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Prototypical Prompting for Text-to-image Person
Re-identification

Anonymous Authors

ABSTRACT
In this paper, we study the problem of Text-to-Image Person Re-
identification (TIReID), which aims to find images of the same
identity described by a text sentence from a pool of candidate im-
ages. Benefiting from Vision-Language Pre-training, such as CLIP
(Contrastive Language-Image Pretraining), the TIReID techniques
have achieved remarkable progress recently. However, most ex-
isting methods only focus on instance-level matching and ignore
identity-level matching, which involves associating multiple images
and texts belonging to the same person. In this paper, we propose
a novel prototypical prompting framework (Propot) designed to si-
multaneously model instance-level and identity-level matching for
TIReID. Our Propot transforms the identity-level matching problem
into a prototype learning problem, aiming to learn identity-enriched
prototypes. Specifically, Propot works by ‘initialize, adapt, enrich,
then aggregate’. We first use CLIP to generate high-quality initial
prototypes. Then, we propose a domain-conditional prototypical
prompting (DPP) module to adapt the prototypes to the TIReID task
using task-related information. Further, we propose an instance-
conditional prototypical prompting (IPP) module to update pro-
totypes conditioned on intra-modal and inter-modal instances to
ensure prototype diversity. Finally, we design an adaptive proto-
type aggregation module to aggregate these prototypes, generating
final identity-enriched prototypes. With identity-enriched proto-
types, we diffuse its rich identity information to instances through
prototype-to-instance contrastive loss to facilitate identity-level
matching. Extensive experiments conducted on three benchmarks
demonstrate the superiority of Propot compared to existing TIReID
methods.

CCS CONCEPTS
• Computing methodologies → Visual content-based index-
ing and retrieval.

KEYWORDS
Text-to-image person re-identification, Identity-level matching, Pro-
totypical prompting

1 INTRODUCTION
Person re-identification (ReID), devoted to searching a person-of-
interest across different times, locations, and camera views, has
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A girl in her twenties has long 
black hair. She is wearing an off-
white quilted jacket with white fur 
on its hood. She is also wearing 
black sweat pants and black ankle 
boots with heels.

A young woman with straight long 
black hair is wearing a beige scarf 
around her neck. She is wearing a 
white overcoat and brown capri 
pants. She is wearing black socks 
and black gloves. She is holding a 
black purse in one hand.

A woman in her thirties with 
straight long black hair is wearing 
an off-white puffer coat and beige 
scarf. She is also wearing brown 
pants and black wedge boots. She 
is carrying a black bag and has 
black gloves in her hand.

A man in his late twenties with 
short black hair is wearing a black 
jacket with a yellow hood. He is 
wearing gray jogging pants with 
letterings on the side and blue 
sneakers.

A man in his thirties with medium 
length straight black hair is wearing 
a yellow patched blue quilted 
puffer jacket. He is also wearing a 
pair of black trousers and a maroon 
sweater. His running shoes are 
black with grey patterns and soles.

A middle-aged man with short 
black hair and a small bad patch is 
wearing a hooded navy-blue 
quilted puffer jacket. He is also 
wearing grey pants. He is wearing 
black socks and grey crocs.

Labled

Labled

Labled

Labled

Labled

Labled

(a) Example of TIReID data

A girl in her twenties 
has long black hair. 
She is wearing an 
off-white quilted 
jacket with white ...

A young woman with 
straight long black 
hair is wearing a 
beige scarf around 
her neck ...

A woman in her 
thirties with straight 
long black hair is 
wearing an off-white 
puffer coat ...

A girl in her twenties 
has long black hair. 
She is wearing an 
off-white quilted 
jacket with white ...

A young woman with 
straight long black 
hair is wearing a 
beige scarf around 
her neck ...

A woman in her 
thirties with straight 
long black hair is 
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puffer coat ...
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jacket with white ...
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Diffusion

Alignment

(c) Our proposed Propot

Figure 1: The motivation of our proposed Propot. (a) In
TIReID data, Instances under the same identity show sig-
nificant differences. (b) Most existing TIReID methods only
focus on instance-level matching and ignore identity-level
matching. (c) Our Propot proposes a prototype prompting
framework to create identity-enriched prototypes and dif-
fuse their rich identity information to instances formodeling
identity-level matching.

garnered increasing interest due to its huge practical value. In
recent years, we have witnessed great progress on image-to-image
person re-identification (IIReID) [24, 28, 50, 58, 61], which has been
successfully applied in various practical scenarios. However, ReID
is still challenging when pedestrian images from some cameras are
missing. In contrast, textual descriptions are more readily accessible
and freer than images collected by specialized equipment, which
can be obtained from witnesses at the scene. Thus, text-to-image
person re-identification (TIReID) [30] has received a lot of research
attention recently owing to it being closer to real-world scenarios.

Compared to IIReID, TIReID faces a significant challenge in
bridging the modal gap between images and texts while model-
ing their correspondence. Various methods have been devised to

https://doi.org/10.1145/nnnnnnn.nnnnnnn
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address this challenge by cross-modal interactive attention mech-
anisms [39, 63, 66], semantically aligned local feature learning [5,
8, 41, 57], and fine-grained auxiliary task-enhanced global feature
learning [37, 38]. Nowadays, the emergence of vision-language pre-
training models (VLP) has propelled the advancements in computer
vision, showcasing exceptional capabilities in semantic understand-
ing, multi-modal alignment, and generalization. It is intuitive to
consider that the rich multi-modal prior information of VLP can
be harnessed to enhance TIReID models in modeling inter-modal
correspondence. Some follow-up CFine [56], IRRA [20] extend VLP
for TIReID, greatly promoting the progress of this task.

Despite the success of VLP-based methods, the performance of
TIReID still lags behind that of IIReID, especially in complex scenes
like multiple cameras and drastic view changes. This is primarily
due to the specificity of the TIReID task. As shown in Figure 1(a),
there are multiple images of the same identity, each annotated
with specific text at the instance level. The goal of TIReID is to
match all images of the same identity given a text, meaning to
correctly associate each text with all images of the same identity.
However, most existing methods, constrained by the alignment
objective function [55], only consider instance-level matching
between each image and its annotated text, ignoring matches with
other non-annotated texts of the same identity, called identity-
level matching. An intuitive idea to this problem is to directly
match all images and texts under the same identity, but this can
disrupt instance-level matching relationship [55] due to huge view
variations, leading to performance collapse. So far, there have been
limited solutions [8, 55] proposed to model identity-level matching
for TIReID. SSAN [8] introduces an enhanced alignment loss to
simultaneously align the image with its annotated text and another
text sharing the same identity. LCR2S [55] designs a teacher-student
network architecture to randomly fuse two images/texts under the
same identity and then align them to model identity-level matching.
While effective, they do not comprehensively model the matching
relationship between all images and texts under the same identity.
Moreover, the two-stage teacher-student framework is costly to
train and lacks practicality. In this paper, we thus ask: Can an end-
to-end efficient TIReID model be trained to simultaneously model
instance-level and identity-level matching?

To address this problem,we propose a novelPrototypicalpromp-
ting framework (Propot) that enables the network tomodel instance-
level and identity-level matching for TIReID simultaneously. As
shown in Figure 1, existing TIReID methods only model instance-
level matching between each image and its labeled text. In contrast,
our Propot further introduces identity-level matching based on
instance-level matching. We learn a prototype containing rich iden-
tity information for each identity and diffuse the rich information
from the prototype to each instance, indirectly modeling identity-
level matching. This transforms the identity-level matching prob-
lem into an identity-enriched prototype learning problem.

Specifically, our Propot follows the ‘initialize, adapt, enrich, then
aggregate’ pipeline. Initially, we leverage CLIP’s strongmulti-modal
alignment capability to cluster instance (image/text) features un-
der each identity, forming the initial prototype for each identity.
Since there’s a gap between CLIP and TIReID data, this proto-
type is not fully adapted to TIReID. To address this, we propose a
domain-conditional prototypical prompting (DPP) module inspired

by CoOp [65], which introduces a set of learnable prompt tokens
to learn target domain knowledge and adapt the initial prototype
to the TIReID task. However, instances under the same identity
exhibit significant diversity due to factors like view changes and
camera parameters. Ignoring this diversity can lead to a monot-
onous prototype, losing rich identity information. Thus, inspired
by CoCoOp [46], we propose an instance-condition prototypical
prompting (IPP) module. This module generates two prototypi-
cal prompts conditioned on a batch of instances, leveraging both
intra-modal and inter-modal instances to enhance diversity and
bridge the modal gap. To integrate the multiple prototypes gen-
erated above, an adaptive prototype aggregation (APA) module
is designed, which treats the initial CLIP-generated prototype as
the baseline and adaptively ensemble these generated prototypes
as the final prototype. Finally, we utilize a prototype-to-instance
contrastive loss to diffuse the rich identity information from the
prototype to each instance, enabling effective modeling of identity-
level matching. Our Propot is single-stage and end-to-end trainable.
During inference, only the backbone of the network is used for
inference, which is simple and efficient.

Here are the main contributions of our paper: (1) We propose an
end-to-end trainable prototypical prompting framework to model
instance-level and identity-level cross-modal matching for TIReID
simultaneously. (2) We transform the identity-level matching prob-
lem into an identity-enriched prototype learning problem. We
use CLIP to generate initial prototypes and propose a domain-
conditional prototypical prompting (DPP) module and an instance-
condition prototypical prompting (IPP) module to generate multiple
identity-enriched prototypes. An adaptive prototype aggregation
(APA) module is designed to fully integrate these prototypes. (3)
Extensive experiments have been conducted to validate the effec-
tiveness of Propot, and it achieves superior performance on the
CUHK-PEDES, ICFG-PEDES, and RSTPReid benchmarks.

2 RELATEDWORK
2.1 Text-to-Image Person Re-identification
TIReID [30] has gained significant attention in recent years. Ex-
isting studies in TIReID can be broadly divided into the following
categories: better model architectures and optimization losses, bet-
ter alignment strategies, and richer prior information. Previous
methods [3, 62, 64] have focused on designing network and opti-
mization loss to learn globally aligned image and text features in a
joint embedding space. These methods are simple and efficient, but
ignore detailed information and fine-grained correspondences. To
address these limitations, subsequent methods have refined match-
ing strategies to mine fine-grained correspondence between modal-
ities. Some methods [22, 30, 39, 47, 63, 66] have emerged to achieve
fine-grained matching through interactions between local parts of
images and texts. While effective, these approaches require signifi-
cant computational resources. To mitigate computational overhead,
other works [5, 8, 53] adopt local image parts as references to guide
the generation of locally aligned text features, avoiding pairwise
interactions. However, the effectiveness of these methods depends
on the quality of explicitly acquired local parts. As an alternative,
diverse aggregation schemes [27, 41, 44, 57] have been proposed to
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adaptively aggregate images and text into modality-shared local
features, avoiding explicit local part acquisition.

Recently, visual-language pre-training models (VLP) [40] have
made significant progress. To leverage their richmulti-modal knowl-
edge, recent advanced methods [2, 15, 20, 56] have proposed di-
verse strategies to tailor VLP for TIReID, resulting in notable per-
formance enhancements. However, despite these advancements,
existing methods often overlook the specific nature of TIReID as a
challenge involving matching multi-view image-text pairs at the
identity level, rather than merely at the instance level. Address-
ing this concern, LCR2S [55] devised a teacher-student network
to reason about a comprehensive representation with multi-view
information from a single image or text. This approach yielded
notable performance gains, it had limitations in fully integrating
multi-view information and exhibited lower training efficiency. In
this study, we present an end-to-end framework to learn a pro-
totype with comprehensive information for each identity using
the training set, and transfer multi-view information to individual
samples for identity-level matching. This approach enhances both
efficiency and the integration of multi-view data for TIReID.

2.2 Vision-Language Pre-Training
Nowadays, the "pre-training and fine-tuning" paradigm stands as
a foundational approach in the computer vision community, in
which pre-training models that can provide rich prior knowledge
for various downstream vision tasks have gained increasing at-
tention. Previous prevailing practice is rooted in the supervised
unimodal pre-training [9, 16] on ImageNet [6]. However, to improve
representation capabilities and overcome annotation constraints,
a new paradigm called language-supervised vision pre-training
(vision-language pre-training, VLP) has emerged. Within VLP, in-
vestigating the interaction between vision and language has become
a central research focus. Several works [4, 25, 26, 33, 49] have been
proposed to model the interaction of vision and language based on
somemulti-modal reasoning tasks, such as masked language/region
modeling, and image captioning. Recently, contrastive representa-
tion learning [19, 40, 59] has gained attention, which learns rep-
resentations by contrasting positive pairs against negative pairs.
The representative work, Contrastive Language-Image Pretrain-
ing (CLIP) [40], has strong multi-modal semantic representation
and zero-shot generalization capabilities, which is trained on 400
million image-text pairs. CLIP has shown promising adaptability
for various downstream tasks like video-text retrieval [10, 34], re-
ferring image segmentation [51], and person re-identification [56].
Our work builds upon CLIP and utilizes its ample multi-modal
knowledge to learn identity-enriched prototypes.

2.3 Prompt Learning
Prompt learning [21, 43], originating from natural language pro-
cessing (NLP), is a method used to customize pre-training mod-
els for different tasks by providing instructions in the form of
sentences, known as prompts. Early prompts were manually de-
signed for specific tasks, but recent studies have introduced prompt
learning, where task-specific prompts are automatically generated
during fine-tuning. This approach addresses issues like instability
and knowledge bias. Prompt learning has now been extended to
computer vision. CoOp [65] pioneered the application of prompt

learning to adapt large vision-language models in computer vision,
while CoCoOp [46] built upon CoOp to introduce a conditional
prompt learning framework, improving generalization. Chen et
al. [23] proposed efficiently adapting the CLIP model to the video
understanding task by optimizing a few continuous prompt vectors.
CLIP-ReID [29] designed a two-stage framework to generate coarse
descriptions of pedestrians, leveraging CLIP’s capabilities for ReID.
Inspired by these, in this work we propose using prompt learn-
ing to learn comprehensive prototype representations to model
identity-level matching for TIReID.

3 THE PROPOT FRAMEWORK
Our Propot is a conceptually simple end-to-end trainable frame-
work, and the overview is depicted in Figure 2. We first extract
features of images and texts through visual and textual encoders,
followed by instance-level and identity-level matching.

3.1 Feature Extraction
Previous studies [2, 20, 56] have underscored the effectiveness of
CLIP [40] in tackling TIReID challenges. To harness the vast multi-
modal knowledge in CLIP, we leverage its image and text encoders
to initialize Propot’s image and text backbones. Concretely, for an
image-text pair (𝐼 ,𝑇 ), we exploit CLIP pre-trained ViT model to
extract visual representations for the image 𝐼 , resulting in the global
visual feature 𝒗 ∈ R𝑑 . For the text caption 𝑇 , the CLIP’s textual
encoder is utilized to generate the global textual feature 𝒕 ∈ R𝑑 .

Instance-level matching involves directly aligning 𝒗 with 𝒕 . For
identity-level matching, we transform it into an identity-enriched
prototype learning problem. The aim is to learn a rich prototype
containing all instance identity information for each identity in the
training set. In Propot, the prototype learning method is crucial.
While it is conceivable to learn a prototype for each identity from
scratch, akin to previous method [29], such an approach can en-
counter challenges in network convergence and may not ensure
prototype quality. To address these concerns, we introduce a novel
‘initialize, adapt, enrich, then aggregate’ prototype learning scheme,
detailed in the subsequent subsections.

3.2 Initial Prototype Generation
We start our approach by utilizing the CLIPmodel to extract features
for each instance in the TIReID training set, leveraging its strong se-
mantic information extraction and multi-modal alignment capabili-
ties.We then cluster these instance features based on shared identity
labels to produce initial prototypes for each modality. Specifically,
given the training set {𝐼𝑖 ,𝑇𝑖 , 𝑌𝑖 }𝑁𝑠

𝑖=1, where 𝑌𝑖 ∈ {𝐿1, 𝐿2, ..., 𝐿𝑁 } rep-
resents the identity label of the image-text pair (𝐼𝑖 ,𝑇𝑖 ), 𝑁𝑠 denotes
the number of pairs, and 𝑁 denotes the number of identity label, we
employ the pre-trained CLIP visual and textual encoders to obtain
the visual and textual features {𝒗𝑖 , 𝒕𝑖 }𝑁𝑠

𝑖=1 of all image-text pairs.
We then perform feature clusters on the image and text features.
Taking identity 𝐿𝑖 as an example, We generate initial prototypes
𝒑𝒕𝑣
𝑖
and 𝒑𝒕𝑡

𝑖
for identity 𝐿𝑖 as follows:

𝒑𝒕𝑣𝑖 =

𝑁𝑖∑︁
𝑗=1,𝑌𝑗 ∈𝐿𝑖

𝒗 𝑗 , 𝒑𝒕𝑡𝑖 =
𝑁𝑖∑︁

𝑗=1,𝑌𝑗 ∈𝐿𝑖
𝒕 𝑗 , (1)
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Figure 2: Overview of our Propot. It includes instance-level matching and identity-enriched prototype learning. For instance-
level matching, each image and its annotated text are directly aligned through SDM loss (Baseline). For prototype learning, we
first utilize pre-trained CLIP to generate initial prototypes (𝒑𝒕𝑣 and 𝒑𝒕𝑡 ). We then adapt the initial prototypes to TIReID through
the DPP module, resulting in task-adapted prototypes (𝒑𝑣𝑎 and 𝒑𝑡𝑎). The IPP module updates the prototypes conditioned on a
batch of intra-modal and inter-modal instances, generating intra-modal and inter-modal enriched prototypes (𝒑𝑣𝑒𝑛 , 𝒑𝑡𝑒𝑛 , 𝒑𝑣𝑒𝑜
and 𝒑𝑡𝑒𝑜 ). The multiple prototypes are aggregated using Adaptive Prototypical Aggregation (APA) to generate final prototypes
(𝒑𝑣 and 𝒑𝑡 ). Their rich identity information is then diffused to each instance using prototype-to-instance contrastive loss (L𝑝2𝑣 ,
L𝑝2𝑡 ) to model identity-level matching. Moreover, we introduce the MLMmodule to enhance fine-grained matching. During
testing, only visual and textual encoders are used for inference.

where 𝑁𝑖 denotes the number of instances under the identity 𝐿𝑖 .
Therefore, for the entire training set, we can generate visual and
textual initial prototype sets 𝒑𝒕𝑣 = [𝒑𝒕𝑣1 ,𝒑𝒕

𝑣
2 , ...,𝒑𝒕

𝑣
𝑁
] ∈ R𝑁×𝑑 and

𝒑𝒕𝑡 = [𝒑𝒕𝑡1,𝒑𝒕
𝑡
2, ...,𝒑𝒕

𝑡
𝑁
] ∈ R𝑁×𝑑 .

3.3 Domain-conditional Prototypical Prompting
Benefiting from CLIP’s powerful capabilities, the initial prototype
effectively captures some identity information to model identity-
level matching, leading to improved performance (as shown in
Table 4), which confirms the validity of our idea. However, a no-
table challenge arises due to the domain gap between the pre-
training data of CLIP and the TIReID dataset. Consequently, the
identity information mined by CLIP’s features falls short, signifi-
cantly diminishing the impact of the initial prototype. To address
this challenge, inspired by the Contextual Optimization (CoOp)
framework [65], which introduces learnable context vectors to
adapt VLP to downstream tasks, we introduce a Domain-conditional
Prototypical Prompting (DPP) module to adjust the initial proto-
type to the TIReID task. Specifically, we add a set of learnable
contextual prompt vectors before each initial prototype. These vec-
tors undergo training on the TIReID dataset concurrently with the
network, gaining domain knowledge specific to the TIReID task.
These vectors then transmit the domain knowledge to each initial

prototype through the self-attention encoder (SAE), aiding in the
adaptation of prototypes to the TIReID task.

Formally, for each initial prototype 𝒑𝒕𝑖 , we add a set of learn-
able contextual prompt vectors {[𝑿𝑖 ]1, [𝑿𝑖 ]2, ..., [𝑿𝑖 ]𝐾 } ∈ R𝐾×𝑑

before it, where [𝑿𝑖 ] is the visual contextual prompt vector 𝒄𝑣,𝑖
for the visual prototype 𝒑𝒕𝑣

𝑖
, and [𝑿𝑖 ] is the textual contextual

prompt vector 𝒄𝑡,𝑖 for the textual prototype 𝒑𝒕𝑡
𝑖
. Then, we feed

{[𝑿𝑖 ]1, [𝑿𝑖 ]2, ..., [𝑿𝑖 ]𝐾 ,𝒑𝒕𝑖 } ∈ R(𝐾+1)×𝑑 into SAE to pass the in-
formation to the initial prototype for updating it.

𝒑𝑎,𝑖 = 𝑆𝐴𝐸 ({[𝑿𝑖 ]1, [𝑿𝑖 ]2, ..., [𝑿𝑖 ]𝐾 ,𝒑𝒕𝑖 }), (2)

where 𝒑𝑎,𝑖 ∈ R𝑑 represents the task-adaptive prototype. SAE is
comprised of 𝑁𝑎 blocks, with each block containing a multi-head
self-attention layer and a feed-forward network layer. The above
process allows us to generate modality-specific task-adaptive proto-
types, 𝒑𝑣

𝑎,𝑖
and 𝒑𝑡

𝑎,𝑖
, for the input prototypes of different modalities.

3.4 Instance-conditional Prototypical
Prompting

So far, we have generated a prototype adapted to the TIReID task. As
expected, the resulting prototype brought significant performance
improvements. However, as depicted in Figure 1, instances of the
same identity showcase notable diversity due to factors like view
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changes and camera parameters. The previously derived prototype
fails to account for this diversity, resulting in the loss of some
discriminative identity information. To solve this problem, inspired
by Conditional Context Optimization (CoCoOp) [46], we propose
an Instance-conditional Prototypical Prompting (IPP) module. This
module updates the prototype conditioned on each batch of the
input instances, enabling the comprehensive mining of instance-
specific information and ensuring diversity within the prototype.

Specifically, for a batch of 𝐵 image-text pairs {𝐼𝑖 ,𝑇𝑖 }𝐵𝑖=1, after
feature encoding, we have 𝑽𝐵 = [𝒗1, 𝒗2, ..., 𝒗𝐵] ∈ R𝐵×𝑑 and 𝑻𝐵 =

[𝒕1, 𝒕2, ..., 𝒕𝐵] ∈ R𝐵×𝑑 . Next, the instance features 𝑽𝐵/𝑻𝐵 and the
prototypes 𝒑𝒕𝑣/𝒑𝒕𝑡 are processed in a cross-attention decoder
(CAD). This decoder enables interaction between instance features
and prototypes, extracting identity-relevant information from in-
stances to enrich the prototypes. There are 𝑁𝑒 blocks in CAD, each
featuring a multi-head cross-attention layer and a feed-forward net-
work layer. For the cross-attention decoder, the prototypes 𝒑𝒕𝑣/𝒑𝒕𝑡
serve as query, while the instance features 𝑽𝐵/𝑻𝐵 are designated as
key and value, which is formulated as follows:

𝒑𝑣𝑒𝑛,𝑖 = 𝐶𝐴𝐷 (𝒑𝒕𝑣, 𝑽𝐵, 𝑽𝐵), 𝒑𝑡𝑒𝑛,𝑖 = 𝐶𝐴𝐷 (𝒑𝒕𝑡 , 𝑻𝐵, 𝑻𝐵), (3)

where𝒑𝑣
𝑒𝑛,𝑖

∈ R𝑑 and𝒑𝑡
𝑒𝑛,𝑖

∈ R𝑑 represent the intra-modal instance-
enriched visual and textual prototypes, respectively. This process
enhances the prototypes using intra-modal instance features. Addi-
tionally, we extend this enrichment by incorporating inter-modal
instance features, fostering the network to extract modality-shared
identity information comprehensively and minimize the modal gap.
We formulate them as

𝒑𝑣𝑒𝑜,𝑖 = 𝐶𝐴𝐷 (𝒑𝒕𝑣, 𝑻𝐵, 𝑻𝐵), 𝒑𝑡𝑒𝑜,𝑖 = 𝐶𝐴𝐷 (𝒑𝒕𝑡 , 𝑽𝐵, 𝑽𝐵), (4)

where𝒑𝑣
𝑒𝑜,𝑖

∈ R𝑑 and𝒑𝑡
𝑒𝑜,𝑖

∈ R𝑑 represent the inter-modal instance-
enriched visual and textual prototypes, respectively.

3.5 Adaptive Prototype Aggregation
For both images and texts, we generate three distinct modality-
specific prototypes:𝒑𝑚

𝑎,𝑖
∈ R𝑑 ,𝒑𝑚

𝑒𝑛,𝑖
∈ R𝑑 , and𝒑𝑚

𝑒𝑜,𝑖
∈ R𝑑 , each con-

taining different information for each identity 𝐿𝑖 , where𝑚 ∈ {𝑣, 𝑡}.
To seamlessly integrate all available information, we introduce an
Adaptive Prototype Aggregation (APA) module. This module ef-
fectively aggregates diverse prototypes to form a comprehensive
identity-enriched prototype. Since 𝒑𝒕𝑚

𝑖
is directly derived by CLIP,

ensuring high-quality prototypes due to its robust semantic under-
standing capabilities. We designate 𝒑𝒕𝑚

𝑖
as the prototype baseline

for aggregation. The aggregation weights are determined based
on the correlation of other prototypes with 𝒑𝒕𝑚

𝑖
. This approach

enables the suppression of spurious identity prototype informa-
tion in 𝒑𝑚

𝑎,𝑖
,𝒑𝑚
𝑒𝑛,𝑖

,𝒑𝑚
𝑒𝑜,𝑖

, while amplifying the correct ones during
aggregation. The calculation of prototype correlation, serving as
the aggregation weights for the three prototypes, is as follows:

𝒘𝑚𝑎,𝑖 = 𝒑𝒕𝑚𝑖 (𝒑𝑚𝑎,𝑖 )
𝑇 , 𝒘𝑚𝑒𝑛,𝑖 = 𝒑𝒕𝑚𝑖 (𝒑𝑚𝑒𝑛,𝑖 )

𝑇 , 𝒘𝑚𝑒𝑜,𝑖 = 𝒑𝒕𝑚𝑖 (𝒑𝑚𝑒𝑜,𝑖 )
𝑇 .

(5)
Then, we utilize the softmax function to normalize the weights

and obtain the final identity-enriched prototype as

𝒑𝑚𝑖 = 𝒑𝒕𝑚𝑖 +
∑︁
𝑘

𝒘𝑚
𝑘,𝑖

· 𝒑𝑚
𝑘,𝑖 , (6)

where 𝑘 ∈ {𝑎, 𝑒𝑛, 𝑒𝑜}. Thus, for the entire training set, we can gener-
ate the final visual and textual prototype sets𝒑𝑣 = [𝒑𝑣1,𝒑

𝑣
2, ...,𝒑

𝑣
𝑁
] ∈

R𝑁×𝑑 and 𝒑𝑡 = [𝒑𝑡1,𝒑
𝑡
2, ...,𝒑

𝑡
𝑁
] ∈ R𝑁×𝑑 . Subsequently, we propa-

gate the rich identity information encapsulated in the prototypes
to each instance through prototype-to-instance contrastive loss to
model identity-level matching for TIReID.

3.6 Training and Inference
The goal of Propot is to model both instance-level and identity-level
matching for TIReID. To this end, we optimize Propot through cross-
modal matching loss, cross-entropy loss, prototype-to-instance con-
trastive loss, and mask language modeling loss.

Given a batch of 𝐵 image-text pairs {𝐼𝑖 ,𝑇𝑖 }𝐵𝑖=1, we generate the
global visual and textual features as 𝑽𝐵 = [𝒗1, 𝒗2, ..., 𝒗𝐵] ∈ R𝐵×𝑑
and 𝑻𝐵 = [𝒕1, 𝒕2, ..., 𝒕𝐵] ∈ R𝐵×𝑑 . To align each image 𝐼𝑖 and its
annotated text 𝑇𝑖 , we utilize the similarity distribution matching
(SDM) [20] as the cross-modal matching loss tomodel instance-level
matching between them.

L𝑠𝑑𝑚 = L𝑖2𝑡 + L𝑡2𝑖 , (7)

L𝑖2𝑡 =
1
𝐵

𝐵∑︁
𝑖=1

𝐵∑︁
𝑗=1

𝑝𝑖, 𝑗 𝑙𝑜𝑔(
𝑝𝑖, 𝑗

𝑞𝑖, 𝑗 + 𝜖
), (8)

𝑝𝑖, 𝑗 =
𝑒𝑥𝑝 (𝑠𝑖𝑚(𝒗𝑖 , 𝒕 𝑗 )/𝜏)∑𝐵
𝑘=1 𝑒𝑥𝑝 (𝑠𝑖𝑚(𝒗𝑖 , 𝒕𝑘 )/𝜏)

, (9)

where 𝑠𝑖𝑚(·) denotes the cosine similarity function, 𝜏 denotes the
temperature factor to control the distribution peaks, and 𝜖 is a
small number to avoid numerical problems. 𝑞𝑖, 𝑗 denotes the true
matching probability. 𝛼 indicates the margin. L𝑡2𝑖 can be obtained
by exchanging 𝒗 and 𝒕 in Eqs. 8 and 9. Moreover, to ensure the
discriminability of features 𝒗 and 𝒕 , we calculate cross-entropy loss
L𝑖𝑑 on them to classify them into corresponding identity labels.

Through the prototype learning process described above, we
generate two identity-rich prototypes 𝒑𝑣

𝑖
and 𝒑𝑡

𝑖
for each identity

𝐿𝑖 . To effectively diffuse the rich identity information encapsulated
in the prototypes to instances of the same identity, we employ a
prototype-to-instance contrastive loss, denoted as L𝑝2𝑖 . This loss
operates in tandem with the cross-modal matching loss, collectively
contributing to the modeling of identity-level matching.

L𝑝2𝑖 =
𝑁∑︁
𝑖=1

L𝑝2𝑣 (𝐿𝑖 ) + L𝑝2𝑡 (𝐿𝑖 ), (10)

L𝑝2𝑣 (𝐿𝑖 ) = − 1
|𝑃 (𝐿𝑖 ) |

∑︁
𝑝∈𝑃 (𝐿𝑖 )

𝑒𝑥𝑝 (𝑠𝑖𝑚(𝒗𝑝 ,𝒑𝑣𝑖 )/𝜏∑𝐵
𝑘=1 𝑒𝑥𝑝 (𝑠𝑖𝑚(𝒗 𝑗 ,𝒑𝑣𝑖 )/𝜏)

, (11)

L𝑝2𝑡 (𝐿𝑖 ) = − 1
|𝑃 (𝐿𝑖 ) |

∑︁
𝑝∈𝑃 (𝐿𝑖 )

𝑒𝑥𝑝 (𝑠𝑖𝑚(𝒕𝑝 ,𝒑𝑡𝑖 )/𝜏∑𝐵
𝑘=1 𝑒𝑥𝑝 (𝑠𝑖𝑚(𝒕 𝑗 ,𝒑𝑡𝑖 )/𝜏)

, (12)

where 𝑃 (𝐿𝑖 ) represents a set of instance indices of identity 𝐿𝑖 , and
|𝑃 (𝐿𝑖 ) | denotes the cardinality of 𝑃 (𝐿𝑖 ). To further improve perfor-
mance, we follow [20] to introduce a mask language modeling task
L𝑚𝑙𝑚 to model fine-grained matching between modalities.

Propot is a single-stage and end-to-end trainable framework, and
the overall objective function L for training is as follows:

L = L𝑠𝑑𝑚 + L𝑖𝑑 + 𝜆1L𝑝2𝑖 + 𝜆2L𝑚𝑙𝑚, (13)

where 𝜆1 and 𝜆2 balance the contribution of different loss terms.
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The prototype learning process only exists during training. Dur-
ing inference, we only use Propot’s visual and textual encoders to
extract the global features of the test samples. The retrieval results
are obtained by calculating the cosine similarity.

4 EXPERIMENTS
4.1 Experiment Settings
Datasets and Metrics: The evaluations are conducted on three
datasets for TIReID. CUHK-PEDES [30] has 40,206 images and
80,412 descriptions of 13,003 persons. Each image has 2 descriptions,
each with an average length of 23 words. The training set has 34,054
images and 68,108 descriptions of 11,003 persons, the validation set
includes 3,078 images and 6,156 descriptions of 1,000 persons, and
the testing set involves 3,074 images and 6,148 descriptions of 1,000
persons. ICFG-PEDES [8] comprises 54,522 image-text pairs of
4,102 persons, with descriptions averaging 37 words in length. We
utilize 34,674 pairs of 3,102 persons for training and reserving the
remaining 1,000 persons for evaluation. RSTPReid [66] includes
20,505 images of 4,101 persons, each annotated with 2 descriptions,
with descriptions averaging 23 words in length. There are 3,701
persons in the training set, 200 persons in the validation set, and 200
persons in the testing set. For performance evaluation, we employ
the Rank-𝑘 matching accuracy (R@𝑘 , 𝑘=1, 5, 10).

Implementation Details: For input images, we uniformly re-
size them to 384×128 and augment them with random horizontal
flipping, random crop with padding, and random erasing. For in-
put texts, the length of the token sequence is unified to 77 and
augmented by randomly masking out some tokens with a 15%
probability [7]. Propot’s visual encoder is initialized with the CLIP-
ViT-B/16 version of CLIP, where the dimension 𝑑 of global visual
and textual features is 512. The SAE and CAD consist of 𝑁𝑎 = 1
and 𝑁𝑒 = 3 blocks, respectively, each with 8 heads. The length
𝐾 of the learnable prompt vector in the DPP module is set to 4.
The temperature factor 𝜏 is 0.02. The loss balance factors are set to
𝜆1 = 0.2 and 𝜆2 = 1.0. Model training utilizes the Adam optimizer
with a weight decay factor of 4e-5. Initial learning rates are 1e-5 for
the visual/textual encoder and 1e-4 for other network modules. We
employ a cosine learning rate decay strategy, stopping training at
60 epochs. The learning rate linearly decays by a factor of 0.1 within
the first 10% of the training epochs for warmup. All experiments
are implemented in PyTorch library, and models are trained with a
batch size of 64 on a single RTX3090 24GB GPU.

4.2 Comparisons with State-of-the-art Models
In this section, we compare our Propot with current state-of-the-art
(SOTA) approaches on all three TIReID benchmarks. The methods
for comparison are categorized into two sections: methods (w/o
CLIP) based on single-modal pre-training models (ResNet [16],
ViT [9], BERT [7]) andmethods (w/ CLIP) based onmulti-modal pre-
training CLIP [40] models. Propot falls under the second section.

The performance comparison with SOTA methods on CUHK-
PEDES is summarized in Table 1. The proposed Propot framework
demonstrates competitive performance at all metrics and outper-
forms all compared methods except [31], achieving remarkable
R@1, R@5, and R@10 accuracies of 74.89%, 89.90% and 94.17%,
respectively. While our R@1 accuracy is slightly lower (-0.13%)

Table 1: Performance comparison with state-of-the-art meth-
ods on CUHK-PEDES. R@1, R@5, and R@10 are listed.

Methods Pre Ref R@1 R@5 R@10
SRCF [45]

w
/o

CL
IP

ECCV’22 64.04 82.99 88.81
LBUL [52] MM’22 64.04 82.66 87.22

AXM-Net [11] AAAI’22 64.44 80.52 86.77
C2A2 [37] MM’22 64.82 83.54 89.77
LGUR [41] MM’22 65.25 83.12 89.00
FedSH [35] TMM’23 60.87 80.82 87.61
PBSL [42] MM’23 65.32 83.81 89.26
BEAT [36] MM’23 65.61 83.45 89.57
MANet [57] TNNLS’23 65.64 83.01 88.78
ASAMN [38] TIP’23 65.66 84.53 90.21
LCR2S [55] MM’23 67.36 84.19 89.62
TransTPS [1] TMM’23 68.23 86.37 91.65
MGCN [14] TMM’23 69.40 87.07 90.82
CFine [56]

w
/C

LI
P

TIP’23 69.57 85.93 91.15
VLP-TPS [48] arXiv’23 70.16 86.10 90.98
VGSG [17] TIP’23 71.38 86.75 91.86
IRRA [20] CVPR’23 73.38 89.93 93.71
BiLMa [12] ICCVW’23 74.03 89.59 93.62
TCB [60] MM’23 74.45 90.07 94.66
DCEL [31] MM’23 75.02 90.89 94.52
SAL [13] MMM’24 69.14 85.90 90.81

EESSO [54] IVC’24 69.57 85.65 90.71
PD [32] arXiv’24 71.59 87.95 92.45

CFAM [67] CVPR’24 72.87 88.61 92.87
TBPS-CLIP [2] AAAI’24 73.54 88.19 92.35

Ours - 74.89 89.90 94.17

compared to the optimal method DCEL [31], it is essential to note
that DECL introduces both mask language modeling and global-
local semantic alignment to mine fine-grained matching, resulting
in higher computational cost. In contrast, Propot employs only
mask language modeling for fine-grained matching. Additionally,
as observed in Table 4#7, even without a local matching module,
Propot achieves a noteworthy 74.37% R@1 accuracy, surpassing
most compared methods. Table 2 reports the comparative results on
ICFG-PEDES. Our Propot establishes a new SOTA performance on
this dataset, with R@1, R@5, and R@10 accuracy scores of 65.12%,
81.57%, and 86.97%, respectively. Notably, Propot surpasses the cur-
rent SOTA solution TBPS-CLIP [2] by 1.23% in R@5 and 1.50% in
R@10. The comparative analysis with SOTAmethods onRSTPReid
is summarized in Table 3. Propot demonstrates commendable per-
formance, achieving competitive results over recent SOTAmethods,
specifically attaining 61.83%, 83.45%, and 89.70% on R@1, R@5, and
R@10. Although our method achieves slightly lower performance (-
0.08%) than the optimal method TBPS-CLIP [2], which incorporates
CLIP into the TIReID task using various data augmentation and
training tricks. In contrast, our approach uses only basic data aug-
mentation without additional tricks. In summary, propot achieves
superior performance on all three benchmarks. This is attributed to
the fact that our prototypical prompting can simultaneously model
instance-level and identity-level matching.

4.3 Ablation Studies
We conduct ablation experiments for Propot on CUHK-PEDES using
the default settings above. Baseline solely includes visual and textual
encoders initialized by CLIP, which is trained using SDM and cross-
entropy loss, with the training settings aligned with those of Propot.
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Table 2: Performance comparison with state-of-the-art meth-
ods on ICFG-PEDES. R@1, R@5, and R@10 are listed.

Methods Pre Ref R@1 R@5 R@10
IVT [44]

w
/o

CL
IP

ECCVW’22 56.04 73.60 80.22
SRCF [45] ECCV’22 57.18 75.01 81.49
LGUR [41] MM’22 57.42 74.97 81.45
FedSH [35] TMM’23 55.01 72.75 79.48
ASAMN [38] TIP’23 57.09 76.33 82.84
PBSL [42] MM’23 57.84 75.46 82.15
LCR2S [55] MM’23 57.93 76.08 82.40
BEAT [36] MM’23 58.25 75.92 81.96
MANet [57] TNNLS’23 59.44 76.80 82.75
MGCN [14] TMM’23 60.20 76.75 83.90
VLP-TPS [48]

w
/C

LI
P

arXiv’23 60.64 75.97 81.76
CFine [56] TIP’23 60.83 76.55 82.42
TCB [60] MM’23 61.60 76.33 81.90
VGSG [17] TIP’23 63.05 78.43 84.36
IRRA [20] CVPR’23 63.46 80.25 85.82
BiLMa [12] ICCVW’23 63.83 80.15 85.74
DCEL [31] MM’23 64.88 81.34 86.72
EESSO [54] IVC’24 60.84 77.89 83.53
PD [32] arXiv’24 60.93 77.96 84.11

CFAM [67] CVPR’24 62.17 79.57 85.32
SAL [13] MMM’24 62.77 78.64 84.21

TBPS-CLIP [2] AAAI’24 65.05 80.34 85.47
Ours - 65.12 81.57 86.97

Contributions of Proposed Components: In Table 4, we as-
sess the contribution of each module of Propot, including the initial
prototype (IniPt) generated by CLIP, the DPP module, the IPP mod-
ule, and theMLMmodule. Baseline achieves a notable R@1 accuracy
of 72.73% due to the rich multi-modal knowledge of CLIP. Intro-
ducing our prototype learning process based on Baseline, aimed
at modeling identity-level matching, yields several key observa-
tions. Firstly, using only the initial prototype generated by CLIP
to supervise identity-level matching leads to distinct performance
improvements (+0.35% R@1 improvement over Baseline), affirming
the feasibility of our approach and the importance of identity-level
matching. Secondly, incorporating the DPP module to update the
initial prototype results in a 1.38% R@1 accuracy improvement over
Baseline, demonstrating the effective adaptation of the initial proto-
type to the TIReID task. Thirdly, when the IPP module is employed
to update the prototype, whether conditioned on intra-modal or
inter-modal instances, substantial performance enhancements are
observed (+1.1% or +0.92% R@1 improvement over Baseline). The
performance is further elevated when both IPP modules are utilized
concurrently, underscoring the IPP module’s capacity to enrich the
prototype with instance information. Fourthly, the collaborative
use of DPP and IPP modules further enhances the R@1 accuracy to
74.37%, surpassing most state-of-the-art methods in Table 1. This
is attributed to our Propot’s ability to model instance-level and
identity-level matching simultaneously. Finally, incorporating the
local matching module gets the best performance for Propot.

Impact of contextual vector length 𝐾 in DPP: To facilitate
the initial prototype adapt to the TIReID task, we introduce a set
of learnable contextual prompt vectors for each prototype in the
DPP module. The length 𝐾 of these vectors is a crucial parameter
affecting the prototype’s adaptation. To explore the impact of dif-
ferent vector lengths, we vary 𝐾 from 1 to 6 and report the results
in Figure 3 (a). The observed trend indicates that larger values of

Table 3: Performance comparison with state-of-the-art meth-
ods on RSTPReid. R@1, R@5, and R@10 are listed.

Methods Pre Ref R@1 R@5 R@10
LBUL [52]

w
/o

CL
IP

MM’22 45.55 68.20 77.85
IVT [44] ECCVW’22 46.70 70.00 78.80
ACSA [18] TMM’22 48.40 71.85 81.45
C2A2 [37] MM’22 51.55 76.75 85.15
PBSL [42] MM’23 47.80 71.40 79.90
BEAT [36] MM’23 48.10 73.10 81.30
MGCN [14] TMM’23 52.95 75.30 84.04
LCR2S [55] MM’23 54.95 76.65 84.70
TransTPS [1] TMM’23 56.05 78.65 86.75
CFine [56]

w
/C

LI
P

TIP’23 50.55 72.50 81.60
VLP-TPS [48] arXiv’23 50.65 72.45 81.20
IRRA [20] CVPR’23 60.20 81.30 88.20
BiLMa [12] ICCVW’23 61.20 81.50 88.80
DCEL [31] MM’23 61.35 83.95 90.45
EESSO [54] IVC’24 53.15 74.80 83.55
PD [32] arXiv’24 56.65 77.40 84.70

CFAM [67] CVPR’24 59.40 81.35 88.50
TBPS-CLIP [2] AAAI’24 61.95 83.55 88.75

Ours - 61.87 83.63 89.70
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Figure 3: Effects of four hyper-parameters on CUHK-PEDES,
including contextual vector length 𝐾 , the block number
𝑁𝑎, 𝑁𝑒 , and loss weight 𝜆1.

𝐾 result in better performance, as they provide more contextual
parameters to capture TIReID task information. Notably, when 𝐾
equals 4, the performance reaches a peak of 74.89%. However, exces-
sively large𝐾 values may introduce redundant information, leading
to overfitting and increased computational costs. Hence, we set 𝐾
to 4 to strike a balance between performance and efficiency.

Influence of 𝑁𝑎, 𝑁𝑒 : The parameters 𝑁𝑎 and 𝑁𝑒 determine the
number of blocks in SAE and CAD, respectively. Their impact on
performance is shown in Figure 3 (b) and (c). Regarding 𝑁𝑎 , we
observe a notable performance drop when its value exceeds 3. This
suggests that too many SAE parameters might impede the learning
of contextual prompt vectors. Therefore, we set 𝑁𝑎 to 1 in our ex-
periments, which yields the optimal result. Conversely, our model
shows less sensitivity to 𝑁𝑒 , with its curve displaying a relatively
stable trend. However, excessively large 𝑁𝑒 values would intro-
duce unnecessary parameters, leading to increased computational
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Table 4: Ablation study on different components of our Propot on CUHK-PEDES.

No. Methods IniPt DPP IPP MLM R@1 R@5 R@10 Params FLOPsIntra Inter
0# Baseline 72.73 88.91 93.01 155.26M 20.266
2# +IniP ✓ 73.08 88.97 93.19 155.26M 20.278
3# +DPP ✓ ✓ 74.11 89.46 93.57 203.48M 25.704
4# +IPP (Intra) ✓ ✓ 73.83 89.21 93.53 158.41M 23.058
5# +IPP (Inter) ✓ ✓ 73.65 89.42 93.69 158.41M 23.058
6# +IPP ✓ ✓ ✓ 74.03 89.47 93.66 158.41M 25.838
7# +DPP+IPP ✓ ✓ ✓ ✓ 74.37 89.59 93.88 206.64M 31.264
8# +DPP+IPP+MLM ✓ ✓ ✓ ✓ ✓ 74.89 89.90 94.17 245.91M 37.353

Table 5: Ablation study of prototype aggregation schemes on
CUHK-PEDES.

Method Rank-1 Rank-5 Rank-10
Sum 74.30 89.86 93.84

Average 74.29 89.39 93.34
MLP 73.51 89.56 93.76

Parameter 74.19 89.10 93.18
APA (Ours) 74.89 89.90 94.17

costs. Hence, we set 𝑁𝑒 to 3 to achieve superior performance while
maintaining efficiency.

Impact of weight 𝜆1 in the objective function: The param-
eter 𝜆1 determines the strength of identity-level matching. To as-
sess its effect, we conduct experiments by varying 𝜆1 from 0.01
to 10, as depicted in Figure 3 (d). Results indicate that increas-
ing 𝜆1 leads to gradual performance improvement, peaking at 0.2.
However, further increase in 𝜆1 results in performance decline,
collapsing when 𝜆1 reaches 10. This pattern occurs because too
small 𝜆1 fails to effectively spread identity information to instances,
making identity-level matching ineffective. Conversely, excessively
large 𝜆1 disrupts instance-level matching by over-diffusing identity
information. Therefore, we set 𝜆1 to 0.2 to balance instance-level
and identity-level matching.

Different Prototype Aggregation Schemes:We introduced
the Adaptive Prototype Aggregation (APA) module to adaptively
combine multiple prototypes generated by different modules. To
demonstrate its effectiveness, we compared APA with several com-
mon aggregation schemes: (1) summing prototypes, (2) averag-
ing prototypes, (3) using a multi-layer perceptron (MLP) to assign
weights to prototypes, and (4) learning weights for prototypes
simultaneously with the network. Table 5 summarizes the com-
parison results. From the analysis, we draw the following conclu-
sions: Aggregation methods with learnable weights perform worse
than those without. This is because adding parameters makes op-
timization more difficult and uncertain for the network. Simple
summation or averaging of prototypes yields superior performance,
highlighting the effectiveness of our approach. The strength of our
aggregation method lies in its use of the CLIP-generated initial
prototype as a baseline for combining other prototypes adaptively.
The quality of the initial prototype is guaranteed by CLIP’s strong
semantic understanding capabilities.

Qualitative Results: To showcase the effectiveness of Propot,
we present retrieval results in Figure 4. For each query text, Figure 4
displays the top-10 gallery images retrieved by both the baseline and
Propot. Baseline solely focuses on instance-level matching, whereas
Propot incorporates prototype prompting to include identity-level

Balding male with gray hair, 
wearing glasses, dark colored 
shirt over a colored shirt, dark 
pants and dark colored shoes.

A person with dark hair, 
wearing a blue short sleeve 
shirt, pink shorts and a pair of 
open heel shoes.

The lady wears a black and 
white shirt black and white 
shorts with beige wedge she 
carries two shoulder bags 
black and brown.

The woman is wearing a 
white cardigan over a long 
floaty dress and black shoes. 
She is carrying a black carry-
on bag.

Query Top-10 Retrieval Results

Figure 4: Retrieval result comparisons of Baseline (the 1st
row) andPropot (the 2nd row) onCUHK-PEDES. Thematched
and mismatched person images are marked with green and
red rectangles, respectively.
matching. The examples show that Propot excels where the baseline
struggles, ensuring imageswith the same identity as the given query
text rank high. This highlights the importance of identity-level
matching, with Propot outperforming by modeling both instance-
level and identity-level matching simultaneously.

5 CONCLUSION
In this study, to model identity-level matching for TIReID, we
present Propot, a conceptually simple framework for identity-enriched
prototype learning. The framework follows the ‘initialize, adapt,
enrich, then aggregate’ pipeline. Initially, we generate robust initial
prototypes using CLIP. Then, we employ the Domain-conditional
Prototypical Prompting (DPP) module to prompt and adapt the
initial prototypes to the TIReID task. To ensure prototype diversity,
the Instance-conditional Prototypical Prompting (DPP) is devised,
enriching the prototypes with both intra-modal and inter-modal in-
stances. Finally, we use an adaptive prototype aggregation module
to effectively combine multiple prototypes and diffuse their rich
identity information to instances, thereby enabling identity-level
matching. Through extensive experiments conducted on three pop-
ular benchmarks, we demonstrate the superiority and effectiveness
of the proposed Propot framework.



929

930

931

932

933

934

935

936

937

938

939

940

941

942

943

944

945

946

947

948

949

950

951

952

953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971

972

973

974

975

976

977

978

979

980

981

982

983

984

985

986

Prototypical Prompting for Text-to-image Person Re-identification ACM MM, 2024, Melbourne, Australia

987

988

989

990

991

992

993

994

995

996

997

998

999

1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

1011

1012

1013

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

1025

1026

1027

1028

1029

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

1041

1042

1043

1044

REFERENCES
[1] Liping Bao, Longhui Wei, Wengang Zhou, Lin Liu, Lingxi Xie, Houqiang Li, and

Qi Tian. 2023. Multi-granularity Matching Transformer for Text-based Person
Search. IEEE Transactions on Multimedia (2023).

[2] Min Cao, Yang Bai, Ziyin Zeng, Mang Ye, and Min Zhang. 2024. An Empirical
Study of CLIP for Text-based Person Search. In AAAI Conference on Artificial
Intelligence, AAAI, Vol. 38. 465–473.

[3] Yucheng Chen, Rui Huang, Hong Chang, Chuanqi Tan, Tao Xue, and Bingpeng
Ma. 2021. Cross-Modal Knowledge Adaptation for Language-Based Person Search.
IEEE Transactions on Image Processing 30 (2021), 4057–4069.

[4] Yen-Chun Chen, Linjie Li, Licheng Yu, Ahmed El Kholy, Faisal Ahmed, Zhe Gan,
Yu Cheng, and Jingjing Liu. 2020. UNITER: UNiversal Image-TExt Representation
Learning. In European Conference on Computer Vision, ECCV.

[5] Yuhao Chen, Guoqing Zhang, Yujiang Lu, Zhenxing Wang, and Yuhui Zheng.
2022. TIPCB: A simple but effective part-based convolutional baseline for text-
based person search. Neurocomputing 494 (2022), 171–181.

[6] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. 2009. Im-
ageNet: A large-scale hierarchical image database. In IEEE Computer Society
Conference on Computer Vision and Pattern Recognition, CVPR.

[7] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2019. BERT:
Pre-training of Deep Bidirectional Transformers for Language Understanding.
In The North American Chapter of the Association for Computational Linguistics,
NAACL.

[8] Zefeng Ding, Changxing Ding, Zhiyin Shao, and Dacheng Tao. 2021. Semantically
Self-Aligned Network for Text-to-Image Part-aware Person Re-identification.
arXiv (2021).

[9] Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xi-
aohua Zhai, Thomas Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg
Heigold, Sylvain Gelly, Jakob Uszkoreit, and Neil Houlsby. 2021. An Image is
Worth 16x16Words: Transformers for Image Recognition at Scale. In International
Conference on Learning Representations, ICLR.

[10] Han Fang, Pengfei Xiong, Luhui Xu, and Yu Chen. 2021. CLIP2Video: Mastering
Video-Text Retrieval via Image CLIP. arXiv (2021).

[11] Ammarah Farooq, Muhammad Awais, Josef Kittler, and Syed Safwan Khalid. 2022.
AXM-Net: Implicit Cross-Modal Feature Alignment for Person Re-identification.
In AAAI Conference on Artificial Intelligence, AAAI.

[12] Takuro Fujii and Shuhei Tarashima. 2023. BiLMa: Bidirectional Local-Matching
for Text-based Person Re-identification. In IEEE International Conference on Com-
puter Vision Workshops, ICCVW. 2786–2790.

[13] Wenjun Gan, Jiawei Liu, Yangchun Zhu, Yong Wu, Guozhi Zhao, and Zhengjun
Zha. 2024. Cross-Modal Semantic Alignment Learning for Text-Based Person
Search. In International Conference on Multimedia Modeling, MMM. 201–215.

[14] Guang Han, Min Lin, Ziyang Li, Haitao Zhao, and Sam Kwong. 2023. Text-
to-Image Person Re-identification Based on Multimodal Graph Convolutional
Network. IEEE Transactions on Multimedia (2023), 1–12. https://doi.org/10.1109/
TMM.2023.3344354

[15] Xiao Han, Sen He, Li Zhang, and Tao Xiang. 2021. Text-Based Person Search
with Limited Data. In British Machine Vision Conference, BMVC.

[16] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. 2016. Deep Residual
Learning for Image Recognition. In IEEE Conference on Computer Vision and
Pattern Recognition, CVPR.

[17] Shuting He, Hao Luo, Wei Jiang, Xudong Jiang, and Henghui Ding. 2023. VGSG:
Vision-Guided Semantic-Group Network for Text-based Person Search. IEEE
Transactions on Image Processing (2023).

[18] Zhong Ji, Junhua Hu, Deyin Liu, Lin Yuanbo Wu, and Ye Zhao. 2022. Asymmetric
Cross-Scale Alignment for Text-Based Person Search. IEEE Transactions on
Multimedia (2022), 1–11.

[19] Chao Jia, Yinfei Yang, Ye Xia, Yi-Ting Chen, Zarana Parekh, Hieu Pham, Quoc V.
Le, Yun-Hsuan Sung, Zhen Li, and Tom Duerig. 2021. Scaling Up Visual and
Vision-Language Representation Learning With Noisy Text Supervision. In Inter-
national Conference on Machine Learning, ICML.

[20] Ding Jiang and Mang Ye. 2023. Cross-Modal Implicit Relation Reasoning and
Aligning for Text-to-Image Person Retrieval. In IEEE Conference on Computer
Vision and Pattern Recognition, CVPR. 2787–2797.

[21] Zhengbao Jiang, Frank F Xu, Jun Araki, and Graham Neubig. 2020. How can we
know what language models know? Transactions of the Association for Computa-
tional Linguistics 8 (2020), 423–438.

[22] Ya Jing, Chenyang Si, Junbo Wang, Wei Wang, Liang Wang, and Tieniu Tan. 2020.
Pose-guided multi-granularity attention network for text-based person search.
In AAAI Conference on Artificial Intelligence, AAAI.

[23] Chen Ju, Tengda Han, Kunhao Zheng, Ya Zhang, and Weidi Xie. 2022. Prompting
visual-language models for efficient video understanding. In European Conference
on Computer Vision, ECCV. 105–124.

[24] Huafeng Li, Shuanglin Yan, Zhengtao Yu, and Dapeng Tao. 2019. Attribute-
identity embedding and self-supervised learning for scalable person re-
identification. IEEE Transactions on Circuits and Systems for Video Technology 30,
10 (2019), 3472–3485.

[25] Junnan Li, Ramprasaath Selvaraju, Akhilesh Gotmare, Shafiq Joty, Caiming Xiong,
and Steven Chu Hong Hoi. 2021. Align before fuse: Vision and language repre-
sentation learning with momentum distillation. Advances in neural information
processing systems, NeruIPS 34 (2021), 9694–9705.

[26] Liunian Harold Li, Mark Yatskar, Da Yin, Cho-Jui Hsieh, and Kai-Wei Chang.
2019. VisualBERT: A Simple and Performant Baseline for Vision and Language.
arXiv (2019).

[27] Shiping Li, Min Cao, and Min Zhang. 2022. Learning Semantic-Aligned Feature
Representation for Text-Based Person Search. In IEEE International Conference
on Acoustics, Speech and Signal Processing, ICASSP.

[28] Shuang Li, Fan Li, Jinxing Li, Huafeng Li, Bob Zhang, Dapeng Tao, and Xinbo
Gao. 2023. Logical Relation Inference and Multiview Information Interaction
for Domain Adaptation Person Re-Identification. IEEE Transactions on Neural
Networks and Learning Systems (2023).

[29] Siyuan Li, Li Sun, and Qingli Li. 2023. Clip-reid: Exploiting vision-language model
for image re-identification without concrete text labels. In AAAI Conference on
Artificial Intelligence, AAAI, Vol. 37. 1405–1413.

[30] Shuang Li, Tong Xiao, Hongsheng Li, Bolei Zhou, Dayu Yue, and Xiaogang Wang.
2017. Person Search with Natural Language Description. In IEEE Conference on
Computer Vision and Pattern Recognition, CVPR.

[31] Shenshen Li, Xing Xu, Yang Yang, Fumin Shen, Yijun Mo, Yujie Li, and Heng Tao
Shen. 2023. DCEL: Deep Cross-modal Evidential Learning for Text-Based Person
Retrieval. In ACM International Conference on Multimedia, MM. 6292–6300.

[32] Weihao Li, Lei Tan, Pingyang Dai, and Yan Zhang. 2024. Prompt Decoupling for
Text-to-Image Person Re-identification. arXiv preprint arXiv:2401.02173 (2024).

[33] Jiasen Lu, Dhruv Batra, Devi Parikh, and Stefan Lee. 2019. ViLBERT: Pretraining
Task-Agnostic Visiolinguistic Representations for Vision-and-Language Tasks.
In Advances in Neural Information Processing Systems, NeruIPS, Vol. 32.

[34] Huaishao Luo, Lei Ji, Ming Zhong, Yang Chen, Wen Lei, Nan Duan, and Tianrui
Li. 2022. CLIP4Clip: An Empirical Study of CLIP for End to End Video Clip
Retrieval. Neurocomputing 508 (2022), 293–304.

[35] WentaoMa, XinyiWu, Shan Zhao, Tongqing Zhou, DanGuo, LichuanGu, Zhiping
Cai, and Meng Wang. 2023. FedSH: Towards Privacy-preserving Text-based
Person Re-Identification. IEEE Transactions on Multimedia (2023).

[36] Yiwei Ma, Xiaoshuai Sun, Jiayi Ji, Guannan Jiang, Weilin Zhuang, and Rongrong
Ji. 2023. Beat: Bi-directional One-to-Many Embedding Alignment for Text-based
Person Retrieval. In ACM International Conference on Multimedia, MM. 4157–
4168.

[37] Kai Niu, Linjiang Huang, Yan Huang, Peng Wang, Liang Wang, and Yanning
Zhang. 2022. Cross-modal Co-occurrence Attributes Alignments for Person
Search by Language. In ACM International Conference on Multimedia, MM.

[38] Kai Niu, Tao Huang, Linjiang Huang, Liang Wang, and Yanning Zhang. 2023.
Improving inconspicuous attributes modeling for person search by language.
IEEE transactions on image processing (2023).

[39] Kai Niu, YanHuang,Wanli Ouyang, and LiangWang. 2020. Improving description-
based person re-identification by multi-granularity image-text alignments. IEEE
Transactions on Image Processing 29 (2020), 5542–5556.

[40] Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh,
Sandhini Agarwal, Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark,
Gretchen Krueger, and Ilya Sutskever. 2021. Learning Transferable Visual Models
From Natural Language Supervision. In International Conference on Machine
Learning, ICML.

[41] Zhiyin Shao, Xinyu Zhang, Meng Fang, Zhifeng Lin, Jian Wang, and Changxing
Ding. 2022. Learning Granularity-Unified Representations for Text-to-Image
Person Re-identification. In ACM International Conference on Multimedia, MM.

[42] Fei Shen, Xiangbo Shu, Xiaoyu Du, and Jinhui Tang. 2023. Pedestrian-specific
bipartite-aware similarity learning for text-based person retrieval. In ACM Inter-
national Conference on Multimedia, MM. 8922–8931.

[43] Taylor Shin, Yasaman Razeghi, Robert L. Logan IV, Eric Wallace, and Sameer
Singh. 2020. AutoPrompt: Eliciting Knowledge from Language Models with
Automatically Generated Prompts. In Conference on Empirical Methods in Natural
Language Processing, EMNLP. 4222–4235.

[44] Xiujun Shu, Wei Wen, Haoqian Wu, Keyu Chen, Yiran Song, Ruizhi Qiao, Bo Ren,
and Xiao Wang. 2022. See Finer, See More: Implicit Modality Alignment for Text-
based Person Retrieval. In European Conference on Computer Vision Workshop on
Real-World Surveillance, ECCVW.

[45] Wei Suo, Mengyang Sun, Kai Niu, Yiqi Gao, Peng Wang, Yanning Zhang, and
Qi Wu. 2022. A Simple and Robust Correlation Filtering Method for Text-Based
Person Search. In European Conference on Computer Vision, ECCV.

[46] Kaiyang Zhou, Jingkang Yang, Chen Change Loy, and Ziwei Liu. 2022. Conditional
prompt learning for vision-language models. In IEEE Conference on Computer
Vision and Pattern Recognition, CVPR. 16816–16825.

[47] Chengji Wang, Zhiming Luo, Yaojin Lin, and Shaozi Li. 2021. Text-based Per-
son Search via Multi-Granularity Embedding Learning. In International Joint
Conference on Artificial Intelligence, IJCAI.

[48] Guanshuo Wang, Fufu Yu, Junjie Li, Qiong Jia, and Shouhong Ding. 2023. Ex-
ploiting the Textual Potential from Vision-Language Pre-training for Text-based
Person Search. arXiv preprint arXiv:2303.04497 (2023).

https://doi.org/10.1109/TMM.2023.3344354
https://doi.org/10.1109/TMM.2023.3344354


1045

1046

1047

1048

1049

1050

1051

1052

1053

1054

1055

1056

1057

1058

1059

1060

1061

1062

1063

1064

1065

1066

1067

1068

1069

1070

1071

1072

1073

1074

1075

1076

1077

1078

1079

1080

1081

1082

1083

1084

1085

1086

1087

1088

1089

1090

1091

1092

1093

1094

1095

1096

1097

1098

1099

1100

1101

1102

ACM MM, 2024, Melbourne, Australia Anonymous Authors

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119

1120

1121

1122

1123

1124

1125

1126

1127

1128

1129

1130

1131

1132

1133

1134

1135

1136

1137

1138

1139

1140

1141

1142

1143

1144

1145

1146

1147

1148

1149

1150

1151

1152

1153

1154

1155

1156

1157

1158

1159

1160

[49] Wenhui Wang, Hangbo Bao, Li Dong, Johan Bjorck, Zhiliang Peng, Qiang Liu,
Kriti Aggarwal, Owais Khan Mohammed, Saksham Singhal, Subhojit Som, et al.
2023. Image as a Foreign Language: BEiT Pretraining for Vision and Vision-
Language Tasks. In IEEE Conference on Computer Vision and Pattern Recognition,
CVPR. 19175–19186.

[50] YangWang, Jinjia Peng, Huibing Wang, and MengWang. 2022. Progressive learn-
ing with multi-scale attention network for cross-domain vehicle re-identification.
Science China Information Sciences 65, 6 (2022), 160103.

[51] Zhaoqing Wang, Yu Lu, Qiang Li, Xunqiang Tao, Yandong Guo, Mingming Gong,
and Tongliang Liu. 2022. CRIS: CLIP-Driven Referring Image Segmentation. In
IEEE Conference on Computer Vision and Pattern Recognition, CVPR.

[52] Zijie Wang, Aichun Zhu, Jingyi Xue, Xili Wan, Chao Liu, Tian Wang, and Yifeng
Li. 2022. Look Before You Leap: Improving Text-based Person Retrieval by
Learning A Consistent Cross-modal Common Manifold. In ACM International
Conference on Multimedia, MM.

[53] Yushuang Wu, Zizheng Yan, Xiaoguang Han, Guanbin Li, Changqing Zou, and
Shuguang Cui. 2021. LapsCore: Language-Guided Person Search via Color Rea-
soning. In International Conference on Computer Vision, ICCV.

[54] Jingyi Xue, Zijie Wang, Guan-Nan Dong, and Aichun Zhu. 2024. EESSO: Exploit-
ing Extreme and Smooth Signals via Omni-frequency learning for Text-based
Person Retrieval. Image and Vision Computing 142 (2024), 104912.

[55] Shuanglin Yan, Neng Dong, Jun Liu, Liyan Zhang, and Jinhui Tang. 2023. Learning
Comprehensive Representations with Richer Self for Text-to-Image Person Re-
Identification. In ACM international conference on Multimedia, MM.

[56] Shuanglin Yan, Neng Dong, Liyan Zhang, and Jinhui Tang. 2023. CLIP-Driven
Fine-grained Text-Image Person Re-identification. IEEE Transactions on Image
Processing (2023), 1–14. https://doi.org/10.1109/TIP.2023.3327924

[57] Shuanglin Yan, Hao Tang, Liyan Zhang, and Jinhui Tang. 2023. Image-Specific
Information Suppression and Implicit Local Alignment for Text-based Person
Search. IEEE Transactions on Neural Networks and Learning Systems (2023), 1–14.
https://doi.org/10.1109/TNNLS.2023.3310118

[58] Shuanglin Yan, Yafei Zhang, Minghong Xie, Dacheng Zhang, and Zhengtao
Yu. 2022. Cross-domain person re-identification with pose-invariant feature
decomposition and hypergraph structure alignment. Neurocomputing 467 (2022),

229–241.
[59] Lewei Yao, Runhui Huang, Lu Hou, Guansong Lu, Minzhe Niu, Hang Xu, Xiaodan

Liang, Zhenguo Li, Xin Jiang, and Chunjing Xu. 2022. FILIP: Fine-grained In-
teractive Language-Image Pre-Training. In International Conference on Learning
Representations, ICLR.

[60] Xianghao Zang, Wei Gao, Ge Li, Han Fang, Chao Ban, Zhongjiang He, and Hao
Sun. 2023. A Baseline Investigation: Transformer-based Cross-view Baseline for
Text-based Person Search. In ACM International Conference on Multimedia, MM.
7737–7746.

[61] Liyan Zhang, Guodong Du, Fan Liu, Huawei Tu, and Xiangbo Shu. 2021. Global-
Local Multiple Granularity Learning for Cross-Modality Visible-Infrared Person
Reidentification. IEEE Transactions on Neural Networks and Learning Systems
(2021), 1–11.

[62] Ying Zhang and Huchuan Lu. 2018. Deep cross-modal projection learning for
image-text matching. In European Conference on Computer Vision, ECCV.

[63] Kecheng Zheng,Wu Liu, Jiawei Liu, Zheng-Jun Zha, and TaoMei. 2020. Hierarchi-
cal gumbel attention network for text-based person search. In ACM International
Conference on Multimedia, MM.

[64] Zhedong Zheng, Liang Zheng, Michael Garrett, Yi Yang, Mingliang Xu, and
Yi-Dong Shen. 2020. Dual-path convolutional image-text embeddings with
instance loss. ACM Transactions on Multimedia Computing, Communications, and
Applications 16, 2 (2020), 51:1–51:23.

[65] Kaiyang Zhou, Jingkang Yang, Chen Change Loy, and Ziwei Liu. 2022. Learning
to prompt for vision-language models. International Journal of Computer Vision
130, 9 (2022), 2337–2348.

[66] Aichun Zhu, Zijie Wang, Yifeng Li, Xili Wan, Jing Jin, Tian Wang, Fangqiang
Hu, and Gang Hua. 2021. DSSL: Deep Surroundings-person Separation Learning
for Text-based Person Retrieval. In ACM International Conference on Multimedia,
MM.

[67] Jialong Zuo, Hanyu Zhou, Ying Nie, Feng Zhang, Tianyu Guo, Nong Sang, Yunhe
Wang, and Changxin Gao. 2024. UFineBench: Towards Text-based Person Re-
trieval with Ultra-fine Granularity. IEEE Conference on Computer Vision and
Pattern Recognition, CVPR (2024).

https://doi.org/10.1109/TIP.2023.3327924
https://doi.org/10.1109/TNNLS.2023.3310118

	Abstract
	1 Introduction
	2 Related Work
	2.1 Text-to-Image Person Re-identification
	2.2 Vision-Language Pre-Training
	2.3 Prompt Learning

	3 The Propot Framework
	3.1 Feature Extraction
	3.2 Initial Prototype Generation
	3.3 Domain-conditional Prototypical Prompting
	3.4 Instance-conditional Prototypical Prompting
	3.5 Adaptive Prototype Aggregation
	3.6 Training and Inference

	4 Experiments
	4.1 Experiment Settings
	4.2 Comparisons with State-of-the-art Models
	4.3 Ablation Studies

	5 Conclusion
	References

