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Abstract

We propose RaDeR, a set of reasoning-based001
dense retrieval models trained with data derived002
from mathematical problem solving using large003
language models (LLMs). Our method lever-004
ages retrieval-augmented reasoning trajectories005
of an LLM and self-reflective relevance evalua-006
tion, enabling the creation of both diverse and007
hard-negative samples for reasoning-intensive008
relevance. RaDeR retrievers, trained for math-009
ematical reasoning, effectively generalize to010
diverse reasoning tasks in the BRIGHT and011
RAR-b benchmarks, consistently outperform-012
ing strong baselines in overall performance.013
Notably, RaDeR achieves significantly higher014
performance than baselines on the Math and015
Coding splits. In addition, RaDeR presents016
the first dense retriever that outperforms BM25017
when queries are Chain-of-Thought reason-018
ing steps, underscoring the critical role of019
reasoning-based retrieval to augment reason-020
ing language models. Furthermore, RaDeR021
achieves comparable or superior performance022
while using only 2.5% of the training data used023
by the concurrent work REASONIR, highlight-024
ing the quality of our synthesized training data.025
Our code, data, and retrieval models are pub-026
licly available.1027

1 Introduction028

Large language models (LLMs) have demonstrated029

impressive reasoning capabilities on a wide range030

of tasks. Yet, they often benefit from retrieval aug-031

mentation to enhance accuracy, attributability (Asai032

et al., 2024), and the interpretability (Nakano et al.,033

2022) of their outputs. Retrieval models for LLM034

augmentation generally perform reasonably well035

at lexical and semantic term matching, however036

they face challenges when reasoning is needed for037

relevance prediction (Su et al., 2024).038

1https://anonymous.4open.science/r/
project-D27D/

No lexical or semantic 
overlap with the 
relevant principle

Retrieval query= 𝑞

Mary bakes exactly 10 cookies, and each cookie may be one of 
three different shapes. Mary wants the cookie shapes to be a 
diverse as possible. What is the smallest possible count for the 
most common shape across the ten cookies?

Question 𝑞

Retrieval query = CoT

Since 10 ÷ 3 leaves a remainder, the 
best distribution is 4 cookies in one 
shape and 3 in the other two.

CoT outlines steps of applying 
the Pigeonhole principle, not 
making retrieval simpler

Let 𝑆 be a finite set with 𝑛 
elements, divided into 𝑘 
subsets. Then at least one of the 
subsets must contain at least !

"

Pigeonhole principle

Figure 1: An example based on sample ‘Theo-
remQA_jianyuxu/pigeonhole3’ of BRIGHT, where term
matching retrievers face challenges in retrieving the rel-
evant theorem w.r.t. both questions and CoT reasoning.

Recent works have tried to address the reason- 039

ing limitation of existing models for relevance 040

prediction. Two main approaches have emerged: 041

(1) interleaved reasoning and retrieval (Hu et al., 042

2025; Jin et al., 2025; Song et al., 2025), and 043

(2) reasoning-based re-ranking models (Weller 044

et al., 2025; Samarinas and Zamani, 2025). While 045

the first group is more effective than in-context 046

retrieval augmentation, they are limited to the rea- 047

soning steps of LLMs for retrieval. As the example 048

in Figure 1 shows, the reasoning steps of LLMs 049

may not align with those needed for retrieval. Solv- 050

ing the question in this example requires retrieving 051

the pigeonhole principle, where there are no match- 052

ing terms between the question and the principle. 053

The reasoning steps by GPT-4 also do not simplify 054

the retrieval of the pigeonhole principle, since they 055

outline the steps of applying the pigeonhole prin- 056

ciple to solve the question. On the other hand, 057

reranking models are inherently limited by the can- 058

didate set produced by the first-stage retriever. To 059

the best of our knowledge, there are no first-stage 060

reasoning-based retrieval models. 061

Developing reasoning-based retrievers poses 062
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multiple challenges. The primary challenge is auto-063

matic generation of diverse and high-quality train-064

ing data. Specifically, training data should include065

queries of diverse formats and lengths as well as066

samples with varying degrees of reasoning com-067

plexity. Beyond this, training retrieval models using068

representation learning (Dai et al., 2023) presents069

an additional challenge due to the need for generat-070

ing hard-negative reasoning samples.071

We propose RaDeR, a set of first-stage072

reasoning-based retrieval models trained with syn-073

thesized data from mathematical reasoning. Specif-074

ically, we use an LLM for mathematical problem075

solving with a retrieval-augmented search-based076

reasoning approach, where the LLM can retrieve077

and apply theorems needed for solving interme-078

diate subproblems. To generate training data, we079

then sample reasoning trajectories with retrieval080

nodes based on the assumption that information081

retrieved during intermediate steps of the LLM’s082

search process is likely to be relevant to the origi-083

nal question. This approach, illustrated in Figure 2,084

naturally yields a diverse set of queries, varying in085

length and complexity.086

In addition, verifying LLM-generated answers087

to mathematical questions provides a proxy for088

evaluating the relevance of retrieved information.089

To further ensure the quality of generated training090

data, the relevance evaluation is enhanced by self-091

reflection. These evaluations help with generation092

of high-quality data. Additionally, any retrieved093

theorem evaluated as non-relevant is considered as094

a hard-negative reasoning sample.095
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Figure 2: An overview of the RaDeR data generation
pipeline. The OST action stands for one step thought
generation, and CRS stands for complete remaining so-
lution steps action.

.
We perform a comprehensive evaluation of096

RaDeR models, including evaluation of retrieval097

performance on reasoning-intensive benchmarks,098

traditional benchmarks mainly requiring term 099

matching, as well as evaluation of target QA perfor- 100

mance using retrieval augmentation. Experimen- 101

tal results on BRIGHT (Su et al., 2024) show that 102

RaDeR outperforms strong baselines by at least 2 103

points in different settings. These findings demon- 104

strate that training retrieval models for mathemati- 105

cal reasoning effectively generalizes to other types 106

of reasoning for information retrieval. In addition 107

to improvements in overall performance, RaDeR 108

demonstrates particularly strong performance in 109

Math and Coding splits of BRIGHT. We observe 110

nDCG@10 relative improvements of 37-40% in 111

the theorem-Q split, and 8-26% over the Leet cod- 112

ing split. RaDeR presents the first dense retriever 113

that outperforms BM25 in the zero-shot setting of 114

using reasoning steps as retrieval queries. This 115

achievement provides strong evidence for the ne- 116

cessity of reasoning-based retrievers even when 117

retrievers augment reasoning language models. On 118

the MMTEB (Enevoldsen et al., 2025) reasoning 119

subset, RAR-b (Xiao et al., 2024), RaDeR signifi- 120

cantly outperforms all sparse and open-source mod- 121

els, performing on par with large proprietary mod- 122

els such as OpenAI-3-large. 123

In a concurrent work, Shao et al. (2025) also 124

train reasoning-based first-stage retrieval models. 125

RaDeR achieves a 1.1 point increase in nDCG@10 126

performance, corresponding to a 4.5% relative gain. 127

Performance of RaDeR is particularly significant 128

given that it is trained with 43,120 samples, about 129

2.5% of samples used for REASONIR (1,729,368), 130

demonstrating the effectiveness of our synthesized 131

data. 132

2 Related Works 133

Interleaving reasoning with retrieval. Previous 134

works have explored interleaving chain-of-thought 135

(CoT) reasoning with retrieval using off-the-shelf 136

retrievers (Trivedi et al., 2023; Shao et al., 2023; 137

Yao et al., 2023b; Schick et al., 2023) (see Ap- 138

pendix A.2 for details). In this paradigm, a retrieval 139

action at a given step leverages a subset of the pre- 140

viously generated CoT reasoning steps as the query 141

for retrieval. However, these methods are limited 142

by their reliance on off-the-shelf retrievers. 143

Recent works like Search-R1 (Jin et al., 2025) 144

and R1-Searcher (Song et al., 2025) use reinforce- 145

ment learning to optimize reasoning-based query 146

generation while keeping the retrieval model fixed. 147

In complex retrieval tasks, direct lexical or seman- 148
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tic overlap between the initial question and the149

relevant document is often limited. By incorporat-150

ing intermediate CoT reasoning during retrieval,151

the system can better bridge this gap152

Recent research explores search-based meth-153

ods for exploring the space of CoT reasoning paths,154

such as random sampling (Wang et al., 2023b) and155

Monte Carlo Tree Search (MCTS) (Qi et al., 2025;156

Yao et al., 2023a; Guan et al., 2025; Hao et al.,157

2023). Retrieval-augmented generation (RAG)158

has also been integrated into MCTS-based frame-159

works by introducing retrieval-related actions such160

as query generation and document retrieval (Tran161

et al., 2024; Hu et al., 2025).162

Reasoning-based re-rankers. Recent methods163

such as RANK-1 (Weller et al., 2025) and InteR-164

ank (Samarinas and Zamani, 2025) train re-ranking165

models using knowledge distillation from reason-166

ing LLMs and reinforcement learning respectively167

(see Appendix A.3 for details). However, these168

approaches remain limited by the candidate set of169

initial retrievers.170

Data augmentation for IR. Existing meth-171

ods (Nogueira et al., 2020; Bonifacio et al., 2022;172

Dai et al., 2023) expand queries or documents with173

likely terms and generate new queries from exist-174

ing documents. Recent methods (Hu et al., 2024;175

Lee et al., 2024) leverage LLMs to build iterative176

pipelines for synthetic data generation - using LLM-177

as-judge as the primary signal for data quality. The178

concurrent work ReasonIR (Shao et al., 2025) also179

targets reasoning-intensive search, but generates180

queries without labeled scalar rewards.181

Our work is the first to generate syn-182

thetic datasets specifically tailored for reasoning-183

intensive information retrieval. Unlike previous184

methods, RaDeR directly integrates reasoning into185

first-stage retrieval, leveraging MCTS to create186

sample-efficient synthetic data.187

3 RaDeR: Reasoning-aware Retrievers188

We propose a framework that includes a first-stage189

retriever and a re-ranking model, both performing190

reasoning to predict relevance. For the first-stage191

retriever, we adopt a uni-embedding bi-encoder192

architecture of dense retrieval models (Lei et al.,193

2023). For re-ranking, we fine-tune a pointwise194

cross-attention model that takes the concatenation195

of the query and document. Our re-ranker directly196

predicts relevance scores. In contrast, existing197

reasoning-based re-rankers (Weller et al., 2025;198

Samarinas and Zamani, 2025) rely on test-time 199

compute for reasoning, making our approach sig- 200

nificantly more efficient at inference time. 201

4 Generating Retrieval Training Data 202

The main challenge of developing reasoning-based 203

retrieval models is synthesizing effective data that 204

includes queries of diverse formats and lengths, 205

requiring varying degrees of reasoning complexity. 206

This diversity is essential for adaptive RAG sys- 207

tems (Asai et al., 2023; Hu et al., 2025; Jin et al., 208

2025), where LLMs may call retrievers at any in- 209

termediate reasoning or solution step. 210

A widely used data augmentation technique in 211

IR involves prompting LLMs with passages to gen- 212

erate relevant queries (Dai et al., 2023; Bonifacio 213

et al., 2022; Lee et al., 2024; Hu et al., 2024). How- 214

ever, this technique can limit the diversity of gener- 215

ated queries. It also poses challenges in verifying 216

that the generated queries are relevant to the given 217

passages through reasoning and are not generic, 218

especially in the absence of ground truth for either 219

the relevance reasoning steps or the queries. 220

To address the aforementioned challenges, we 221

propose to generate training data using a retrieval- 222

augmented Monte Carlo Tree Search (MCTS) rea- 223

soning approach (Kocsis and Szepesvári, 2006) to 224

solve mathematical problems by LLMs. Our mo- 225

tivation is twofold. First, solving mathematical 226

problems often requires applying theorems to sub- 227

problems, which enables the integration of retriev- 228

ers. Theorems found to be relevant to subproblems 229

are also relevant to the original question due to the 230

reasoning steps that connect them. Second, verify- 231

ing LLM answers against gold answers provides 232

a proxy for evaluating the utility of retrieved theo- 233

rems in solving subproblems. 234

4.1 Retrieval-Augmented Search-based 235

Reasoning 236

We use a framework for solving mathematical prob- 237

lems by LLMs using a Monte Carlo Tree Search 238

(MCTS) process, augmented with retrieval over a 239

collection of theorems and guided by scalar feed- 240

back based on the gold answers. 241

MCTS overview. To solve a math problem M 242

from a given dataset, the MCTS algorithm prompts 243

an LLM denoted by LLMgen to incrementally build 244

a search tree that explores possible reasoning tra- 245

jectories toward the final answer. The generation 246

process in MCTS is driven by two basic compo- 247
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nents: an action space A and a reward function248

R. The root node of the tree corresponds to the249

input question M . An edge from each node rep-250

resents an action ai ∈ A, and the resulting child251

node is an intermediate reasoning step si, which252

is generated by applying action ai to the current253

reasoning trajectory M⊕s1⊕s2⊕· · ·⊕si−1. Each254

node in the tree is assigned a value Q(s, a), which255

represents the expected reward on taking action a256

from node s. Initially, all nodes have Q(s, a) = 0,257

resulting in a random tree exploration. As the algo-258

rithm performs rollouts, the Q values of the nodes259

are updated based on the rewards R and the search260

is guided toward better reasoning trajectories.261

Action space. We extend the rStar frame-262

work (Qi et al., 2025) by adding two new actions263

for query generation and retrieval. As part of the264

retrieval action, RaDeR performs two additional265

steps: self-reflection which evaluates the relevance266

of retrieved theorems to the current problem con-267

text, and self-summarization which generates con-268

cise natural-language summaries of the theorems269

to facilitate their integration into subsequent rea-270

soning steps. The action space A is described in271

detail below:272

A1: Propose One-Step Thought (OST). This ac-273

tion uses LLMgen to generate a single CoT reason-274

ing step si based on the context M⊕s1⊕s2⊕· · ·⊕275

si−1. The result node can be a terminal node if si276

contains the answer in boxed notation (prompts in277

Appendix M).278

A2: Propose Complete Reasoning Steps (CRS).279

This action uses LLMgen to complete the full solu-280

tion by generating si containing multiple reasoning281

steps, based on the current context M ⊕ s1 ⊕ s2 ⊕282

· · · ⊕ si−1. The result node is always a terminal283

node of the MCTS. Prompt details are provided in284

Appendix N.285

A3: Generate Query (QG). This action prompts286

LLMgen to generate a retrieval query node sQG287

based on the current context M ⊕ s1 ⊕ s2 ⊕ · · · ⊕288

sparent(QG). A generate query action is always fol-289

lowed by a retrieve theorem action. For action A3,290

we use few-shot prompting, details in Appendix O.291

A4: Retrieve Theorem (RT). This action uses a292

retriever to obtain the top-k theorems sRT from the293

theorem corpus using the query sQG of its parent294

node. Each of the k retrieved theorems that pass295

self-reflection is then added as a child node sRT.296

Self-Reflection and summarization. To avoid297

expanding the search tree with irrelevant theorem298

nodes, we adopt self-reflection (Asai et al., 2023;299

Xia et al., 2025) to evaluate the relevance of re- 300

trieved theorems. We use few-shot prompting to 301

guide LLMgen in generating both a relevance label 302

(“relevant” or “non-relevant”) and a supporting ex- 303

planation. The input comprises the original math 304

question M , the current intermediate solution path 305

(M⊕s1⊕s2⊕· · ·⊕sparent(QG)), and the retrieved 306

theorem sRT. Only theorems labeled as relevant 307

are added as nodes in the MCTS tree, while non- 308

relevant ones are pruned early to reduce unnec- 309

essary expansion and computation. This mecha- 310

nism enables RaDeR to focus exploration on more 311

promising retrieval-augmented solution trajectories. 312

We provide the prompts used for self-reflection and 313

self-summarization in Appendix P. 314

Sampling solutions with MCTS rollouts. We 315

sample multiple candidate solution trajectories with 316

MCTS rollouts following rStar (Qi et al., 2025). 317

The details are described in Appendix B. 318

The reward function R(t) for a terminal node t 319

is calculated based on whether the solution trajec- 320

tory reaches the correct answer to the input ques- 321

tion M . Specifically, if the trajectory leads to the 322

correct answer, R(t) = 1; otherwise, R(t) = 0. 323

4.2 Synthesizing Training Data 324

To build training data for reasoning-based retriev- 325

ers, we sample high-reward solution trajectories 326

generated by the MCTS framework. For a math 327

question M , we extract all solution trajectories 328

that contain at least one retrieval node, denoted as 329

S = M ⊕ s1 ⊕ s2 ⊕ · · · ⊕ sQG ⊕ sRT ⊕ · · · ⊕ st. 330

From each selected solution trajectory S, we gen- 331

erate training samples in the form (q, p,N), where 332

q denotes a query, p is a positive theorem relevant 333

to q, and N is a set of hard-negative theorems for 334

reasoning-intensive retrieval. The retrieved theo- 335

rem sRT in S is used as the positive document p 336

of the generated samples. Any theorem retrieved 337

with respect to sQG that was not labeled as rele- 338

vant in self-reflection is included in the set of hard 339

negatives N . 340

Reasoning-intensive data. To generate reason- 341

ing samples, the set of positive and hard-negative 342

theorems is paired with three types of queries. 343

(1) MCTS CoT reasoning queries: we use the 344

CoT reasoning steps (partial solution) up to the 345

query node, M ⊕ s1 ⊕ s2 ⊕ · · · ⊕ sparent(QG), as 346

the retrieval query. Note that we do not use the 347

query sQG generated by MCTS for retrieval train- 348

ing, since the specific prompt format for their gen- 349

eration may limit the diversity of our training data. 350
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These queries are denoted as qCoT. (2) LLM reason-351

ing queries: We prompt the LLMgen to generate a352

query based on the math question M , the reasoning353

steps up to the query node (excluding the query),354

and the theorem sRT. This group of queries is re-355

ferred to as qllmq. Using few-shot prompting, the356

LLMgen is guided to generate reasoning-intensive357

queries that have low lexical and semantic term358

overlap with the positive theorems. Unlike the359

query generated during the QG action of MCTS,360

which directs LLMgen to produce a hypothetical361

theorem for the current subproblem, qllmq is a con-362

cise query that directly reflects the information363

need of the subproblem. The prompt template for364

this query is provided in Appendix Q. (3) Questions365

as queries: the input math question M is used as366

the query for retrieving theorem sRT. Given the367

low lexical and semantic overlap between M and368

sRT, it serves as a good reasoning sample for train-369

ing. We denote this type of queries as qquestion.370

Term-matching data. Training a reasoning-371

based retriever should not hurt the performance of372

queries that can be addressed with lexical/seman-373

tic term matching. To achieve this, we follow the374

widely used approach of synthetically generating375

training samples for retrieval models. Specifically,376

to generate queries that have high term similarity377

with their respective relevant theorems, we prompt378

LLMgen using only the theorem sRT. Following379

Promptagator (Dai et al., 2023), we add a filter-380

ing step based on round-trip consistency. Only the381

queries for which BM25 retrieves the correspond-382

ing positive theorem sRT within its top-k (k=20)383

results are kept. This filtering step typically results384

in queries with large term overlap. Hard negatives385

are extracted from top results of BM25 and Re-386

pLLaMA retrieval models. We denote this type of387

queries as qlexical.388

Synthesized data mix. We construct our retrieval389

training dataset by combining all query types, in-390

cluding both reasoning-based and lexical queries.391

Detailed statistics of the synthesized training data392

are provided in Appendix E.393

5 Experimental Settings394

Base language models. To train dense retrieval395

models, we primarily utilize the instruction-tuned396

variants of the Qwen2.5 suite of LLMs (Yang et al.,397

2024). For ablation studies on model size, we train398

a series of Qwen-2.5-instruct models with vary-399

ing parameter sizes ranging from 3B, 7B to 14B.400

We additionally perform ablation studies using dif- 401

ferent LLMs including gte-Qwen2-7B-Instruct (Li 402

et al., 2023a) and Llama-3.1-Instruct (Grattafiori 403

et al., 2024). 404

Math datasets for data generation. We in- 405

corporate two datasets for mathematical problem 406

solving in RaDeR: MATH (Hendrycks et al., 2021) 407

and a subset of examples from NuminaMath (Li 408

et al., 2024). Details are provided in Appendix C. 409

Retrieval-augmented MCTS. We apply the 410

RaDeR framework using a fixed set of parame- 411

ters, as detailed in Appendix D. For each input 412

math question in a dataset for mathematical prob- 413

lem solving, we perform 16 rollouts. We use Re- 414

pLLaMA (Ma et al., 2023) as the retriever in our 415

MCTS algorithm. The retrieval corpus consists of 416

formal mathematical theorems from ProofWiki,2 417

which is also used in the BRIGHT benchmark (Su 418

et al., 2024). 419

Training details. We train both the retriever and 420

the re-ranker for reasoning-intensive relevance pre- 421

diction. The retriever is trained using the standard 422

contrastive InfoNCE loss using in-batch negatives 423

in addition to the hard negatives from synthesized 424

training samples. We use 12 hard negatives per 425

query and treat passages from other examples in the 426

batch as in-batch negatives. The retriever training 427

details are presented in Appendix F. Similar to the 428

retriever, the reranker is trained using contrastive 429

loss. The reranker training details are presented in 430

Appendix G.The hyperparameters used for training 431

are presented in Table 10. 432

6 Experimental Results 433

We comprehensively evaluate our RaDeR retriever 434

and re-ranker models on (1) the reasoning-intensive 435

benchmark BRIGHT (Su et al., 2024) and MMTEB 436

reasoning tasks based on RAR-b (Xiao et al., 2024), 437

and (2) widely used benchmark MS MARCO (Ba- 438

jaj et al., 2018) to measure term matching perfor- 439

mance. We also evaluate the performance of reason- 440

ing LLMs when augmented with our RaDeR mod- 441

els. Following previous studies (Su et al., 2024), 442

nDCG at top-10 (nDCG@10) is used as the evalua- 443

tion metric to compare different models. We also 444

report the recall and precision of retrieval models 445

in Appendix I. 446

2https://proofwiki.org/ — a comprehensive collec-
tion of over 20K formal definitions and theorem proofs
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StackExchange Coding Theorem-based Avg.Bio Earth Econ Psy Rob Stack Sus Leet Pony AoPS TheoQ TheoT
Sparse and Open-source Baselines

BM25⋆ 18.9 27.2 14.9 12.5 13.6 18.4 15.0 24.4 7.9 6.2 10.4 4.9 14.5
Qwen⋆ 30.6 36.4 17.8 24.6 13.2 22.2 14.8 25.5 9.9 14.4 27.8 32.9 22.5
Qwen2 34.1 42.6 18.2 27.4 13.2 17.3 20.9 30.4 2.2 13.3 30.6 32.6 23.5
GritLM⋆ 24.8 32.3 18.9 19.8 17.1 13.6 17.8 29.9 22.0 8.8 25.2 21.2 21.0
Inst-XL⋆ 21.6 34.3 22.4 27.4 18.2 21.2 19.1 27.5 5.0 8.5 15.6 5.9 18.9
E5⋆ 18.6 26.0 15.5 15.8 16.3 11.2 18.1 28.7 4.9 7.1 26.1 26.8 17.9

Proprietary Baselines
Google⋆ 22.7 34.8 19.6 27.8 15.7 20.1 17.1 29.6 3.6 9.3 23.8 15.9 20.0
Voyage⋆ 23.1 25.4 19.9 24.9 10.8 16.3 15.4 30.6 1.5 7.5 27.4 11.6 17.9

RaDeR Models (MATH dataset, (qllmq + qCoT + qlexical) )
Qwen2.5-7B-instruct 25.4 30.0 16.7 25.3 14.0 21.3 16.3 37.0 8.2 15.7 42.7 44.4 24.6
gte-Qwen2-7B 34.6 38.9 22.1 33.0 14.8 22.5 23.7 37.3 5.0 10.2 28.4 35.1 25.5
Llama3.1-8B-Instruct 29.3 27.3 17.5 28.2 12.1 18.2 16.1 38.6 11.8 6.4 32.3 33.1 22.6

RaDeR Models (MATH+NuminaMath datasets , all query types)
Qwen2.5-7B-instruct 25.1 28.3 18.2 25.9 15.3 22.2 16.3 35.9 6.9 10.4 40.8 47.1 24.4

Table 1: nDCG@10 performance of strong baselines and our models over the BRIGHT benchmark using the original
question as queries for retrieval. Results of models with ⋆ are taken from (Su et al., 2024).

StackExchange Coding Theorem-based Avg.Bio Earth Econ Psy Rob Stack Sus Leet Pony AoPS TheoQ TheoT
Sparse and Open-source Baselines

BM25⋆ 53.6 54.1 24.3 38.7 18.9 27.7 26.3 19.3 17.6 3.9 19.2 20.8 27.0
Qwen⋆ 35.5 43.1 24.3 33.4 15.4 22.9 23.9 25.4 5.2 4.6 28.7 34.6 24.8
Qwen2 38.3 47.3 24.0 35.2 15.9 23.3 27.9 29.5 8.9 2.9 30.8 35.1 26.6
GritLM⋆ 33.3 39.1 22.4 28.9 17.4 21.3 24.1 31.9 12.0 6.7 27.3 30.1 24.5
Inst-XL⋆ 46.7 51.2 29.9 40.5 20.8 30.1 26.9 35.1 2.1 8.2 24.2 17.0 26.9
E5⋆ 29.3 43.9 19.9 26.6 11.6 19.8 15.6 29.1 0.9 5.3 27.0 36.6 22.1

Proprietary Baselines
Google⋆ 36.4 45.6 25.6 38.2 18.7 29.5 15.7 31.1 3.7 10.0 27.8 30.4 26.2
Voyage AI⋆ 36.7 42.8 24.6 34.2 13.7 24.2 21.7 31.4 2.2 6.6 30.3 28.1 24.7

RaDeR Models (MATH dataset, qllmq + qCoT + qlexical)
Qwen2.5-7B-instruct 32.4 38.0 21.5 33.2 14.5 25.5 18.1 30.1 14.0 11.4 42.1 47.2 27.3
gte-Qwen2-7B 36.1 42.9 25.2 37.9 16.6 27.4 25.0 34.8 11.9 12.0 37.7 43.4 29.2
Llama3.1-8B-Instruct 37.6 41.4 21.1 33.1 12.5 27.7 15.8 35.0 23.6 7.1 36.9 40.5 27.7

RaDeR Models (MATH+NuminaMath datasets, all query types)
Qwen2.5-7B-instruct 37.5 40.0 19.3 31.1 14.1 25.8 17.6 27.2 18.7 9.9 40.4 43.8 27.4

Table 2: nDCG@10 performance using GPT-4 CoT reasoning as queries for retrieval over BRIGHT. Results of
models with ⋆ are taken from (Su et al., 2024).

6.1 BRIGHT Retrieval Performance447

We first present the performance of our RaDeR448

retrieval models on the BRIGHT benchmark (Su449

et al., 2024). Following the benchmark, we com-450

pare our models against a diverse set of base-451

lines including (1) BM25 (Robertson et al., 1995),452

(2) open-source dense retrieval models Instructor-453

XL (Su et al., 2023), E5-Mistral (Wang et al.,454

2024), GritLM (Muennighoff et al., 2024), gte-455

Qwen1.5 (Li et al., 2023a), gte-Qwen2 (Li et al.,456

2023a), and (3) proprietary models from Voy-457

age (Voyage) and Google (Lee et al., 2024).458

Following the benchmark, all models are eval-459

uated in two settings: (1) using the original ques-460

tions from BRIGHT as retrieval queries, and (2) us-461

ing CoT reasoning steps generated by GPT-4, in-462

cluded in the benchmark, as retrieval queries. Per-463

formance results for the two settings are reported464

in Tables 1 and 2, respectively.465

Overall performance. RaDeR-gte-Qwen2-7B466

achieves the best average performance of 25.5 on467

BRIGHT, outperforming strong baselines by at least 468

2 points in both query settings. These results 469

demonstrate that training retrieval models for math- 470

ematical reasoning generalizes to other types of 471

reasoning required for different retrieval tasks. 472

Model Math Coding
Open-source Baselines
Contriever (w/ Inst.) 0.218 0.071
all-mpnet-base-v2 (w/ Inst.) 0.692 0.488
all-MiniLM-L6-v2 (w/ Inst.) 0.624 0.423
Dragon+ (w/ Inst.) 0.362 0.128
Instructor-XL (w/ Inst.) 0.580 0.495
bge-large (w/ Inst.) 0.498 0.453
E5-Mistral (w/ Inst.) 0.740 0.785
GritLM (w/ Inst.) 0.824 0.838
Proprietary Models
Cohere-Embed-v3 (w/ Inst.) 0.721 0.566
OpenAI-ada-002 (w/ Inst.) 0.673 0.824
OpenAI-3-large (w/ Inst.) 0.877 0.894
RaDeR model (MATH, all query types)
gte-Qwen2-7B-instruct (w/Inst.) 0.852 0.835

Table 3: nDCG@10 performance of retrievers on the
Math and Coding splits of RAR-b. Performance of
baselines are from (Xiao et al., 2024).
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Theorem-based splits. Compared to baselines,473

RaDeR achieves the largest improvements on the474

TheoT and TheoQ splits in both settings, as shown475

in Tables 1 and 2. For example, RaDeR models476

improve the performance of TheoQ by 12.1 and477

11.3 points when questions and CoT reasoning are478

used as queries, respectively. Although these splits479

of BRIGHT primarily require mathematical reason-480

ing, the performance improvements on TheoQ are481

particularly noteworthy since the retrieval collec-482

tion for this split consists of questions, a format not483

seen during the training of RaDeR models. The484

strong performance of RaDeR on this split demon-485

strates its potential for tasks such as demonstra-486

tion selection in in-context learning, a task shown487

to have significant impacts on the performance of488

LLMs (Rubin et al., 2022).489

Coding splits. Results in Table 1 show that490

RaDeR achieves the best performance on Leet-491

Code, surpassing the strong baselines by 8 points.492

Results on Pony in the CoT reasoning setting, Ta-493

ble 2, also show improvements of RaDeR over the494

strongest baseline. These results are particularly495

significant, as they demonstrate that training our496

retrievers for mathematical reasoning yields sub-497

stantial improvements in code retrieval, despite not498

having any code-specific training data. Our qual-499

itative analysis reveals that in most cases, coding500

problems rely on solving underlying mathematical501

subproblems. We believe that the ability to recog-502

nize this mathematical substructure enables RaDeR503

models to enhance retrieval effectiveness on these504

coding splits. A qualitative example is provided in505

Appendix K.506

Model DEV DL19 DL20
MRR@10 R@1k nDCG@10 nDCG@10

BM25 18.4 85.3 50.6 48.0
ANCE 33.0 95.9 64.5 64.6
CoCondenser 38.2 98.4 71.7 68.4
TAS-B 34.0 97.5 71.2 69.3
GTR-base 36.6 98.3 - -
GTR-XXL 38.8 99.0 - -
OpenAI Ada2 34.4 98.6 70.4 67.6
bi-SimLM 39.1 98.6 69.8 69.2
RepLLaMA 41.2 99.4 74.3 72.1
SimLM 41.1 98.7 71.4 69.7
RaDeR 34.4 98.1 71.2 70.7

Table 4: Performance of baselines and RaDeR-gte-
Qwen2-7B (trained with MATH) on MS MARCO. Per-
formance of baselines are from (Ma et al., 2023; Wang
et al., 2023a).

Ablation studies. We investigated the perfor-507

mance of RaDeR retrievers under two ablation set-508

tings: (1) training with different subsets of query509

types in the synthesized data, and (2) using base510

LLM of different sizes as the retriever encoder. Re- 511

sults in Table 13 ofAppendix J highlight the com- 512

plementary role of the diverse query types in our 513

synthesized training data. Additionally, Table 14 514

shows consistent performance improvements with 515

scaling the size of the base LLM. 516

6.2 Retrieval Performance on RAR-b 517

We evaluate the performance of RaDeR on the 518

reasoning-retrieval tasks of MMTEB (Enevoldsen 519

et al., 2025) which are based on the Math and Cod- 520

ing splits of the RAR-b (Xiao et al., 2024). As 521

shown in Table 3, our model achieves performance 522

comparable to the strongest open-source baseline, 523

outperforming on the MATH split. Furthermore, 524

it demonstrates performance that is comparable to 525

or surpasses that of top-performing closed-source 526

models. These results once again highlight the 527

strong generalizability of RaDeR across diverse 528

reasoning-based retrieval tasks. 529

6.3 Retrieval on Traditional IR Benchmarks 530

Table 4 presents the performance of RaDeR and 531

strong baselines on the MS MARCO passage re- 532

trieval task (Bajaj et al., 2018). We evaluate on the 533

official small subset of the MS MARCO develop- 534

ment set, following RepLLaMA (Ma et al., 2023), 535

as well as TREC-DL’19 (Craswell et al., 2020) and 536

TREC-DL’20 (Craswell et al., 2021). These test 537

sets primarily rely on term matching and do not 538

require complex reasoning. Our model based on 539

gte-Qwen2-7B trained with llmq, CoT, and lexical 540

queries from MATH, demonstrates competitive per- 541

formance with strong baselines. These results in- 542

dicate that training our retrievers for reasoning- 543

intensive tasks does not compromise their effective- 544

ness on standard IR benchmarks where reasoning 545

is not necessary. 546

6.4 BRIGHT Reranking Performance 547

We report the performance of our RaDeR rerankers 548

on the reasoning-intensive BRIGHT benchmark. Ta- 549

ble 5 shows the performance of reranking top-10 550

and top-100 of BM25 results using questions as 551

queries. Our RaDeR rerankers based on Qwen2.5 552

and gte-Qwen2, both trained on all query types 553

from MATH, outperform GPT-4 in the top-100 554

reranking setting by +2.5 and +2.1 nDCG points, 555

respectively. The most significant improvements 556

are observed on the LeetCode and TheoremQA 557

questions splits, with gains of +20.3 and +20.4 558

points, respectively. 559
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Reranker top-k StackExchange Coding Theorem-based Avg.
Bio. Earth. Econ. Psy. Rob. Stack. Sus. Leet. Pony AoPS TheoQ. TheoT.

None⋆ - 19.2 27.1 14.9 12.5 13.5 16.5 15.2 24.4 7.9 6.2 9.8 4.8 14.3
MiniLM⋆ 100 8.5 18.9 6.0 5.4 7.6 7.9 8.9 15.0 11.3 6.1 3.6 0.5 8.3
Gemini⋆ 10 21.9 29.7 16.9 14.2 16.1 16.7 16.7 24.5 8.0 6.2 9.5 8.2 15.7
GPT-4⋆ 100 33.8 34.2 16.7 27.0 22.3 27.7 11.1 3.4 15.6 1.2 2.0 8.6 17.0

RaDeR models (MATH, all query types)
Qwen2.5-7B-instruct 100 26.9 30.6 17.0 24.9 18.2 17.8 20.5 23.7 14.3 4.4 22.4 13.6 19.5
gte-Qwen2-7B-instruct 100 26.1 30.4 16.8 26.6 18.7 18.5 16.5 18.7 20.8 2.9 20.4 12.4 19.1

RaDeR models (MATH+NuminaMath, all query types)
gte-Qwen2-7B-instruct 100 25.5 31.8 19.3 28.8 22.0 19.8 20.1 17.1 11.9 1.6 18.9 14.3 19.3
Qwen2.5-7B-instruct 100 25.0 31.1 17.3 26.4 21.1 19.5 21.3 21.5 16.1 5.1 21.7 14.3 20.0

Table 5: nDCG@10 performance of different rerankers on BRIGHT. Reranking is performed on the top-10 or
top-100 results retrieved using BM25 with the question as the query. Results with ⋆ are from (Su et al., 2024).

StackExchange Coding Theorem-based Avg.Bio. Earth. Econ. Psy. Rob. Stack. Sus. Leet. Pony AoPS TheoQ. TheoT.
BM25⋆ 19.2 27.1 14.9 12.5 13.5 16.5 15.2 24.4 7.9 6.0 13.0 6.9 14.8
BM25 on GPT-4o CoT 53.6 53.6 24.3 38.6 18.8 22.7 25.9 19.3 17.7 3.9 18.9 20.2 26.5

Reranking on GPT-4o CoT k=100
MonoT5-3B⋆ 16.0 24.0 17.7 19.5 8.0 10.5 19.5 17.2 29.2 7.1 20.3 12.0 16.8
RankLLaMA-7B⋆ 17.5 15.5 13.1 13.6 17.9 6.9 16.9 8.4 46.8 2.2 4.5 3.5 13.9
Rank1-7B (Weller et al., 2025) 48.8 36.7 20.8 35.0 22.0 18.7 36.2 12.7 31.2 6.3 23.7 37.8 27.5

RaDeR Models Reranking on GPT-4o CoT results k=100 (MATH, all query types)
Qwen2.5-7B-instruct 40.8 31.8 25.0 39.7 21.6 25.7 27.2 17.3 29.9 1.6 22.4 36.9 26.7
gte-Qwen2-7B-instruct 36.0 29.3 23.2 40.0 23.2 24.1 22.2 17.8 34.9 1.5 20.4 35.3 25.7

RaDeR Models Reranking on GPT-4o CoT results k=100 (MATH+NuminaMath, all query types)
Qwen2.5-7B-instruct 37.0 32.4 25.5 41.5 24.9 26.7 28.1 12.2 28.8 2.7 21.7 39.1 26.7
gte-Qwen2-7B-instruct 36.9 31.2 24.9 43.1 26.4 26.3 26.1 16.6 26.6 0.4 18.9 36.1 26.1

Table 6: nDCG@10 performance of rerankers on BRIGHT using questions as retrieval queries. The first-stage results
are obtained by BM25 using GPT-4o CoT reasoning as queries. Results with ⋆ are taken from (Su et al., 2024).

Method Accuracy(%)

Base model (no retrieval) 71.0
In-context RAG with RaDeR 75.0
In-context RAG with RepLLama 72.6
In-context RAG with gold theorems 77.6
MCTS with only OST action 75.0
MCTS with OST + RepLLaMA retrieval 78.9
MCTS with OST + RaDeR retrieval 80.2
MCTS with OST + gold theorems 81.5

Table 7: QA performance of Qwen-2.5-7B-Instruct on
the TheoremQA theorems split of BRIGHT in different
settings of retrieval augmentation.

Table 6 presents the performance of reranking560

BM25 results using GPT-4o CoT reasoning, where561

the rerankers receive only the question as the query.562

We compare RaDeR rerankers against strong base-563

lines including RankLLaMA (Ma et al., 2023),564

Mono-T5-3B, and RANK1 (Weller et al., 2025).565

RANK1, the strongest baseline, is trained on 635K566

examples from MS MARCO, and utilizes test-time567

compute to perform reasoning before relevance568

prediction. In contrast, RaDeR models are trained569

with substantially fewer samples on mathematical570

reasoning, 43K from MATH and 78K from Nu-571

minaMATH, yet they achieve highly competitive572

performance. In addition, RaDeR models are sig-573

nificantly more computationally efficient since they574

only generate relevance scores.575

6.5 RAG Performance using RaDeR 576

Table 7 provides the answer accuracy of Qwen-2.5- 577

7B-Instruct on the TheoremQA split of BRIGHT in 578

two settings of retrieval augmentation. First setting 579

is in-context RAG where the input question is used 580

as the query to retrieval models. We also perform 581

evaluation using the retrieval-augmented MCTS 582

framework, employing majority voting as the strat- 583

egy for answer selection. In both settings, augment- 584

ing with the results of RaDeR outperforms aug- 585

mentation with RepLLaMA. These results demon- 586

strate the impact of augmenting strong LLMs with 587

reasoning-based retrievers. 588

7 Conclusion 589

We introduce RaDeR, a suite of retrievers and 590

rerankers designed for reasoning-intensive rele- 591

vance ranking. Our approach employs a retrieval- 592

augmented reasoning framework based on Monte 593

Carlo Tree Search (MCTS) to generate high-quality 594

training data. RaDeR achieves substantial improve- 595

ments in both retrieval and reranking performance 596

over state-of-the-art models on reasoning-intensive 597

benchmarks, demonstrating strong generalizability 598

and significantly higher data efficiency compared 599

to existing methods. 600
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8 Limitations601

While RaDeR achieves strong performance on602

reasoning-intensive retrieval tasks, it has a few603

limitations. First, our training approach primar-604

ily focuses on examples where the retriever reasons605

over a single document in isolation. A promising606

direction for future work is to develop retrievers ca-607

pable of reasoning over multiple documents jointly,608

where the relevance of each document is informed609

by the content of others, similar to the requirements610

in multi-hop QA tasks.611

Second, RaDeR models focus on producing rele-612

vance scores without generating explicit explana-613

tions for document retrieval. Future work could ex-614

plore the development of reasoning-aware retriev-615

ers that offer greater transparency and interpretabil-616

ity by generating explanations for their retrieval617

decisions, all while maintaining their efficiency for618

the first-stage ranking.619

Lastly, we use rewards in our MCTS framework,620

based on the final answer of the math reasoning621

datasets. However, incorrect CoT reasoning path622

for solving a mathematical question can lead to a623

correct final answer, thus our training data can be624

noisy.625
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A Detailed Discussion of Related Works924

A.1 Mathematical Information Retrieval925

Math Information Retrieval (Math IR) has been926

extensively studied within the IR community, fo-927

cusing on the task of retrieving relevant mathemati-928

cal documents such as theorems, formulas, similar929

questions, or textbooks to solve a given math prob-930

lem. Early models, such as Approach0 (Zhong931

et al., 2021), perform retrieval by using structural932

similarities between the formulas in queries and933

documents.934

MathBERT (Zhong et al., 2022) pre-trained a935

cross-encoder BERT-base model on a corpus of936

1.69 million math documents containing both text937

and formulas. Several approaches (Zhong et al.,938

2022) explored hybrid methods combining dense939

neural retrievers with structural and lexical retriev-940

ers to improve retrieval performance.941

The NTCIR-10 Math Pilot Task (Aizawa et al.,942

2013) marked one of the first collaborative efforts943

to establish evaluation frameworks for mathemat-944

ical formula search, while the ARQMATH Lab945

tasks (Mansouri et al., 2022) extended MATH IR to946

a Community Question Answering (CQA) setting,947

utilizing user-generated data from Math StackEx-948

change.949

More recently, datasets such as BRIGHT (Su950

et al., 2024) and RAR-B (Xiao et al., 2024) have951

been introduced as evaluation benchmarks for Math952

IR, focusing on tasks including Theorem Retrieval,953

Similar Questions Retrieval, and Answer Retrieval.954

In this work, we adopt both BRIGHT and RAR-B955

as evaluation datasets to assess the effectiveness of956

our trained retriever.957

A.2 CoT Reasoning958

IRCoT (Trivedi et al., 2023) uses the last reasoning959

step as a retrieval query, conditioning future steps960

on retrieved documents. ITER-RETGEN (Shao961

et al., 2023) alternates between retrieval and gener-962

ation, showing improvements in tasks such as multi-963

hop QA and fact verification. REACT (Yao et al.,964

2023b) iteratively generates (thought, action, ob-965

servation) sequences, using intermediate reasoning966

to drive retrieval. Toolformer (Schick et al., 2023)967

employs self-supervised training to help models968

autonomously determine when to invoke external969

retrieval tools, like the Wikipedia Search API.970

A.3 Reasoning-Based Re-Ranking Models 971

RANK-1(Weller et al., 2025) employs knowledge 972

distillation from DeepSeek-R1, extracting over 973

600K reasoning examples from the MS-MARCO 974

dataset(Nguyen et al., 2017) to train a re-ranking 975

model. Similarly, InteRank (Samarinas and Za- 976

mani, 2025) uses reinforcement learning to train 977

a 3B-parameter re-ranking model, generating rea- 978

soning explanations alongside relevance scores for 979

(query, document) pairs. Despite their improved 980

retrieval quality, these re-ranking models remain 981

inherently dependent on the first-stage retriever’s 982

candidate set, typically derived from lexical or 983

semantic matching, thus limiting their effective- 984

ness on reasoning-intensive retrieval tasks. In con- 985

trast, RaDeR develops a dedicated first-stage re- 986

triever from pretrained language models, including 987

Qwen2.5(Yang et al., 2024), Llama 3.1(Grattafiori 988

et al., 2024), and gte-Qwen2-7B-instruct (Li et al., 989

2023b), tailored explicitly to reasoning-intensive 990

search scenarios. 991

B Sampling MCTS Rollout Solutions 992

The MCTS proceeds with multiple iterations of 993

four main processes: selection, expansion, simula- 994

tion and backpropagation. To balance exploration 995

and the exploitation, the selection step starts from 996

the root node and uses Upper Confidence Bounds 997

applied to trees (UCT) to traverse through child 998

nodes, continuing until a leaf node is reached. For- 999

mally, we select the node with maximum UCT 1000

value at each branch of the traversal: 1001

UCT(s, a) =
Q(s, a)

N(s, a)
+ c

√
ln(Nparent(s))

N(s, a)
1002

where N(s, a) is the number of times node s has 1003

been visited till now and Q(s, a) is the expected 1004

reward of node s under action a and c is a hyperpa- 1005

rameter. If the leaf node is not a terminal node, the 1006

expansion step adds child nodes to the leaf node to 1007

represent potential future actions. The simulation 1008

step selects one of the newly added child nodes 1009

at random and performs rollouts/simulations by 1010

selecting actions randomly until we reach a termi- 1011

nal node t. Based on whether the terminal node t 1012

reaches the correct gold answer G, we calculate a 1013

reward value R(t) and update Q(s, a) values for 1014

all the nodes si in the collected solution trajectory 1015

M ⊕ s1 ⊕ s2 ⊕ · · · ⊕ st as: 1016

Q(si, a) = Q(si, a) +R(t) 1017
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The N(s, a) values are also incremented as1018

N(si, a) = N(si, a) + 11019

.1020

C Math Datasets for Data Generation1021

To construct our training dataset, we leverage math-1022

ematical reasoning benchmarks consisting of natu-1023

ral language math questions paired with a correct1024

answer, typically represented as a boxed numerical1025

value in LATEX. Our data generation pipeline does1026

not require access to gold step-by-step solutions.1027

MATH The MATH dataset comprises mathemat-1028

ical problems across 8 different subject types (Pre-1029

algebra, Precalculus, Algebra, Geometry, Interme-1030

diate Algebra, Counting and Probability, and Num-1031

ber Theory) and five difficulty levels (from 1 to 5,1032

where 1 denotes the easiest).1033

NuminaMath. NuminaMath is a large-scale col-1034

lection comprising 860K competition-level math1035

problems paired with solutions. Our MCTS lever-1036

ages the OrcaMATH, AMC, AIME, Chinese K-121037

Exam, Olympiad, and AOP forum splits from Nu-1038

minaMath.1039

Parameter Value
No of RT nodes per action (Top-k) 5
No of OST nodes added (per action) 2
No of QG nodes added (per action) 1
No of rollouts 16
Max depth 6
MCTS Exploration weight C 2
MCTS Weight Scheduler const
LLMgen temperature 0.8
LLMgen top-k 40
LLMgen top-p 0.95
BF16 Enabled
GPUs 2 A100s

Table 8: MCTS Parameters

D MCTS Parameters1040

Table 8 shows the values of hyperparameters for1041

the MCTS algorithm.1042

E Statistics of Synthesized Data1043

Table 9 shows the number of synthesized samples1044

from each dataset for mathematical problem solv-1045

ing.1046

Dataset (query type) # of Samples

MATH (qllmq) 18,586
MATH (qCoT) 7,312
MATH (qquestion) 7,312
MATH (qlexical) 9,910

MATH (all queries) 43,120

NuminaMATH (qllmq) 39,639
NuminaMATH (qCoT) 24,280
NuminaMATH (qquestion) 10,241
NuminaMATH (qlexical) 4,158

NuminaMATH (all queries) 78,318

MATH+NuminaMATH (all queries) 121,438

Table 9: Statistics of synthesized data for retrieval train-
ing.

F Retriever Training Details 1047

We append an end-of-sequence token (EOS token) 1048

to the input query or document to form the input 1049

sequence to our base LLM. Thus, the vector em- 1050

bedding of a query or a document (denoted as t) is 1051

computed as: 1052

Et = Decoder(t1t2 · · · tk<eos>)[−1], 1053

where Decoder(·) represents the LLM model (such 1054

as Qwen or Llama), which returns the last layer 1055

token representations for each input token. We take 1056

the representation of the end-of-sequence token as 1057

the representation of the input sequence t1, . . . , tk, 1058

which can be either a query q or a document d. 1059

Relevance of d to q is computed using the cosine 1060

similarity of their corresponding dense representa- 1061

tions Eq and Ed as: 1062

s(q, d) = cos(Eq, Ed). 1063

The model is then optimized end-to-end using the 1064

InfoNCE loss: 1065

L(q, p,D
−
) = − log

exp(s(q, p))

exp(s(q, p)) +
∑

d−∈D− exp(s(q, d−))
,

(1) 1066

where p denotes a document relevant to the query 1067

q (based on human annotations), while D− is the 1068

set of negative (non-relevant) documents. 1069

G Reranker Training Details 1070

Our reranker model is trained as pointwise reranker. 1071

The input to the model is a concatenation of the 1072

query and a candidate document, with the model 1073
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generating a score that indicates the relevance of1074

the document to the query (Nogueira et al., 2020).1075

In more detail, our model reranks a query-1076

document pair as shown below:1077

1078

input = query: {q} document: {d} <eos>1079

s(q, d) = Linear(Decoder(input)[−1])1080

1081

Here, Decoder(·) represents the LLM model1082

(such as Qwen or Llama), which returns the last1083

layer token representations for each input token ,1084

and Linear(·) is a linear projection layer that maps1085

the final hidden state corresponding to the end-of-1086

sequence token to a scalar relevance score. The1087

training uses same loss, used for retriever training,1088

with no use of in-batch negatives.1089

Parameter Value
Train Group Size 12
Warmup Steps 28
Per Device Train Batch Size 2
Gradient Accumulation Steps 16
DDP Timeout 1800
Temperature 0.01
Learning Rate 1e-4
LR Scheduler Type Linear
Number of Train Epochs 1
BF16 Enabled
GPUs 2 A100s

Table 10: Retriever Training Hyperparameters.

H Retriever/Reranker Training1090

Hyperparameters1091

We used Tevatron (Ma et al., 2025) package for1092

training. The hyperparameters used for finetuning1093

retrieval and reranking models are presented in1094

Table 10.1095

I Retrieval Performance on BRIGHT1096

In addition to nDCG performance of retrieval mod-1097

els, we compare our RaDeR models with baselines1098

in terms of precision at top 10 documents in Ta-1099

ble 11 and recall at top 10 documents in Table 121100

when questions are used as retrieval queries.1101

1102

J Ablation Studies1103

Effect of query types in synthesized samples. We1104

evaluate the impact of different query types in the1105

synthesized retrieval data by comparing variants 1106

of our RaDeR models trained on subsets includ- 1107

ing specific query types. Table 13 summarizes the 1108

results of this ablation on BRIGHT. 1109

We observe a consistent improvement in retrieval 1110

performance as additional query types are included 1111

during training. These results highlight the com- 1112

plementary nature of the diverse query types in our 1113

synthesized training data. 1114

Impact of base-LLM size. Table 14 presents the 1115

performance of our RaDeR retrievers using Qwen- 1116

2.5-instruct models of varying sizes (3B, 7B, 14B). 1117

We observe consistent gains with model scaling, 1118

with the 14B model outperforming the 7B variant 1119

by 2 points on average. 1120

K Analysis 1121

We present examples from our synthesized train- 1122

ing data, along with qualitative examples of RaDeR 1123

from the BRIGHT evaluation. We highlight repre- 1124

sentative cases where RaDeR successfully retrieves 1125

the correct theorem, as well as illustrative failure 1126

cases to analyze its limitations. 1127

Examples of queries from Retrieval Training 1128

Dataset. We present a qualitative example of 1129

different query types (qllmq, qCoT and qlexical) for 1130

a question M and positive theorem p from our 1131

dataset in Figure 3. As illustrated in the figure, 1132

qCoT captures the broader reasoning context of the 1133

mathematical question, thereby encouraging the 1134

model to learn a more challenging retrieval task. In 1135

contrast, qlexical exhibits high lexical overlap with 1136

the associated positive document, which helps for 1137

queries which do not require reasoning. The query 1138

qllmq strikes a balance between these two extremes, 1139

as it is generated using both M and P , effectively 1140

combining elements of both contextual reasoning 1141

and lexical similarity. 1142

Examples from BRIGHT evaluation. We 1143

present examples from TheoremQA theorems 1144

split of BRIGHT, to qualitatively compare RaDeR 1145

with other baseline retrievers. For the example of 1146

Figure 4, RaDeR successfully performs nuanced 1147

reasoning to successfully retrieve the gold theorem, 1148

whereas a strong baseline, Qwen2, fails to do 1149

so. However, challenges still remain. Figure 5 1150

presents an example, where the question is 1151

about directionality in a family tree graph. Both 1152

retrievers Qwen2 and RaDeR, fail to capture the 1153

query’s focus on acyclicity and instead match on 1154
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StackExchange Coding Theorem-based Avg.Bio Earth Econ Psy Rob Stack Sus Leet Pony AoPS TheoQ TheoT
Sparse and Open-source Baselines

BM25⋆ 7.6 12.4 7.1 6.0 5.6 8.0 6.1 6.0 7.9 3.1 2.2 1.3 6.1
Qwen⋆ 13.5 14.1 8.2 11.2 5.8 10.1 6.1 6.3 9.7 7.1 6.2 7.3
GritLM⋆ 11.1 12.7 9.2 10.8 6.8 6.0 6.8 7.5 17.9 4.6 5.7 5.3 8.7
Inst-XL⋆ 10.0 13.8 10.6 11.0 6.7 8.8 9.2 6.3 4.6 4.7 3.3 1.9 7.6
E5⋆ 8.9 10.2 8.1 8.6 7.2 4.6 6.9 6.9 4.9 4.2 5.7 6.5 6.9

Proprietary Baselines
Google⋆ 10.3 12.2 8.9 11.4 5.6 8.3 7.9 6.9 3.6 5.0 4.8 4.2 7.4
Voyage AI⋆ 11.0 9.9 9.6 11.0 5.6 7.3 7.5 7.5 1.1 5.0 5.6 3.2 7.0

RaDeR Models (MATH dataset, qllmq + qCoT + qlexical)
Qwen2.5-7B-instruct 11.6 11.7 6.8 9.9 5.3 7.9 6.7 8.5 8.0 8.2 10.2 9.9 8.7

RaDeR Models (MATH+NuminaMath datasets, all query types)
Qwen2.5-7B-instruct 12.2 11.5 7.8 10.6 5.7 7.4 6.8 8.1 6.2 6.0 9.2 11.3 8.6

Table 11: Precision@10 performance using question as queries for retrieval over BRIGHT.

StackExchange Coding Theorem-based Avg.Bio Earth Econ Psy Rob Stack Sus Leet Pony AoPS TheoQ TheoT
Sparse and Open-source Baselines

BM25⋆ 21.8 31.4 16.8 15.5 19.4 16.8 21.1 29.5 3.6 6.0 11.4 9.0 16.9
Qwen⋆ 38.2 40.6 18.5 29.5 14.5 22.4 17.4 32.1 4.6 14.8 30.0 39.4 25.2
GritLM⋆ 30.3 38.8 18.3 26.9 21.3 15.1 23.4 36.3 8.2 9.4 26.2 26.6 23.4
Inst-XL⋆ 27.3 38 25.4 35.6 22 21.1 23.9 31.8 2.5 8.9 16.6 9.8 21.9
E5⋆ 22.0 29.4 18.4 18.3 18.7 11.9 23.0 34.6 2.4 8.2 27.2 34.8 20.7

Proprietary Baselines
Google⋆ 26.1 36.9 20.6 31.4 17.7 21.6 23.7 33.5 1.9 10.4 24.0 22.1 22.5
Voyage AI⋆ 29.3 31.2 21.0 31.0 15.0 17.5 20.5 41.5 0.6 8.7 28.5 15.4 21.7

RaDeR Models (MATH dataset, qllmq + qCoT + qlexical)
Qwen2.5-7B-instruct 30.6 36.9 19.5 30.1 18.5 28.6 21.1 46.5 6.4 18.1 48.3 56.0 30.1
gte-Qwen2-7B 41.6 42.5 26.1 41.2 18.6 32.5 31.7 44.7 3.4 13.4 32.5 47.9 31.3
Llama3.1-8B-Instruct 35.7 33.5 18.4 36.4 14.8 28.5 20.3 45.2 6.4 7.7 37.0 43.4 27.3

RaDeR Models (MATH+NuminaMath datasets, all query types)
Qwen2.5-7B-instruct 31.3 34.2 21.5 31.9 18.8 30.5 21.5 45.6 5.1 11.7 44.7 63.8 30.1

Table 12: Recall@10 performance using question as queries for retrieval over BRIGHT.

the topic of structural hierarchy in the graph, thus1155

leading to an incorrect retrieval. This highlights the1156

need for further advancements in reasoning-aware1157

retrieval methods.1158

Analysis of Coding example from Leetcode In1159

Figure 6, we present a qualitative example from1160

Leetcode, which shows how recognizing mathe-1161

matical subtructure in a coding problem can help1162

RaDeR retrievers. Retrieving relevant documents1163

for the coding task, requires application of math-1164

ematical reasoning which RaDeR models excel1165

in, whereas BM25 only performs lexical match-1166

ing based on the word rectangle, which results in1167

an incorrect retrieval.1168
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Data of RaDeR- StackExchange Coding Theorem-based Avg.Bio Earth Econ Psy Rob Stack Sus Leet Pony AoPS TheoQ TheoT
qllmq 25.8 32.0 15.8 23.3 14.8 18.7 15.7 29.9 16.4 13.0 38.8 35.4 23.3
qllmq + qCoT 24.5 26.9 17.0 25.6 14.8 21.1 17.1 30.6 9.9 12.8 42.5 38.5 23.4
qllmq + qCoT + qlexical 25.4 30.0 16.7 25.3 14.0 21.3 16.3 37.0 8.2 15.7 42.7 44.4 24.6

Table 13: nDCG@10 performance of RaDeR on BRIGHT when retrievers are trained using different types of
samples generated from MATH. The original math question is used as the query. RaDeR Qwen2.5-7B-instruct
models are used for the ablations.

RaDeR Models StackExchange Coding Theorem-based Avg.(all query types) Bio Earth Econ Psy Rob Stack Sus Leet Pony AoPS TheoQ TheoT
Qwen2.5-3B-instruct 26.9 29.7 16.5 24.8 13.3 19.3 15.2 37.5 10.6 9.4 34.9 36.9 22.9
Qwen2.5-7B-instruct 25.1 28.3 18.2 25.9 15.3 22.2 16.3 35.9 6.9 10.4 40.8 47.1 24.4
Qwen2.5-14B-instruct 30.9 31.5 17.3 27.9 16.0 24.2 16.4 40.9 10.2 12.7 42.6 45.8 26.4

Table 14: nDCG@10 performance of RaDeR on BRIGHT when retrievers are trained using different sizes of
Qwen-2.5-instruct models (3B, 7B, and 14B). The original math question is used as the query.

Example

Question (M ): Let f(x), g(x), and h(x) be linear functions. Define

j(x) = max{f(x), g(x), h(x)}, k(x) = min{f(x), g(x), h(x)}.

Suppose the graph of y = j(x) over −3.5 ≤ x ≤ 3.5 consists of three connected line segments: it
increases linearly to (−2, 2), remains constant at y = 2 from x = −2 to x = 2, and then increases
linearly from (2, 2) to x = 3.5. Let ℓ denote the total length of the graph of y = k(x) over the same
interval. Find ℓ2.

Positive document (p): Linear Real Function - A real function f is called linear if it has
the form f(x) = ax+ b, where a and b are real numbers.

Different Query Types

LLM generated query (qllmq): Calculate the length of the graph of a piecewise linear function
defined by the minimum of three linear functions over a given interval.

CoT reasoning query (qCoT): Question + To determine the length of the graph of y = k(x) for
−3.5 ≤ x ≤ 3.5, we first need to understand the behavior of j(x), the maximum of the three linear
functions f(x), g(x), and h(x). From the graph, we can see that j(x) transitions between the three
linear functions at points where two of the functions are equal. The graph of j(x) has horizontal
segments and linear segments connecting the points where the maximum changes.

Lexical query (qlexical): What is the definition of a linear real function and what form
must it take for all real numbers x?

Figure 3: Examples of different query types from our retrieval training dataset built for the given math question.
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Example

Query: Everyone that you invite to a party will be either a fan of football or a fan of basketball, but
never both. What is the smallest number of guests you need to invite to ensure that there are either 3
people who are all fans of football or 3 people who are all fans of basketball?

Gold Theorem Id: 7627
Gold Theorem: Ramsey Theorem: Ramsey’s Theorem guarantees that for any edge-coloring of a
sufficiently large complete graph, there exists a monochromatic complete subgraph. More formally,
for integers n1, n2, . . . , nc, there exists a Ramsey number R(n1, . . . , nc) such that any c-coloring of
a complete graph on R(n1, . . . , nc) vertices contains a monochromatic Kni in some color i. (Note
that the gold theorem has no lexical overlap with the original question.)

Qwen2 retriever

Top Retrieved Theorem: Pigeonhole Principle: Let S be a finite set with n elements, partitioned
into k subsets S1, S2, . . . , Sk. Then at least one subset Si satisfies:

|Si| ≥
⌈n
k

⌉
(Incorrect retrieved theorem)

RaDeR GTE-Qwen2-7B-instruct (all query types) retriever

Top Retrieved Theorem: Ramsey’s Theorem guarantees that for any edge-coloring of a sufficiently
large complete graph, there exists a monochromatic complete subgraph. More formally, for integers
n1, n2, . . . , nc, there exists a Ramsey number R(n1, . . . , nc) such that any c-coloring of a complete
graph on R(n1, . . . , nc) vertices contains a monochromatic Kni in some color i. (Correct theorem
retrieved)

Explanation

Explanation: While the Pigeonhole Principle might appear relevant at first glance due to the presence
of element selection in the query, the problem is more appropriately modeled as a graph coloring task.
Specifically, it reduces to a two-coloring of the edges of a complete graph, where the objective is to
guarantee the existence of a monochromatic triangle. Our RaDeR retriever demonstrates the ability
to perform such nuanced reasoning, correctly interpreting the structural semantics of the query and
retrieving the correct gold document: the Ramsey Theorem.

Figure 4: Example of RaDeR success case compared to Qwen2, from TheoremQA theorems of BRIGHT.

17



Example

Query: Imagine you have a family tree that shows the lineage from ancestors to their descendants,
with arrows pointing from parents to children. Can this family tree, with its directed lineage paths, be
accurately represented without the arrows while still maintaining the correct relationships? True or
false?

Gold Theorem Id: 3778
Gold Theorem: The ”’girth”’ of G is the smallest length of any cycle in G. An acyclic graph is
defined as having a girth of infinity. (Note that the gold theorem has no lexical overlap with the
original question.)

Qwen2 retriever

Top Retrieved Theorem: Rooted Tree Corresponds to Arborescence: Let T = (V,E) be a rooted
tree with root r. Then there exists a unique orientation of T that forms an r-arborescence.

(Incorrect theorem retrieved)

RaDeR GTE-Qwen2-7B-instruct (all query types) retriever

Top Retrieved Theorem: Rooted Tree Corresponds to Arborescence: Let T = (V,E) be a rooted
tree with root r. Then there exists a unique orientation of T that forms an r-arborescence.

(Incorrect theorem retrieved)

Explanation

Explanation: This case demonstrates a semantic mismatch: while the retrieved theorem on arbores-
cences aligns superficially with the query’s mention of family trees, the actual focus is on acyclicity,
better captured by the gold theorem on girth. The error highlights how surface-level similarity can
mislead retrieval.

Figure 5: Example of RaDeR Failure cases from TheoremQA theorems BRIGHT
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Example

Query:

Problem: Given an array of integers heights representing the histogram’s bar heights
(each bar has width 1), return the area of the largest rectangle in the histogram.
Example 1. Input: heights = [2,1,5,6,2,3]. Output: 10. The largest rectangle has area 10.
Example 2. Input: heights = [2,4]. Output: 4.
Constraints. 1 ≤ heights.length ≤ 105, 0 ≤ heights[i] ≤ 104.

BM25 retriever
Top Retrieved Document:
Problem: Given an array rectangles, where rectangles[i] = [widthi, heighti], return the
number of pairs (i, j) with i < j such that the rectangles have the same width-to-height ratio, i.e.,
widthi
heighti

=
widthj
heightj

(using decimal division).
(Incorrect retrieved theorem)

RaDeR Llama3.1-8B-instruct retriever
Top Retrieved Document:
Problem: Given a binary matrix matrix of size rows × cols, return the area of the largest rectangle
containing only ’1’s.
Approach: For each row, treat it as the base of a histogram where the height at each column counts
consecutive ’1’s up to that row. For each histogram, compute the largest rectangle using a stack-based
approach (similar to the Largest Rectangle in Histogram problem).
Constraints. 1 ≤ rows, cols ≤ 200; matrix[i][j] ∈ {′0′,′ 1′}. (Correct theorem retrieved)

Explanation

The coding problem has a mathematical substructure because it requires computing the maximum
rectangular area under a histogram, which involves geometric reasoning and optimization over
intervals of the graph. Such a structure helps RaDeR to do better at code retrieval tasks.

Figure 6: Analysis of RaDeR Llama3.1-8B-instruct success case for Coding Example from Leetcode split of
BRIGHT
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L Example Prompts1169

This section provides the prompts used in our work.1170

M Prompt for OST thought action1171

We provide the prompts used for our One Step1172

Thought Action (OST) A1 used in the MCTS, in1173

Figure 7.1174

N Prompt for CRS action1175

We provide the prompts for the Complete Reason-1176

ing Steps action A2 of MCTS, in Figure 8.1177

O Prompt for MCTS Query Generation1178

In this section, we provide the prompts for the1179

query generation action A3 used in our MCTS1180

framework. These prompts guide LLMgen to gener-1181

ate a plausible hypothetical theorem that could help1182

solve the current subproblem. This format of the1183

prompt is chosen to increase the likelihood of term1184

matching retrievers finding the relevant theorems.1185

The instruction is provided in Figure 9 and the few1186

shot examples used are presented in Figure 10.1187

P Prompt for Self Reflection MCTS1188

In this section, we provide the prompts for the1189

self reflection and self-summarization mechanisms1190

used in our MCTS framework. The self-reflection1191

prompt is shown in Figure 11 and the summatiza-1192

tion prompt used is presented in Figure 12.1193

Q Prompt for LLM Reasoning Query1194

generation1195

In this section, we provide the prompts used for1196

generating LLMquery based on the input math ques-1197

tion, the reasoning CoT context and the theorem1198

retrieved in the MCTS. The instruction with the1199

few-shot examples are provided in Figure 13.1200
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Instruction
A chat between a curious user and an AI assistant. The assistant gives step-by-step solutions to the
user’s questions. At the final step, a conclusive answer is given in the format of "The answer is:
boxed{ANSWER}.", where ANSWER should be a numeric answer.

{few shot examples}
Question: {question}
Response: Let’s think step by step.

Few Shot Examples

Question: Gracie and Joe are choosing numbers on the complex plane. Joe chooses the point 1 + 2i.
Gracie chooses −1 + i. How far apart are Gracie and Joe’s points?
Response: Let’s think step by step.
Step 1: Distance formula is

√
(x2 − x1)2 + (y2 − y1)2.

Step 2: Joe’s point (1, 2), Gracie’s (−1, 1).
Step 3: Distance

√
((−1)− (1))2 + ((1)− (2))2 =

√
4 + 1 =

√
5.

Step 4: Points are
√
5 units apart.

Step 5: The answer is:
√
5.

Question: What is the sum of all positive integer values of n for which n+6
n is an integer?

Response: Let’s think step by step.
Step 1: n+ 6 divisible by n.
Step 2: n must be factor of 6.
Step 3: Factors of 6 are 1, 2, 3, 6. Sum is 1 + 2 + 3 + 6 = 12 .
Step 4: The answer is: 12.

Question: Abigail, Beatrice, and Carson sell eggs in cartons of 12. Abigail has 37, Beatrice 49,
Carson 14 eggs. How many eggs remain after selling all cartons?
Response: Let’s think step by step.
Step 1: Total eggs 37 + 49 + 14 = 100.
Step 2: Divide by 12: 100÷ 12 = 8 cartons, remainder 4.
Step 3: Remaining eggs 4 .
Step 4: The answer is: 4.

Question: Circle T has center T (−2, 6), reflected across y-axis, translated 8 units down. Find
coordinates of image center.
Response: Let’s think step by step.
Step 1: Reflect across y-axis: (−(−2), 6) = (2, 6).
Step 2: Translate down 8 units: (2, 6− 8) = (2,−2).
Step 3: Image coordinates (2,−2) .
Step 4: The answer is: (2,−2).

Figure 7: Prompt for MCTS One Step Thought Action
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Instruction
You are given context about a mathematical question. Your job is to generate the next steps of the
solution and complete the solution. In the end of your response, a final answer is given in the format
of "$\boxed<ANSWER>$" , where <ANSWER> should be a numeric result or a math expression.

Few Shot Examples

Context: Gracie and Joe are choosing numbers on the complex plane. Joe chooses the point 1 + 2i.
Gracie chooses −1 + i. How far apart are Gracie and Joe’s points? The distance between two points
(x1, y1) and (x2, y2) in the complex plane is given by

√
(x2 − x1)2 + (y2 − y1)2. Joe’s point is

(1, 2) and Gracie’s point is (−1, 1).
Next steps: The distance is

√
((−1)− (1))2 + ((1)− (2))2 =

√
4 + 1 =

√
5. Therefore, Gracie

and Joe’s points are
√
5 units apart.

Context: What is the sum of all positive integer values of n for which n+6
n is an integer?

Next steps: We want n+6
n to be integer, thus n+ 6 divisible by n. Since n positive, n must factor 6.

Factors: 1, 2, 3, 6. Sum is 1 + 2 + 3 + 6 = 12 .

Context: Abigail, Beatrice, and Carson sell eggs in cartons of 12. Abigail has 37 eggs, Beatrice has
49, Carson has 14. First, total eggs: 37 + 49 + 14 = 100. Divide by 12: 100÷ 12 = 8 remainder 4.
Next steps: Eggs remaining: 4 . The answer is: 4.

Context: Circle T has center T (−2, 6), reflected across y-axis, translated 8 units down. Reflecting
across y-axis negates x-coordinate.
Next steps: Reflection gives (2, 6). Translating down 8 units: (2, 6 − 8) = (2,−2). Therefore,
coordinates are (2,−2) .

Figure 8: Prompt for Complete Remaining Steps (CRS) Action

Instruction
You are given a mathematical question and an intermediate solution. What are the mathematical
concepts, theorems, formulas that would be useful for solving this question. Please provide the
theorem name, followed by the theorem statement, followed by the preconditions in the theorem, and
why the preconditions are satisfied in the question we have. Also mention which specific subjects in
math this theorem corresponds to. List out as many number of theorems that are highly relevant to
this question. Do not output the final solution. Do not generate theorems which are already present in
the intermediate solution.

Figure 9: Instruction for MCTS Query Generation Action
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Few Shot Examples

Theorem: Polynomial Division Algorithm
Theorem Statement: For any two polynomials P(z)(dividend) and D(z) (divisor), with
deg(P (z)) ≥ deg(D(z)), there exist unique polynomials Q(z) (quotient) and R(z) (remainder) such
that: P (z) = D(z)Q(z) +R(z).
Question: Find quotient of 3z4−4z3+5z2−11z+2

2+3z .
Intermediate Solution: Apply polynomial long division.
Query: (Polynomial Division) P (z) = D(z)Q(z) +R(z) if deg(P ) ≥ deg(D).
Preconditions Met: (1)D(z) = 3z + 2 ̸= 0, (2) deg(P ) = 4 > deg(D) = 1.
Subject: Algebra.

Theorem: Principle of Inclusion-Exclusion
Theorem Statement: For any two finite sets A and B, the size of their union is given by:
|A ∪B| = |A|+ |B| − |A ∩B|.
Question: Probability of palindrome (letters/digits) in plates, simplified as m

n , find m+ n.
Intermediate Solution: Compute separately, combine using inclusion-exclusion.
Query: (Inclusion-Exclusion) |A ∪B| = |A|+ |B| − |A ∩B|.
Preconditions Met: (1) Sets finite (letters/digits), potential overlap possible.
Subject: Combinatorics.

Theorem: Basic Multiplication Principle
Theorem Statement: If there are m ways to do something and n ways to do another thing, then there
are m*n to do both things.
Question: Pages written/year if 3-page letters to 2 friends twice weekly?
Intermediate Solution: Pages/week calculation, then yearly total.
Query: (Multiplication Principle) Actions with m and n ways yield m× n combined ways.
Preconditions Met: Counts defined clearly; independent actions.
Subject: Arithmetic.

Figure 10: Few shot examples for MCTS Query Generation Action
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Instruction
You are given a mathematical question, an intermediate solution and a mathematical theorem which
was retrieved denoted as Retrieved Document. First, please judge whether the mathematical theorem
is relevant with the question and the intermediate solution, and put it in the relevant field. If the
provided content is irrelevant to the question and the context, explain the reason in the relevant reason
field. The format will be as follows:
Question: [question]
Intermediate solution: [intermediate solution]
Retrieved Document: [theorem]
Relevant: [relevance label]
Reason: [reason].

Few Shot Examples
Question: Let f : R → R be continuous, with f(0) = 0 and f(x+ y) = f(x) + f(y) + xy. Find
degree of f .
Intermediate Solution: Define g(x) = f(x)− x2

2 .
Retrieved Document: Cauchy’s equation f(x + y) = f(x) + f(y), continuous solution linear:
f(x) = cx.
Relevant: True
Reason: Defining g(x) transforms into Cauchy’s form, yielding g(x) = cx and thus f(x) = x2

2 +cx
degree 2.

Question: Let f : R → R differentiable with f ′(x) = f(x) + x. Find f(x).
Intermediate Solution: Requires solving differential equation directly.
Retrieved Document: Rolle’s Theorem guarantees f ′(c) = 0 under certain continuity/differentiabil-
ity conditions.
Relevant: False
Reason: There is no direct application of Rolle’s Theorem to the differential equation provided, as
the theorem does not help in finding the solution to the equation f ′(x) = f(x) + x.

Question: Battery lifetime exponential mean 10 hours. Probability battery lasts at least 15 hours?
Intermediate Solution: Use exponential distribution’s CDF.
Retrieved Document: Markov’s Inequality provides upper bound P (X ≥ a) ≤ E[X]

a .
Relevant: False
Reason: Markov’s gives bounds, not exact probabilities; exact CDF calculation is necessary here.

Figure 11: Prompt for Self Reflection MCTS
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Instruction
Given the statement of a mathematical theorem in a structured latex format, convert it to a simpler
natural language format by removing latex notations.

Few Shot Examples

Input ProofWiki Theorem (in latex):
<Latex Section>: Quadratic Irrational is Root of Quadratic Equation
<Tags>: Algebra, Quadratic Equations, Quadratic Irrationals
<begin theorem> Let x be a quadratic irrational. Then x is a solution to a quadratic equation with
rational coefficients.

Generated Natural language theorem: Quadratic Irrational is Root of Quadratic Equation
- A quadratic irrational number is always the root of some quadratic equation with rational
coefficients.

Figure 12: Prompt for Self Summarization of Retrieved theorems
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Instruction
Given a math question, its partial solution (may be empty), and a retrieved theorem, do the following:
Identify the preconditions of the theorem and explain why they hold in the given question. Using
these preconditions, generate a general retrieval query that captures the key mathematical idea needed
in the partial solution. The query should be a single sentence.

Few Shot Examples
Question: A warehouse needs to store 65 identical boxes using a set of identical shelves, each of
which can hold up to 8 boxes. What is the minimum number of shelves required to store all the
boxes?
Partial solution: To determine the minimum number of shelves required, we divide the total
number of boxes by the capacity of each shelf. Since the number of shelves must be a whole
number, we round up to 9 shelves.
Theorem: If n items are put into m containers, with n > m, then at least one container must
contain more than one item.
Preconditions: (1) There are more items than containers. (2) The items are distributed into
containers.
Why Preconditions are Satisfied: (1) The warehouse has 65 boxes (items) and needs to distribute
them among shelves (containers), where each shelf can hold up to 8 boxes. (2) Since 65 is greater
than 8, multiple boxes must be placed on each shelf to store all of them.
Generated Query: Minimizing the number of boxes needed to store a given number of objects
with fixed capacity constraints.

Figure 13: Prompt for LLM generated query generation
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