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ABSTRACT

Consistency models, a new class of one-step generative models, have shown state-
of-the-art performance in one-step generation and achieve competitive performance
compared to multi-step diffusion models. The most challenging part of consistency
models is the training process, which discretizes the diffusion process and trains a
consistency function to map any point at any discretized timepoint of the diffusion
process to the data distribution. Despite the empirical success, only a few works
focus on the discretization complexity of consistency models. However, the setting
of those works is far away from the empirical consistency models with good
performance, suffers from large discretization complexity, and fails to explain the
empirical success of consistency models. To bridge the gap between theory and
application, we analyze consistency models with two key properties: (1) variance
exploding forward process and (2) gradually decay discretization stepsize, which
are both widely used in empirical consistency models. Under the above realistic
setting, we make the first step to explain the empirical success of consistency
models and achieve the state-of-the-art discretization complexity for consistency
models, which is competitive with the results of diffusion models. After obtaining
the results of the one-step sampling method of consistency models, we further
analyze a multi-step consistency sampling algorithm proposed by Song et al. (2023)
and show that this algorithm improves the discretization complexity compared with
one-step generation, which matches the empirical observation.

1 INTRODUCTION

Recently, diffusion models have shown impressive performance in different areas such as image
generation and video generation (Rombach et al., 2022; Esser et al., 2024; Ho et al., 2022). The
mathematical mechanism of diffusion models is made up of two processes: the forward process and
the reverse process. The forward process gradually injects noise into data till the marginal distribution
is close to pure noise. The reverse process is an iterative sampling process, which sequentially
removes noise from data to generate clean samples. At each denoised step, diffusion models only
need to predict and remove a small noise, making the training process more stable than Generative
Adversarial Networks (GAN) (Goodfellow et al., 2014). However, the iterative sampling process
indicates diffusion models need to evaluate a large neural network to predict the noise at this step,
leading to a higher computational cost than other one-step algorithms such as GAN, Variational
Auto-Encoder (Kingma and Welling, 2013), and Normalizing Flow (Papamakarios et al., 2021).

To solve the computational issue, a series of works try to accelerate the sampling process of diffusion
models (Song et al., 2020; Bao et al., 2022; Zheng et al., 2023). One notable algorithm in this
series work is the Consistency Model (Song et al., 2023), which tries to find a mapping function
(a.k.a. consistency function) to directly map any points at any time of the forward process to the
data distribution. Consistency models have shown state-of-the-art (SOTA) performance compared to
other one-step generative models in image generation (Song et al., 2023; Kim et al., 2023), video
generation (Wang et al., 2023) and music generation (Fei et al., 2024). Furthermore, it is also widely
used in other areas, such as reinforcement learning (Ding and Jin, 2023).
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To obtain the consistency function, consistency models discretize the timeline into K discretization
points and hope the consistency function outputs similar results at two adjacent discretization points in
the training phase. When the two adjacent points are far away, it is hard to train a consistency function
with great performance, which indicates K can not be too small. However, it is also necessary to
avoid a large K since it will make the training phase time-consuming. Hence, one core of consistency
models training phase is the choice of the discretization number K, which is helpul in effective
training a consistency function with great performance.

Despite the empirical success of consistency models, no existing works explain why consistency
models achieve comparable performance to diffusion models. Though some impressive works analyze
the discretization complexity of consistency models (Lyu et al., 2024; Li et al., 2024; Dou et al.), the
setting is far away from the consistency models with great performance in application:

• The forward process. Previous theoretical works choose the variance preserving forward
process (VPSDE) to inject noise in the training phase. On the contrary, empirical consis-
tency models adopt the variance exploding forward process (VESDE) with a specific noise
schedule whose solution trajectory is linear. As discussed in Karras et al. (2022) and Liu
et al. (2022), a linear trajectory indicates it is possible to generate clean samples with a
single Euler step and is the basis of a one-step model.

• The discretization scheme. The discretization scheme of consistency models is the EDM
scheme (Eq. (5)), which first uses a large stepsize and gradually reduces the stepsize.
However, Lyu et al. (2024) and Dou et al. use a uniform stepsize, and Li et al. (2024) use a
scheme that relies heavily on the VPSDE (Detail in Appendix C.1).

Due to the mismatch between the current theoretical and empirical setting, the discretization com-
plexity results of current theoretical works are significantly worse than diffusion models (Table 1).
Hence, the following natural problem remains open:

Under a realistic setting with great empirical performance, is it possible to achieve complexity
comparable to the state-of-the-art diffusion models and explain the success of consistency models?

In this work, for the first time, we analyze consistency models under the VESDE forward process and
EDM stepsize and achieve the following results.

Theorem 1. (Informal) Assume bounded supported target data distribution. With suitable assumption
on pre-trained score function, consistency function 1, the consistency models require

K = O

R4+ 3
2a d3+

1
2a

ϵ
4+ 3

2a

W2


discretization steps in the training phase to output a distribution which is Wasserstein-2 (W2) close
to the target distribution in the sampling phase, where R is the diameter of target distribution
X0 ∼ q0 ∈ Rd and a = 7 is a parameter of EDM (5) stepsize.

As shown in Table 1, this result is better than the previous theoretical guarantee of consistency models,
shows the benefit of a suitable a and achieves competitive results compared to SOTA diffusion model
results. The core step of this result is to make full use of the time-dependence Lipschitz constant of
the consistency function. More specifically, we first show that with a uniform Lipschitz constant, we
achieve 1/ϵ7W2

discretization complexity for any a. This result indicates that a uniform Lipschitz
constant prevents an improved K with a suitable a, which does not match the empirical observation
(Karras et al., 2022). Then, we prove that with a time-dependent Lipschitz constant, the influence of a
is highlighted, and we achieve SOTA complexity for consistency models (More detail in Section 4.2).

To improve the sampling quality of consistency models, Song et al. (2023) further provide a multi-step
sampling algorithm. Let T be the forward diffusion time, N be the number of sampling steps and
T = τ1 ≥ τ2 ≥ . . . ≥ τN be a sequence of time points used in a multi-step sampling algorithm.
The algorithm adds noise to the latest generated clean samples and maps the noised sample to the
clean samples using the consistency function (Eq. (6)). The great performance indicates that the
requirement of K can be relaxed if the multi-step sampling method is used. Recently, Lyu et al.

1Different from a uniform Lipschitz constant used in previous theoretical works, we assume this Lipschitz
constant depends on noise level, which matches the true order and is more realistic.
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Table 1: The discretization complexity for consistency and diffusion models with reverse PFODE in
Wasserstein distance. To make a thorough comparison, we also provide the SOTA discretization results
for diffusion models with reverse SDE. (+) means that we transform the log-concave distribution,
which is unrealistic and ignore the blow-up phenomenon of the score, to our bounded support
distribution. (*) means that we transform the results of previous works into the results under our
setting. We present more detail in Appendix C.1.

Model Forward
Process Stepsize Complexity Reference

Diffusion
VESDE Uniform

1/ϵ4W2

1/(ϵ4W2
Poly(ϵW2

)) (+) Gao and Zhu (2024)

VPSDE Uniform 1/ϵW2

1/(ϵW2
Poly(ϵW2

)) (+)
VPSDE

(Reverse SDE)
Exponential

Decay 1/ϵ4W2
Chen et al. (2022a)

Consistency VPSDE
Uniform

Lf/ϵ
7
W2

1/ϵ9W2
(*) Lyu et al. (2024)

Specific to
VPSDE

L3
f/ϵW1

1/(ϵW1
ϵ6W2

) (*) Li et al. (2024)

Uniform
L2
fL

2
score/ϵ

2
W1

1/(ϵ2W1
ϵ12W2

) (*) Dou et al.

VESDE EDM (5)
a ∈ [1,∞)

1/ϵ
4+ 3

2a

W2
Theorem 1

1/ϵ
4+ 5

4a

W2

Corollary 2 (Case 2)
(Multi-step Sampling)

Exponential
Decay 1/ϵ4W2

Corollary 1

(2024) make the first step to analyze the benefit of the multi-step sampling algorithm and show that
this operation can reduce the W2 error. However, since they adopt the VPSDE process, the benefit
of the W2 guarantee does not lead to an improved discretization complexity K. In this work, we
show that with a VESDE process and a suitable {τn}Nn=1, the multi-step sampling algorithm can
effectively reduce the requirement of K. Since N = 2 is enough to improve the generation quality
(Song et al., 2023), we adopt this choice, achieve O(1/ϵ

4+5/4a
W2

) discretization complexity and also
reduce the requirement of the approximated consistency function (detail in Section 4.1). The above
result is better than results in Theorem 1 and explains the role of multi-step sampling.

In conclusion, we explain why consistency models have competitive performance compared to
diffusion models in application. More specifically,

• We bridge the gap between theoretical analysis and real-world applied models by analyzing
consistency models with the VESDE forward process and EDM discretization scheme.

• Under the above realistic setting, we achieve the state-of-the-art discretization complexity
for consistency models, which is also competitive with the results of diffusion models.

• For the first time, we also show that the multi-step sampling algorithm of consistency models
can effectively reduce the discretization complexity and the requirement of other error terms.

2 RELATED WORK

Since the mathematical mechanism of consistency models is close to diffusion models, we discuss the
discretization complexity of diffusion and consistency models. For diffusion models, we summarize
the results for reverse PFODE due to the deterministic sample process of consistency models.

Diffusion models with reverse PFODE. With strong assumptions or additional components, a series
of works achieve polynomial complexity for reverse PFODE (Li et al., 2023; Chen et al., 2023c; Gao
and Zhu, 2024). More specifically, Li et al. (2023) assume an accurate enough Jacobian matrix, and
Gao and Zhu (2024) assume the target data distribution is log-concave. We note that the log-concave
assumption on data distribution is much stronger than our bounded support assumption since it

3
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precludes the existence of multi-modal real-world data. Furthermore, under log-concave distribution,
the ground truth score function ∇ log qT−t(·) does not blow-up, which can not explain the blow-up
phenomenon of score function 2 and ignore the influence of early stopping parameter δ (Table 1).
Without any strong assumption, Chen et al. (2023c) introduce a predictor-corrector algorithm, which
switches between a Langevin corrector and a PFODE predictor. Then, they prove a polynomial
discretization complexity for this algorithm.

Consistency models. Lyu et al. (2024) and Li et al. (2024) analyze the discretization complexity of
consistency distillation and consistency training paradigm, respectively. More recently, Dou et al.
analyze the estimation error and discretization complexity of consistency distillation and training
paradigm at the same time. Though these works deepen the understanding of consistency models, the
setting of these works is far away from consistency models in the application and suffers from large
discretization complexity compared to the state-of-the-art results of diffusion models (Table 1).

3 THE INTRODUCTION OF DIFFUSION AND CONSISTENCY MODELS

Since the training phase of consistency models relies heavily on the diffusion process, we first
introduce some basic knowledge of diffusion models. After that, we introduce how to train a
consistency model with a pre-trained diffusion model.

3.1 THE DIFFUSION MODELS

Diffusion models consist of two processes: the forward and reverse process. The forward process
converts data distribution to pure noise by adding Gaussian noise step by step. To generate clean
samples, diffusion models reverse the forward process and run the corresponding reverse process.

The forward process. Let q0 denote the data distribution. The goal of the forward process is to
gradually convert q0 to Gaussian noise. Given X0 ∈ Rd ∼ q0, the general forward process is

dXt = f(Xt, t) dt+ g(t) dBt, X0 ∼ q0 ,

where (Bt)t≥0 is a d-dimensional Brownian motion, f(Xt, t) is a drift coefficient, and g(t) is a
diffusion coefficient. Let qt be the density function of the forward process at time t and {βt}t∈[0,T ]

be a non-negative non-decreasing sequence. When f(Xt, t) = −βtXt and g(t) =
√
2βt, the general

forward process is instantiated as a widely used variance preserving forward process (VPSDE) (Ho
et al., 2020). We note that though VPSDE plays an important role in developing diffusion models,
the solution trajectory of VPSDE is curved instead of linear, which prevents it from becoming the
basis of one-step generative models. Hence, we focus on the variance exploding forward process,
which has a linear solution trajectory under a specific noise schedule and has been widely used in
many areas such as image generation (Karras et al., 2022), one-step generation (Kim et al., 2023) ,
video generation (Blattmann et al., 2023) and intrinsic dimension estimator (Stanczuk et al.).

Let {σ2
t }t∈[0,T ] a non-decreasing sequence and g(t) =

√
dσ2

t /dt. Then, VESDE is defined by:

dXt = g(t) dBt, X0 ∼ q0 . (1)

As shown in Karras et al. (2022), when choosing σ2
t = t2, the solution trajectory of VESDE is linear.

Hence, consistency models adopt VESDE (σ2
t = t2) as the forward process. In this work, we also

choose VESDE with σ2
t = t2 as the forward process to match the empirical setting.

The reverse process. Let t′ = T − t be the reverse time and (Yt′)t′∈[0,T ] = (XT−t′)t′∈[0,T ] . To
generate samples, the model reverses the forward process (Eq. (1)) and obtains the reverse process:

dYt′ =
1 + η2

2
g(T − t′)2∇ log qT−t′ (Yt′) dt

′ + ηg(T − t′) dBt′ , Y0 ∼ qT , (2)

where η ∈ [0, 1] determines the type of the reverse process and consistency models adopt the reverse
probability flow ODE (PFODE, η = 0) in its training phase. Since the ground truth score function
∇ log qt(·) and qT contain the data information, we can not directly run the above PFODE to generate

2The blow-up phenomenon means the ground truth score function ∇ log qT−t(·) goes to +∞ at the end of
the reverse process. As shown in De Bortoli (2022), Assumption 1 allows this phenomenon.
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samples. For the reverse beginning distribution qT , we choose N (0, T 2Id) to approximate it due to
σ2
T = T 2. For ∇ log qt(·), Vincent (2011) propose the following score matching objective function

to learn an approximated score function sϕ(Xt, t) ,∀t ∈ [0, T ]:

min
ϕ∈Φ

∫ T

0

w(t)EX0

[
EXt|X0

∥∇ log qt (Xt|X0)− sϕ (Xt, t)∥22
]
dt ,

where w(t) is a weight function. With the approximated score function sϕ(·), diffusion models
discretize the reverse process and generate samples. Let t0 ≤ t1 ≤ · · · ≤ tK = T be the discretization
points in the forward time and hk := tk− tk−1 be the stepsize. When considering the reverse process,
we define by t′k = T − tK−k and h′k = hK−k the discretization points and stepsize in the reverse
process. Since the score function ∇ log qT−t goes to +∞ at the end of the reverse process, we
adapt the early stopping technique by setting t0 = δ to avoid this issue, which is widely used in the
application (Kim et al., 2021). Then, starting from Ȳ0 ∼ N (0, T 2Id), we run the following process
in each interval t ∈ [t′k, t

′
k+1], k ∈ [0,K − 1] to generate samples:

dȲt′ =
g(T − t′)2

2
sϕ

(
Ȳt′k , T − t′k

)
dt′, t′ ∈ [t′k, t

′
k+1] . (3)

3.2 THE CONSISTENCY MODELS

There are two paradigms for the training phase of consistency models: consistency distillation and
consistency training, where the consistency distillation paradigm requires a pre-trained score function
sϕ(X, t) ,∀t ∈ [0, T ] and consistency training paradigm trains in isolation. Since consistency training
can not take information from a pre-trained score function, its hyperparameters need to be carefully
selected to achieve great performance (Song et al., 2023; Song and Dhariwal, 2023). Hence, we
analyze the discretization complexity of the consistency distillation paradigm in this work. We also
discuss the current results of the consistency training paradigm in Remark 1.

Let vex(Y, t′) = g(T−t′)2
2 ∇ log qT−t′ (Y ) be the exact vector field of PFODE (Eq. (2), η = 0). We

can define the associate backward mapping fvex
: Rd × R+ → Rd such that for any t′ ∈ [0, T − δ].

fv
ex
(Yt′ , t

′) = YT−δ = Xδ ,

where δ is the early stopping parameter. The above equation is equivalent to the following conditions:

fvex
(Yt′ , t

′) = fvex
(Yt◦′ , t

◦′) ,∀ 0 ≤ t◦′, t′ ≤ T − δ, and

fvex
(Y, T − δ) = Y, ∀Y ∈ Rd

We also define the empirical vector field vem(Y, t′) = g(T−t′)2
2 sϕ (Y, T − t′) and the corresponding

empirical backward mapping function fvem
. The goal of consistency model is to learn a consistency

function fθ to approximate f ex (for simplicity, we abbreviate fvex
as f ex). Let Fθ(Y, t

′) be a free-
form deep neural network whose output has the same dimensionality as Y . To satisfy the boundary
condition, (Song et al., 2023) use a skip connection:

fθ(Y, t
′) = cskip (t

′)Y + cout (t
′)Fθ(Y, t

′) ,

where cskip (t) and cout (t) are differentiable functions such that cskip (T−δ) = 1, and cout (T−δ) = 0.
After that, we define the consistency distillation objective function:

LKCD

(
θ,θ−;ϕ

)
:= EX0

[
EYt′

k
|X0

λ
(
t′k+1

) ∥∥∥fθ

(
Yt′k , t

′
k

)
− fθ−

(
Ŷ ϕ
t′k+1

, t′k+1

)∥∥∥2
2

]
, (4)

where t′k is the time discretization points in the reverse process. Since Yt′k is equal to XT−t′k , we
can calculate Yt′k |X0 by the forward process X0 + (T − t′k)Z, where Z is the standard gaussian
noise. To make the training process more stable, Song et al. (2023) take similar idea with contrastive
learning, stop the gradient of θ− and use an exponential moving average (EMA) strategy to update it
θ− = stopgrad (µθ− + (1− µ)θ), where µ is the decay rate. For the Ŷ ϕ

t′k+1
, it is obtain by running

one step PFODE (Eq. (3)) from t′k to t′k+1 with initial distribution Yt′k .

Recently, Dou et al. discrete the interval [t′k, t
′
k+1] in M smaller interval and run multi step PFODE

to obtain Ŷ ϕ
t′k+1

. We note that though this operation makes theoretical analysis easier, it is far away

5
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from the real-world application and time-consuming. Since our work aims to explain the empirical
success of consistency models in application, we exactly follow the empirical operation, which does
one-step PFODE instead of multi-step PFODE.

The stepsize in the training process of consistency model. When training the consistency model,
Song et al. (2023) and Song and Dhariwal (2023) use EDM stepsize

tk = (δ + kh)aand h = (T 1/a − δ)/K , (5)

with a = 7. As discussed in Karras et al. (2022), since VESDE has a large variance at the end
of the forward process, it is more suitable for VESDE to use a large stepsize at the beginning of
the reverse process instead of uniform stepsize (a = 1). When a goes to +∞, the EDM stepsize
becomes theoretically friendly exponential decay stepsize hk = rtk, where r is a small coefficient
corresponding to accuracy parameters ϵ. We note that the exponential decay stepsize is widely used in
theoretical works (Chen et al., 2022a; Benton et al., 2024). In this work, we simultaneously analyze
the EDM and exponential decay steps and achieve state-of-the-art discretization complexity.
Remark 1. Recently, Li et al. (2024) and Dou et al. analyze the discretization complexity and
estimation error bound of consistency training. As shown in Table 1, their discretization complexity
is worse than our results. Furthermore, their training paradigm is different from the consistency
training paradigm in application. More specifically, Li et al. (2024) use an iterative consistency
training method, which trains a consistency function for each k ∈ [K] and is time-consuming. Dou
et al. only train a consistency function and embeds time t. However, as in the above discussion, they
do multi-step PFODE in the training phase, and the empirical consistency models only do one-step
PFODE. Hence, it is an interesting future work to explain the empirical success of the consistency
training paradigm from the theoretical perspective under the setting in the application.

Notation. We denote by W1 and W2 the Wasserstein distance of order one and two, respectively.
Note that W1 guarantee is weaker than W2 guarantee since W1(p, q) ≤W2(p, q). The push-forward
operator ♯ is associated with a measurable map f : M′ → N . For any measure µ over M′, we define
the push-forward measure f♯µ over N by: f♯µ(A) = µ

(
f−1(A)

)
, for any A be measurable set in

N . Before introducing our theoretical guarantee, we first organize the notation.

Diffusion models:

• Let (Xt)t∈[0,T ] be the random variable of the forward process (Eq. (1)). We define by
δ = t0 ≤ t1 ≤ · · · ≤ tK = T and hk = tk − tk−1 the discretization points and stepsize.

• Let t′ = T − t be the reverse time and (Yt′)t′∈[0,T ] = (XT−t′)t′∈[0,T ] be the random
variable of reverse process (Eq. (2)). We define by t′k = T − tK−k and h′k = hK−k the
discretization points and stepsize in the reverse process.

• Let pK be the distribution generated by running the discrete process Eq. (3) with sϕ, the
complexity of the sample is the requirement of K to guarantee W2(pK , q0) ≤ ϵW2

.

Consistency models:

• The goal of consistency models is to learn a consistency function fθ (Y, t
′) to directly map

pure noise Y ∼ N (0, T 2Id) and t′ = 0 (the start of the reverse process) to q0.

• We denote by fθ,0♯N
(
0, T 2Id

)
the generated distribution of the above operation. Since

the consistency function is one step, the discretization complexity is the requirement of K
in the training process (Eq. (4)) to guarantee W2(fθ,0♯N

(
0, T 2Id

)
, q0) ≤ ϵW2

.

4 DISCRETIZATION COMPLEXITY OF CONSISTENCY MODEL IN APPLICATION

This section provides SOTA discretization complexity for the training phase of consistency models.
Before showing our results, we introduce some suitable assumptions on data distribution, pre-trained
score function, and consistency function.
Assumption 1. q0 is supported on a compact set M and 0 ∈ M.

We define by R the diameter of the compact R = sup{∥x − y∥2 : x, y ∈ M} and assume R > 1.
The bounded support assumption is support by much empirical evidence (Pope et al., 2021; Tang

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

and Yang, 2024) and is satisfied by the image dataset. Currently, this assumption is widely used
by current theoretical work (De Bortoli, 2022; Chen et al., 2022b; Lyu et al., 2024) and is the most
lightweight assumption for VE-based method (Yang et al., 2024).

For the approximated score function, different from Lyu et al. (2024), which considers the VPSDE
forward process, we consider a L2 approximated score function depends on the noise σ2

t since
VESDE forward process will have a larger σ2

t compared with VPSDE. As discussed in Chen et al.
(2022a) (Remark 1), this assumption matches the order of the ground truth score function.
Assumption 2. There exists a constant ϵscore such that for any k ∈ [K],

EXtk
∼qtk

[
∥sϕ(Xtk , tk)−∇ log qtk(Xtk)∥

2
2

]
≤ ϵ2score/σ

2
tk
.

We also assume the consistency function is accurate enough. Since we analyze the consistency
distillation paradigm, we assume after the one-step reverse PFODE process, the results of the learned
consistency function are still close.
Assumption 3. There exists a constant ϵcm such that for any k ∈ [K]

EYt′
k
∼qt′

k

[∥∥∥fθ

(
Yt′k , t

′
k

)
− fθ

(
Ŷ ϕ
t′k+1

, t′k+1

)∥∥∥2
2

]
≤ ϵ2cm

(
t′k+1 − t′k

)2
.

The above assumption is exactly the same as the one in Lyu et al. (2024). When considering the
consistency training paradigm, Li et al. (2024) also decouple learning and generation processes and
assume ∥fθ(Xt, t)− f ex(Xt, t)∥22 is small enough.

Similar with previous theoretical analysis (Lyu et al., 2024; Li et al., 2024; Dou et al.), we also assume
fθ(Y, t

′) is Lipschitz. Different from previous works, we assume the Lipschitz constant depends on
t. To determine the true order of the Lipschitz constant, we first recall the result of the ground-truth
∇ log qt(·) and ∇2 log qt(·). Let mt(Xt) := Eq0|t(·|Xt) [X0] and Σt(Xt) := Covq0|t(·|xt) (X0) be
the posterior mean and variance. Benton et al. (2024) achieve the following result.
Lemma 1. [The VESDE version of Lemma 5.(Benton et al., 2024)] Considering VESDE forward
process Eq. (1), for all t ≥ 0 and ∀Xt ∈ Rd, we have that

∇ log qt(Xt) =
mt −Xt

σ2
t

and ∇2 log qt (Xt) = −σ−2
t Id + σ−4

t Σt .

It is clear that mt directly maps the noised data to the clean target data distribution, which is f ex

in our work. Then, the ground-truth score function can be parameterized as ∇ log qT−t′(Y, T −
t′) = (f ex(Y, t′) − Y )/σ2

T−t′ . We note that this parametrization is widely used in applications.
For example, Karras et al. (2022) and Kim et al. (2023) parameterize the approximated score
sϕ(Xt, t) = (Dϕ(Xt, t)−Xt)/σ

2
t and using the score matching algorithm to learn Dϕ (Eq. (2,3) of

Karras et al. (2022)), where Dϕ(Xt, t) is the denoised auto-encoder (DAE). After that, they use sϕ
and K discrete steps to generate samples (Line 7-9 of Algorithm 2, (Karras et al., 2022)).

Using the above parametrization and the second result of Lemma 1, we know that

∇2 log qT−t′(Y, T − t′) =
∇f ex(Y, t′)− Id

σ2
T−t′

= −σ−2
T−t′Id + σ−4

T−t′ΣT−t′ .

Then, we know that ∇f ex(Y, t′) = ΣT−t′/σ
2
T−t′ . With the bounded support assumption, we know

that ∥ΣT−t′∥op ≤ R2 for ∀t′ ∈ [0, T − δ], which indicates the true order of the Lipschitz constant
of f ex(Y, t′) has order ∥∇f ex(Y, t′)∥op ≤ R2/σ2

T−t.

Example 1. To make a clearer discussion, we use a Gaussian distribution X0 ∼ N (µ,Σ) as an
example. More specifically, as shown in Guo et al. (2024) (Lemma 1), under this setting, we have that

E [X0|Xt] = µ+
(
Σ+ σ2

t Id
)−1

Σ (Xt − µ) .

It is clear that ∇XtE[X0|Xt] =
(
Σ+ σ2

t Id
)−1

Σ, which has the order 1/σ2
t .

Hence, the following assumption is more realistic since it matches the true order of f ex(Y, t′).
Assumption 4. fθ(Y, t

′
k) is Lf,t′k Lipschitz for ∀k ∈ [K], where Lf,t = R2/σ2

T−t.
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Remark 2. Recently, when considering the analysis of consistency models, some works (Lyu et al.,
2024; Li et al., 2024; Dou et al.) assume the second moment of data distribution E[∥q0∥22] is bounded,
which is a slightly weaker than Assumption 1. The dependence of R comes from the time-dependent
Lipschitz constant of fθ, which matches the true order. As shown in Section 4.2, Assumption 4 is
necessary to achieve an improved discretization complexity. We also note that to do a refined analysis
for consistency models, Lemma 3.13 of Lyu et al. (2024) and Lemma D.2 of Dou et al. also assume
Assumption 1 to obtain the Lipshcitz constant R2/σ4

T−t for the score function.

With these assumptions, we obtain the following results under the VESDE and EDM stepsize, which
explain the success of empirical consistency models from the discretization complexity perspective.
Theorem 1. Assume Assumption 1, 2, 3, 4 holds and consider the EDM stepsize (5). Then, the
one-step generation error is bounded by

W2

(
fθ,0♯N

(
0, T 2Id

)
, q0
)
≲
R3

T 2
+
R2d(T/δ)

1
2a

√
Kδ

+
R2ϵscore log(T/δ)

δ
+ ϵcmT +

√
dδ .

where fθ,0 is the learned consistency function at the reverse time t′ = 0 (the forward process
t = T ). Furthermore, by choosing T ≥ R1.5/

√
ϵW2

, δ = ϵW2
/
√
d, ϵcm ≤ ϵW2

/T and ϵscore ≤
ϵW2δ/(R

2 log(T/δ)), the output is ϵW2 -close to q0 with discretization complexity

K = O
(
R4+ 3

2a d3+
1
2a /ϵ

4+ 3
2a

W2

)
Song et al. (2023) choose a = 7 as the parameter of the EDM scheme, which leads to O(1/ϵ

59/14
W2

)
complexity. When considering exponential decay stepsize, we can improve the results.
Corollary 1. Assume Assumption 1, 2, 3, 4 holds and consider the exponential decay stepsize
hk = rtk for ∀k ∈ [1,K], where r = ϵ4W2

/
(
R4d3 log2(T/δ)

)
. Then, we have that

W2

(
fθ,0♯N

(
0, T 2Id

)
, q0
)
≲
R3

T 2
+
R2d log1.5(T/δ)√

Kδ
+
ϵscore log(T/δ)

δ
+ ϵcmT +

√
dδ .

By choosing T ≥ R1.5/
√
ϵW2 , δ = ϵW2/

√
d, ϵcm ≤ ϵW2/T and ϵscore ≤ ϵW2δ/(R

2 log(T/δ)), the
output is ϵW2

-close to q0 with discretization complexity K = O
(
R4d3 log3(T/δ)/ϵ4W2

)
.

As shown in Table 1, the above discretization complexity significantly improves the current con-
sistency model results by taking full use of the time-dependent Lipschitz constant (Section 4.2).
Compared with diffusion models, we achieve competitive and even better discretization complexity
for both reverse SDE and reverse PFODE settings (Table 1).

4.1 MULTI-STEP SAMPLING REDUCE THE DISCRETIZATION COMPLEXITY

To achieve better performance, Song et al. (2023) also provide a multi-step sampling method. Let
T = τ1 ≥ τ2 ≥ ... ≥ τN be a sequence of time points , p1 be the one-step generated distribution
fθ,0♯N

(
0, T 2Id

)
and Xτ1 ∼ p1. The n-step sampling process follows the following procedure:

Xτn = fθ(X
τn−1 + στnZ, τn) , Z ∼ N (0, I) . (6)

which first adds noise to the (n − 1)-step sampling data using the VESDE forward process and
then generates Xτn . Let pn be law (Xτn) Recently, Lyu et al. (2024) make an important step in
understanding the multi-step sampling mechanism in consistency models and prove that this operation
can reduce the W2 error with a suitable N . However, as shown in Corollary 3.14 of Lyu et al. (2024),
the discretization complexity of one-step and multi-step sampling are both Õ(Lf/ϵ

7
W2

), which means
the multi-step sampling can not reduce the requirement of discretization. Hence, we need a more
refined analysis under a realistic setting to show the role of multi-step sampling. Since n = 2
is enough to generate high-quality samples in application (Song et al., 2023), we analyze 2-step
sampling and improve the discretization complexity with a designed τ2.
Corollary 2. Assume Assumption 1, 2, 3, 4 holds and consider the EDM stepsize. Then, for 2-step
generation, we have that

W2 (p2, q0) ≲
√
dδ +

R5

τ22T
2
+
R2d(T/δ)

1
2a

√
Kδ

+

(
R2 log(T/δ)/τ22 + log(τ2/δ)

)
R2ϵscore

δ
+

(
R2T

τ22
+ τ2

)
ϵcm .
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The error bound comes from three sources: the early stopping term, the previous error W2(p1, qδ)
and the discretization error at this sampling phase. The core observation is that the multi-step
sampling can reduce the requirement of T due to the R5/(τ22T

2) term 3, which further improve the
discretization complexity in the training phase and the dependence on ϵscore and ϵcm. At the end of
this part, we discuss the choice of τ2, which depends on the different error terms we focus on. We
note our analysis can be directly extended to multi-step sampling. Since Song et al. (2023) show that
2-step sampling is enough for consistency models (Table 1, the NFE number is the sampling number)
to achieve great performance , we use 2-step sampling as an example for a clearer discussion.

Case 1: The large learning error. As shown in Theorem 1, to achieve the ϵW2
guarantee, ϵcm is

required to be smaller than ϵ1.5W2
/R1.5. We note that after 2-step sampling, the coefficient of ϵcm

becomes R2T/τ22 + τ2, which can be smaller than T . For example, with τ2 =
√
T , we require

T ≥ R
5
3 /ϵ

1
3

W2
to guarantee R5/τ22T

2 smaller than ϵW2
. Then, we have that

K = O
(
R4+ 5

3a d3+
1
2a /ϵ

4+ 4
3a

W2

)
and ϵcm ≤ min

{
ϵW2

/R2, ϵ
7
6

W2
/R

5
6

}
.

We note that the above discretization complexity is better Theorem 1 and the requirement of ϵcm is
weaker than Theorem 1, which show that multi-step sampling can effectively improve the results.

Case 2: The large discretization error. In this case, we focus on a well-learned consistency function
setting, which means ϵcm is small, and the dominant term is the discretization error. In this setting,
we choose τ2 = T/2 and have that

K = O
(
R4+ 5

4a d3+
1
2a /ϵ

4+ 5
4a

W2

)
and ϵcm ≤ ϵ

5
4

W2
/R

5
4 .

It is clear that the discretization complexity is better, and the requirement of ϵcm is higher than the
one in case 1. Hence, it would be better to choose a suitable starting point τ2 depending on the large
error term. In application, Song et al. (2023) use a greedy policy to find τ2 with the lowest FID. It is
an interesting future work to design an optimal τ2 from the theoretical perspective.

4.2 PROOF SKETCH AND TECHNIQUE NOVELTY

In this section, we first provide a proof sketch in the first paragraph, which is similar to Lyu et al.
(2024). Then, we highlight our technique novelty to take advantage of the time-dependent Lipschitz
constant to achieve the state-of-the-art discretization complexity.

Proof Sketch. We first decompose W2

(
fθ,0♯N

(
0, T 2Id

)
, q0
)
:

W2

(
fθ,0♯N

(
0, T 2Id

)
,fθ,0♯qT

)
+W2 (fθ,0♯qT , qδ) +W2 (qδ, q0) ,

where the first is due to the forward process, the second is the discretization error, and the third is due
to the early stopping technique. In this part, we focus on the most challenging discretization term:(
EY0∼qT

[
∥fθ (Y0, 0)− f ex (Y0, 0)∥22

])1/2
=

EY0∼qT

∥∥∥∥∥
K−1∑
k=0

(
fθ

(
Yt′k , t

′
k

)
− fθ

(
Yt′k+1

, t′k+1

))∥∥∥∥∥
2

2

1/2

≤
K−1∑
k=0

(
EY0∼qT

[∥∥∥fθ

(
Yt′k , t

′
k

)
− fθ

(
Ŷ ϕt′k+1

, t′k+1

)
+ fθ

(
Ŷ ϕ
t′k+1

, t′k+1

)
− fθ

(
Yt′k+1

, t′k+1

)∥∥∥2
2

])1/2

≤
K−1∑
k=0

(
EY0∼qT

[∥∥∥fθ

(
Ŷ ϕ
t′k+1

, t′k+1

)
− fθ

(
Yt′k+1

, t′k+1

)∥∥∥2
2

])1/2

+ approximated fθ error

≤
K−1∑
k=0

Lf,tk+1

(
EY0∼qT

[∥∥∥Ŷ ϕtk+1
− Yt′k+1

∥∥∥2
2

])1/2

+ approximated fθ error ,

3At the remaining part of this section, we focus on ϵW2 since it is the dominated term of the discretization
complexity

9
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where the first equality follows the fact that f ex (Y0, 0) = Xδ = fθ (YT−δ, T − δ). By using
Grönwall’s inequality, we can obtain the error bound of a single step PFODE:(

EY0∼qT

[∥∥∥Ŷ ϕtk+1
− Yt′k+1

∥∥∥2
2

])1/2

≲
dh′1.5k√
T − t′k

+ h′kϵscore .

Then, the remaining term is to control
∑K−1
k=0 Lf,tk+1

(
dh′1.5

k√
T−t′k

+ h′kϵscore

)
. In the following

paragraphs, we discuss why the time-dependent Lipschitz is suitable for EDM stepsize and is
necessary to achieve competitive results compared with the well-studied diffusion models.

The time-dependent Lipschitz constant reduce the influence of T and δ. At the beginning of
this paragraph, we first show the results of uniform Lipschtiz constant.

dLf

K−1∑
k=0

h1.5k√
tk

≍ dLfh
0.5

K−1∑
k=0

hk

t
1/2a
k

≍ dLfh
0.5

∫ T

δ

1

t
1
2a

dt ≤ dLfT
1/2a

√
K

T
2a−1
2a =

dLfT√
K

,

where the first equality follows the fact that hk

h ≍ t
a−1
a

k and the inequality comes from h =

(T
1
a − δ)/K. Since this constant needs to be hold for ∀t′ ∈ [0, T − δ], we choose the uniform

constant Lf,T−δ = R2/δ2 and the discretization complexity is K = O
(
R7d5.5/ϵ7W2

)
. It is clear

that a uniform Lipschitz constant prevents an improved K with the EDM stepsize. However, Karras
et al. (2022) has shown that a suitable a = 7 can significantly improve the generation quality and
consistency models adopt this setting. In the following part, we show that with a time-dependent
Lf,t, the discretization can be improved by using EDM stepsize. With Lf,t = R2/σ2

T−t, we have

dR2

δ

K∑
k=1

h1.5k
t1.5k

≍ dR2h0.5

δ

K∑
k=1

hk

t
2a+1
2a

k

≍ dR2h0.5

δ
≍ dR2h0.5δ−

1
2a

δ
≍ dR2(T/δ)

1
2a

δ
√
K

.

Then, we obtain the discretization complexity K = O
(
R4+ 3

2a d3+
1
2a /ϵ

4+ 3
2a

W2

)
, which is better than

the results with uniform Lipschitz constant and show the influence of EDM parameter a.

5 CONCLUSION

In this work, we make the first step to explain why consistency models perform well from a theoretical
perspective. More specifically, we bridge the gap between theory and application by analyzing the
discretization complexity of the consistency model with the VESDE forward process and EDM
discretization scheme. Under this realistic setting with great empirical performance, we first achieve
the state-of-the-art discretization complexity O

(
1/ϵ

4+ 3
2a

W2

)
by making full use of time-dependent

Lipschitz constant. Then, we analyze the improved multi-step sampling algorithm proposed by Song
et al. (2023) and show that this algorithm improves discretization complexity O

(
1/ϵ

4+ 5
4a

W2

)
. Finally,

to explore the theoretical boundary of consistency models, we further analyze consistency models
with exponential decay stepsize and achieve O

(
1/ϵ4W2

)
complexity.

In conclusion, we achieve competitive results for consistency models compared with diffusion models
under the realistic setting, which shows the potential of consistency models.

Future work and limitation. In this work, we directly assume the approximated score and con-
sistency function are accurate enough. For the approximated score function, some works analyze
its learning process (Chen et al., 2023b; Yuan et al., 2023). For the consistency function, Dou et al.
analyze its estimation error. However, as discussed in Section 3.2, they run multi-step PFODE instead
of one-step PFODE, which does not match the empirical operation and is time-consuming. Hence,
it is interesting to analyze the learning process of consistency models under a realistic setting and
achieve an end-to-end analysis.
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APPENDIX

A THE ANALYSIS FOR CONSISTENCY MODEL

Theorem 1. Assume Assumption 1, 2, 3, 4 holds and consider the EDM stepsize (5). Then, the
one-step generation error is bounded by

W2

(
fθ,0♯N

(
0, T 2Id

)
, q0
)
≲
R3

T 2
+
R2d(T/δ)

1
2a

√
Kδ

+
R2ϵscore log(T/δ)

δ
+ ϵcmT +

√
dδ .

where fθ,0 is the learned consistency function at the reverse time t′ = 0 (the forward process
t = T ). Furthermore, by choosing T ≥ R1.5/

√
ϵW2 , δ = ϵW2/

√
d, ϵcm ≤ ϵW2/T and ϵscore ≤

ϵW2
δ/(R2 log(T/δ)), the output is ϵW2

-close to q0 with discretization complexity

K = O
(
R4+ 3

2a d3+
1
2a /ϵ

4+ 3
2a

W2

)

Proof. We first decompose W2

(
fθ,0♯N

(
0, T 2Id

)
, q0
)
:

W2

(
fθ,0♯N

(
0, T 2Id

)
, q0
)
≤W2

(
fθ,0♯N

(
0, T 2Id

)
,fθ,0♯qT

)
+W2 (fθ,0♯qT , qδ) +W2 (qδ, q0) ,

where the first term is the reverse beginning error due to the forward process, the second term is the
discretization error due to the discretization training, and the third term is due to the early stopping
technique. We first define a joint distribution γ ∈ Γ

(
N
(
0, T 2Id

)
, qT
)

between N
(
0, T 2Id

)
and

qT and take a couple of (Ȳ0, Y0) ∼ γ, which indicates∫
Rd

γ(·, Y0)dY0 = N
(
0, T 2Id

)
∫
Rd

γ(Ȳ0, ·)dȲ0 = qT .

Then, we have that

W2

(
fθ,0♯N

(
0, T 2Id

)
, qδ
)

≤
(
Eγ
[∥∥fθ

(
Ȳ0, 0

)
− f ex (Y0, 0)

∥∥2
2

])1/2
≤
(
Eγ
[∥∥fθ

(
Ȳ0, 0

)
− fθ (Y0, 0)

∥∥2
2

])1/2
+
(
Eγ
[
∥fθ (Y0, 0)− f ex (Y0, 0)∥22

])1/2
≤ Lf,0

(
Eγ
[
∥Ȳ0 − Y0∥22

])1/2
+
(
Eγ
[
∥fθ (Y0, 0)− f ex (Y0, 0)∥22

])1/2
≤ R2

T 2
W2(N (0, T 2Id), qT ) +

(
Eγ
[
∥fθ (Y0, 0)− f ex (Y0, 0)∥22

])1/2
=
R2

T 2
W2(N (0, T 2Id), qT ) +

(
EY0∼qT

[
∥fθ (Y0, 0)− f ex (Y0, 0)∥22

])
.

where the first inequality follow the fact f ex (Y0, 0) = Xδ when Y0 ∼ qT and the last inequality
follows the fact that γ can be any coupling between N (0, T 2Id) and qT .

The reverse beginning error. We first control the reverse beginning error term. When considering
the W2 guarantee, we have that

W2(N (0, T 2Id), qT ) ≤
(
Eq0

[
∥X0 + (T − T ) ξ∥22

])1/2
≤ R .

13
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The discretization error. In this section, we control the discretization error:(
EY0∼qT

[
∥fθ (Y0, 0)− f ex (Y0, 0)∥22

])1/2
=

EY0∼qT

∥∥∥∥∥
K−1∑
k=0

(
fθ

(
Yt′k , t

′
k

)
− fθ

(
Yt′k+1

, t′k+1

))∥∥∥∥∥
2

2

1/2

≤
K−1∑
k=0

(
EY0∼qT

[∥∥∥fθ

(
Yt′k , t

′
k

)
− fθ

(
Yt′k+1

, t′k+1

)∥∥∥2
2

])1/2

=

K−1∑
k=0

(
EY0∼qT

[∥∥∥fθ

(
Yt′k , t

′
k

)
− fθ

(
Ŷ ϕ
t′k+1

, t′k+1

)
+ fθ

(
Ŷ ϕ
t′k+1

, t′k+1

)
− fθ

(
Yt′k+1

, t′k+1

)∥∥∥2
2

])1/2

≤
K−1∑
k=0

(
EY0∼qT

[∥∥∥fθ

(
Yt′k , t

′
k

)
− fθ

(
Ŷ ϕ
t′k+1

, t′k+1

)∥∥∥2
2

])1/2

+

K−1∑
k=0

(
EY0∼qT

[∥∥∥fθ

(
Ŷ ϕ
t′k+1

, t′k+1

)
− fθ

(
Yt′k+1

, t′k+1

)∥∥∥2
2

])1/2

:= E1 + E2 ,

where the first inequality follows the fact that f ex (Y0, 0) = Xδ = fθ (YT−δ, T − δ). For term E1,
since we assume the learned consistency model is accurate enough (Assumption 3), then we have
that:

E1 =

K−1∑
k=0

(
EY0∼qT

[∥∥∥fθ

(
Yt′k , t

′
k

)
− fθ

(
Ŷ ϕ
t′k+1

, t′k+1

)∥∥∥2
2

])1/2

=

K−1∑
k=0

(
EYt′

k
∼qt′

k

[∥∥∥fθ

(
Yt′k , t

′
k

)
− fθ

(
Ŷ ϕ
t′k+1

, t′k+1

)∥∥∥2
2

])1/2

≤ ϵcm

K−1∑
k=0

h′k = ϵcm (T − δ) .

For term E2, we know that

E2 =

K−1∑
k=0

(
EY0∼qT

[∥∥∥fθ

(
Ŷ ϕ
t′k+1

, t′k+1

)
− fθ

(
Yt′k+1

, t′k+1

)∥∥∥2
2

])1/2

≤
K−1∑
k=0

Lf,tk+1

(
EY0∼qT

[∥∥∥Ŷ ϕ
t′k+1

− Yt′k+1

∥∥∥2
2

])1/2

=

K−1∑
k=0

R2

σ2
tk+1

(
EYt′

k
∼qt′

k

[∥∥∥Ŷ ϕ
t′k+1

− Yt′k+1

∥∥∥2
2

])1/2

≲
K−1∑
k=0

R2

(T − t′k)
2

(
dh′1.5k√
T − t′k

+ h′kϵscore

)
,

where the last inequality comes from Lemma 2. When considering EDM stepsize

tk = (δ + kh)a, h =
T

1
a − δ

K
,

we know that hk

h ≍ t
a−1
a

k ,

K∑
k=1

hk
tk

≍
∫ T

δ

1

t
dt ≍ log(T/δ) ,

14
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and
K∑
k=1

h1.5k
t1.5k

≍ h0.5
K∑
k=1

hk

t
2a+1
2a

k

≍ h0.5
∫ T

δ

1

t
2a+1
2a

dt ≍ h0.5δ−
1
2a ≍ (T/δ)

1
2a

√
K

.

Then, term E2 is control by the following inequality:

E2 ≤
K∑
k=1

(
R2dh1.5k
t1.5k δ

+
R2hkϵscore

tkδ

)

≤ R2d(T/δ)
1
2a

√
Kδ

+
R2ϵscore log(T/δ)

δ

Combined with the reverse beginning, discretization and early stopping term, we have that

W2

(
fθ,0♯N

(
0, T 2Id

)
, q0
)
≲
R3

T 2
+
R2d(T/δ)

1
2a

√
Kδ

+
R2ϵscore log(T/δ)

δ
+ ϵcmT +

√
dδ .

To make the above inequality smaller than ϵW2
, we choose T ≥ R1.5/

√
ϵW2

, δ = ϵW2
/
√
d, ϵcm ≤

ϵW2
/T , and guarantee

R2dT
1
2a

√
Kδ1+

1
2a

≤ ϵW2 ,

which indicates that K ≥ R4+ 3
2a d2+

1
2a

ϵ
4+ 3

2a
W2

. After determining the discretization complexity K, we can

also obtain the requirement of the approximated score function ϵscore ≤ ϵW2δ/(R
2 log(T/δ)). ■

Corollary 1. Assume Assumption 1, 2, 3, 4 holds and consider the exponential decay stepsize
hk = rtk for ∀k ∈ [1,K], where r = ϵ4W2

/
(
R4d3 log2(T/δ)

)
. Then, we have that

W2

(
fθ,0♯N

(
0, T 2Id

)
, q0
)
≲
R3

T 2
+
R2d log1.5(T/δ)√

Kδ
+
ϵscore log(T/δ)

δ
+ ϵcmT +

√
dδ .

By choosing T ≥ R1.5/
√
ϵW2

, δ = ϵW2
/
√
d, ϵcm ≤ ϵW2

/T and ϵscore ≤ ϵW2
δ/(R2 log(T/δ)), the

output is ϵW2
-close to q0 with discretization complexity K = O

(
R4d3 log3(T/δ)/ϵ4W2

)
.

Proof. For the theoretical-friendly exponential decay stepsize, we have that

E2 ≤
K= 1

r log(T/δ)∑
k=1

(
R2dh1.5k
t2.5k

+
R2hkϵscore

t2k

)

≤
K= 1

r log(T/δ)∑
k=1

(
R2dh1.5k
t1.5k δ

+
R2hkϵscore

tkδ

)
≲
R2d log1.5(T/δ)√

Kδ
+
R2ϵscore log(T/δ)

δ
.

Combined with the reverse beginning term and discretization term, we know that

W2

(
fθ,0♯N

(
0, T 2Id

)
, q0
)
≲
R3

T 2
+
R2d log1.5(T/δ)√

Kδ
+
ϵscore log(T/δ)

δ
+ ϵcmT +

√
dδ .

In order to guarantee the right hand of above inequality smaller than ϵW2
, we choose T ≥ R1.5/

√
ϵW2

,
δ = ϵW2/

√
d, ϵ2cm ≤ ϵ2W2

/T 2, and guarantee

R2d log1.5(T/δ)√
Kδ

≤ ϵW2 ,

which indicates the discretizaiton complexity is K ≥ R4d3 log3(T/δ)
ϵ4W2

=
R4d3 log3

(
R1.5√

d

ϵ1.5
W2

)
ϵ4W2

. After

obtaining the requirement of K, we can also obtain the requirement of approximated score function
ϵscore ≤ ϵW2/ log(T/δ). ■
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At the end of this part, we provide the proof of multi-step sampling.
Corollary 2. Assume Assumption 1, 2, 3, 4 holds and consider the EDM stepsize. Then, for 2-step
generation, we have that

W2 (p2, q0) ≲
√
dδ +

R5

τ22T
2
+
R2d(T/δ)

1
2a

√
Kδ

+

(
R2 log(T/δ)/τ22 + log(τ2/δ)

)
R2ϵscore

δ
+

(
R2T

τ22
+ τ2

)
ϵcm .

Proof. Take a couple of (Y ,Z) ∼ γ(y, z) where γ ∈ Γ (pn−1, qδ), take ξ ∼ N (0, Id), then we
have

Ŷ = Y + τnξ ∼ µn,

Ẑ = Z + τnξ ∼ qτn .

Similar with Corollary 10 of Lyu et al. (2024), we have that

W2 (p2, q0) ≲W2(qδ, q0) + Lf,T−τ2W2 (µn, qτ2) +
R2d(τ2/δ)

1
2a

√
Kδ

+
R2ϵscore log(τ2/δ)

δ
+ ϵcmτ2

≲W2(qδ, q0) + Lf,T−τ2

(
Eγ∥Ŷ − Ẑ∥22

)1/2
+
R2d(τ2/δ)

1
2a

√
Kδ

+
R2ϵscore log(τ2/δ)

δ
+ ϵcmτ2

≲W2(qδ, q0) + Lf,T−τ2
(
Eγ∥Y −Z∥22

)1/2
+
R2d(τ2/δ)

1
2a

√
Kδ

+
R2ϵscore log(τ2/δ)

δ
+ ϵcmτ2

≲
√
dδ +

R2

τ22

(
R3

T 2
+
R2d(T/δ)

1
2a

√
Kδ

+
R2ϵscore log(T/δ)

δ
+ ϵcmT

)

+
R2d(T/δ)

1
2a

√
Kδ

+
R2ϵscore log(τ2/δ)

δ
+ ϵcmτ2

where the first line of the last inequality is introduced by the previous sampling process, and the
remaining term is the discretization error of this phase.

■

B THE ERROR OF ONE STEP PFODE FOR THE VESDE FORWARD PROCESS

When considering the consistency distillation training paradigm, we need to run a one-step reverse
PFODE starting from Yt′k to obtain Ŷ ϕt′k+1

. Hence, we need to control one step starting from the same
distribution q.

Lemma 2. Suppose Assumption 1 and Assumption 2 hold and assuming σ2
s−σ

2
t

σ2
t

≤ 1
2d for any

0 ≤ t ≤ s ≤ T , then for the small interval t ∈ [t′k, t
′
k+1] for ∀k ∈ [0,K − 1], we have that

W 2
2

(
qQ

t′k,h
′
k

ODE , qP̄
t′k,h

′
k

ODE

)
≲

d2h′3k
T − t′k

+ h′2k ϵ
2
score .

Proof. For t ∈ [t′k, t
′
k+1], the reverse PFODE is

Ẏt =
g(T − t)2

2
∇ ln qT−t (Yt) ,

˙̄Yt =
g(T − t)2

2
sϕ

(
Ȳt′k , T − t′k

)
,

for t′k ≤ t ≤ t′k+1, with Yt′k = Ȳt′k ∼ q, Yt′k+h′
k
∼ qQODE, and Ȳt′k+h′

k
∼ qP̄ODE. Then, we have

that

∂t
∥∥Yt − Ȳt

∥∥2 = 2
〈
Yt − Ȳt, Ẏt − ˙̄Yt

〉
= 2

〈
Yt − Ȳt,

g(T − t)2

2

(
∇ ln qT−t (Yt)− sϕ

(
Ȳt′k , T − t′k

))〉
≤ 1

h′k

∥∥Yt − Ȳt
∥∥2 + h′kg(T − t)4

4

∥∥∥∇ ln qT−t (Yt)− sϕ

(
Ȳt′k , T − t′k

)∥∥∥2
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As the next step,we use the Grönwall’s inequality to control the one-step discretization error.

Grönwall’s inequality. Let η(·) be a nonnegative, absolutely continuous function on [0, h′k], which
satisfies for a.e. t the differential inequality

η′(t) ≤ ϕ(t)η(t) + ψ(t)

where ϕ(t) and ψ(t) are nonnegative, summable function on [0, h′k]. Then

η(t) ≤ e
∫ t
0
ϕ(s)ds

[
η(0) +

∫ t

0

ψ(s)ds

]
.

By setting η(t) =
∥∥Yt − Ȳt

∥∥2 and ψ(t) =
h′
kg(T−t)4

4

∥∥∥∇ ln qT−t (Yt)− sϕ

(
Ȳt′k , T − t′k

)∥∥∥2. We

note that Yt′k = Ȳt′k ∼ q starts from the same distribution, η(0) = 0. Then, we can obtain that

E
[∥∥∥Yt′k+h′

k
− Ȳt′k+h′

k

∥∥∥2]
≤ exp (

∫ h′
k

0

1

h′k
dt)

∫ t′k+h
′
k

t′k

g(T − t)4h′k
4

E
[∥∥∥∇ ln qT−t (Yt)− sϕ

(
Ȳt′k , T − t′k

)∥∥∥2] dt
≤
∫ t′k+h

′
k

t′k

g(T − t)4h′kE
[∥∥∥∇ ln qT−t (Yt)− sϕ

(
Ȳt′k , T − t′k

)∥∥∥2]dt ,
Then, by using 6, we have that

E
[∥∥∥Yt′k+h′

k
− Ȳt′k+h′

k

∥∥∥2]
≤
∫ t′k+h

′
k

t′k

g(T − t)4h′kE
[∥∥∥∇ ln qT−t (Yt)− sϕ

(
Ȳt′k , T − t′k

)∥∥∥2] dt
≲
∫ t′k+h

′
k

t′k

d2g(T − t)4h′k(σ
2
T−t′k

− σ2
t )

σ4
T−t

+
h′kg(T − t)4ϵ2score

σ2
T−t

dt .

Finally, we have that

E
[∥∥∥Yt′k+h′

k
− Ȳt′k+h′

k

∥∥∥2] ≲ d2h′3k
T − t′k

+ h′2k ϵ
2
score .

■

C THE DISCUSSION ON THE PREVIOUS WORK DETAIL CALCULATION OF
PREVIOUS CONSISTENCY MODELS RESULTS

C.1 THE DETAIL CALCULATION OF PREVIOUS CONSISTENCY MODELS RESULTS

In this part, we show how to replace Lf with our Assumption 4 to obtain (*) in Table 1 and discuss
the reason why the noise schedule of Li et al. (2024) relies heavily on the VPSDE forward process.

The results of Lyu et al. (2024). As shown in Corollary 8 of Lyu et al. (2024), the discretization
complexity of consistency distillation is

Õ

(
d1/2R3

(
R6 ∨ d3

)
Lf

ϵ7W2

)
.

Since Lyu et al. (2024) assume the Lipschitz constant of approximated consistency function holds
for t ∈ [δ, T ], we use the largest Lipschitz constant Lf,max = Lf,T−δ = R2/σ2

δ (Assumption 4).
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Since Lyu et al. (2024) use VPSDE as the forward process, σ2
δ = δ for small enough and we

need δ = ϵ2W2
/(
√
d(R ∨

√
d)) to guarantee W 2

2 (qδ, q0) ≤ ϵ2W2
(Lemma 7). Then, we obtain the

discretization complexity of Lyu et al. (2024) is

Õ

(
dR5

(
R6 ∨ d3

)
(R ∨

√
d)

ϵ9W2

)
.

The results of Li et al. (2024). In this part, we first show the noise schedule of Li et al. (2024)
and discuss the reason why this schedule depends heavily on VPSDE. Li et al. (2024) describe the
VPSDE in a discrete perspective instead of a continuous forward process:

X0 ∼ q0,

Xk =
√
1− βkXk−1 +

√
βtBk, 1 ⩽ k ⩽ K .

Let

αk := 1− βk, ᾱk :=

k∏
k′=1

αk′ , 1 ⩽ k ⩽ K .

Then, we know that Xk =
√
ᾱkX0 +

√
1− ᾱkW̄k for some W̄k ∼ N (0, Id), which indicates

XK is approximately N (0, Id) (VPSDE) with suitable noise schedule. Li et al. (2024) choose a
specific noise schedule

β1 = 1− α1 =
1

Kc0
,

βk = 1− αk =
c1 logK

K
min

{
β1

(
1 +

c1 logK

K

)k
, 1

}
, 2 ⩽ k ⩽ K ,

where c0, c1 > 0 are large enough numerical constants. We note that when K goes to +∞, βk will
goes to 0. It is quietly different from VESDE forward process since σ2

t = t2 would goes to +∞ when
T goes to +∞ (K → +∞). Hence, this noise schedule heavily depends on the form of VPSDE.

After that, we show how to transfer the results of Li et al. (2024) to the results under our setting.
Li et al. (2024) show the discretization complexity of consistency training paradigm with VPSDE
forward process:

K = Õ

(
L3
fd

5/2

ϵW1

)
.

Similar to the above paragraph, we replace Lf in Li et al. (2024) with Lf,max = R2

δ and δ =

ϵ2W2
/(
√
d(R ∨

√
d)). Then, we require at least

R6d2.5(
√
d(R ∨

√
d))3

ϵW1
ϵ6W2

discretization steps.

The results of Dou et al.. As shown in Theorem 4.1 of Dou et al., when considering W1 distance,
the discretization error of ODE is LfdLscore√

M
, where M is the step number discussed in Section 3.2. To

make the above term smaller than ϵW1 , we require

M ≥
L2
fL

2
scored

2

ϵ2W1

.

Following the above discussion, We choose Lf = Lf,max = R2/δ, Lscore = R2/σ4
δ = R2/δ2 and

δ = ϵ2W2
/(
√
d(R ∨

√
d)). Then, the discretization complexity is

M ≥ R8d2(
√
d(R ∨

√
d))6

ϵ2W1
ϵ12W2

.

18
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C.2 THE LIPSCHITZ CONSTANT OF THE NONPARAMETRIC EMPIRICAL SCORE FUNCTION

At the beginning of this part, we first recall the time-dependent Lipschitz constant of empirical score,
which is proposed by Dou et al..
Lemma 3. For the mixture of Gaussian distribution 1

n

∑n
j=1 N

(
Xj , σ2Id

)
, we denote q̂ as its density.

Assume
∥∥Xj

∥∥
2
⩽ R for ∀j ∈ [n], then its score function ∇ log q̂(·) is L-Lipschitz continuous. Here

L = max
(
R2/σ4, 1/σ2

)
.

When considering VESDE forward process, the mixture of Gaussian at the forward time t becomes
1
n

∑n
j=1 N

(
Xj , σ2

t Id
)
. Hence, the Lipschitz constant of ∇ log q̂t(·) is max(R2/σ4

t , 1/σ
2
t ). Since

the dominated time is the early stopping time δ, where R2/δ4 is larger than 1/δ2. Hence, both the
ground truth score ∇ log qt(·) and empirical score ∇ log q̂t(·) has Lipschitz constant R2/σ4

t .

D AUXILIARY LEMMAS

At the beginning of this part, we provide the previous results of the control of ∇ log qt(·) and
∇2 log qt(·). We note that the proof sketch is almost the same with Benton et al. (2024) (VPSDE),
and we provide this part for completeness.
Lemma 1. [The VESDE version of Lemma 5.(Benton et al., 2024)] Considering VESDE forward
process Eq. (1), for all t ≥ 0 and ∀Xt ∈ Rd, we have that

∇ log qt(Xt) =
mt −Xt

σ2
t

and ∇2 log qt (Xt) = −σ−2
t Id + σ−4

t Σt .

Proof. For the first part, we have that

∇ log qt (Xt) =
1

qt (Xt)

∫
Rd

∇ log qt|0 (Xt|X0) q0,t (X0, Xt) dX0 .

Due to the VESDE forward process, we have that qt|0 (Xt|X0) = N
(
Xt;X0, σ

2
t I
)

and
∇ log qt|0 (Xt|X0) = −σ−2

t (Xt −X0). Then, we have that

∇ log qt (Xt) = Eq0|t(·|Xt)

[
−σ−2

t (Xt −X0)
]

= −σ−2
t Xt + σ−2

t mt .

■

For the second term, we have that

∇2 log qt (Xt)

=
1

qt (Xt)

∫
Rd

∇2 log qt|0 (Xt|X0) q0,t (X0, Xt) dX0

+
1

qt (Xt)

∫
Rd

(
∇ log qt|0 (Xt|X0)

(
∇ log qt|0 (Xt|X0)

)T
q0,t (X0, Xt) dX0

− 1

qt (X2
t )

(∫
Rd

∇ log qt|0 (Xt|X0) q0,t (X0, Xt) dX0

)(∫
Rd

∇ log qt|0 (Xt|X0) q0,t (X0, Xt) dX0

)T
=− 1

σ2
t

I + Eq0|t(·|Xt)

[
σ−4
t (Xt −X0) (Xt −X0)

T
]

− Eq0|t(·|Xt)

[
−σ−2

t (Xt −X0)
]
Eq0|t(·|Xt)

[
−σ−2

t (Xt −X0)
]T

=− σ−2
t I + σ−4

t Covq0|t(·|Xt) (Xt −X0)

=− σ−2
t I + σ−4

t Σt.

In the rest of this section, similar to Chen et al. (2023a), we provide a more refined control on the
Hessian Matrix ∇2 log qt(Xt), where Xt ∼ qt instead of the uniform bound. These auxiliary lemmas
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are useful for the aggressive exponential decay stepsize. The following two lemmas are exactly the
same compared to Chen et al. (2023a), and these lemmas can be used in the VESDE setting since
these lemmas do not involve the specific process.
Lemma 4. Let Q be a probability measure on Rd. Consider the density its Gaussian perturbation
qσ(x) ∝

∫
Rd exp

(
−∥x−y∥2

2σ2

)
dQ(y). Then for x ∼ qσ , we have the sub-exponential norm bound

∥∥∇2 log qσ(x)
∥∥
F,ψ1

≲
d

σ2
,

and

∥∇ log qσ(x)∥ψ2
≲

√
d

σ2
.

where ∥ · ∥F,ψ1 = ∥∥ · ∥F ∥ψ1
denote the sub-exponential norm of the Frobenius norm of a random

matrix.

Let 0 ≤ t ≤ s ≤ T , the VESDE with σ2
t = t2 indicates Xs|Xt ∼ N

(
αt,sXt, (σ

2
s − σ2

t )Id
)
, where

αt,s = 1. Then, we directly use Lemma 11 of Chen et al. (2023a) to control the discretization error
of ground truth socre function.
Lemma 5. For any 0 ≤ t ≤ s ≤ T , the forward process Eq. (1) satisfies

E ∥∇ log qt (Xt)−∇ log qs (Xs)∥2

≤ 4E
∥∥∇ log qt (Xt)−∇ log qt

(
α−1
t,sXs

)∥∥2 + 2E ∥∇ log qt (Xt)∥2
(
1− α−1

t,s

)2
When considering VESDE with σ2

t = t2, αt,s = 1, the above lemma indicates the discretization error
is controlled by the space discretization error. Hence, we control the space discretization error of
ground truth score function. The following lemma is almost identical compared to Lemma 13 of
Chen et al. (2023a) (choosing αt,s = 1 since the VESDE setting) except the order of the diffusion
(variance) term and the relationship between the variable stepsize and the variance term. For the sake
of completeness, we also give the proof process of this part.

Lemma 6. For 0 ≤ t ≤ s ≤ T with σ2
s−σ

2
t

σ2
t

≤ 1
2d and the forward process Eq. (1), we have

E ∥∇ log qt (Xt)−∇ log qt (Xs)∥2 ≲
d2(σ2

s − σ2
t )

σ4
t

.

Proof. To bound the above term by using the Hessian matrix, we have that

∇ log qt (Xt)−∇ log qt (Xs) =

∫ 1

0

∇2 log qt (Xt + a (Xs −Xt)) (Xs −Xt) da

E ∥∇ log qt (Xt)−∇ log qt (Xs)∥2 ≤
∫ 1

0

E
∥∥∇2 log qt (Xt + azt,s) zt,s

∥∥2 da ,

where zt,s is defined by zt,s = Xs − Xt ∼ N
(
0, (σ2

s − σ2
t )Id

)
and is independent of Xt. For

random vectors X,Y , we use PX,Y to denote the joint probability measure of (X,Y ) and PX|Y to
denote the conditional probability measure of X given Y . Then for 0 ≤ a ≤ 1, we use change of
measure to bound E

∥∥∇2 log qt (Xt + azt,s) zt,s
∥∥2 :

E
∥∥∇2 log qt (Xt + azt,s) zt,s

∥∥2 = E
[∥∥∇2 log qt (Xt) zt,s

∥∥2 dPXt+azt,s,zt,s (Xt, zt,s)

dPXt,zt,s (Xt, zt,s)

]

≲

√
E ∥∇2 log qt (Xt) zt,s∥4 E

(
dPXt+azt,s,zt,s (Xt, zt,s)

dPXt,zt,s (Xt, zt,s)

)2

.

Similar to Chen et al. (2023a), we define Mt = ∇2 log qt (Xt)
(
∇2 log qt (Xt)

)⊤
, Zt,s = zt,sz

⊤
t,s.

For A,B ∈ Rd×d, define the tensor product A ⊗ B ∈
(
Rd
)⊗4

as (A ⊗ B)i1,i2,i3,i4 = Ai1i2Bi3i4 .
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Since Mt and Zt,s are independent, then we can bound the two terms in the above inequality
separately

E
∥∥∇2 log qt (Xt) zt,s

∥∥4 = ⟨EMt ⊗Mt,EZt,s ⊗ Zt,s⟩ .
Term EZt,s ⊗ Zt,s is purely determined by the diffusion (variance) term:

E (Zt,s ⊗ Zt,s)i1,i2,i3,i4 =


3(σ2

s − σ2
t )

2, i1 = i2 = i3 = i4,

(σ2
s − σ2

t )
2, i1 ̸= i2, (i1, i2) = (i3, i4) or (i1, i2) = (i4, i3) ,

0, else.

Then, we can bound the inner product term by using exactly the same process compared to Chen
et al. (2023a):

⟨EMt ⊗Mt,EZt,s ⊗ Zt,s⟩ ≲ σ4
s−t

 ∑
(i1,i2)=(i3,i4)

+
∑

(i1,i2)=(i4,i3)

E (Mt ⊗Mt)i1,i2,i3,i4

≲ (σ2
s − σ2

t )
2E
∥∥∇2 log qt (Xt)

∥∥4
F

≲ (σ2
s − σ2

t )
2

(
d

σ2
t

)4

For the rest term, we have that

E
(
dPXt+azt,s,zt,s (Xt, zt,s)

dPXt,zt,s (Xt, zt,s)

)2

= E
(
dPXt+azt,s|zt,s (Xt|zt,s)

dPXt|zt,s (Xt|zt,s)

)2

≤ E
(
dPXt+azt,s|zt,s,x0

(Xt|zt,s, x0)
dPXt|x0

(Xt|x0)

)2

.

We also know that Xt + azt,s| (zt,s, x0) ∼ N
(
x0 + azt,s, σ

2
t Id
)

and Xt|x0 ∼ N
(
x0, σ

2
t Id
)
. Then,

the above term has the following equation by the chi-squared divergence explicitly:

E
(
dPXt+azt,s|zt,s,x0

(Xt|zt,s, x0)
dPXt|x0

(Xt|x0)

)2

= E exp

(
a2 ∥zt,s∥2

σ2
t

)
.

Recall that we assume σ2
s−σ

2
t

σ2
t

≤ 1
2d , we have that

E exp

(
a2 ∥zt,s∥2

σ2
t

)
=

(
1− 2

a2
(
σ2
s − σ2

t

)
σ2
t

)−d/2

≲ 1 ,

and

E
∥∥∇2 log qt (Xt + azt,s) zt,s

∥∥2 ≲
d2(σ2

s − σ2
t )

σ4
t

.

Then, we complete the proof. ■

Lemma 7. Suppose Assumption 1 holds. Let ϵW2
> 0. (1) If considering VESDE with σ2

t = t2, we
choose the early stopping parameter δ = ϵW2√

d
, (2) If consider VPSDE, we choose δ = ϵ2W2

/(
√
d(R∨

√
d)) then we have W2 (qδ, q0) ≤ ϵW2

.

Proof. For the VESDE forward process Eq. (1), we know that Xt := X0 + σtz, where z ∼
normal (0, Id) is independent of X0. Hence, for δ ≲ 1,

W 2
2 (q0, qδ) ≤ E

[
∥σδz∥2

]
= σ2

δd .

Then, for the setting σ2
t = t2, we can take δ ≤ ϵW2√

d
.

For the VPSDE forward process, we directly use Lemma 20 of Chen et al. (2022b) to obtain the final
results.

■
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