, P_y P_z$  and  $2^b$  edges of  $\mathcal{P}$  on the minor arc of  $P_z P_x$ , for positive integers  $a, b$ . Therefore, we can write
1258
1259 
$$n = 2 \cdot 2^a + 2^b = 2^{a+1} + 2^b,$$

1260 so  $n$  must be the sum of two powers of 2. We now claim that this condition is
1261 sufficient. Suppose without loss of generality that  $a + 1 \geq b$ ; then we rewrite this
1262 as
1263 
$$n = 2^b(2^{a-b+1} + 1).$$

1264 Lemma 1: All regular polygons with  $n = 2^k + 1$  or  $n = 4$  have triangulations that meet
1265 the conditions. By induction, it follows that we can cover all the desired  $n$ . For
1266  $n = 3, 4$ , this is trivial. For  $k > 1$ , we construct the diagonals of equal length  $\overline{P_0 P_{2k-1}}$ 
1267 and  $\overline{P_{2k-1+1} P_0}$ . This partitions  $\mathcal{P}$  into 3 regions: an isosceles  $\triangle P_0 P_{2k-1} P_{2k-1+1}$ , and
1268 two other regions. For these two regions, we can recursively construct the isosceles
1269 triangles defined above in the second paragraph. It follows that we have constructed
1270  $2(2^{k-1} - 1) + 1 = 2^k - 1 = n - 2$  isosceles triangles with non-intersecting diagonals, as
1271 desired.
1272 Lemma 2: If a regular polygon with  $n$  sides has a working triangulation, then the
1273 regular polygon with  $2n$  sides also has a triangulation that meets the conditions. We
1274 construct the diagonals  $\overline{P_0 P_2}, \overline{P_2 P_4}, \dots, \overline{P_{2n-2} P_0}$ . This partitions  $\mathcal{P}$  into  $n$  isosceles
1275 triangles of the form  $\triangle P_{2k} P_{2k+1} P_{2k+2}$ , as well as a central regular polygon with  $n$ 
1276 sides. However, we know that there exists a triangulation for the  $n$ -sided polygon that
1277 yields  $n - 2$  isosceles triangles. Thus, we have created  $(n) + (n - 2) = 2n - 2$  isosceles
1278 triangles with non-intersecting diagonals, as desired. In summary, the answer is all  $n$ 
1279 that can be written in the form  $2^{a+1} + 2^b, a, b \geq 0$ . Alternatively, this condition can be
1280 expressed as either  $n = 2^k, k \geq 2$  (this is the case when  $a+1=b$ ) or  $n$  is the sum of two
1281 distinct powers of 2, where  $1 = 2^0$  is considered a power of 2.
1282 [Source]:
1283 USAMO 2008
1284 </example math problem>
1285
1286 ## Summarization
1287 The problem asks for the possible values of  $n$  for a regular  $n$ -sided polygon that can be
1288 completely triangulated into isosceles triangles using non-intersecting diagonals. The
1289 solution involves analyzing the properties of the diagonals forming isosceles triangles
1290 and deducing that  $n$  can be expressed in terms of powers of 2.
1291 ## Math domains
1292 Mathematics -> Geometry -> Plane Geometry -> Polygons;
1293
1294 === report over ===
1295

```

1296 **I PROMPTS FOR THEOREM PROVERS**
12971298
1299 **I.1 PROMPT FOR VANILLA GENERATION**
13001301
1302 **Example H.1: Prompt for Vanilla Generation**
13031304 Complete the following Lean4 code:
1305 ````lean4
1306 import Mathlib
1307 theorem omni.theorem_2669
1308 (x : ℤ) (hx : x = 2018) : x² + 2 * x - x * (x + 1) = 2018 := by1309
1310
1311
1312 **I.2 PROMPT FOR CoT GENERATION**
13131314
1315 **Example H.2: Prompt for CoT Generation**
13161317 Complete the following Lean4 code with explanatory comments preceding each line of code:
1318 ````lean4
1319 import Mathlib
1320 theorem omni.theorem_2669
1321 (x : ℤ) (hx : x = 2018) : x² + 2 * x - x * (x + 1) = 2018 := by1322
1323
1324
1325 **I.3 PROMPT FOR NL-AUGMENTED CoT**
13261327
1328 **Example H.3: Prompt for CoT with Natural Solution Generation**
13291330 Complete the following Lean4 code with explanatory comments preceding each line of code:
1331 ````lean4
1332 import Mathlib
1333 open Finset
1334 theorem omni.theorem_4199 :
1335 $\exists n \in \mathbb{N}, \{s : \text{Finset}\mathbb{N} \mid s.\text{card} = 2017 \wedge \sum_{i \in s} i^2 = n\}.\text{ncard} \geq 2017 := \text{by}$
1336 /-To determine if there exists a number n that can be expressed as the sum of 2017 perfect squares in at least 2017 distinct ways, we
1337 consider the properties and combinations of perfect squares.
1338 ### Step 1: Understanding the Problem
1339 The problem asks us to express a number n as the sum of 2017 perfect squares, $n = a_1^2 + a_2^2 + \dots + a_{2017}^2$, where a_i are
1340 integers. Moreover, this can be done in at least 2017 different ways, meaning there are at least 2017 distinct sets of such integers.
1341 ### Step 2: Exploring Perfect Squares
1342 Perfect squares are non-negative numbers of the form k^2 , where k is an integer. To construct different sums, we need to evaluate
1343 how the combinations of these squares can vary and still yield distinct sums that equate to the same n .
1344 ### Step 3: Existence of Solutions
1345 1. **Many Small Squares**: By choosing different arrangements of small perfect squares (like 0, 1, 4, 9, etc.), we can vary them
1346 freely since they don't drastically alter the cumulative sum quickly. For instance, using 0 is trivial as it adds nothing to sums;
1347 including or excluding it in varying positions introduces variety.
1348 2. **Adjusting a Larger Value**: Consider including a larger square, say $(k + 1)^2$, and adjusting the rest of the terms accordingly.
1349 This diversity of combinations even with fixed values of $a_i = 0$ (i.e., not all contributing to sum) provides additional distinct setups.
1350 ### Step 4: Conclusion
1351 Given the vast number of combinations possible with 2017 variables, it is feasible to achieve at least 2017 distinct sums since:
1352 - Choosing different subsets of minimal contributions (e.g., many zeros and small numbers) can still lead to varying sums.
1353 - Incremental adjustments in a few selections using larger squares or varied middle-range integers allow differential assembly leading
1354 to the target sum.
1355 Thus, there is indeed a number n that can be expressed as the sum of 2017 perfect squares in at least 2017 distinct ways.
1356 Hence, the answer is:
1357 Yes No

1350 **J PROMPT FOR ERROR PATTERN DIAGNOSIS**
13511352 **Example I.1: Prompt for Error Pattern Diagnosis**
13531354 ****Role:**** Lean4 Error Pattern Analyst
13551356 ****Input:**** You will be provided with a list containing 5 Lean4 code snippets. Assume these snippets contain errors or represent
1356 incorrect usage patterns.
13571358 ****Task:**** Analyze all 5 snippets and identify the ****common features or error patterns**** present across them.
13591360 ****Output:**** Generate a list of concise strings describing these common features. Each string should be a short label for the pattern.
13611362 ****Constraints:**** * Focus **only** on identifying common features/errors across the provided 5 snippets. * Do **not** correct
1363 or modify the code. * Keep feature descriptions brief and informative (e.g., "Misuse of automated tactic", "Type mismatch in
1364 arguments", "Incorrect proof structure", "Syntax error in definition").
13651366 ****Example Input Snippets (Conceptual):**** [Lean4 Code Snippet 1 (Incorrect), ..., Lean4 Code Snippet 5 (Incorrect)],
13671368 ****Example Output:**** ["Misuse of automated tactic": detailed reason, and exactly which problems (using problem id) make this
1369 fault.] each feature should be mutually exclusive, and the features should cover all the common features of the code.
13701371 ****Analyze the following 5 Lean4 code snippets:****1372 **K PROMPT FOR ERROR PATTERN CATEGORIZATION**
13731374 **Example J.1: Prompt for Lean4 Proof Error Classification**
13751376 ****Role:**** Lean4 Code Classifier
13771378 ****Task:**** Classify the given Lean4 code snippet into one or more of the following categories based on the identified error patterns:
13791380 1. Improper usage of the automation tactics
1381 2. Incomplete or Placeholder Proof Steps
1382 3. Misuse of rewriting/simplification tactics
1383 4. Inadequate handling of inequalities
1384 5. Redundant hypothesis introductions
13851386 ****Output Format:**** Return a JSON object with the following structure:
1387 {
1388 "categories": ["category1", "category2", ...],
1389 "confidence": [0.8, 0.7, ...], # Confidence scores for each category
1390 "explanation": "Brief explanation of why these categories were chosen"
1391 }
13921393 ****Code to Classify:****1394 **L COMPUTE RESOURCES**
13951396 Our experiments, including Pass@32 on FormalMATH-All and Pass@3200 on FormalMATH-Lite,
1397 require at least 8 NVIDIA H100 GPUs running for 2-3 days to generate outputs, followed by an
1398 additional 2-3 days of proof verification using 128 CPU cores. Since most of our evaluated models
1399 are 7B in size, the overall computational cost, while non-trivial, remains acceptable. However, those
1400 wishing to experiment with larger models or increased sampling budgets should be prepared for
1401 significantly higher compute requirements.
14021403 **M LIMITATIONS**1404 Although our human-in-the-loop pipeline significantly enhances the robustness of FormalMATH,
1405 several limitations remain. First, there is no machine-verifiable meta-review mechanism grounded
1406 in formal reasoning [Pierce et al. \(2025\)](#) to rigorously ensure logical alignment between informal
1407 mathematical statements and their corresponding Lean4 formalizations. While we mitigate this
1408 by involving multiple IMO-level experts for cross-validation, the process ultimately depends on
1409 human intuition and domain knowledge rather than a fully formalized verification system, leaving
1410 the potential for subtle semantic misalignments. Second, the evaluation of FormalMATH, and, more
1411 broadly, any large-scale Lean4 benchmark, requires substantial computational resources, verifying
1412 thousands of formal proofs remains computationally intensive and time-consuming. Finally, due
1413

1404 to resource constraints and concurrent development timelines, we have not yet evaluated recently
 1405 released models such as DeepSeek-Prover-V2 [Ren et al. \(2025\)](#). While we do not expect this to
 1406 affect the primary contributions and novelty of our benchmark, we plan to include updated results
 1407 in future versions once the results are feasible.

N PROMPT FOR NEGATION-BASED DISPROOF

Example 3.2: Negation-Based Disproof Protocol to Filter out Non-provable Statements

Original Lean4 Statement:

```
import Mathlib

def refBase (n : ℕ) : Prop :=
  ∀ k 1, 0 < k -> 0 < k < n → 1 < n →
  (k | n → 1 | n → (2 * k - 1 | n ∨ 2 * 1 - k | n))

theorem olymid_ref_base_1120 : {n | 1 < n ∧ refBase n} = {6, 9, 15} := by
  sorry
```

Negation-based Disproof by Contradiction Construction:

```
theorem olymid_ref_base_1120_negative : {n | 1 < n ∧ refBase n} ≠ {6, 9, 15} := by
  simp (config := { decide := true })[refBase]
  simp only [Set.ext_iff, Set.mem_setOf_eq, Set.mem_insert_iff, Set.mem_singleton_iff]
  intro h
  have h1 := h 7
  simp (config := { decide := true }) at h1
  obtain ⟨k, hk0, 1, h10, hk, h1, hkd, hld, h1, h2⟩ := h1
  interval_cases k <;> interval_cases l <;> simp_all (config := { decide := true })
```

O EXPERIMENTAL SETUPS

O.1 MAIN EXPERIMENT

This section illustrates the experimental settings for Section 5.1.

LLM-based Prover Settings.

We focus on the following two different proof-generation approaches:

- **Best-First Tree-Search (BFS) Methods.** Each node in the search tree represents an intermediate proof state, and a heuristic scoring function assigns a priority to each node. We evaluate three baseline models under this category: BFS-Prover [Xin et al. \(2025\)](#), DeepSeek-Prover-V1.5-RL [Xin et al. \(2024\)](#), and InternLM-V2.5-Prover [Wu et al. \(2024\)](#).
- **Single-Pass Generation Methods.** The models under this category generate a complete proof in one pass, without iterative refinement or explicit intermediate states. In our paper, we consider the following baseline models: STP [Dong & Ma \(2025\)](#), DeepSeek-Prover-V1.5-SFT [Xin et al. \(2024\)](#), DeepSeek-Prover-V1.5-RL [Xin et al. \(2024\)](#), Goedel-Prover [Lin et al. \(2025\)](#), and Kimina-Prover-7B [Wang et al. \(2025\)](#).

Metrics. We evaluate theorem provers using the Pass@ K metric, which measures the fraction of problems for which at least one valid proof is found among the top K generated attempts. (1) For BFS, $K = N \times S \times T$, where N denotes the number of best-first search attempts, S is the number of tactics proposed during each expansion, and T is the total number of expansion iterations. (2) For SPG, K corresponds to the total number of complete proof trajectories sampled from the model.

Prompts. In the experiments, we only consider vanilla generation strategies (see Example I.1), where models directly generate Lean4 proof without explicit requirement of chain-of-thought (CoT) rationales (natural language thoughts interleaved with Lean4) or augmenting with natural language solutions.

(a) Training Domains of Goedel-Prover

(b) Perplexity of DeepSeek-V1.5-SFT

Figure 6: (a) The mathematical domain distribution of Goedel-Prover's training dataset. (b) The perplexity distribution of Deepseek-V1.5-SFT across various proof generation modes.

Verifier. In Lean4, the correctness of proofs is verified by the compiler [Leanprover Community](#) (2023). However, verifying individual proofs is often time-consuming, largely due to the significant overhead associated with importing the Mathlib4 library [Mathlib Community](#) (2020). To mitigate this inefficiency, we use a tree-structured parallelism approach (see Figure 5). In this implementation, a parent thread manages the root node, which handles the computationally intensive import operations of Mathlib4. Concurrently, child threads process subsequent nodes in parallel, each corresponding to an individual proof. By centralizing the costly import operation at the root, redundant overhead is eliminated, and resources are efficiently allocated to parallelize proof verification. This simple trick effectively optimizes test-time efficiency by avoiding repeated computational overhead, ensuring scalable and efficient utilization of computational resources.

Figure 5: Our efficient Lean4 verifier implementation.

0.2 EXPERIMENTAL SETUPS FOR EVALUATING TEST-TIME SCALING OF THEOREM PROVERS ON FORMALMATH-LITE

This section illustrates the experimental settings for Section 5.2.

Inspired by the recent success of test-time compute scaling [Snell et al. \(2024\)](#); [Xiao et al. \(2024\)](#); [Muennighoff et al. \(2025\)](#); [Yu et al. \(2025\)](#), this section examines its impact on the formal mathematical reasoning capabilities of LLM-based theorem provers using our FormalMATH benchmark. To simplify, we only evaluate BFS and repeated sampling here. To enable a systematic evaluation, we introduce FormalMATH-Lite, which is a curated subset of FormalMATH designed for efficient yet rigorous test-time scaling analysis. We compare state-of-the-art provers' performance on FormalMATH-Lite under varying sampling budgets, as shown in Table 6.

FormalMATH-Lite. Evaluating the full FormalMATH benchmark under large sampling budgets (*e.g.*, Pass@3200) requires prohibitively high computational resources. To enable scalable yet rigorous analysis, we propose FormalMATH-Lite, a carefully selected subset of 425 problems (comprising 359 high school-level and 66 undergraduate-level problems) designed with two critical features: (1) We utilize DeepSeek-V1.5-RL for outcome-driven difficulty assessment, evenly sampling solvable and unsolvable problems via constrained sampling budgets (*e.g.*, Pass@32). This balanced approach effectively highlights measurable scaling effects during test-time evaluation. (2) Domain Distribution Alignment: This subset follows a mathematical domain distribution similar to the full FormalMATH benchmark (algebra, calculus, discrete mathematics, etc) using stratified sampling, ensuring sufficient coverage of core disciplines. In Appendix E, we also provide the detailed distribution of FormalMATH-Lite.

Experimental Settings. In this experiment, we maintain identical experimental configurations to those in Section 5.1, with one critical exception: the sampling budget scales. Section 5.1 used constrained sampling budgets (*e.g.*, Pass@32) due to computational resource limitations of the full FormalMATH benchmark. Here, leveraging FormalMATH-Lite, we deploy expanded sampling budgets (*e.g.*, up to Pass@3200 for SPG and Pass@32×32×100 for BFS).

1512 **O.3 EXPERIMENTAL SETUPS FOR EVALUATING HOW CoT ENHANCES MODEL**
 1513 **CAPABILITIES ON FORMAL MATHEMATICAL REASONING**
 1514

1515 In this section, we evaluate three different reasoning strategies in Lean4 proof generations: (1) naive
 1516 CoT prompting (see Example I.2), (2) NL-augmented CoT (see Example I.3): CoT augmented with
 1517 natural language solution example, and (3) vanilla generation strategies (see Example I.1) via test-
 1518 time scaling on FormalMATH-Lite (See Figure 3). Our goal is to *measure whether—and to what*
 1519 *extent—informal mathematical reasoning contributes to the rigor and effectiveness of subsequently*
 1520 *derived formal proofs.*

1521 **Experimental Setups.** We evaluate DeepSeek-Prover-V1.5-SFT and DeepSeek-Prover-V1.5-
 1522 RL (which are the only models explicitly trained with all three prompting strategies) on the
 1523 FormalMATH-Lite benchmark by applying test-time scaling (up to Pass@3200).
 1524

1525 **Example 4.3: naive CoT outperforms NL-augmented CoT and vanilla strategies in formal theorem proving.**

1526 **Naive CoT (Success):**

```
1528 theorem algebra_68653_cot : ¬ ∃ x y : ℤ, x^3 + y^4 = 7 := by
  -- Assume there are integers x and y such that x^3 + y^4 = 7.
  intro h
  -- Extract the integers x and y from the assumption.
  rcases h with ⟨x, y, hxy⟩
  -- Consider the equation modulo 13.
  have hxy_mod : (x^3 + y^4) % 13 = 7 % 13 := by rw [hxy]
  -- Calculate the possible values of x^3 modulo 13.
  have x3_mod : x^3 % 13 = 0 ∨ x^3 % 13 = 1 ∨ x^3 % 13 = 5 ∨ x^3 % 13 = 8 ∨ x^3 % 13 = 12 := by
  have : x % 13 = 0 ∨ x % 13 = 1 ∨ x % 13 = 2 ∨ x % 13 = 3 ∨ x % 13 = 4 ∨ x % 13 = 5 ∨ x % 13 = 6 ∨ x % 13 = 7 ∨ x %
  13 = 8 ∨ x % 13 = 9 ∨ x % 13 = 10 ∨ x % 13 = 11 ∨ x % 13 = 12 := by omega
  rcases this with (h | h | h | h | h | h | h | h | h | h | h | h | h | h | h | h | h | h) <;> simp [h, pow_succ, Int.mul_emod]
  -- Calculate the possible values of y^4 modulo 13.
  have y4_mod : y^4 % 13 = 0 ∨ y^4 % 13 = 1 ∨ y^4 % 13 = 3 ∨ y^4 % 13 = 9 := by
  have : y % 13 = 0 ∨ y % 13 = 1 ∨ y % 13 = 2 ∨ y % 13 = 3 ∨ y % 13 = 4 ∨ y % 13 = 5 ∨ y % 13 = 6 ∨ y % 13 = 7 ∨ y %
  13 = 8 ∨ y % 13 = 9 ∨ y % 13 = 10 ∨ y % 13 = 11 ∨ y % 13 = 12 := by omega
  rcases this with (h | h | h | h | h | h | h | h | h | h | h | h | h | h | h | h | h | h) <;> simp [h, pow_succ, Int.mul_emod]
  -- Check that x^3 + y^4 cannot be congruent to 7 modulo 13.
  rcases x3_mod with (h1 | h1 | h1 | h1 | h1) <;> rcases y4_mod with (h2 | h2 | h2 | h2) <;> simp [h1, h2,
  Int.add_emod] at hxy_mod <;> omega
```

1542 **NL-augmented CoT (Not Success):**

```
1543 theorem algebra_68653_nat : ¬ ∃ x y : ℤ, x^3 + y^4 = 7 := by /-
  We aim to show that there do not exist integers \langle x \rangle and \langle y \rangle such that \langle x^3 + y^4 = 7 \rangle. Suppose, for the sake of
  1544    contradiction, that such integers exist. We would then have \langle x^3 + y^4 = 7 \rangle. We analyze the possible values of \langle x^3
  1545    \mod 7 \rangle and \langle y^4 \mod 7 \rangle to find a contradiction.
  1. **Lemma:** For any integer \langle x \rangle, \langle x^3 \mod 7 \rangle can only be 0, 1, or -1.
  -- Proof: By examining all possible values of \langle x \mod 7 \rangle, we find that \langle x^3 \mod 7 \rangle is either 0, 1, or -1.
  2. **Lemma:** For any integer \langle y \rangle, \langle y^4 \mod 7 \rangle can only be 0, 1, or 2.
  -- Proof: By examining all possible values of \langle y \mod 7 \rangle, we find that \langle y^4 \mod 7 \rangle is either 0, 1, or 2.
  3. **Combining the Lemmas:** If \langle x^3 + y^4 = 7 \rangle, then \langle x^3 \mod 7 \rangle and \langle y^4 \mod 7 \rangle must sum to 7 modulo 7.
  However, the possible values of \langle x^3 \mod 7 \rangle are 0, 1, or -1, and the possible values of \langle y^4 \mod 7 \rangle are 0, 1, or
  2. None of these combinations can sum to 7 modulo 7, leading to a contradiction.
  Thus, we conclude that there do not exist integers \langle x \rangle and \langle y \rangle such that \langle x^3 + y^4 = 7 \rangle.
  /-
  -- Assume for contradiction that there exist integers x and y such that x^3 + y^4 = 7.
  intro h
  obtain ⟨x, y, hxy⟩ := h
  -- Analyze the possible values of x^3 modulo 7.
  have hx : x^3 % 7 = 0 ∨ x^3 % 7 = 1 ∨ x^3 % 7 = 6 := by
  have hx : x % 7 = 0 ∨ x % 7 = 1 ∨ x % 7 = 2 ∨ x % 7 = 3 ∨ x % 7 = 4 ∨ x % 7 = 5 ∨ x % 7 = 6 := by
  omega
  rcases hx with (h | h | h | h | h | h) <;>
  simp [h, pow_three, Int.mul_emod, Int.add_emod]
  -- Analyze the possible values of y^4 modulo 7.
  have hy : y^4 % 7 = 0 ∨ y^4 % 7 = 1 ∨ y^4 % 7 = 2 := by
  have hy : y % 7 = 0 ∨ y % 7 = 1 ∨ y % 7 = 2 ∨ y % 7 = 3 ∨ y % 7 = 4 ∨ y % 7 = 5 ∨ y % 7 = 6 := by
  omega
  rcases hy with (h | h | h | h | h | h) <;>
  simp [h, pow_four, Int.mul_emod, Int.add_emod]
  -- Combine the results to find a contradiction.
  have h7 : (x^3 + y^4) % 7 ≠ 7 := by
  rcases hx with (h | h | h) <;>
  rcases hy with (h' | h' | h') <;>
  simp [h, h', Int.add_emod, Int.mul_emod]
```

1566

1567

1568

1569

1570

1571

1572

1573

1574

1575

1576

1577

O.4 EXPERIMENTAL SETUPS FOR DELVING INTO COMMON ERROR PATTERNS OF EXISTING

PROVERS

1578

1579

1580

1581

1582

1583

1584

1585

1586

1587

1588

1589

1590

1591

1592

1593

1594

1595

1596

1597

-- Conclude the proof by contradiction.

omega

Vanilla (Not Success):

```
theorem algebra_68653_vanilla: ¬ ∃ x y : ℤ, x^3 + y^4 = 7 := by
  intro h; rcases h with ⟨x, y, hxy⟩; have hx : x^3 ≥ 0 := by positivity; have hy : y^4 ≥ 0 := by positivity
  linarith
```

1574

1575

1576

1577

O.4 EXPERIMENTAL SETUPS FOR DELVING INTO COMMON ERROR PATTERNS OF EXISTING

PROVERS

In this section, we systematically analyze common error patterns observed in existing theorem provers (*e.g.*, DeepSeek-V1.5, STP, Goedel, and Kima-Prover). We employ advanced general-purpose LLMs (*e.g.*, o4-mini) to automate both error diagnosis and classification: first extracting salient verbalized features (*i.e.*, Example J), then assigning the found error features via a second prompt-driven call (*i.e.*, Example K). For each prover, we randomly sampled 100 failed proofs from a variety of Lean4 statements and processed them through our two-stage diagnosis and classification pipeline. Human domain experts then manually reviewed and corrected both the extracted features and the preliminary labels. We identified the four most common failure patterns—Incomplete proofs, inability to handle complex inequalities, improper use of automation tactics, and redundant hypothesis introduction—as summarized in Table 8. Note that a single proof attempt may exhibit multiple errors, so the percentages do not sum to 100%.

1589

THE USE OF LARGE LANGUAGE MODELS (LLMs)

1590

1591

1592

1593

1594

1595

1596

1597

In this work, Large Language Models (LLMs) were exclusively utilized for grammar correction and text polishing during the manuscript preparation stage. No aspects of the research methodology, ideation, experiment design, data processing, result analysis, or core algorithm implementations involved LLMs in any capacity. All scientific contributions, originality, and rigor are ensured by the authors. As per ICLR policy, we confirm that LLMs did not play an important, original, or non-standard role in the development of this research.

1598

1599

1600

1601

1602

1603

1604

1605

1606

1607

1608

1609

1610

1611

1612

1613

1614

1615

1616

1617

1618

1619

1620
1621
1622
1623
1624
1625

Lean4 Statement	Prover Output	Explanation
<pre>1626 theorem omni_theorem_4000 (f 1627 : ℝ → ℝ) : 1628 (forall x y, (x + y ^ 2) * f (y * f x) = x 1629 * y * f (y ^ 2 + f x)) ↔ 1630 ∀ x, f x = x ∨ f x = 0 ∨ ∃ a, a ≤ 1631 -1 ∨ a > 0 ∧ f x = if x ≠ 1632 -a ^ 2 then 0 else a := by 1633 simp</pre>	<pre>-- Proof Before -- If f(x) ≠ 0, we need to show that there exists an a such that the conditions hold. right right use 0 -- We choose a = 0 to satisfy the conditions. simp --Proof After</pre>	Improper use of Automation Tactics. The prover selects the witness $a = 0$ without checking the original side-condition and then calls <code>simp</code> to close off the goal. This bypasses the essential case-by-case analysis of the core functional equation, resulting in an invalid proof that never constructs the required nonzero witness when needed.
<pre>1637 theorem DEMIMathAnalysis_50 1638 : tendsto (λ n => sqrt n * ∫ x 1639 in univ, 1 / (1 + x ^ 2) ^ n) 1640 atTop (N (sqrt π)) := by 1641 rw [show sqrt = fun x => sqrt x by 1642 funext; rfl] 1643 apply tendsto.atTop_mono (fun n => 1644 sqrt_le_sqrt < integral_mono_on _ _ < fun x _ => by 1645 gcongr 1646 all_goals norm_num) 1647 refine' tendsto_atTop_of_eventually_c 1648 (by simp) 1649 all_goals filter_upwards with_ 1650 i:6 simp</pre>		Incomplete Proof. The proof invokes <code>tendsto.atTop_mono</code> without establishing any of the analytical prerequisites. The final <code>simp</code> steps trivially handle eventual constancy but leave the main asymptotic argument unresolved.
<pre>1651 theorem aime_all_2005_II_1 1652 (n : ℕ) (hn : n ≥ 6) (h : {s : 1653 Finset (Fin n)} s.card = 6}.ncard = 6 * {s : Finset 1654 (Fin n) s.card = 3}.ncard 1655 : 1656 n = 13 := by</pre>	<pre>norm_num [Nat.choose] at h revert n hn h rintro n hn h ring_nf at h nlinarith</pre>	Redundant Hypothesis Introduction. After <code>norm_num</code> already rewrites the binomial coefficients, the <code>revert</code> ; <code>rintro</code> sequence merely reintroduces n , hn , and h in the same form, adding no new information and cluttering the context.
<pre>1659 theorem algebra_528739 (a b c 1660 : ℝ) (ha : 0 < a) (hb : 0 < b) 1661 (hc : 0 < c) : 1662 1 / (a^3 + b^3 + a * b * c) + 1 / (b^3 1663 + c^3 + a * b * c) + 1664 1 / (c^3 + a^3 + a * b * c) ≤ 1 / (a * 1665 b * c) := by</pre>	<pre>-- We start by simplifying the left-hand side using the fact that each term is non-negative. have h0 : 0 < a * b * c := by positivity ... -- We then apply the inequality to each term. rw [div_le_div_iff] <:> nlinarith, [sq_nonneg (a - b), sq_nonneg (b - c), sq_nonneg (c - a)] ...</pre>	Inadequate Handling of Inequalities. The solver attempts to apply <code>nlinarith</code> after a single <code>div_le_div_iff</code> , but the cyclic, high-degree fractional structure exceeds its linear-and-quadratic reasoning scope.

Table 11: Examples of common Lean4 error patterns in LLM-based provers.

1669
1670
1671
1672
1673