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ABSTRACT

Formal mathematical reasoning remains a significant challenge for artificial in-
telligence, constrained by the limited scope and scale of existing benchmarks.
To address this, we introduce FormalMATH, a comprehensive Lean4 benchmark
consisting of 5,560 formally verified problems, meticulously curated through
human-in-the-loop methods. This benchmark encompasses a broad range, from
high-school Olympiad challenges to undergraduate-level theorems across diverse
domains, including algebra, applied mathematics, calculus, number theory, and
discrete mathematics. Our evaluation of state-of-the-art LLM-based theorem
provers reveals notable limitations: even the leading model, DeepSeek-Prover-V2,
achieves only a 28.31% success rate under practical sampling budgets, displaying
marked domain bias (e.g., excelling in algebra while struggling with calculus)
and an over-reliance on simplified automation tactics. We find that test-time scal-
ing (e.g., Pass@1024) offers only marginal performance gains on FormalMATH,
pointing to a critical lack of exploration during training. Additionally, we observe
a counterintuitive inverse relationship between natural-language solution guidance
and proof success in chain-of-thought reasoning scenarios, indicating that human-
written informal reasoning introduces noise rather than clarity in formal contexts.
Analysis of common error patterns among existing provers highlights issues such
as the misuse of automatic tactics (e.g., aesop), difficulties in managing complex
inequalities, and redundant hypothesis introduction. We assert that FormalMATH
provides a robust platform for benchmarking formal mathematical reasoning ca-
pabilities.

1 INTRODUCTION

Formal mathematical reasoning (FMR) Yang et al. (2024) represents a specialized form of math-
ematical practice grounded in formal systems Leino (2010); Mathlib Community (2020); Barras
et al. (1997), which provides a rigorous axiomatic framework essential for automated proof val-
idation. However, FMR is inherently challenging for humans. For instance, the Liquid Tensor
Experiment Scholze (2022) and the Polynomial Freiman-Ruzsa Conjecture Tao (2023) have taken
years of effort by human experts to formalize and yet remain incomplete. Recent works have lever-
aged self-supervised learning Polu & Sutskever (2020), chain-of-thought (CoT) finetuning Xin
et al. (2024), and scalable tree-search Xin et al. (2025) to explore complex proof strategies, demon-
strating the significant potential of large language models (LLMs) for FMR. While there are several
formal mathematics benchmarks, such as MiniF2F Zheng et al. (2021) and ProofNet Azerbayev et al.
(2023) that are widely used to evaluate the FMR capabilities of LLMs, they still present a few critical
limitations: (1) Scope limitation: Existing benchmarks are narrowly scoped. For instance, MiniF2F
is restricted to high school-level algebra and number theory, while ProofNet focuses narrowly on
undergraduate-level analysis and algebra. Their narrow scopes limit the capacity to evaluate holis-
tic FMR capabilities across diverse mathematical domains. (2) Dataset size: Formal mathematics
benchmarks remain relatively small in scale. MiniF2F contains merely 244 problems in its test set,
and ProofNet includes only 186. This constrains benchmarking robustness and hinders the develop-
ment of generalizable FMR systems. (3) Performance Saturation: State-of-the-art theorem provers,
such as Kimina-Prover Wang et al. (2025), now achieve success rates exceeding 80.7%, signaling
that existing benchmarks may be nearing their practical utility limits.

To address these limitations, we introduce FormalMATH — a large-scale Lean4 Moura & Ull-
rich (2021)-based benchmark containing 5,560 formally verified mathematical statements. Formal-
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Figure 1: (a) Performance comparison of existing theorem provers on the full FormalMATH benchmark. Re-
sults show Pass@1×32×100 accuracy for best-first-search-based (BFS) methods, including BFS-Prover and
InternLM-Prover, and Pass@32 accuracy via single-pass generations (SPG) for the other provers, including
Kinima-Prover, STP, Goedel-Prover, DeepSeek-V1.5-RL, and DeepSeek-V1.5-SFT. (b) Funnel chart illustrat-
ing the percentage of data that is preserved after each filtering stage in our human-in-the-loop pipeline.

MATH includes a broad spectrum of mathematical domains, such as algebra, geometry, calculus,
number theory, discrete mathematics, and more, while simultaneously spanning multiple difficulty
levels, ranging from high school olympiad problems to undergraduate-level theorems (see Figure 2
for an overview).

We evaluate state-of-the-art LLM-based theorem provers on the FormalMATH benchmark, reveal-
ing significant challenges for these systems. For instance, the best-performing model — Kimina-
Prover Wang et al. (2025) achieves only 16.46% on FormalMATH under the pass@32 metric, while
BFS-Prover Xin et al. (2025) attains just 11.13% using a best-first search with a sampling budget
of 1 × 32 × 100. Our analysis of these results yields several intriguing insights. First, existing
provers exhibit a pronounced domain bias, excelling primarily in high-school-level algebra and ap-
plied mathematics while struggling with other mathematical domains. This highlights critical gaps
in their cross-domain generalizability. Second, the provers frequently reduce multi-step reasoning to
single-tactic invocations (e.g., “aesop” Limperg & From (2023) and “linearith”), bypassing
necessary deductive rigor. Third, while CoT reasoning Wei et al. (2022) enhances performance on
FormalMATH statements, adding natural language solutions reduces success rates, suggesting such
guidance introduces ambiguity rather than clarity. Our contributions include:

• A Large and Comprehensive Lean4 Benchmark: We present FormalMATH, a benchmark com-
prising 5,560 formally verified mathematical statements covering diverse subdomains, including
high-school olympiad and college-level problems. The dataset is dual-reviewed by 12 human
experts with multiple large language models in the loop to ensure correctness. FormalMATH is
22.8× larger than the widely used MiniF2F benchmark.

• Comprehensive Evaluation of LLM-based Theorem Provers: Our systematic evaluation high-
lights key limitations in state-of-the-art theorem provers: 1. Even the best-performing model
achieves only a 28.31% success rate on FormalMATH, 2. Existing provers show significant do-
main bias, excelling in areas like algebra but underperforming in others, such as calculus, 3. A
counterintuitive inverse relationship emerges where providing natural language solution guidance
reduces proof success rates in chain-of-thought scenarios.

• Identification of Common Error Patterns in Lean4 Proving 1. Provers often resort to in-
appropriate automatic tactics when facing unsolvable problems. 2. Provers frequently produce
incomplete proofs with meaningless placeholders to simplify tail behavior, rather than rigorously
addressing them. 3. Provers struggle to solve complex inequalities using tools like nlinarith.
4. Provers tend to generate redundant hypotheses. These limitations highlight key areas for en-
hancing LLM-based provers.

2 RELATED WORK

Formal Mathematical Reasoning. (Xin et al., 2024; Lin et al., 2025; Dong & Ma, 2025) utilize
LLMs to generate entire proofs directly. These methods then typically employ techniques like best-
of-N sampling to scale up test-time computation, often achieving results comparable to proof-search
methods. As a SPG method, Kimina-prover Wang et al. (2025) employs long-CoT Guo et al. (2025)
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Figure 2: The distribution of mathematical domains in the full set of FormalMATH.

with a think prompt template during reinforcement learning Team et al. (2025), achieving impressive
performance. Section 4.1 compares various sampling approaches on FormalMATH.

Formal Theorem Proving Benchmarks. Benchmarks for assessing Lean4-based theorem-proving
capabilities can be categorized based on whether they use off-the-shelf formal proofs. Benchmarks
derived from existing libraries, such as LeanDojo Yang et al. (2023), extract proofs and theorems
from the off-the-shelf Lean Mathlib library Mathlib Community (2020). In contrast, benchmarks
without pre-formalized proofs operate under a different paradigm. Instead of providing reference
proofs, these benchmarks present only formalized problem statements, often derived from informal
mathematics. Proving systems are used to generate a proof from scratch, the validity of which is then
verified using the Lean compiler Leanprover Community (2023). As shown in Table 1, representa-
tive benchmarks include: (1) MiniF2F Zheng et al. (2021), which compiles 244 competition-level
problems from AMC, AIME, and IMO in its test dataset, (2) ProofNet Azerbayev et al. (2023),
which comprises 186 problems from undergraduate-level analysis and algebra, (3) FIMO Liu et al.
(2023), which contains 149 IMO shortlist problems, and (4) PutnamBench Tsoukalas et al. (2024),
which is a benchmark of 522 Lean4 problems from the Putnam competition. FormalMATH also
falls into this latter category (requiring new proof completion), comprising 5,560 diverse problems
formalized from high-school competition-level sources (e.g., Omni-Math Gao et al. (2024) and
BlueMO Zhang et al. (2024)) and undergraduate-level problems (e.g., U-Math Chernyshev et al.
(2024), Hardmath Fan et al. (2024), and DEMIMATH Demidovich (1964)).

3 FORMALMATH: A LARGE FORMAL MATHEMATICAL REASONING
BENCHMARK

3.1 OVERALL DATASET STATISTICS

Benchmark # Problems Difficulty
MiniF2F 244 Olympiad
ProofNet 186 Undergraduate (UG)
FIMO 149 Olympiad
PutnamBench 522 Olympiad
ProverBench 325 Olympiad
FormalMATH 5,560 Olympiad & UG

Table 1: Comparison of existing Lean4
benchmarks.

FormalMATH is a rigorously validated Lean4 bench-
mark comprising 5,560 mathematical statements, each
independently verified through a hybrid pipeline of
multi-LLM semantic verification and careful review by
Olympiad-level experts. Figure 5 gives the overall aut-
oformalization pipeline. Figure 1b depicts the sequen-
tial validation process and the preservation rates at each
stage. We list all data sources that contribute to Formal-
MATH in Appendix A. The problems span a broad diffi-
culty spectrum, from high-school competition questions
in disciplines such as algebra, number theory, discrete
mathematics, and geometry, to undergraduate challenges in specialized areas including calculus
(integration and differentiation), linear and abstract algebra, sequences and series. Figure 2 provides
the distribution of topic domains. Appendix B gives examples of the formalized Lean4 statements
in FormalMATH.

4 EXPERIMENTS AND DISCUSSIONS

4.1 EVALUATING FORMAL THEOREM PROVERS ON FORMALMATH

Refer to Appendix N.1 for setup details and Figure 1 for results.
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Method Sampling budget Pass@K (%)

Best-First Tree Search Methods

BFS(DeepSeek-Prover-V1.5-RL) Xin et al. (2024)

1 × 32 × 100 4.91

4 × 32 × 100 10.29

8 × 32 × 100 12.16

16 × 32 × 100 14.96

32 × 32 × 100 17.41

BFS(InternLM-V2.5) Wu et al. (2024)

1 × 32 × 100 7.87

4 × 32 × 100 15.79

8 × 32 × 100 20.02

16 × 32 × 100 22.74

32 × 32 × 100 25.65

BFS(BFS-Prover) Xin et al. (2025)

1 × 32 × 100 27.10

4 × 32 × 100 34.04

8 × 32 × 100 37.56

16 × 32 × 100 41.75

32 × 32 × 100 45.88

Single-Pass Generation Methods

Kimina-Prover-7B Wang et al. (2025) 32 48.94

STP Dong & Ma (2025)

32 48.59

128 50.35

512 51.45

1024 52.03

2048 52.60

3200 53.17

DeepSeek-Prover-V1.5-SFT Xin et al. (2024)

32 40.40

128 42.11

512 44.17

1024 45.08

2048 46.12

3200 46.82

DeepSeek-Prover-V1.5-RL Xin et al. (2024)

32 47.98

128 48.75

512 49.27

1024 49.68

2048 50.08

3200 50.35

Goedel-Prover Lin et al. (2025)

32 46.70

128 48.02

512 48.68

1024 49.04

2048 49.20

3200 49.41

DeepSeek-Prover-V2(7B) Ren et al. (2025)

32 51.76

128 53.41

512 54.11

1024 54.11

2048 54.82

3200 55.06

DeepSeek-Prover-V2(671B) Ren et al. (2025)

32 56.00

128 58.35

512 60.00

1024 61.18

2048 61.88

3200 61.88

Ensemble of All SPG Methods 4 × 3200 54.11

Table 2: Performance comparison of theorem prover LLMs on FormalMATH-Lite.

Finding 1: Existing LLM-based Provers Are Still Far from Solving FormalMATH. Current
LLM-based theorem provers demonstrate unsatisfactory performance on the FormalMATH bench-
mark under modest sampling budgets. Specifically, one of the current strongest SPG methods,
Kimina-Prover, achieves a mere 16.46% under Pass@32, while the best BFS method, BFS-Prover,
attains only 11.13% Pass@1× 32 ×100, demonstrating the underlying difficulties of FormalMATH.
Notably, both methods use Qwen2.5-Math-7B as their base model but the performance differs dra-
matically: the former distills curated long-CoT proof traces from a larger LLM-based oracle, and
the latter relies on expert iteration via BFS to iteratively enhance the LLM’s Lean4 proving abilities.

Methods built upon DeepSeek-Prover-V1.5 exhibit a performance hierarchy that underscores the
fundamental limitations of common post-training strategies nowadays. While the DeepSeek-V1.5-
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SFT baseline achieves 8.97% accuracy, its reinforcement learning (RL) variant improves only
marginally to 10.18%–a mere +1.21% gain that exposes the diminishing returns of rule-based sparse
reward shaping in complex theorem spaces. However, another more sophisticated training paradigm,
STP’s self-play curriculum learning, achieves 13.87% (+4.89% over SFT) while Goedel-Prover’s ex-
pert iteration reaches 13.53% (+4.55% over SFT). Overall, these low success rates on FormalMATH
underscore that current limitations of LLM-based provers: (1) reward sparseness: relying solely
on binary rewards makes generalization to complex problems difficult, and techniques like intrinsic
rewards may better guide exploration and skill acquisition. (2) combinatorial search complexity:
brute-force search and dependency on limited successful reasoning traces to RL and expert iteration
affects sample efficiency and effective exploration.

Finding 2: Provers’ Unbalanced Performance Across Mathematical Domains of Formal-
MATH. Figure 3 reveals significant domain bias in existing theorem provers. Under Pass@32,
Godel-Prover achieves strong performance in algebra-related domains (e.g., 17.47% in high school
algebra and 50% in undergraduate algebra) but performs poorly in calculus (5.21%) and discrete
mathematics (0%). This imbalance persists at the undergraduate level, with success rates in precal-
culus (33.71%) far exceeding those in differentiation (1.92%) and integration (0%). We attribute
this bias to the training data distributions. Using FormalMATH’s domain categorization prompt (see
Appendix G), we analyzed Godel-Prover’s training corpus by sampling 200 problems. As shown in
Figure 8a, the dataset disproportionately emphasizes applied mathematics and algebra (68% com-
bined), while discrete math, number theory, and precalculus collectively constitute less than 5%.
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Figure 3: Breakdown of accuracy by mathematical domain within FormalMATH.

4.2 EVALUATING TEST-TIME SCALING OF FORMAL THEOREM PROVERS ON
FORMALMATH-LITE

Experimental Setups. Detailed experimental settings are provided in Appendix N.2.

Finding 3: Subtle Performance Enhancement via Test-time Scaling. Table 2 reveals lim-
ited returns when applying test-time scaling to formal theorem proving on FormalMATH. For in-
stance, STP achieves only a 4.58% absolute improvement (from 48.59% at Pass@32 to 53.17%
at Pass@3200) despite a 100× sampling budget increase. While BFS-Prover demonstrates bet-
ter scaling dynamics, attaining an 18.78% gain (27.10% via Pass@1×32×100 to 45.88% via
Pass@32×32×100), under a 32× budget expansion, however, it still underperforms SPG methods.

Ensembling SPG methods (i.e., via composing STP, Goedel-Prover, DeepSeek-V1.5-SFT, and
DeepSeek-V1.5-RL) yields only marginal gains, from 53.17% by STP alone to 54.11% – a mere
0.84% uplift. This is in sharp contrast to the near-linear scaling performance increments in informal
reasoning Muennighoff et al. (2025). In informal mathematics, pseudo-continuous reward signals
during sampling create pathways where imperfect reasoning chains, despite their logical flaws, can
occasionally “stumble” into correct answers. This suggests that valid conclusions may emerge even
when the intermediate steps aren’t rigorously sound.

Formal theorem proving lacks such tolerance. A single misplaced tactic or type error invalidates
the entire proof trajectory, rendering incremental sampling ineffective. While verifier-guided proof
search (e.g., BFS with access to intermediate proof states) theoretically mitigates this brittleness

5
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Figure 4: Pass@K accuracy curves for DeepSeek-V1.5 provers across different reasoning configurations.

better than SPG methods, current implementations remain computationally impractical and lack
scaling efficiency.

4.3 COT CAN ENHANCE MODEL CAPABILITIES ON FORMAL MATHEMATICAL REASONING

Finding 4: Naive CoT Outperforms Natural Language Guidance in Formal Theorem Proving.
Across both SFT and RL configurations, we observe a consistent ranking of decoding strategies.
Generally, naive CoT attains the highest Pass@K (from K equals 32 to 3200) accuracy, while NL-
augmented CoT performs an intermediate position better than vanilla decoding. For example, under
K = 3200, DeepSeek-V1.5-SFT achieves 50.6% with CoT and 49.2% with NL-augmented CoT
and 47.0% with vanilla decoding, and DeepSeek-V1.5-RL achieves 51.7%, 51.2%, and 49.8%, re-
spectively. On the other hand, it appears to be counterintuitive that NL-augmented CoT does not
yield superior results compared to simple CoT. Figure 8b reveals a counterintuitive trend in per-
plexity distributions across prompting strategies: NL-augmented CoT consistently increases model
uncertainty compared to naive CoT (i.e., mean perplexity from 1.93 to 5.07) across Lean4 problems.

In Appendix N.3, the failed NL-augmented CoT proof reveals a fundamental error pattern: although
the NL outline and the Lean4 script target the same semantic goal, the high-level sketch omits essen-
tial parameters and case distinctions that Lean’s tactics require. We hypothesize that this discrepancy
stems from an intrinsic misalignment between the action space of informal, NL reasoning and the
tactic space of Lean4 formalization.

In this particular instance, the NL-augmented CoT followed the NL solution by working on modulo
7, and asserting informally that x3 mod 7 ∈ {0, 1, 6} and y4 mod 7 ∈ {0, 1, 2} but does not
materializes those assertions into the fifteen concrete have ... = const hypotheses branch that
Lean4’s decision procedures demand. As a result, when the script invokes tactics (i.e., omega)
reports that the context simply lacks the linear congruences needed to derive a contradiction.

In contrast, naive CoT autonomously selects the larger prime modulus 13 without human-written
prior, interleaves each residue-case split with explicit tactic calls producing hypotheses like have h
: x3 % 13 = 5 := by simp [hxy mod], and then immediately discharges each branch
with omega. By reconstructing its own detailed, tactic-level proof, CoT aligns semantic insight
with low-level proof obligations, guaranteeing that every subgoal carries the precise numeric con-
straints required for full automation–whereas the NL-augmented approach, despite being seman-
tically correct at a high level, leaves critical tactical steps unstated and thus fails to complete the
proof.

5 DELVING INTO COMMON ERROR PATTERNS OF EXISTING PROVERS

5.1 ERROR PATTERNS ANALYSIS AND CASE STUDY

See Section N.4 for experimental settings, Table 3 for results, and Table 8 for case analysis.
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Error DeepSeek-SFT DeepSeek-RL Goedel STP Kimina

Redundant Hypothesis 18.0% 34.0% 27.0% 24.0% 36.0%
Incomplete Proof 77.0% 62.0% 86.0% 44.0% 93.0%
Inabilities for Inequality 8.0% 13.0% 20.0% 1.0% 20.0%
Misuse of Auto tactics 62.0% 65.0% 78.0% 74.0% 43.0%

Table 3: Percentage of different Lean4 error patterns in LLM-based provers.

Improper Use of Automation Tactics. Existing LLM-based Lean4 provers frequently generate
proofs that rely heavily on automation tactics – such as aesop Limperg & From (2023), simp, and
linarith, to streamline the low-level, step-by-step reasoning required by tactic-based proofs. For
example, aesop performs a best-first proof search over a database of tagged lemmas and applies
rewriting, splitting, and instance search to discharge goals. But these tactics depend on fixed heuris-
tics and pre-tagged lemmas that may not match the structure of every proof: when over-invoked or
misconfigured, they can dramatically expand the search space, lead to nontermination or timeouts,
or even transform goals into irrelevant or unsolvable forms. In particular, automated tactics often
struggle to supply the explicit constructions or witnesses required by truly constructive proofs Smith
(1995), which may discharge the main proposition without building the underlying data, resulting
in incomplete or invalid reasoning. Taking the failed proof of omni theorem 4000 (Table 8)
as an example, it fails to construct a witness a within the correct domain that satisfies both (1)

a ≤ 1 ∨ a > 0 and (2) f(x) =

{
0, if x ̸= −a2

a, if x = −a2
. Instead of performing case-by-case analy-

sis, the proof, however, introduces the incorrect witness a = 0, and relies on simp to close off
the remaining goals that are not designed to solve, without specifically analyzing the core function
(x+ y2) · f(y · f(x)) = x · y · f(y2 + f(x)).

Inabilities to Handle Complex Inequalities. Current provers over-rely on linarith and
nlinarith to find contradictions between hypotheses that are linear and some non-linear
(in)equalities. Common procedures using them require the provers to (1) mix high-degree polynomi-
als and rational functions, (2) exploit cyclic or symmetric structure, and (3) use domain-specific lem-
mas (e.g., rearrangements, Chebyshev, AM-GM variants). For the failed proof algebra 528739
(Table 8), nlinarith must first clear denominators in the sum of fractions by introducing the
common denominator: D =

(
a3 + b3 + abc

) (
b3 + c3 + abc

) (
c3 + a3 + abc

)
. However, expand-

ing D yields a degree-9 polynomial in three variables with ∼ 55 (via
(
9+3−1
3−1

)
≈ 55) monomials,

rendering sum-of-squares or Fourier-Motzkin methods infeasible. Even if somehow the denomina-
tor are manually cleared, nlinarith can only handle (1) linear combinations of monomials (via
linarith), (2) quadratic forms (by introducing auxiliary square variables and then linearizing),
and (3) simple monotonicity lemmas (e.g., if 0 < x ≤ y =⇒ 1

x ≥ 1
y ), but only after the provers

normalize the goal via ring or field first. In contrast, a standard deductive reasoning for this
problem would be: (1) Prove a3 + b3 + abc ≥ abc by AM-GM inequality or rearrangement, (2)
Conclude 1

a3+b3+abc ≤ 1
abc and similarly for the other two cyclic terms, (3) Sum up the three in-

equalities to get the result. While provers attempt to invoke nlinarith directly, the proof fails
without intermediate deductive steps.

Redundant Hypothesis Introduction. A common error in current LLM-based theorem provers
arises from introducing structurally redundant hypotheses. While these do not inherently cause
logical errors, they obscure the proof’s underlying logic and reduce readability. For example, in the
aime all 2005 II 1 proof (Table 8), the unnecessary use of revert followed by reintro
exemplifies this issue. These tactics are designed to generalize variables or hypotheses—a technique
critical for inductive proofs or hypothesis strengthening. However, in this case: (1) no inductive
reasoning requires generalization, (2) the variables n, hn, and h already exist in the context and can
be directly used. Thus, the tactic revert is redundant and can be removed to simplify the proof.

Incomplete Proof. Another common failure mode for for LLM-based provers is generating unfin-
ished proof attempts that leave critical subgoals unresolved or rely on placeholder tactics without
justifying intermediate steps. For example, in the proof sketch for DEMIMathAnalysis 50 (Ta-
ble 8), which aims to show limn→∞

√
n ·

∫∞
−∞

1
(1+x2)n dx =

√
π, the prover terminates prematurely

7
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after a few tactic calls that: (1) fail to justify interchanging the limit and integral and (2) fail to
establish bounds on the integrand’s tail decay. The flawed proof begins with an unnecessary rewrite
of sqrt and misapplies monotonicity lemmas like integral mono on without verifying dom-
ination or integrability conditions required for the Dominated Convergence Theorem Wikipedia
contributors (2024). Worse, tactics such as tendsto atTop of eventually const and
filter upwards trivialize tail behavior instead of rigorously addressing convergence. We hy-
pothesize this error stems from short-sighted heuristic selection during language modeling of theo-
rem provers: prioritizing tactics that maximize immediate log-probability or heuristic scores (e.g.,
gcongr, norm num, simp) over those advancing global proof progress. Such choices syntacti-
cally reshape goals while burying core challenges under shallow subgoals.

6 THE PROPOSED HUMAN-IN-THE-LOOP PIPELINE FOR DATA COLLECTION
AND FILTERING

Supervised Fine-tuning. During the development of FormalMATH, we find that mature, open-
source autoformalization tools are scarce. To fill this gap, we build our own pipeline on top of
two types of LLMs: coding-specialized LLMs (e.g., Qwen2.5-7B-Coder Bai et al. (2023)) and pre-
trained theorem-proving LLMs (e.g., Deepseek-prover-base Xin et al. (2024)). We then generate
training data by having a general-purpose LLM (e.g., GPT-4 OpenAI (2023)) iteratively translate
natural-language statements into Lean4 statements. Each candidate statement is then passed to the
Lean4 compiler, and only those that are type-checked will be kept. This straightforward “compile-
and-filter” strategy yields a high-quality corpus of 9,260 paired training examples, which is eventu-
ally used to finetune our own autoformalization models.

Autoformalization. For each of the K autoformalizers (implemented by LLMs), we employ a best-
of-N sampling strategy Wang et al. (2022) to generate N formal candidate statements T(k)

n , where
k ∈ {1, . . . ,K} denotes the autoformalizer index, and n ∈ {1, . . . , N} represents the candidate
statement index of the k-th autoformalizer. All candidate statements T

(k)
n are first validated for

syntactic correctness using the Lean4 compiler. Only syntactically valid statements are preserved
for subsequent semantic verification.

Semantic Verification via LLMs. We implement a semantic verification strategy based on multi-
ple powerful general-purpose LLMs (e.g., o1-mini Jaech et al. (2024), claude-3.5-Sonnet) to eval-
uate semantic alignment between natural language mathematics problems and their Lean4 for-
malizations. Each model employs chain-of-thought reasoning (See the prompt in Appendix F)
to complete the following procedures: (1) back-translate Lean4 statements into natural language,
(2) compare reconstructed descriptions with original problems, and (3) provide binary judgments
(i.e., aligned/misaligned). Importantly, only Lean4 statements that passed semantic verification per-
formed by all the LLMs would be collected. This strategy is guided by the insight that translating
Lean4 statements to natural language is a much easier task than the reverse process, and general-
purpose LLMs excel at understanding natural language phrasings Wu et al. (2022). Overall, this pro-
cedure filters out 60.7% of syntactically correct but semantically misaligned statements (i.e., from
92.4% to 32.7%). Interestingly, we find distinct consensus patterns across problem difficulty levels
– around 30% unanimous agreement rate for high school competition problems and significantly
lower consensus for undergraduate-level formalizations (e.g., 4.63% on HardMath).

Disproving a Statement by Proving Its Negation. Inspired by the Law of the Excluded Middle
(LEM contributors (2025)), we further filter out certain non-provable formalizations using off-the-
shelf LLM-based provers (e.g., DeepSeek-Prover-V1.5). For any formalized statement T(k)

n , we
perform the following steps: (1) construct logical negation: construct its logical negation by ap-
plying transformation rules such as De Morgan dualization to generate ¬T(k)

n , and (2) automated
proof attempts: perform automated proof attempts on ¬T(k)

n within the formal system S (i.e., Lean4
compiler). A successful proof of ¬T(k)

n implies that the original statement T(k)
n cannot hold on S.

Appendix M illustrates the Lean 4 formalization of a number-theoretic conjecture and its negation.
By constructing the negation of a statement and applying an LLM-based prover for disproof, the
system identifies inconsistencies through boundary case testing (e.g., n = 7) and derives contradic-
tions via systematic case analysis (i.e., interval cases). This strategy has filtered out a few
unprovable statements, accounting for 1.6% of the total statements.

8
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 for
all  and 

Lean4
Generation

theorem
DEMIMathAnalysis_79 {f : ℝ → ℝ} {a b : ℝ}
  (hconv : convex_on f (Ioo a b))
  (hbound : ∃ M, ∀ x ∈ Ioo a b, f x ≤ M) :
  continuous_on f (Ioo a b) := by sorry

Lean4 Statement 

Lean4 Statement 

theorem 
DEMIMathAnalysis_79 {f : ℝ → ℝ}
  (hf : ConvexOn ℝ (Set.Ioo a b) f)
  (hfb : ∃ B, ∀ x ∈ Set.Ioo a b, f x ≤ B) :
  ContinuousOn f (Set.Ioo a b) := sorry

. . .

Autoformalizers

Autoformalization Query

Translate the Natural Language Statement
to Lean4:
Suppose that  is convex and bounded
above on an open interval . Show
then that  is continuous on .

Semantic Checking

General-purpose LLMs

Syntax Checking

Lean4 Compiler

if passed

Negation
Filtering

invalid

Provers

disprove

Automatic FilteringRepeated sampling from multiple autoformalizer LLMs

Human
Verification

invalid

validate

if valid
IMO medalists

Manual Filtering

Figure 5: A human-in-the-loop pipeline for formal mathematical statement creation and filtering.

Item Value
# Annotators 12
Preservation rate 72.09%
Cost/statement $6.89
Total duration 22 days

Table 4: Annotation statistics.

Expert Verification. We recruited 12 International Mathematical
Olympiad medalist-level human experts to manually verify the se-
mantic alignment between natural language statements and their
Lean4 formalizations. To ensure reliable human validation, we de-
veloped a checklist targeting common error patterns in Lean4 state-
ments and employed the previously introduced multi-LLM-as-judge
method to assist human validators. We used cross-validation among humans to further ensure con-
sistency.

Table 4 presents key metrics from the human validation stage. Our results demonstrate that the
multi-LLM autoformalization and validation pipeline is highly effective, retaining 72.1% of state-
ments from the final stage of LLM-based semantic verification (reducing the error rate from 30.1%
to 21.7%) while significantly reducing manual verification efforts. Ultimately, we successfully for-
malized 21.7% of syntactically and semantically correct mathematical statements from a diverse
collection of mathematical problems sourced from multiple data sources. See Appendix A and C
for further details.

Error Category Description

Errors in Definition
Failure to semantically map mathematical entities one-to-one with the refined statement,
e.g., missing domain-specific constraints (geometry: points, lines, angles), mismatched
variable types, or definitions lacking mathematical significance.

Errors in Expressions
Incorrect arithmetic/logical operations, improper variable use, or misapplication of
mathematical/logical rules, e.g., misplaced quantifiers altering the logical structure of the
statement.

Errors in Constraint Condition Constraints that mismatch the problem’s requirements, are omitted, or include redundant
conditions not specified in the original problem.

Errors in Proof Goals
Proof goals misaligned with the original problem, overly simplified, too general, or
incomplete, e.g., omitting parts of the problem like characterizing solutions achieving a
maximum value.

Table 5: Error Pattern Checklist for Autoformalization

7 CONCLUDING REMARKS

FormalMATH is a new, extensive benchmark for evaluating LLMs’ formal mathematical reasoning.
It includes 5,560 formally verified Lean4 statements, covering topics from high-school Olympiads
to undergraduate studies. We developed a human-in-the-loop autoformalization pipeline to cre-
ate FormalMATH. This process uses specialized LLMs for initial Lean4 formalization, multi-LLM
semantic verification to maintain fidelity to the original problems, and a negation-based disproof
strategy to filter invalid statements. This significantly reduces manual review effort while achieving
a 72.09% pre-verification preservation rate. Our evaluation of existing LLM-based theorem provers
on FormalMATH shows considerable limitations. The best models achieve modest success, with
the top performer reaching only 16.46% accuracy. The analysis also reveals strong domain biases:
models perform better in areas like algebra but struggle in others, such as calculus. Furthermore, our
findings suggest an over-reliance on simplified automation tactics and, surprisingly, a negative effect
of natural-language solution guidance on proof success in CoT scenarios. These results underscore
the difficulty of the FormalMATH benchmark and present key open problems for improving the
robustness, generalizability, and reasoning complexity of automatic theorem provers.
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ICLR PAPER CHECKLIST

1. Ethics Statement
Answer: This research fully adheres to the ICLR Code of Ethics. The study does not
involve human subjects or the use of personal or sensitive data. All datasets and code uti-
lized and released conform to their respective licenses and terms of use. If any annotation
tasks were involved, annotators merely labeled mathematical problems, and no risk or per-
sonal information was associated with their participation. The contributions in this work
are foundational and do not raise issues related to fairness, privacy, security, or potential
misuse. We confirm that all ethical considerations have been thoroughly addressed.

2. Reproducibility Statement
Answer: We are committed to making our work easily reproducible. All essential details
required to replicate our main experimental results—including data access, experimental
setup, model configurations, and evaluation metrics—are provided either on the designated
project page. Released code and datasets come with clear instructions to reproduce both
our proposed method and baseline experiments. We specify all training and test parameters
as well as compute resource requirements. Users can follow our documentation and scripts
to faithfully reproduce the results, ensuring transparency and scientific rigor.
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A DATA SOURCES

Table 6 presents the sources of the natural language datasets used in the FormalMATH project.

Dataset Level #Domains Size #S.Formal
Omni-math Gao et al. (2024) High School Olympiad 9 4.43k 1,210
Numina-Olympiad High School Olympiad 10 11.8k 2,409
AIME-Math High School Olympiad 7 934 371
BlueMO (Zhang et al., 2024) High School Olympiad 8 3,024 1,099
U-Math Chernyshev et al. (2024) Undergraduate 6 1,100 358
Hardmath Fan et al. (2024) Undergraduate 3 1,466 67
DEMIMATH Hata (2016) Undergraduate 8 2,830 46

Table 6: The sources of the datasets in FormalMATH. “#Domains” denotes the number of domains in the
dataset. “#S.Formal” denotes the number of samples in FormalMATH that are formalized from the dataset.

B EXAMPLES OF STATEMENTS IN FORMALMATH

Example B.1: The 27th derivative for y = 2 · x2 · sin(x)

u-math 915

Find the derivative of the 27th order y(27) for a function y = 2 · x2 · sin(x). Prove that the answer
is: y(27) = 1404 · cos(x) − 2 · x2 · cos(x) − 108 · x · sin(x)

Autoformalization:

import Mathlib

open Real Set
open scoped BigOperators

theorem u_math_915 {f : R → R} (hf : f = λ x => 2 * x ˆ 2 * sin x) :
iteratedDeriv 27 f = λ x => 1404 * cos x − 2 * x ˆ 2 * cos x − 108 * x * sin x := by

Example B.2: The analytical formula for I(x) — A Nontrivial Polynomial-Exponential Integral

hardmath 569

Consider the integral

I(x) =
∫ 0.6
−0.3

(
1.2t5 + 2.4t4 + 1.7t3 − 0.6 atan(t) + 1.3

)
e
x
(
1.2t5−0.8t4−2.7t3−2.6t2

)
dt

Develop an analytical formula for I(x) that is accurate as x → ∞.
Prove that the answer is:

I(x) ≈
√

65
√

π
√

1
x

10 .

Autoformalization:

import Mathlib

open Real

theorem hardmath_569 (f : R → R) (hf : f = fun x =>
∫
t in (−0.3)..0.6, (1.2 * tˆ5 + 2.4 * tˆ4 + 1.7 * tˆ3 − 0.6 *

arctan t + 1.3) * exp (x * (1.2 * tˆ5 − 0.8 * tˆ4 − 2.7 * tˆ3 − 2.6 * tˆ2))) :

∀ ε > 0, ∃ x, ∀ y, y> x→ |f y − (Real.sqrt 65 * Real.sqrt π * Real.sqrt (1 / y)) / 10|< ε := by
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Example B.3: Find all positive integer solutions to a nonlinear divisibility equation

omni theorem 4136

Determine all pairs (x, y) of positive integers such that x2y + x + y is divisible by xy2 + y + 7.

Prove that the answer is: (x, y) = (11, 1), (49, 1), (7t2, 7t), t is an interge

Autoformalization:

import Mathlib

open Real

open scoped BigOperators

theorem omni_theorem_4136 : ∀ x y : N, x> 0 ∧ y> 0 → ((x ˆ 2 * y + x + y) % (x * y ˆ 2 + y + 7) = 0 ↔

(x = 11 ∧ y = 1) ∨ (x = 49 ∧ y = 1) ∨ ∃ t : Z, x = 7 * t ˆ 2 ∧ y = 7 * t) := by

C THE ERROR TYPES OF OUR AUTOFORMALIZATION PIPELINE

Error Category Percentage (%)
Condition Error 83.3
Expression Error (Lean Syntax) 9.6
Definition Error (No Mathematical Meaning) 3.3
Domain Error 1.7
Propositional Logic Error 0.9
Lack of Geometric Background 0.6
Condition Redundancy 0.5
Algebraic Expression Error 0.2

Table 7: Error Classification Statistics (%)

D DOMAIN DISTRIBUTION OF FORMALMATH-LITE

High SchoolUndergraduate

12.8%

59.3%

7.0%

12.5%

8.4%

Applied Mathematics

Algebra

Discrete Mathematics

Other

Number Theory

33.3%

9.1%

6.1%

4.5%
4.5%

Precalculus

Integral

Algebra

Sequences Series

Multivariable Calculus

Differentiation

Other

18.2%

24.2%

Figure 6: The distribution of mathematical domains in our FormalMATH-Lite dataset.
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E TYPICAL ERRORS IN STATEMENT AUTOFORMALIZATION

E.1 ERRORS IN DEFINITION

Definition Errors mainly occur in the failure of semantically corresponding the mathematical entities
in autoformalized statements one-to-one with those in the refined statement. For instance, in a
geometry problem, if the defined entities do not pertain to geometric concepts such as points, lines,
and angles, it indicates a lack of domain relevance.

Mismatched Variable type is also a common issue. This type of error can lead to failure when
applying tactics that are specific to a particular variable type.

Furthermore, the defined variables may lack actual mathematical significance so that the statement
cannot pass the compiler.

Example E.1: Errors in Definition: Lack of Specific Mathematical Background (Geometry)

omni theorem 2599

PointsA,B,C,D lie on a circle in that order such that AB
BC = DA

CD . IfAC = 3 andBD = BC = 4,
findAD.

Prove that the answer is: 3
2

Autoformalization:

import Mathlib

open EuclideanGeometry Real
open scoped BigOperators

theorem omni_theorem_2599
{A B C D : EuclideanSpace R (Fin 2)}
(h0 : ∃ O, dist A O = dist B O ∧ dist B O = dist C O ∧ dist C O = dist D O)
(h1 : dist A B / dist B C = dist D A / dist C D)
(h2 : dist A C = 3)
(h3 : dist B D = 4)
(h4 : dist B C = 4) :
dist A D = 3 / 2 := by sorry

The model’s formalization is deficient because it only specifies the lengths of line segments AB,
BC, CD, and DA, without explicitly stating that points A, B, C, and D are in that order along circle
O. This omission is critical as only segment lengths is insufficient to uniquely define a quadrilateral
inscribed in a circle. Different orderings of these points on the circle, even with the same segment
lengths.

Example E.2: Errors in Definition: Mismatched variable Type

omni theorem 66

Determine whether or not there exist two distinct setsA andB, each consisting of at most 20112

positive integers, such that for every x with 0 < x < 1, the following inequality holds:∣∣∣∑a∈A xa −
∑

b∈B xb
∣∣∣ < (1 − x)2011.

Prove that the answer is Yes.

Autoformalization:

import Mathlib

theorem omni_theorem_66 :
∃ A B : Finset N,
A ̸= B ∧
A.card≤ 2011ˆ2 ∧
B.card≤ 2011ˆ2 ∧
(∀ x ∈ Set.Ioo 0 1, |Σ a ∈ A, (x : R)ˆa − Σ b ∈ B, (x : R)ˆb| < (1 − x)ˆ2011) := by sorry
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While positive integer mappings and positive integers m and n were required, the autoformalization
mistakenly used natural numbers instead.

Example E.3: Errors in Definition: Meaningless Definition in Mathematical Context

omni theorem 1024

For a positive integer n, denote by τ(n) the number of positive integer divisors of n, and denote
by ϕ(n) the number of positive integers that are less than or equal to n and relatively
prime to n. Call a positive integer n good if φ(n) + 4τ(n) = n. For example, the number 44 is
good because φ(44) + 4τ(44) = 44. Find the sum of all good positive integers n.

Prove that the answer is: 172

Autoformalization:

import Mathlib

open Finset

def isGood (n : N) := n.totient + 4 * n.divisors.card = n

theorem omni_theorem_1024 :
Σ n ∈ {n | 0 < n ∧ isGood n}, n = 172 := by sorry

Euler’s totient function, denoted as ϕ(n) or in Lean4 as n_totient, counts the number of positive
integers less than or equal to n that are relatively prime to n. For n = 0, the function n.totient
is not defined, which results in isGood n being undefined.

E.2 ERRORS IN EXPRESSIONS

This type of errors include incorrect arithmetic or logical operations, improper use of variables, or
incorrect application of mathematical or logical rules.

Example E.4: Errors in Proposition Construction (Wrong Position of Existential Qualifier)

omni theorem 4

Let p be a prime number. Prove the following theorem of Euler: the equation p = x2 + 3y2 has a
solution with x, y ∈ Z if and only if p = 3 or p ≡ 1 (mod 3). (You may use the fact that the
ring of integers of Q(

√
−3) is a principal ideal domain.)

Prove that the answer is: The equation p = x2 + 3y2 has a solution with x, y ∈ Z if and only if p =
3 or p \equiv 1 \pmod{3}

Autoformalization:

import Mathlib

open Real
open scoped BigOperators

theorem omni_theorem_401 {p : N} (hp : Nat.Prime p) :
∃ x y : Z, p = xˆ2 + 3*yˆ2 ↔ p = 3 ∨ p % 3 = 1 := by sorry

In the Lean4 code, the existential quantifier is misplaced. ∃x, y ∈ Z should quantify the entire left-
hand side of the biconditional. Instead of asserting that the existence of a solution (x, y) is equivalent
to the condition p = 3 ∨ p ≡ 1 (mod 3), the incorrect code unintentionally suggests the existence
of x and y is linked to the entire biconditional statement being true. the existential quantifier should
be correctly scoped only to the left-hand side of the biconditional, as in the corrected form:

(∃x, y ∈ Z, p = x2 + 3y2) ↔ (p = 3 ∨ p ≡ 1 (mod 3)),

which ensures that the quantifier only applies to the equation p = x2 + 3y2.
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Example E.5: Errors in Expression: Misleading Scope of the Universal Quantifier

omni theorem 219

Find, with proof, all nonconstant polynomials P (x) with real coefficients such that, for all
nonzero real numbers z with P (z) ̸= 0 and P

(
1
z

)
̸= 0, we have

\frac{1}{P(z)}+\frac{1}{P\left(\frac{1}{z}\right)}=z+\frac{1}{z}

Prove that the answer is:

P(x) = \frac{x(xˆ{4k+2}+1)}{xˆ{2}+1} \quad \text{or} \quad P(x) = \frac{x(1−xˆ{4k})}{xˆ{2}+1}

Autoformalization:

import Mathlib

open Fintype Set Real Ideal Polynomial
open scoped BigOperators

theorem omni_theorem_219 {P : Polynomial R} (hP : P.degree> 0) :
∀ z : R, z ̸= 0 → P.eval z ̸= 0 → P.eval (1/z) ̸= 0 →
1/(P.eval z) + 1/(P.eval (1/z)) = z + 1/z↔

∃ k : N, P = X * (Xˆ(4*k + 2) + 1)/(Xˆ2 + 1) ∨
P = X * (1 − Xˆ(4*k))/(Xˆ2 + 1) := by sorry

The problem is one of logical scope and intended semantic meaning. While Lean4’s type system
is powerful and can often handle somewhat flexible syntax, the initial phrasing can lead to a misin-
terpretation of the theorem’s claim. While Lean4 might parse this code without immediate syntax
errors due to the right-associativity of implication, this placement leads to a misinterpretation of the
theorem’s intended logical structure and meaning. The original code is effectively parsed as if it
were written:

Example E.6: Logical Parse in Original Autoformalized Statement

omni theorem 219-autoformalization

∀ z : R, (z ̸= 0 → (P.eval z ̸= 0 → (P.eval (1/z) ̸= 0 →
(1/(P.eval z) + 1/(P.eval (1/z)) = z + 1/z↔

∃ k : N, P = X * (Xˆ(4*k + 2) + 1)/(Xˆ2 + 1) ∨
P = X * (1 − Xˆ(4*k))/(Xˆ2 + 1) ))))

The theorem should state: A nonconstant polynomial P (x) satisfies the property that for all relevant
nonzero z, the equation holds if and only if P (x) takes one of the specified forms. To accurately
reflect the intended meaning and correct the quantifier placement, we must use parentheses to ex-
plicitly define the scope of the universal quantifier.

Example E.7: Enhanced Autoformalized Statement

omni theorem 219-autoformalization

theorem omni\_theorem\_219 \{P : Polynomial R\} (hP : P.degree> 0) : \\
(∀ z : R, z ̸= 0 → P.eval z ̸= 0 → P.eval (1/z) ̸= 0 →
1/(P.eval z) + 1/(P.eval (1/z)) = z + 1/z) ↔

∃ k : N, P = X * (Xˆ(4*k + 2) + 1)/(Xˆ2 + 1) ∨
P = X * (1 − Xˆ(4*k))/(Xˆ2 + 1) := by sorry

E.3 ERRORS IN CONSTRAINT CONDITION

The content of the constraints may not match the requirements stated in the problem or be left out.
We also notice that constraints that are not mentioned in the original problem statement may be
added during formalization.
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Example E.8: Errors in Constraint Condition: Mismatch with known conditions

omni theorem 748:

Let f(x) = x2 + ax + b and g(x) = x2 + cx + d be two distinct real polynomials such that the x
−coordinate of the vertex of f is a root of g, the x−coordinate of the vertex of g is a root of
f and both f and g have the same minimum value. If the graphs of the two polynomials
intersect at the point (2012, − 2012), what is the value of a + c ?

Prove that the answer is: −8048

Autoformalization:

import Mathlib

theorem omni_theorem_748 {a b c d : R} (f g : R → R)
(hf : f = fun x => xˆ2 + a * x + b) (hg : g = fun x => xˆ2 + c * x + d)
(hfg : f ̸= g) (hvertex : ∃ x, x = −a / 2 ∧ g x = 0) (hvertex’ : ∃ x, x = −c / 2 ∧ f x = 0)
(hmin : ∃ y, ∀ x, f x≥ y ∧ g x≥ y) (hintersect : f 2012 = −2012 ∧ g 2012 = −2012) :
a + c = −8048 := by sorry

In Autoformalization, hmin: ∃y,∀x, f(x) ≥ y ∧ g(x) ≥ y means that f and g have a common
lower bound, rather than: f and g have the same minimum value.

Example E.8: Errors in Constraint Condition: Lack of a key condition

omni theorem 10:

Given 30 students such that each student has at most 5 friends and for every 5 students there is a
pair of students that are not friends, determine the maximum k such that for all such
possible configurations, there exists k students who are all not friends.

Prove that the answer is: 6

Autoformalization:

import Mathlib

open Finset

theorem omni_theorem_10 (n : N) (hn : n = 30) (f : Fin n→ Fin n→ Prop)
(hf : ∀ i j, f i j↔ f j i) (hfn : ∀ s : Finset (Fin n), s.card = 5 →
∃ i ∈ s, ∃ j ∈ s, i ̸= j ∧ ¬f i j) :
IsGreatest {k | ∃ t : Finset (Fin n), t.card = k ∧ ∀ i ∈ t, ∀ j ∈ t, i ̸= j→¬f i j} 6 := by sorry

The formalization fails to represent the condition “Each student has at most 5 friends”. This crucial
condition is necessary for accurately capturing the problem’s constraints, and its absence may lead
to a solution space that does not match the requirements of the original problem. Without this condi-
tion, the formalized statement does not fully reflect the situation described in the refined statement,
potentially resulting in an incorrect or incomplete proof for determining the maximum number k of
students who are all not friends.

Example E.9: Errors in Constraint Condition: Redundant conditions

omni theorem 1245

The fraction 1
2015 has a unique ‘‘(restricted) partial fraction decomposition’’ of the form

1
2015 = a

5 + b
13 + c

31 where a, b, c are integers with 0 ≤ a < 5 and 0 ≤ b < 13. Find a + b.
Prove that the answer is: 14

Autoformalization:

import Mathlib

theorem omni_theorem_1245 {a b c : Z} (ha : 0 ≤ a ∧ a< 5) (hb : 0 ≤ b ∧ b< 13)
(hc : 0 ≤ c ∧ c< 31) (h : 1 / 2015 = a / 5 + b / 13 + c / 31) : a + b = 14 := by sorry

In autoformalization, the model introduced a spurious condition: (hc : 0 ≤ c ∧ c < 31).
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E.4 ERRORS IN PROOF GOALS

The stated proof goals may be incorrect. They could be misaligned with the original problem state-
ment, overly simplified, too general or even omitted.

Example E.10: Errors in Proof Goals: Incorrect Proposition Logic

omni theorem 1362

The Fibonacci sequence is defined as follows: F0 = 0, F1 = 1, and Fn = Fn−1 + Fn−2 for all
integers n ≥ 2. Find the smallest positive integerm such that Fm ≡ 0(mod127) and
Fm+1 ≡ 1(mod127).

Prove that the answer is: 256

Autoformalization:

import Mathlib

def fib (n : N) : N := match n with
| 0 => 0
| 1 => 1
| n + 2 => fib (n + 1) + fib n

theorem omni_theorem_1362 {m : N} (hm : m> 0) :
fib m≡ 0 [MOD 127] ∧ fib (m + 1) ≡ 1 [MOD 127] ↔ m = 256 := by sorry

The fundamental error in this autoformalization lies in framing the problem as an equivalence ver-
ification. The autoformalization, by using ↔ m = 256, transforms the problem into a claim
that the given congruences hold if and only if m is exactly 256. The correct approach to for-
malize the original problem would involve demonstrating that The value m = 256 satisfies the
conditions:fib256 ≡ 0 (mod 127) ∧ fib(256 + 1) ≡ 1 (mod 127),and that no smaller positive
integer m′ < 256 also satisfies these conditions.

Example E.11: Errors in Proof Goals: Incomplete Goal

olymidrefbase 551

Let a, b, c, d, e, f be non−negative real numbers satisfying a + b + c + d + e + f = 6. Find the
maximal possible value of a b c+b c d+c d e+d e f+e f a+f a b and determine all 6−tuples
(a, b, c, d, e, f) for which this maximal value is achieved. Answer: 8 . Prove that the answer is: 8

Autoformalization:

import Mathlib open Real theorem olymid_ref_base_551 : IsGreatest {x | ∃ a b c d e f : R, a≥ 0 ∧ b≥
0 ∧ c≥ 0 ∧ d≥ 0 ∧ e≥ 0 ∧ f≥ 0 ∧ a + b + c + d + e + f = 6 ∧ x = a * b * c + b * c * d + c * d * e + d * e * f +
e * f * a + f * a * b} 8 := by sorry

The core issue lies in how the autoformalization treats the problem’s objective – finding the maximal
possible value – and the request to determine all 6-tuples that achieve this maximum. The original
problem requires the solver to not only find the maximum value but also to characterize the set
of inputs that lead to this maximum. The provided autoformalization using IsGreatest completely
omits any formalization of the requirement to determine all 6-tuples. It focuses solely on verifying
the maximal value (8).
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F PROMPT FOR SEMANTIC VERIFICATION

To more effectively evaluate the consistency between natural language mathematics problems and
their Lean4 formalizations, we adopted an LLMs group voting approach to filter entries with the
same semantics. The prompt provided to the five LLMs is as follows:

Example F.1: Prompt for Semantic Verification

You are an expert in formalizing natural language into lean.
You are given a natural language statement and a lean statement.
You should judge the equivalence between the natural language statement and the lean statement by the following workflow:
1. You should back-translate the lean statement into English.
2. You should check if the back-translated statement is equivalent to the natural language statement.
3. If they are equivalent, you should return True.
4. Otherwise, you should return False.
Here is the natural language statement:
{refined statement}
Here is the lean statement:
{lean statement}
You must remember : Return True or False directly. Accept only True/False in answer.

G PROMPT FOR DOMAIN CLASSIFICATION

Example G.1: Prompt for Domain Classification

# CONTEXT #
I am a teacher, and I have some high-level math problems.
I want to categorize the domain of these math problems.

# OBJECTIVE #
A. Summarize the math problem in a brief sentence, describing the concepts involved in
the math problem.
B. Categorize the math problem into specific mathematical domains. Please provide a
classification chain, for example: Mathematics -> Applied Mathematics -> Probability
-> Combinations. The following is a basic classification framework in the field of
mathematics.
<math domains>
Mathematics
|
|-- Applied Mathematics
| |-- Math Word Problems
| |-- Statistics
| |-- Mathematical Statistics
| |-- Probability
| |-- Counting Methods
| |-- Permutations
| |-- Combinations
|
|-- Algebra
| |-- Prealgebra
| |-- Integers
| |-- Fractions
| |-- Decimals
| |-- Simple Equations
| |-- Algebra
| |-- Algebraic Expressions
| |-- Equations and Inequalities
| |-- Factoring
| |-- Polynomial Operations
| |-- Intermediate Algebra
| |-- Quadratic Functions
| |-- Exponential Functions
| |-- Logarithmic Functions
| |-- Complex Numbers
| |-- Linear Algebra
| |-- Vectors
| |-- Matrices
| |-- Determinants
| |-- Linear Transformations
| |-- Abstract Algebra
| |-- Group Theory
| |-- Ring Theory
| |-- Field Theory
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|
|-- Geometry
| |-- Plane Geometry
| |-- Polygons
| |-- Angles
| |-- Area
| |-- Triangulations
| |-- Perimeter
| |-- Solid Geometry
| |-- 3D Shapes
| |-- Volume
| |-- Surface Area
| |-- Differential Geometry
| |-- Curvature
| |-- Manifolds
| |-- Geodesics
| |-- Non-Euclidean Geometry
| |-- Spherical Geometry
| |-- Hyperbolic Geometry
|
|-- Number Theory
| |-- Prime Numbers
| |-- Factorization
| |-- Congruences
| |-- Greatest Common Divisors (GCD)
| |-- Least Common Multiples (LCM)
|
|-- Precalculus
| |-- Functions
| |-- Limits
| |-- Trigonometric Functions
|
|-- Calculus
| |-- Differential Calculus
| |-- Derivatives
| |-- Applications of Derivatives
| |-- Related Rates
| |-- Integral Calculus
| |-- Integrals
| |-- Applications of Integrals
| |-- Techniques of Integration
| |-- Single-variable
| |-- Multi-variable
|
|-- Differential Equations
| |-- Ordinary Differential Equations (ODEs)
| |-- Partial Differential Equations (PDEs)
|
|-- Discrete Mathematics
|-- Graph Theory
|-- Combinatorics
|-- Logic
|-- Algorithms
</math domains>

# STYLE #
Data report.

# TONE #
Professional, scientific.

# AUDIENCE #
Students. Enable them to better understand the domain and difficulty of the math
problems.

# RESPONSE: MARKDOWN REPORT # ## Summarization [Summarize the math problem in a brief
paragraph.] ## Math domains [Categorize the math problem into specific mathematical
domains, including major domains and subdomains.]‘
# ATTENTION # - The math problem can be categorized into multiple domains, but no more
than three. Separate the classification chains with semicolons(;).
- Your classification MUST fall under one of the aforementioned subfields; if it
really does not fit, please add "Other" to the corresponding branch. For example:
Mathematics -> Algebra -> Intermediate Algebra -> Other. Only the LAST NODE is allowed
to be "Other"; the preceding nodes must strictly conform to the existing framework.
- The math domain must conform to a format of classification chain, like "Mathematics
-> Applied Mathematics -> Probability -> Combinations".
- Add "=== report over ===" at the end of the report.
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<example math problem>

[Question]:
If 1

9 + 1
18 = 1

square, what is the number that replaces the square to make the equation
true?
[Solution]:
We simplify the left side and express it as a fraction with numerator 1: 1

9 + 1
18 =

2
18 + 1

18 = 3
18 = 1

6. Therefore, the number that replaces the square is 6.
[Source]: 2010 Pascal:

</example math problem>
## Summarization The problem requires finding a value that makes the equation 1

9 + 1
18 =

1
square. This involves adding two fractions and determining the equivalent fraction.
## Math domains Mathematics -> Algebra -> Prealgebra -> Fractions;

=== report over ===

</example math problem>
[Question]:
Let P be a convex polygon with n sides, n ≥ 3. Any set of n − 3 diagonals of P that
do not intersect in the interior of the polygon determine a triangulation of P into
n − 2 triangles. If P is regular and there is a triangulation of P consisting of only
isosceles triangles, find all the possible values of n.
[Solution]:
We label the vertices of P as P0, P1, P2, . . . , Pn. Consider a diagonal d = Pa Pa+k, k ≤ n/2
in the triangulation. We show that k must have the form 2m for some nonnegative
integer m. This diagonal partitions P into two regions Q, R, and is the side of an
isosceles triangle in both regions. Without loss of generality suppose the area of Q
is less than the area of R (so the center of P does not lie in the interior of Q);
it follows that the lengths of the edges and diagonals in Q are all smaller than d.
Thus d must the be the base of the isosceles triangle in Q, from which it follows that
the isosceles triangle is △PaPa+k/2 Pa+k, and so 2|k. Repeating this process on the

legs of isosceles triangle (PaPa+k/2, Pa+kPa+k/2), it follows that k = 2m for some
positive integer m (if we allow degeneracy, then we can also let m = 0). Now take
the isosceles triangle PxPyPz, 0 ≤ x < y < z < n in the triangulation that contains
the center of P in its interior; if a diagonal passes through the center, select either
of the isosceles triangles with that diagonal as an edge. Without loss of generality,
suppose PxPy = PyPz. From our previous result, it follows that there are 2a edges

of P on the minor arcs of PxPy, PyPz and 2b edges of P on the minor arc of PzPx, for
positive integers a, b. Therefore, we can write

n = 2 · 2a + 2
b
= 2

a+1
+ 2

b
,

so n must be the sum of two powers of 2. We now claim that this condition is
sufficient. Suppose without loss of generality that a + 1 ≥ b; then we rewrite this
as

n = 2
b
(2

a−b+1
+ 1).

Lemma 1: All regular polygons with n = 2k + 1 or n = 4 have triangulations that meet
the conditions. By induction, it follows that we can cover all the desired n. For
n = 3, 4, this is trivial. For k > 1, we construct the diagonals of equal length P0P2k−1

and P
2k−1+1

P0. This partitions P into 3 regions: an isosceles △P0P2k−1P2k−1+1
, and

two other regions. For these two regions, we can recursively construct the isosceles
triangles defined above in the second paragraph. It follows that we have constructed
2(2k−1 − 1) + (1) = 2k − 1 = n − 2 isosceles triangles with non-intersecting diagonals, as
desired.
Lemma 2: If a regular polygon with n sides has a working triangulation, then the
regular polygon with 2n sides also has a triangulation that meets the conditions. We
construct the diagonals P0P2, P2P4, . . . P2n−2P0. This partitions P into n isosceles
triangles of the form △P2kP2k+1P2k+2, as well as a central regular polygon with n
sides. However, we know that there exists a triangulation for the n-sided polygon that
yields n − 2 isosceles triangles. Thus, we have created (n) + (n − 2) = 2n − 2 isosceles
triangles with non-intersecting diagonals, as desired. In summary, the answer is all n
that can be written in the form 2a+1 + 2b, a, b ≥ 0. Alternatively, this condition can be
expressed as either n = 2k, k ≥ 2 (this is the case when a + 1 = b) or n is the sum of two
distinct powers of 2, where 1 = 20 is considered a power of 2.
[Source]:
USAMO 2008
</example math problem>

## Summarization
The problem asks for the possible values of n for a regular n-sided polygon that can be
completely triangulated into isosceles triangles using non-intersecting diagonals. The
solution involves analyzing the properties of the diagonals forming isosceles triangles
and deducing that n can be expressed in terms of powers of 2.
## Math domains
Mathematics -> Geometry -> Plane Geometry -> Polygons;

=== report over ===
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H PROMPTS FOR THEOREM PROVERS

H.1 PROMPT FOR VANILLA GENERATION

Example H.1: Prompt for Vanilla Generation

Complete the following Lean4 code:
```lean4
import Mathlib

theorem omni theorem 2669
(x : Z) (hx : x = 2018) : x2 + 2 ∗ x − x ∗ (x + 1) = 2018 := by

H.2 PROMPT FOR COT GENERATION

Example H.2: Prompt for CoT Generation

Complete the following Lean4 code with explanatory comments preceding each line of code:
```lean4
import Mathlib

theorem omni theorem 2669
(x : Z) (hx : x = 2018) : x2 + 2 ∗ x − x ∗ (x + 1) = 2018 := by

H.3 PROMPT FOR NL-AUGMENTED COT

Example H.3: Prompt for CoT with Natural Solution Generation

Complete the following Lean4 code with explanatory comments preceding each line of code:
```lean4
import Mathlib
open Finset
theorem omni theorem 4199 :
∃n ∈ N, {s : FinsetN | s.card = 2017 ∧

∑
i∈s i2 = n}.ncard ≥ 2017:= by

/-To determine if there exists a number n that can be expressed as the sum of 2017 perfect squares in at least 2017 distinct ways, we
consider the properties and combinations of perfect squares.
### Step 1: Understanding the Problem
The problem asks us to express a number n as the sum of 2017 perfect squares, n = a2

1 + a2
2 + · · · + a2

2017, where ai are
integers. Moreover, this can be done in at least 2017 different ways, meaning there are at least 2017 distinct sets of such integers.
### Step 2: Exploring Perfect Squares
Perfect squares are non-negative numbers of the form k2, where k is an integer. To construct different sums, we need to evaluate
how the combinations of these squares can vary and still yield distinct sums that equate to the same n.
### Step 3: Existence of Solutions
1. **Many Small Squares**: By choosing different arrangements of small perfect squares (like 0, 1, 4, 9, etc.), we can vary them
freely since they don’t drastically alter the cumulative sum quickly. For instance, using 0 is trivial as it adds nothing to sums;
including or excluding it in varying positions introduces variety.
2. **Adjusting a Larger Value**: Consider including a larger square, say (k+ 1)2, and adjusting the rest of the terms accordingly.
This diversity of combinations even with fixed values of ai = 0 (i.e., not all contributing to sum) provides additional distinct setups.
### Step 4: Conclusion
Given the vast number of combinations possible with 2017 variables, it is feasible to achieve at least 2017 distinct sums since:
- Choosing different subsets of minimal contributions (e.g., many zeros and small numbers) can still lead to varying sums.
- Incremental adjustments in a few selections using larger squares or varied middle-range integers allow differential assembly leading
to the target sum.
Thus, there is indeed a number n that can be expressed as the sum of 2017 perfect squares in at least 2017 distinct ways.
Hence, the answer is:
Yes -/
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I PROMPT FOR ERROR PATTERN DIAGNOSIS

Example I.1: Prompt for Error Pattern Diagnosis

**Role:** Lean4 Error Pattern Analyst

**Input:** You will be provided with a list containing 5 Lean4 code snippets. Assume these snippets contain errors or represent
incorrect usage patterns.

**Task:** Analyze all 5 snippets and identify the **common features or error patterns** present across them.

**Output:** Generate a list of concise strings describing these common features. Each string should be a short label for the pattern.

**Constraints:** * Focus *only* on identifying common features/errors across the provided 5 snippets. * Do **not** correct
or modify the code. * Keep feature descriptions brief and informative (e.g., ”Misuse of automated tactic”, ”Type mismatch in
arguments”, ”Incorrect proof structure”, ”Syntax error in definition”).

**Example Input Snippets (Conceptual):** [Lean4 Code Snippet 1 (Incorrect), ..., Lean4 Code Snippet 5 (Incorrect)],

**Example Output:** [ ”Misuse of automated tactic”: detailed reason, and exactly which problems (using problem id) make this
fault. .... ] each feature should be mutually exclusive, and the features should cover all the common features of the code.
**Analyze the following 5 Lean4 code snippets:**

J PROMPT FOR ERROR PATTERN CATEGORIZATION

Example J.1: Prompt for Lean4 Proof Error Classification

**Role:** Lean4 Code Classifier
**Task:** Classify the given Lean4 code snippet into one or more of the following categories based on the identified error patterns:

1. Improper usage of the automation tactics
2. Incomplete or Placeholder Proof Steps
3. Misuse of rewriting/simplification tactics
4. Inadequate handling of inequalities
5. Redundant hypothesis introductions

**Output Format:** Return a JSON object with the following structure:
{
”categories”: [”category1”, ”category2”, ...],
”confidence”: [0.8, 0.7, ...], # Confidence scores for each category
”explanation”: ”Brief explanation of why these categories were chosen”
}
**Code to Classify:**

K COMPUTE RESOURCES

Our experiments—including Pass@32 on FormalMATH-All and Pass@3200 on FormalMATH-Lite
– require at least 8 NVIDIA H100 GPUs running for 2-3 days to generate outputs, followed by an
additional 2-3 days of proof verification using 128 CPU cores. Since most of our evaluated models
are 7B in size, the overall computational cost, while non-trivial, remains acceptable. However, those
wishing to experiment with larger models or increased sampling budgets should be prepared for
significantly higher compute requirements.

L LIMITATIONS

Although our human-in-the-loop pipeline significantly enhances the robustness of FormalMATH,
several limitations remain. First, there is no machine-verifiable meta-review mechanism grounded
in formal reasoning Pierce et al. (2025) to rigorously ensure logical alignment between informal
mathematical statements and their corresponding Lean4 formalizations. While we mitigate this by
involving multiple IMO-level experts for cross-validation, the process ultimately depends on hu-
man intuition and domain knowledge rather than a fully formalized verification system, leaving the
potential for subtle semantic misalignments. Second, the evaluation of FormalMATH – and, more
broadly, any large-scale Lean4 benchmark—requires substantial computational resources, verifying
thousands of formal proofs remains computationally intensive and time-consuming. Finally, due to
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resource constraints and concurrent development timelines, we have not yet evaluated recently re-
leased models such as DeepSeek-Prover-V2 Ren et al. (2025). While we do not expect this to affect
the primary contributions and novelty of our benchmark, we plan to include updated results in future
versions once the result is feasible.

M PROMPT FOR NEGATION-BASED DISPROOF

Example 3.2: Negation-Based Disproof Protocol to Filter out Non-provable Statements

Original Lean4 Statement:

import Mathlib

def refBase (n : N) : Prop :=
∀ k l, 0 < k→ 0 < l→ k< n→ l< n→
(k | n→ l | n→ (2 * k − l | n ∨ 2 * l − k | n))

theorem olymid_ref_base_1120 : {n | 1 < n ∧ refBase n} = {6, 9, 15} := by
sorry

Negation-based Disproof by Contradiction Construction:

theorem olymid_ref_base_1120_negative : {n | 1 < n ∧ refBase n} ≠ {6, 9, 15} := by
simp (config := { decide := true }) [refBase]
simp only [Set.ext_iff, Set.mem_setOf_eq, Set.mem_insert_iff, Set.mem_singleton_iff]
intro h
have h1 := h 7
simp (config := { decide := true }) at h1
obtain ⟨k, hk0, l, hl0, hk, hl, hkd, hld, h1, h2⟩ := h1
interval_cases k<;> interval_cases l<;> simp_all (config := {decide := true})

N EXPERIMENTAL SETUPS

N.1 MAIN EXPERIMENT

This section illustrates the experimental settings for Section 4.1.

LLM-based Prover Settings.

We focus on the following two different proof-generation approaches:

• Best-First Tree-Search (BFS) Methods. Each node in the search tree represents an intermediate
proof state, and a heuristic scoring function assigns a priority to each node. We evaluate three
baseline models under this category: BFS-Prover Xin et al. (2025), DeepSeek-Prover-V1.5-RL
Xin et al. (2024), and InternLM-V2.5-Prover Wu et al. (2024).

• Single-Pass Generation Methods. The models under this category generate a complete proof in
one pass, without iterative refinement or explicit intermediate states. In our paper, we consider
the following baseline models: STP Dong & Ma (2025), DeepSeek-Prover-V1.5-SFT Xin et al.
(2024), DeepSeek-Prover-V1.5-RL Xin et al. (2024), Goedel-Prover Lin et al. (2025), and Kimina-
Prover-7B Wang et al. (2025).

Metrics. We evaluate theorem provers using the Pass@K metric, which measures the fraction of
problems for which at least one valid proof is found among the top K generated attempts. (1) For
BFS, K = N × S × T , where N denotes the number of best-first search attempts, S is the number
of tactics proposed during each expansion, and T is the total number of expansion iterations. (2) For
SPG, K corresponds to the total number of complete proof trajectories sampled from the model.

Prompts. In the experiments, we only consider vanilla generation strategies (see Example H.1),
where models directly generate Lean4 proof without explicit requirement of chain-of-thought (CoT)
rationales (natural language thoughts interleaved with Lean4) or augmenting with natural language
solutions.
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Figure 8: (a) The mathematical domain distribution of Goedel-Prover’s training dataset. (b) The perplexity
distribution of Deepseek-V1.5-SFT across various proof generation modes.
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theorem
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  (hconv : convex_on f (Ioo a b))
  (hbound : ∃ M, ∀ x ∈ Ioo a b, f x ≤ M) :
  continuous_on f (Ioo a b) := by sorry

Lean4 Statement \(\mathbf{T}_N^{(K)}\)
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theorem 
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Figure 7: Our efficient Lean4 verifier implementation.

Verifier. In Lean4, the correctness of proofs
is verified by the compiler Leanprover Com-
munity (2023). However, verifying individ-
ual proofs is often time-consuming, largely due
to the significant overhead associated with im-
porting the Mathlib4 library Mathlib Commu-
nity (2020). To mitigate this inefficiency, we
use a tree-structured parallelism approach (see
Figure 7). In this implementation, a parent thread manages the root node, which handles the compu-
tationally intensive import operations of Mathlib4. Concurrently, child threads process subsequent
nodes in parallel, each corresponding to an individual proof. By centralizing the costly import
operation at the root, redundant overhead is eliminated, and resources are efficiently allocated to
parallelize proof verification. This simple trick effectively optimizes test-time efficiency by avoid-
ing repeated computational overhead, ensuring scalable and efficient utilization of computational
resources.

N.2 EXPERIMENTAL SETUPS FOR EVALUATING TEST-TIME SCALING OF THEOREM
PROVERS ON FORMALMATH-LITE

This section illustrates the experimental settings for Section 4.2.

Inspired by the recent success of test-time compute scaling Snell et al. (2024); Xiao et al. (2024);
Muennighoff et al. (2025); Yu et al. (2025), this section examines its impact on the formal mathe-
matical reasoning capabilities of LLM-based theorem provers using our FormalMATH benchmark.
To simplify, we only evaluate BFS and repeated sampling here. To enable a systematic evalu-
ation, we introduce FormalMATH-Lite, which is a curated subset of FormalMATH designed for
efficient yet rigorous test-time scaling analysis. We compare state-of-the-art provers’ performance
on FormalMATH-Lite under varying sampling budgets, as shown in Table 2.

FormalMATH-Lite. Evaluating the full FormalMATH benchmark under large sampling budgets
(e.g., Pass@3200) requires prohibitively high computational resources. To enable scalable yet rigor-
ous analysis, we propose FormalMATH-Lite–a carefully selected subset of 425 problems (compris-
ing 359 high school-level and 66 undergraduate-level problems) designed with two critical features:
(1) We utilize DeepSeek-V1.5-RL for outcome-driven difficulty assessment, evenly sampling solv-
able and unsolvable problems via constrained sampling budgets (e.g., Pass@32). This balanced
approach effectively highlights measurable scaling effects during test-time evaluation. (2) Domain
Distribution Alignment: This subset follows a mathematical domain distribution similar to the full
FormalMATH benchmark (algebra, calculus, discrete mathematics, etc) using stratified sampling,
ensuring sufficient coverage of core disciplines. In Appendix D, we also provide the detailed distri-
bution of FormalMATH-Lite.

Experimental Settings. In this experiment, we maintain identical experimental configurations to
Section 4.1–including models, prompts, etc, with one critical exception: sampling budget scales.
Section 4.1 used constrained sampling budgets (e.g., Pass@32) due to computational resource lim-
itations of the full FormalMATH benchmark. Here, leveraging FormalMATH-Lite, we deploy ex-
panded sampling budgets (e.g., up to Pass@3200 for SPG and Pass@32×32×100 for BFS).
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N.3 EXPERIMENTAL SETUPS FOR EVALUATING HOW COT ENHANCES MODEL
CAPABILITIES ON FORMAL MATHEMATICAL REASONING

In this section, we evaluate three different reasoning strategies in Lean4 proof generations: (1) naive
CoT prompting (see Example H.2), (2) NL-augmented CoT (see Example H.3): CoT augmented
with natural language solution example, and (3) vanilla generation strategies (see Example H.1) via
test-time scaling on FormalMATH-Lite (See Figure 4). Our goal is to measure whether—and to what
extent—informal mathematical reasoning contributes to the rigor and effectiveness of subsequently
derived formal proofs.

Experimental Setups. We evaluate DeepSeek-Prover-V1.5-SFT and DeepSeek-Prover-V1.5-
RL (which are the only models explicitly trained with all three prompting strategies) on the
FormalMATH-Lite benchmark by applying test-time scaling (up to Pass@3200).

Example 4.3: naive CoT outperforms NL-augmented CoT and vanilla strategies in formal theorem proving.

Naive CoT (Success):

theorem algebra_68653_cot : ¬ ∃ x y : Z, xˆ3 + yˆ4 = 7 := by
−− Assume there are integers x and y such that xˆ3 + yˆ4 = 7.
intro h
−− Extract the integers x and y from the assumption.
rcases h with ⟨x, y, hxy⟩
−− Consider the equation modulo 13.
have hxy_mod : (xˆ3 + yˆ4) % 13 = 7 % 13 := by rw [hxy]
−− Calculate the possible values of xˆ3 modulo 13.
have x3_mod : xˆ3 % 13 = 0 ∨ xˆ3 % 13 = 1 ∨ xˆ3 % 13 = 5 ∨ xˆ3 % 13 = 8 ∨ xˆ3 % 13 = 12 := by
have : x % 13 = 0 ∨ x % 13 = 1 ∨ x % 13 = 2 ∨ x % 13 = 3 ∨ x % 13 = 4 ∨ x % 13 = 5 ∨ x % 13 = 6 ∨ x % 13 = 7 ∨ x %

13 = 8 ∨ x % 13 = 9 ∨ x % 13 = 10 ∨ x % 13 = 11 ∨ x % 13 = 12 := by omega
rcases this with (h | h | h | h | h | h | h | h | h | h | h | h | h) <;> simp [h, pow_succ, Int.mul_emod]

−− Calculate the possible values of yˆ4 modulo 13.
have y4_mod : yˆ4 % 13 = 0 ∨ yˆ4 % 13 = 1 ∨ yˆ4 % 13 = 3 ∨ yˆ4 % 13 = 9 := by
have : y % 13 = 0 ∨ y % 13 = 1 ∨ y % 13 = 2 ∨ y % 13 = 3 ∨ y % 13 = 4 ∨ y % 13 = 5 ∨ y % 13 = 6 ∨ y % 13 = 7 ∨ y %

13 = 8 ∨ y % 13 = 9 ∨ y % 13 = 10 ∨ y % 13 = 11 ∨ y % 13 = 12 := by omega
rcases this with (h | h | h | h | h | h | h | h | h | h | h | h | h) <;> simp [h, pow_succ, Int.mul_emod]

−− Check that xˆ3 + yˆ4 cannot be congruent to 7 modulo 13.
rcases x3_mod with (h1 | h1 | h1 | h1 | h1) <;> rcases y4_mod with (h2 | h2 | h2 | h2) <;> simp [h1, h2,

Int.add_emod] at hxy_mod<;> omega

NL-agumented CoT (Not Success):

theorem algebra_68653_nat : ¬ ∃ x y : Z, xˆ3 + yˆ4 = 7 := by /−
We aim to show that there do not exist integers \( x \) and \( y \) such that \( xˆ3 + yˆ4 = 7 \). Suppose, for the sake of

contradiction, that such integers exist. We would then have \( xˆ3 + yˆ4 = 7 \). We analyze the possible values of \( xˆ3
\mod 7 \) and \( yˆ4 \mod 7 \) to find a contradiction.

1. **Lemma:** For any integer \( x \), \( xˆ3 \mod 7 \) can only be 0, 1, or −1.
− Proof: By examining all possible values of \( x \mod 7 \), we find that \( xˆ3 \mod 7 \) is either 0, 1, or −1.

2. **Lemma:** For any integer \( y \), \( yˆ4 \mod 7 \) can only be 0, 1, or 2.
− Proof: By examining all possible values of \( y \mod 7 \), we find that \( yˆ4 \mod 7 \) is either 0, 1, or 2.

3. **Combining the Lemmas:** If \( xˆ3 + yˆ4 = 7 \), then \( xˆ3 \mod 7 \) and \( yˆ4 \mod 7 \) must sum to 7 modulo 7.
However, the possible values of \( xˆ3 \mod 7 \) are 0, 1, or −1, and the possible values of \( yˆ4 \mod 7 \) are 0, 1, or
2. None of these combinations can sum to 7 modulo 7, leading to a contradiction.

Thus, we conclude that there do not exist integers \( x \) and \( y \) such that \( xˆ3 + yˆ4 = 7 \).
−/
−− Assume for contradiction that there exist integers x and y such that xˆ3 + yˆ4 = 7.
intro h
obtain ⟨x, y, hxy⟩ := h
−− Analyze the possible values of xˆ3 modulo 7.
have hx : xˆ3 % 7 = 0 ∨ xˆ3 % 7 = 1 ∨ xˆ3 % 7 = 6 := by
have hx : x % 7 = 0 ∨ x % 7 = 1 ∨ x % 7 = 2 ∨ x % 7 = 3 ∨ x % 7 = 4 ∨ x % 7 = 5 ∨ x % 7 = 6 := by
omega
rcases hx with (h | h | h | h | h | h | h) <;>
simp [h, pow_three, Int.mul_emod, Int.add_emod]

−− Analyze the possible values of yˆ4 modulo 7.
have hy : yˆ4 % 7 = 0 ∨ yˆ4 % 7 = 1 ∨ yˆ4 % 7 = 2 := by
have hy : y % 7 = 0 ∨ y % 7 = 1 ∨ y % 7 = 2 ∨ y % 7 = 3 ∨ y % 7 = 4 ∨ y % 7 = 5 ∨ y % 7 = 6 := by
omega
rcases hy with (h | h | h | h | h | h | h) <;>
simp [h, pow_four, Int.mul_emod, Int.add_emod]

−− Combine the results to find a contradiction.
have h7 : (xˆ3 + yˆ4) % 7 ̸= 7 := by
rcases hx with (h | h | h) <;>
rcases hy with (h’ | h’ | h’) <;>
simp [h, h’, Int.add_emod, Int.mul_emod]
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−− Conclude the proof by contradiction.
omega

Vanilla (Not Success):

theorem algebra_68653_vanilla : ¬ ∃ x y : Z, xˆ3 + yˆ4 = 7 := by
intro h; rcases h with ⟨x, y, hxy⟩; have hx : xˆ3 ≥ 0 := by positivity; have hy : yˆ4 ≥ 0 := by positivity

linarith

N.4 EXPERIMENTAL SETUPS FOR DELVING INTO COMMON ERROR PATTERNS OF EXISTING
PROVERS

In this section, we systematically analyze common error patterns observed in existing theorem
provers (e.g., DeepSeek-V1.5, STP, Goedel, and Kima-Prover). We employ advanced general-
purpose LLMs (e.g., o4-mini) to automate both error diagnosis and classification: first extracting
salient verbalized features (i.e., Example I), then assigning the found error features via a second
prompt-driven call (i.e., Example J). For each prover, we randomly sampled 100 failed proofs from
a variety of Lean4 statements and processed them through our two-stage diagnosis and classification
pipeline. Human domain experts then manually reviewed and corrected both the extracted features
and the preliminary labels. We identified the four most common failure patterns—incomplete proofs,
inability to handle complex inequalities, improper use of automation tactics, and redundant hypoth-
esis introduction—as summarized in Table 3. Note that a single proof attempt may exhibit multiple
errors, so the percentages do not sum to 100%.

THE USE OF LARGE LANGUAGE MODELS (LLMS)

Answer:: In this work, Large Language Models (LLMs) were exclusively utilized for grammar
correction and text polishing during the manuscript preparation stage. No aspects of the research
methodology, ideation, experiment design, data processing, result analysis, or core algorithm im-
plementations involved LLMs in any capacity. All scientific contributions, originality, and rigor
are ensured by the authors. As per ICLR policy, we confirm that LLMs did not play an important,
original, or non-standard role in the development of this research.

28



1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2026

Lean4 Statement Prover Output Explanation

theorem omni_theorem_4000 (f
: R → R) :

(∀ x y, (x + y ˆ 2) * f (y * f x) = x
* y * f (y ˆ 2 + f x)) ↔

∀ x, f x = x ∨ f x = 0 ∨ ∃ a, a≤
−1 ∨ a> 0 ∧ f x = if x ̸=
−a ˆ 2 then 0 else a := by

−− Proof Before
−− If f(x) ̸= 0, we need to show that there

exists an a such that the conditions hold.
right
right

use 0
−− We choose a = 0 to satisfy the conditions.

simp

−−Proof After

Improper use of Automation
Tactics. The prover selects the
witness a = 0 without check-
ing the original side-condition
and then calls simp to close off
the goal. This bypasses the es-
sential case-by-case analysis of
the core functional equation, re-
sulting in an invalid proof that
never constructs the required
nonzero witness when needed.

theorem DEMIMathAnalysis_50
:

Tendsto (λ n => sqrt n *
∫
x

in univ, 1 / (1 + x ˆ 2) ˆ n)
atTop (N (sqrt π)) := by

rw [show sqrt = fun x => sqrt x by
funext; rfl]

apply tendsto atTop mono (fun n =>

sqrt_le_sqrt<|
integral_mono_on _ _<| fun x _ => by
gcongr
all_goals norm_num)
refine’

tendsto_atTop_of_eventually_const
(by simp)

all_goals
filter_upwards with _
¡;¿ simp

Incomplete Proof.
The proof invokes
tendsto atTop mono
without establishing any of
the analytical prerequisites.
The final simp steps trivially
handle eventual constancy but
leave the main asymptotic
argument unresolved.

theorem aime_all_2005_II_1
(n : N) (hn : n≥ 6) (h : {s :
Finset (Fin n) | s.card =
6}.ncard = 6 * {s : Finset
(Fin n) | s.card = 3}.ncard)
:

n = 13 := by

norm_num [Nat.choose] at h
revert n hn h

rintro n hn h
ring_nf at h
nlinarith

Redundant Hypothesis Intro-
duction. After norm num
already rewrites the binomial
coefficients, the revert ;
rintro sequence merely re-
introduces n, hn, and h in
the same form, adding no new
information and cluttering the
context.

theorem algebra_528739 (a b c
: R) (ha : 0 < a) (hb : 0 < b)
(hc : 0 < c) :

1 / (aˆ3 + bˆ3 + a * b * c) + 1 / (bˆ3
+ cˆ3 + a * b * c) +

1 / (cˆ3 + aˆ3 + a * b * c) ≤ 1 / (a *
b * c) := by

−− We start by simplifying the left−hand side
using the fact that each term is
non−negative.

have h0 : 0 < a * b * c := by positivity
. . .
−− We then apply the inequality to each term.
rw [div_le_div_iff] <;>

nlinarith , [sq_nonneg (a − b), sq_nonneg
(b − c), sq_nonneg (c − a)]

. . .

Inadequate Handling of In-
equalities. The solver attempts
to apply nlinarith after
a single div le div iff,
but the cyclic, high-degree
fractional structure exceeds its
linear-and-quadratic reasoning
scope.

Table 8: Examples of common Lean4 error patterns in LLM-based provers.
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