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ABSTRACT

Consistency models, a new class of one-step generative models, have shown state-
of-the-art performance in one-step generation and achieve competitive performance
compared to multi-step diffusion models. The most challenging part of consistency
models is the training process, which discretizes the diffusion process and trains a
consistency function to map any point at any discretized timepoint of the diffusion
process to the data distribution. Despite the empirical success, only a few works
focus on the discretization complexity of consistency models. However, the setting
of those works is far away from the empirical consistency models with good
performance, suffers from large discretization complexity, and fails to explain the
empirical success of consistency models. To bridge the gap between theory and
application, we analyze consistency models with two key properties: (1) variance
exploding forward process and (2) gradually decay discretization stepsize, which
are both widely used in empirical consistency models. Under the above realistic
setting, we make the first step to explain the empirical success of consistency
models and achieve the state-of-the-art discretization complexity for consistency
models, which is competitive with the results of diffusion models. After obtaining
the results of the one-step sampling method of consistency models, we further
analyze a multi-step consistency sampling algorithm proposed by Song et al.| (2023))
and show that this algorithm improves the discretization complexity compared with
one-step generation, which matches the empirical observation.

1 INTRODUCTION

Recently, diffusion models have shown impressive performance in different areas such as image
generation and video generation (Rombach et al., 2022} Esser et al., [2024; Ho et al., 2022). The
mathematical mechanism of diffusion models is made up of two processes: the forward process and
the reverse process. The forward process gradually injects noise into data till the marginal distribution
is close to pure noise. The reverse process is an iterative sampling process, which sequentially
removes noise from data to generate clean samples. At each denoised step, diffusion models only
need to predict and remove a small noise, making the training process more stable than Generative
Adversarial Networks (GAN) (Goodfellow et al., [2014). However, the iterative sampling process
indicates diffusion models need to evaluate a large neural network to predict the noise at this step,
leading to a higher computational cost than other one-step algorithms such as GAN, Variational
Auto-Encoder (Kingma and Welling} 2013), and Normalizing Flow (Papamakarios et al., [2021}).

To solve the computational issue, a series of works try to accelerate the sampling process of diffusion
models (Song et al., [2020; Bao et al., [2022; Zheng et al.| 2023). One notable algorithm in this
series work is the Consistency Model (Song et al., [2023)), which tries to find a mapping function
(a.k.a. consistency function) to directly map any points at any time of the forward process to the
data distribution. Consistency models have shown state-of-the-art (SOTA) performance compared to
other one-step generative models in image generation (Song et al.| 2023} Kim et al., 2023), video
generation (Wang et al.,|2023)) and music generation (Fei et al.||2024). Furthermore, it is also widely
used in other areas, such as reinforcement learning (Ding and Jin} [2023).
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To obtain the consistency function, consistency models discretize the timeline into K discretization
points and hope the consistency function outputs similar results at two adjacent discretization points in
the training phase. When the two adjacent points are far away, it is hard to train a consistency function
with great performance, which indicates K can not be too small. However, it is also necessary to
avoid a large K since it will make the training phase time-consuming. Hence, one core of consistency
models training phase is the choice of the discretization number K, which is helpul in effective
training a consistency function with great performance.

Despite the empirical success of consistency models, no existing works explain why consistency
models achieve comparable performance to diffusion models. Though some impressive works analyze
the discretization complexity of consistency models (Lyu et al.; 2024} Li et al.|[2024; |Dou et al.)), the
setting is far away from the consistency models with great performance in application:

* The forward process. Previous theoretical works choose the variance preserving forward
process (VPSDE) to inject noise in the training phase. On the contrary, empirical consis-
tency models adopt the variance exploding forward process (VESDE) with a specific noise
schedule whose solution trajectory is linear. As discussed in|Karras et al.[(2022]) and |Liu
et al.[(2022)), a linear trajectory indicates it is possible to generate clean samples with a
single Euler step and is the basis of a one-step model.

* The discretization scheme. The discretization scheme of consistency models is the EDM
scheme (Eq. (3)), which first uses a large stepsize and gradually reduces the stepsize.
However, [Lyu et al.[{(2024) and Dou et al.| use a uniform stepsize, and Li et al.| (2024) use a
scheme that relies heavily on the VPSDE (Detail in Appendix [C.T).

Due to the mismatch between the current theoretical and empirical setting, the discretization com-
plexity results of current theoretical works are significantly worse than diffusion models (Table [I}).
Hence, the following natural problem remains open:

Under a realistic setting with great empirical performance, is it possible to achieve complexity
comparable to the state-of-the-art diffusion models and explain the success of consistency models?

In this work, for the first time, we analyze consistency models under the VESDE forward process and
EDM stepsize and achieve the following results.

Theorem 1. (Informal) Assume bounded supported target data distribution. With suitable assumption
on pre-trained score function, consistency function|'| the consistency models require

Ri+5e 3+ 2
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discretization steps in the training phase to output a distribution which is Wasserstein-2 (Ws) close
to the target distribution in the sampling phase, where R is the diameter of target distribution
Xo ~ qo € R% and a = 7 is a parameter of EDM (5) stepsize.

As shown in Table[T} this result is better than the previous theoretical guarantee of consistency models,
shows the benefit of a suitable a and achieves competitive results compared to SOTA diffusion model
results. The core step of this result is to make full use of the time-dependence Lipschitz constant of
the consistency function. More specifically, we first show that with a uniform Lipschitz constant, we
achieve 1/ 6‘7/[/2 discretization complexity for any a. This result indicates that a uniform Lipschitz
constant prevents an improved K with a suitable a, which does not match the empirical observation
(Karras et al.,[2022). Then, we prove that with a time-dependent Lipschitz constant, the influence of a
is highlighted, and we achieve SOTA complexity for consistency models (More detail in Section {.2)).

To improve the sampling quality of consistency models, Song et al.[(2023)) further provide a multi-step
sampling algorithm. Let T" be the forward diffusion time, /N be the number of sampling steps and
T =m > 1 > ... > 7y be asequence of time points used in a multi-step sampling algorithm.
The algorithm adds noise to the latest generated clean samples and maps the noised sample to the
clean samples using the consistency function (Eq. (6)). The great performance indicates that the
requirement of K can be relaxed if the multi-step sampling method is used. Recently, [Lyu et al.

'Different from a uniform Lipschitz constant used in previous theoretical works, we assume this Lipschitz
constant depends on noise level, which matches the true order and is more realistic.
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Table 1: The discretization complexity for consistency and diffusion models with reverse PFODE in
Wasserstein distance. To make a thorough comparison, we also provide the SOTA discretization results
for diffusion models with reverse SDE. (+) means that we transform the log-concave distribution,
which is unrealistic and ignore the blow-up phenomenon of the score, to our bounded support
distribution. (*) means that we transform the results of previous works into the results under our
setting. We present more detail in Appendix [C.1}

Model Eorward Stepsize Complexity Reference
rocess
VESDE Uniform | 1/
Diffusion 1 / Ee%% Poly(ew,)) (+) | |Gao and Zhu! (2024)
VPSDE Unifi W>
niorm 1/(6W2POIY(€W2)) +)
VPSDE Exponential 4
(Reverse SDE) Decay 1/ €W, Chen et al.| (2022a)
- | |
Uniform Ly /9€W2* Lyu et al.| (2024)
/ey, (%)
. VPSDE _ LEw, L r
Consistency Specific to Ly /ew, Li et al, (2024)
VPSDE 1/(ew, 6%,2) (*) )
27172 2 o -
Uniform 1Lf L;“"re{; LEW Dou et al.
/ (GWIZXV% ) () I
/ey > Theorem |1
VESDE 521\/[[1) 1 4+24% Corollary [2[(Case 2)
’ W, (Multi-step Sampling)
Exponential
lgecay 1/ety, Corollary|1

(2024) make the first step to analyze the benefit of the multi-step sampling algorithm and show that
this operation can reduce the W5 error. However, since they adopt the VPSDE process, the benefit
of the W, guarantee does not lead to an improved discretization complexity K. In this work, we
show that with a VESDE process and a suitable {7,,}2_,, the multi-step sampling algorithm can
effectively reduce the requirement of K. Since N = 2 is enough to improve the generation quality
(Song et al.,[2023)), we adopt this choice, achieve O(1/ 6;1/;_25/ 4“) discretization complexity and also
reduce the requirement of the approximated consistency function (detail in Sectiond.T). The above
result is better than results in Theorem |1|and explains the role of multi-step sampling.

In conclusion, we explain why consistency models have competitive performance compared to
diffusion models in application. More specifically,

» We bridge the gap between theoretical analysis and real-world applied models by analyzing
consistency models with the VESDE forward process and EDM discretization scheme.

» Under the above realistic setting, we achieve the state-of-the-art discretization complexity
for consistency models, which is also competitive with the results of diffusion models.

* For the first time, we also show that the multi-step sampling algorithm of consistency models
can effectively reduce the discretization complexity and the requirement of other error terms.

2 RELATED WORK

Since the mathematical mechanism of consistency models is close to diffusion models, we discuss the
discretization complexity of diffusion and consistency models. For diffusion models, we summarize
the results for reverse PFODE due to the deterministic sample process of consistency models.

Diffusion models with reverse PFODE. With strong assumptions or additional components, a series
of works achieve polynomial complexity for reverse PFODE (L1 et al.,|2023; (Chen et al.,|2023c; (Gao
and Zhu| 2024)). More specifically, |Li et al.|(2023)) assume an accurate enough Jacobian matrix, and
Gao and Zhu|(2024) assume the target data distribution is log-concave. We note that the log-concave
assumption on data distribution is much stronger than our bounded support assumption since it
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precludes the existence of multi-modal real-world data. Furthermore, under log-concave distribution,
the ground truth score function V log g7—+(+) does not blow-up, which can not explain the blow-up
phenomenon of score function E] and ignore the influence of early stopping parameter & (Table [1)).
Without any strong assumption, |Chen et al.|(2023c) introduce a predictor-corrector algorithm, which
switches between a Langevin corrector and a PFODE predictor. Then, they prove a polynomial
discretization complexity for this algorithm.

Consistency models. Lyu et al.|(2024) and [L1 et al.|(2024) analyze the discretization complexity of
consistency distillation and consistency training paradigm, respectively. More recently, Dou et al.
analyze the estimation error and discretization complexity of consistency distillation and training
paradigm at the same time. Though these works deepen the understanding of consistency models, the
setting of these works is far away from consistency models in the application and suffers from large
discretization complexity compared to the state-of-the-art results of diffusion models (Table [T)).

3 THE INTRODUCTION OF DIFFUSION AND CONSISTENCY MODELS

Since the training phase of consistency models relies heavily on the diffusion process, we first
introduce some basic knowledge of diffusion models. After that, we introduce how to train a
consistency model with a pre-trained diffusion model.

3.1 THE DIFFUSION MODELS

Diffusion models consist of two processes: the forward and reverse process. The forward process
converts data distribution to pure noise by adding Gaussian noise step by step. To generate clean
samples, diffusion models reverse the forward process and run the corresponding reverse process.

The forward process. Let gy denote the data distribution. The goal of the forward process is to
gradually convert gq to Gaussian noise. Given X € RY ~ ¢, the general forward process is

dXt = f(Xt7t) dt + g(t) dBt, Xo ~ qo ,

where (By);>0 is a d-dimensional Brownian motion, f(X,¢) is a drift coefficient, and g(¢) is a
diffusion coefficient. Let ¢; be the density function of the forward process at time ¢ and {3 }+<[0,1]
be a non-negative non-decreasing sequence. When f(X;,t) = —3;X; and g(t) = +/23;, the general
forward process is instantiated as a widely used variance preserving forward process (VPSDE) (Ho
et al.;2020). We note that though VPSDE plays an important role in developing diffusion models,
the solution trajectory of VPSDE is curved instead of linear, which prevents it from becoming the
basis of one-step generative models. Hence, we focus on the variance exploding forward process,
which has a linear solution trajectory under a specific noise schedule and has been widely used in
many areas such as image generation (Karras et al.,[2022), one-step generation (Kim et al.} [2023) ,
video generation (Blattmann et al.,|2023)) and intrinsic dimension estimator (Stanczuk et al.)).

Let {o7}1c[0,7] a non-decreasing sequence and g(t) = \/do7/dt. Then, VESDE is defined by:
dX; =g(t) dB;,  Xo~qo- ey

As shown in Karras et al.| (2022)), when choosing a? = t2, the solution trajectory of VESDE is linear.
Hence, consistency models adopt VESDE (ort2 = t?) as the forward process. In this work, we also
choose VESDE with 02 = t2 as the forward process to match the empirical setting.

The reverse process. Let t' = 1" — t be the reverse time and (Vi) (o ) = (X7-1/) e (o 7y - TO
generate samples, the model reverses the forward process (Eq. (I))) and obtains the reverse process:

1+ n?
dYy = 277 g(T —t')?Vloggr—y (Yy)dt' + ng(T —t') dBy , Yo ~ qr, )

where 77 € [0, 1] determines the type of the reverse process and consistency models adopt the reverse
probability flow ODE (PFODE, 7 = 0) in its training phase. Since the ground truth score function
V log ¢:(-) and ¢r contain the data information, we can not directly run the above PFODE to generate

The blow-up phenomenon means the ground truth score function V log g7—¢(+) goes to +oo at the end of
the reverse process. As shown in|De Bortoli| (2022), AssumptionE]allows this phenomenon.
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samples. For the reverse beginning distribution g7, we choose N (0, 721;) to approximate it due to
02 = T2, For V log q:(+), Vincent| (201 1) propose the following score matching objective function
to learn an approximated score function s4(X;,t),Vt € [0, T:

T
min [ w(OEx, [Ex,yx, [V 1oga (X01%0) = 5 (X013 at,

where w(t) is a weight function. With the approximated score function s(-), diffusion models
discretize the reverse process and generate samples. Lettg < t; < --- < tx = T be the discretization
points in the forward time and hy, := ¢ — t;—1 be the stepsize. When considering the reverse process,
we define by ¢t} = T — tx_ and h;c = hx_, the discretization points and stepsize in the reverse
process. Since the score function V log gr—_; goes to +oo at the end of the reverse process, we
adapt the early stopping technique by setting ¢y = J to avoid this issue, which is widely used in the
application (Kim et al.;2021). Then, starting from Yy ~ N (0, T2Id), we run the following process
in each interval ¢ € [t} 1} ],k € [0, K — 1] to generate samples:

g(T —t')?

dY, = S (ﬁ;,T — t;) dt’, ' e [th, thyq) - 3)

3.2 THE CONSISTENCY MODELS

There are two paradigms for the training phase of consistency models: consistency distillation and
consistency training, where the consistency distillation paradigm requires a pre-trained score function
s¢(X,t),Vt € [0,T] and consistency training paradigm trains in isolation. Since consistency training
can not take information from a pre-trained score function, its hyperparameters need to be carefully
selected to achieve great performance (Song et al.| [2023; |Song and Dhariwall, |2023)). Hence, we
analyze the discretization complexity of the consistency distillation paradigm in this work. We also
discuss the current results of the consistency training paradigm in Remark [1]

Let v™*(Y, ') = MV log gr—+ (V') be the exact vector field of PFODE (Eq. , n =0). We
can define the associate backward mapping £ : R% x Rt — R? such that for any ¢’ € [0, T — 4.
Yot =Yros = X,
where 4 is the early stopping parameter. The above equation is equivalent to the following conditions:

£ (Yo, t) = £ (Yeor t) VO <t < T — 6, and
U, T-68)=Y,VY e R?
We also define the empirical vector field v*™(Y, ') = £ (T;t')Q s¢ (Y, T —t') and the corresponding

empirical backward mapping function £**. The goal of consistency model is to learn a consistency
function fy to approximate f* (for simplicity, we abbreviate f¥° as f). Let Fy (Y,t') be a free-
form deep neural network whose output has the same dimensionality as Y. To satisfy the boundary
condition, (Song et al., 2023 use a skip connection:

.f9 (Y7 t/) = Cskip (t/)Y + Cout (t/)FG (Yv t/) )

where cip (t) and coy (t) are differentiable functions such that cyip (7'—0) = 1, and oy (T'—6) = 0.
After that, we define the consistency distillation objective function:

EgD (079_?¢) = Ex, |:IEY¢;C|XO)\ (t§c+1) er (}/t;vt;c) — fo- (Yf(? 7t;€+1)Hz:| ) 4)

“k+1

where ¢} is the time discretization points in the reverse process. Since Yy is equal to Xp_y , we

can calculate Yy, | X by the forward process X + (T — t}.)Z, where Z is the standard gaussian
noise. To make the training process more stable, Song et al.| (2023) take similar idea with contrastive
learning, stop the gradient of 6~ and use an exponential moving average (EMA) strategy to update it

6~ = stopgrad (u@~ + (1 — )@), where p is the decay rate. For the fff , it is obtain by running
k41
one step PFODE (Eq. (3)) from ¢, to ¢ ,, with initial distribution Y}, .

Recently, Dou et al.| discrete the interval [t} ¢} ;] in M smaller interval and run multi step PFODE

to obtain ?f . We note that though this operation makes theoretical analysis easier, it is far away
k+1
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from the real-world application and time-consuming. Since our work aims to explain the empirical
success of consistency models in application, we exactly follow the empirical operation, which does
one-step PFODE instead of multi-step PFODE.

The stepsize in the training process of consistency model. When training the consistency model,
Song et al.|(2023)) and [Song and Dhariwal| (2023)) use EDM stepsize

te = (6 4 kh)%nd h = (TY* — §) /K , 5)

with @ = 7. As discussed in [Karras et al.| (2022), since VESDE has a large variance at the end
of the forward process, it is more suitable for VESDE to use a large stepsize at the beginning of
the reverse process instead of uniform stepsize (¢ = 1). When a goes to +oo, the EDM stepsize
becomes theoretically friendly exponential decay stepsize hy = rty, where r is a small coefficient
corresponding to accuracy parameters €. We note that the exponential decay stepsize is widely used in
theoretical works (Chen et al., [2022a}; Benton et all [2024). In this work, we simultaneously analyze
the EDM and exponential decay steps and achieve state-of-the-art discretization complexity.

Remark 1. Recently, [Li et al| (2024) and |Dou et al.| analyze the discretization complexity and
estimation error bound of consistency training. As shown in Table[l] their discretization complexity
is worse than our results. Furthermore, their training paradigm is different from the consistency
training paradigm in application. More specifically, |[Li et al.| (2024) use an iterative consistency
training method, which trains a consistency function for each k € [K| and is time-consuming. -
only train a consistency function and embeds time t. However, as in the above discussion, they
do multi-step PFODE in the training phase, and the empirical consistency models only do one-step
PFODE. Hence, it is an interesting future work to explain the empirical success of the consistency
training paradigm from the theoretical perspective under the setting in the application.

Notation. We denote by W; and W, the Wasserstein distance of order one and two, respectively.
Note that W guarantee is weaker than W5 guarantee since W1 (p, ¢) < Wa(p, ¢). The push-forward
operator 1 is associated with a measurable map f : M’ — A/. For any measure u over M’, we define
the push-forward measure ff#u over N by: fiu(A) = p (f~1(A)), for any A be measurable set in
N Before introducing our theoretical guarantee, we first organize the notation.

Diffusion models:

* Let (X¢):e[o,7) be the random variable of the forward process (Eq. ). We define by
0=ty <t; <---<txg =Tandhy =t — tx_1 the discretization points and stepsize.

* Let ¢ = T — t be the reverse time and (Yy), co 7] = (X7-¢/);¢(o 1) be the random
variable of reverse process (Eq. ). We define by ¢}, = T — t_j, and b}, = hx_y the
discretization points and stepsize in the reverse process.

e Let px be the distribution generated by running the discrete process Eq. (E[) with s, the
complexity of the sample is the requirement of K to guarantee W (pr, qo) < €w,.

Consistency models:

* The goal of consistency models is to learn a consistency function fg (Y, ') to directly map
pure noise Y ~ A (0,T%1;) and t' = 0 (the start of the reverse process) to go.

* We denote by fgv()j./\/ (0, TQId) the generated distribution of the above operation. Since
the consistency function is one step, the discretization complexity is the requirement of K
in the training process (Eq. @)) to guarantee Wa( fo ot N (0, TQId) ,q0) < €w,-

4  DISCRETIZATION COMPLEXITY OF CONSISTENCY MODEL IN APPLICATION

This section provides SOTA discretization complexity for the training phase of consistency models.
Before showing our results, we introduce some suitable assumptions on data distribution, pre-trained
score function, and consistency function.

Assumption 1. ¢ is supported on a compact set M and 0 € M.

We define by R the diameter of the compact R = sup{||x — yl|2 : z,y € M} and assume R > 1.
The bounded support assumption is support by much empirical eV1dence (Pope et al, 2021}, [Tang
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[2024) and is satisfied by the image dataset. Currently, this assumption is widely used

by current theoretical work (De Bortoli, 2022} [Chen et al., [2022b 2024) and is the most
lightweight assumption for VE-based method (Yang et al., 2024).

For the approximated score function, different from [Cyu et al| (2024), which considers the VPSDE

forward process, we consider a L, approximated score function depends on the noise o? since
VESDE forward process will have a larger o7 compared with VPSDE. As discussed in

(2022a) (Remark 1), this assumption matches the order of the ground truth score function.

Assumption 2. There exists a constant €score such that for any k € [K]|,
2
Exty,mar, |[156(Xuas ) = V108 05, (X0,) 3] < Eione/r2

We also assume the consistency function is accurate enough. Since we analyze the consistency
distillation paradigm, we assume after the one-step reverse PFODE process, the results of the learned
consistency function are still close.

Assumption 3. There exists a constant €y, such that for any k € |K]
/ O ’ 2 2 / 7\ 2
By ~ay, [Hﬁ’ (Yo th) = fo (V2 1) M < o (flrs = 10)"

The above assumption is exactly the same as the one in (2024). When considering the
consistency training paradigm, (2024) also decouple learning and generation processes and
assume || fo(X¢,t) — f(X¢, t)||5 is small enough.

Similar with previous theoretical analysis (Lyu et al.l 2024} [Li et al.}[2024}; Dou et al.), we also assume
Fo(Y,t') is Lipschitz. Different from previous works, we assume the Lipschitz constant depends on
t. To determine the true order of the Lipschitz constant, we first recall the result of the ground-truth
Vlog q:(-) and V2 log q;(-). Let my(X;) := Ego . (1x,) [Xo] and 2 (X¢) := Covygy,([x,) (Xo) be
the posterior mean and variance. [Benton et al| (2024) achieve the following result.

Lemma 1. [The VESDE version of Lemma 5.(Benton et al) 2024))] Considering VESDE forward
process Eq. , forallt > 0and VX, € R we have that

m; — X
Viog q¢:(X;) = % and V*log q; (X;) = —0;214 + 0;4Et.

t

It is clear that m; directly maps the noised data to the clean target data distribution, which is f
in our work. Then, the ground-truth score function can be parameterized as V log gy (Y, T —
t) = (f*(Y,t') — Y)/o2_,. We note that this parametrization is widely used in applications.
For example, [Karras et al.| (2022) and |Kim et al| (2023)) parameterize the approximated score
$¢(X¢,t) = (Dy(X¢,t) — X;)/o; and using the score matching algorithm to learn D, (Eq. (2,3) of
[Karras et al.|(2022)), where D4(X, t) is the denoised auto-encoder (DAE). After that, they use s,
and K discrete steps to generate samples (Line 7-9 of Algorithm 2, (Karras et al} 2022))).

Using the above parametrization and the second result of Lemma[T] we know that

VYY) - Iy .,

V2 IOg qr—+ (Y, T— t/) = *O'T_t,Id + U;it, ZT—t/ .

U%ft'
Then, we know that V f*(Y,t') = Xp_y// U%_t/. With the bounded support assumption, we know
that |E7_y|lop < R? for V¢’ € [0, T — 4], which indicates the true order of the Lipschitz constant
of f*(Y,t') has order ||V f*(Y,t')||op < R%/02_,.

Example 1. To make a clearer discussion, we use a Gaussian distribution Xy ~ N (1, X)) as an
example. More specifically, as shown in|Guo et al| (2024) (Lemma 1), under this setting, we have that

-1
E[Xo|X:] = p+ (E + U?Id) (X —p) .
It is clear that V x, E[Xo|X,] = ( + crf[d)fl ¥, which has the order 1/07.

Hence, the following assumption is more realistic since it matches the true order of f*(Y,¢).
Assumption 4. fo(Y, ) is Ly, Lipschitz for Vk € [K], where Ly = R*/oF_,.
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Remark 2. Recently, when considering the analysis of consistency models, some works (Lyu et al.|
2024} |Li et al., 2024; \Dou et al.)) assume the second moment of data distribution E|||qo||3] is bounded,
which is a slightly weaker than Assumption[I| The dependence of R comes from the time-dependent
Lipschitz constant of fe, which matches the true order. As shown in Section[4.2] Assumption [d]is
necessary to achieve an improved discretization complexity. We also note that to do a refined analysis
for consistency models, Lemma 3.13 of|\Lyu et al.|(2024)) and Lemma D.2 of|\Dou et al.|also assume
Assumption (1|0 obtain the Lipshcitz constant R* /7., for the score function.

With these assumptions, we obtain the following results under the VESDE and EDM stepsize, which
explain the success of empirical consistency models from the discretization complexity perspective.

Theorem 1. Assume Assumption [1] holds and consider the EDM stepsize (3). Then, the
one-step generation error is bounded by

R®  R2d(T/5)%s  R%escore log(T/0)
4% N (0,771, < — e
2 (fG,Oﬁ ( ’ d) 7QO) ~ T2 + \/?5 + 5
where fg o is the learned consistency function at the reverse time t' = 0 (the forward process

t = T). Furthermore, by choosing T > R/, /ew,, § = 6W2/\/3, €em < €w, /T and €score <
ew,0/(R?1og(T/§)), the output is ey,-close to qo with discretization complexity

p 3
K=0 (R4+%d3+ﬁ/e‘év+22a>

+ €emd + Vds .

Song et al.| (2023) choose a = 7 as the parameter of the EDM scheme, which leads to O(1/ 6332/ 14)

complexity. When considering exponential decay stepsize, we can improve the results.

Corollary 1. Assume Assumption [I] holds and consider the exponential decay stepsize
hi, = vty for Vk € [1, K], where r = €}y, / (R*d? log?(T'/5)). Then, we have that

R*  R2dlog"*(T/6)  escorelog(T/d)
27 < score
W (fo,08N (0,T%14) ,q0) < Tz N + 5
By choosing T > R/, [ew,, § = ew, /Vd, €cm < ew, /T and €score < ew,8/(R?log(T/5)), the
output is eyy,-close to qo with discretization complexity K = O (R4d3 10g3 (T/(S)/€%V2)-

+ €emT + Vds .

As shown in Table[I] the above discretization complexity significantly improves the current con-
sistency model results by taking full use of the time-dependent Lipschitz constant (Section 4.2)).
Compared with diffusion models, we achieve competitive and even better discretization complexity
for both reverse SDE and reverse PFODE settings (Table|[I)).

4.1 MULTI-STEP SAMPLING REDUCE THE DISCRETIZATION COMPLEXITY

To achieve better performance, Song et al.|(2023) also provide a multi-step sampling method. Let
T =7 > 719 > .. > Ty be asequence of time points , p; be the one-step generated distribution
fo,0fN (O, T?1 d) and X™ ~ p;. The n-step sampling process follows the following procedure:

X™ = fo(X™ ' +0,. Z, 1), Z ~N(0,I). ©6)

which first adds noise to the (n — 1)-step sampling data using the VESDE forward process and
then generates X ™. Let p,, be law (X ™) Recently, Lyu et al.| (2024) make an important step in
understanding the multi-step sampling mechanism in consistency models and prove that this operation
can reduce the W5 error with a suitable N. However, as shown in Corollary 3.14 of [Lyu et al.|(2024),
the discretization complexity of one-step and multi-step sampling are both O (L ;/ 6‘74/2 ), which means
the multi-step sampling can not reduce the requirement of discretization. Hence, we need a more
refined analysis under a realistic setting to show the role of multi-step sampling. Since n = 2
is enough to generate high-quality samples in application (Song et al.| [2023), we analyze 2-step
sampling and improve the discretization complexity with a designed 7.

Corollary 2. Assume Assumption I} M holds and consider the EDM stepsize. Then, for 2-step
generation, we have that
R® N R2d(T/5)2a N (R?1og(T/6)/73 4 log(72/6)) R*€score N (RQT

T3T? VEKS§ ) 72

Wa (p2,q0) S Vdd +

+ T2> €cm -
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The error bound comes from three sources: the early stopping term, the previous error W (p1, g5)
and the discretization error at this sampling phase. The core observation is that the multi-step
sampling can reduce the requirement of 7" due to the R®/(751?) termEl, which further improve the
discretization complexity in the training phase and the dependence on €ycore and €e.p,. At the end of
this part, we discuss the choice of 75, which depends on the different error terms we focus on. We
note our analysis can be directly extended to multi-step sampling. Since |Song et al.|(2023) show that
2-step sampling is enough for consistency models (Table 1, the NFE number is the sampling number)
to achieve great performance , we use 2-step sampling as an example for a clearer discussion.

Case 1: The large learning error. As shown in Theoremm to achieve the ey, guarantee, €qp, is
required to be smaller than ej;? /R'5. We note that after 2-step sampling, the coefficient of ecpn
becomes R2T/ 722 + 79, which can be smaller than T". For example, with 75 = VT, we require

1
T>R3/ €jy, to guarantee R° /75 T2 smaller than eyy,. Then, we have that

5 L, 4+ . z 5
K=0 <R4+3a a3tz /qé“) and €, < min {eWQ/Rz, e{jVQ/Rg } .
We note that the above discretization complexity is better Theorem [I]and the requirement of €y, is
weaker than Theorem [T] which show that multi-step sampling can effectively improve the results.

Case 2: The large discretization error. In this case, we focus on a well-learned consistency function
setting, which means €., is small, and the dominant term is the discretization error. In this setting,
we choose 72 = T'/2 and have that

5 1, 442 2 5
K=0 (R4+4“d3+2a/€‘;24“’) and eom < €5y, /RY .

It is clear that the discretization complexity is better, and the requirement of €., is higher than the
one in case 1. Hence, it would be better to choose a suitable starting point 7o depending on the large
error term. In application, |Song et al.|(2023) use a greedy policy to find 75 with the lowest FID. It is
an interesting future work to design an optimal 75 from the theoretical perspective.

4.2 PROOF SKETCH AND TECHNIQUE NOVELTY

In this section, we first provide a proof sketch in the first paragraph, which is similar to|Lyu et al.
(2024). Then, we highlight our technique novelty to take advantage of the time-dependent Lipschitz
constant to achieve the state-of-the-art discretization complexity.

Proof Sketch. We first decompose W ( fo ot N (0, TQId) , qo):

W (fo,0fN (0,T%14) , footar) + Wa (foofar.as) + Wa (g5, 90) -

where the first is due to the forward process, the second is the discretization error, and the third is due
to the early stopping technique. In this part, we focus on the most challenging discretization term:

(Evpman [0 (Y2,0) = £ (v 00 2])

S (o (vtt) — o (v, )
k=0

o7\ 1/2

- EYONQT

2

R . 9 1/2
=2 (EYNT Mfe (Vi th) = Fo (Vi) + o (Y thi) = o (tht%+1)H2D

k=0
K—1 R 91\ 1/2

< Z (Eyoqu |:Hf9 (Y;‘,:H,t;H) — fo (Y%H,tﬁﬁ_l) HJ) -+ approximated fg error
k=0

K1 A o7 1/2
< Lyt (]EYONqT Myfzﬂ Y. 2}) + approximated fg error,

3 At the remaining part of this section, we focus on ey, since it is the dominated term of the discretization
complexity
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where the first equality follows the fact that f** (Y;,0) = X5 = fo (Yr—_s,7 — 0). By using
Gronwall’s inequality, we can obtain the error bound of a single step PFODE:

2 1/2 dh/1.5
e .1 1)

P
Yi VI -t
Then, the remaining term is to control ZkK:_Ol Lyt

— !
tkt1 Ytkﬂ

dh;cl.S
VTt
paragraphs, we discuss why the time-dependent Lipschitz is suitable for EDM stepsize and is
necessary to achieve competitive results compared with the well-studied diffusion models.

+ hkebcore) In the following

The time-dependent Lipschitz constant reduce the influence of 7" and 6. At the beginning of
this paragraph we first show the results of uniform Lipschtiz constant.

pl.5 T 1/2a
1 dL;T a1 dL;T
dLy § j fAdeh“ § j 1/2 Adeh“/(S tgdtngT%ul :fég’

k=0 tk
a=1
where the first equality follows the fact that % = t,* and the inequality comes from h =

(T= — §)/K. Since this constant needs to be hold for V' € [0,T — 8], we choose the uniform
constant Ly 75 = R?/6? and the discretization complexity is K = O (R7d>® /€]y, ). It is clear
that a uniform Lipschitz constant prevents an improved K with the EDM stepsize. However, |Karras
et al.| (2022)) has shown that a suitable a = 7 can significantly improve the generation quality and
consistency models adopt this setting. In the following part, we show that with a time-dependent
Ly ., the discretization can be improved by using EDM stepsize. With L = R?/o%_,, we have

dR? S hE®  dR2hOS XK: hi _ dR2R™® _ dR2h05§ 3 _ dR2(T/6)7
TS 1.5 2at1l - - :
0 k=1 b 8 k=1 1.%" 0 0 WK

3
Then, we obtain the discretization complexity X = O (R4+ 50 03t 2 / e ) which is better than
the results with uniform Lipschitz constant and show the influence of EDM parameter a.

5 CONCLUSION

In this work, we make the first step to explain why consistency models perform well from a theoretical
perspective. More specifically, we bridge the gap between theory and application by analyzing the
discretization complexity of the consistency model with the VESDE forward process and EDM
discretization scheme. Under this realistic setting with great empirical performance, we first achieve

the state-of-the-art discretization complexity O ( 1/ eW 2“) by making full use of time-dependent
Lipschitz constant. Then, we analyze the improved multi-step sampling algorithm proposed by |Song
et al.| (2023) and show that this algorithm improves discretization complexity O (1 /ew e4+ ia ) Finally,
to explore the theoretical boundary of consistency models, we further analyze consistency models
with exponential decay stepsize and achieve O (1 / e‘%/Vz) complexity.

In conclusion, we achieve competitive results for consistency models compared with diffusion models
under the realistic setting, which shows the potential of consistency models.

Future work and limitation. In this work, we directly assume the approximated score and con-
sistency function are accurate enough. For the approximated score function, some works analyze
its learning process (Chen et al.| 2023b; |Yuan et al.} 2023). For the consistency function, |Dou et al.
analyze its estimation error. However, as discussed in Section[3.2] they run multi-step PFODE instead
of one-step PFODE, which does not match the empirical operation and is time-consuming. Hence,
it is interesting to analyze the learning process of consistency models under a realistic setting and
achieve an end-to-end analysis.
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APPENDIX

A THE ANALYSIS FOR CONSISTENCY MODEL

Theorem 1. Assume Assumption [1] 2} holds and consider the EDM stepsize (3). Then, the
one-step generation error is bounded by

3 2 = 2
< R R d(T/(S) + R €score log(T/é)

— emT' dé .
S T8 + NI 5 + € +Vd

Wa (fo,0tN (0,7°14) . qo)

where fo o is the learned consistency function at the reverse time t' = 0 (the forward process
t = T). Furthermore, by choosing T > R/, /ew,, § = EWQ/\/&, eem < ewy, /T and €score <
ew,0/(R?1og(T/4)), the output is ey, -close to qo with discretization complexity

K=0 (R4+%d3+i/e‘§;ﬁ)

Proof. We first decompose Wa (fo,08N (0,7214) , qo0):

Wa (fo,0N (0,T°14) ,q0) < Wa (fo otV (0,T°14) , foofar) + Wa (foofiar. gs) + Wa (g5, q0)
where the first term is the reverse beginning error due to the forward process, the second term is the

discretization error due to the discretization training, and the third term is due to the early stopping
technique. We first define a joint distribution v € I’ (./\/ (0, T2Id) 7qT) between N (07 T2Id) and

gr and take a couple of (Y, Yj) ~ -, which indicates
[ A6 aave = a7 (0,721
Rd
/ ’Y(Yo»)d% =dqr .
]Rd
Then, we have that

Wa (fo,0tN (0,7°14) , g5)
_ 1/2
< (&, [Ifo (¥0.0) - £ (v0.0)|2])

< (E7 [||f9 (Y5,0) — fo (YO,O)\|§D1/2 + (IE7 [Ilfo (Yo,0) — f (Yo,o)lli])l/2
< Lyo (B, 1% - %ol3)) " + (B, [Ifo (%.0) — £ (. 0)2] )
R2 9 1/2
< T Wa(N(0.7%14) . gr) + (E7 [er (Yo,0) — f* (Yo,O)HzD
= W O.T210.40) + (Briear 10 (%.0) — £ (%0, 0)12])

where the first inequality follow the fact f* (Yy,0) = Xs when Yy ~ ¢r and the last inequality
follows the fact that -y can be any coupling between N'(0, 721;) and gr.

The reverse beginning error. We first control the reverse beginning error term. When considering
the W5 guarantee, we have that

WaN (0,721, ar) < (B, [+ (0~ 1)€l2]) " < 1.
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The discretization error. In this section, we control the discretization error:

1/2
(Evomar [IF0 (Yo,0) = £ (¥5,0) 3])

K1 2 1/2
Eyomar || 3 (Fo (Y th) = fo (Yo, thi))
k=0 2
1 57\ 1/2
§ IE:Yoqu fo (Yt/ tk) — fo (Yt/+17tk+1)HQ])
~ _
K-1 - A 1/2
(EYO~qT Fo (Yipsth) = fo (Vi tis) + Fo (Vo thin) = fo (Y, th) | D
k=0 L
K-1 - R o7y 1/2
<5~ (e 10 (52:8) - 0 (5, 0[]

| |
=)

K—1 . 27\ 1/2
+ Z (EY0~qT [H.fe (Y;§f+1»t;c+1) — fo (Kt;cﬂat;wrl)HJ) =E1 + By,

=0

where the first inequality follows the fact that f* (Y5,0) = X5 = fo (Yr—s,T — 0). For term Ey,
since we assume the learned consistency model is accurate enough (Assumption 3), then we have

that:
) 91\ 1/2
> (3 [ () 10 52|

= (s [ 052,21

<ecmth—ecm (T -9).

=

-1

TOM

k=0

For term F5, we know that

K-1

97N 1/2
E, = (]EYUN(IT [Hfa ( , tk+1> —fo (Ytﬁm’t%“) HQD

k=0

K-1 97N 1/2
< Lf try1 (EYONQT |:HY _Y;;c+1 2:|)

k=0

K-l po 91\ 1/2
S (o 1)

k=0 1

K-1 2 1.5
g R 7\2 dhk 7 +hk€~score ’

o (T —1,) VT =1

where the last inequality comes from Lemma[2] When considering EDM stepsize

Tz —§
ty =0+ kh)* h= s
a—1
we know thathh—’lc =t
K T
h 1
S [ de=tog(r/),
k st

k=1
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and
K K a1
hllc'5 — 105 hie  _ o os T — 1055—L _ (T/6)2a
E -5 =<h E s < N som At <X h7P07 20 x ———
b—1 tk =1 tk 2a ) t 2a V K

Then, term Es is control by the following inequality:

K 2 7715 2
dh h’ score
By <y (R k7 Hhie )

—\ 4% trd
R?d(T/5)%  R%egcore log(T/9)
< +
VKS 0

Combined with the reverse beginning, discretization and early stopping term, we have that
1

< Ris i RQd(T/(s) 2a " szscorc log(T/(s)

~ T2 VEKS§ )

To make the above inequality smaller than eyy,, we choose T' > R/, /e, § = ew, /Vd, €cm <
ew, /T, and guarantee

+ e + Vd5 .

Wa (fo,0tN (0,7°14) . qo)

R?dTz
VR =W

At o g2t o .. . . .
2ed 20 After determining the discretization complexity K, we can

g

which indicates that K > £

also obtain the requirement of the approximated score function €score < €11,6/(R?log(7/6)). N

Corollary 1. Assume Assumption [1) 2] 5| H] holds and consider the exponential decay stepsize
hi, = vty for Vk € [1, K], where r = €, / (R*d? logQ(T/(S)). Then, we have that

+ €emT + Vs .

R’ R2d10g145(T/5) €score log(T/(S)
Wa (fo.0tN (0, T%14) ,q0) < T s n :

By choosing T > R'® /. /ew,, § = ew, /Vd, €cm < ew, /T and €seore < €w,0/(R?log(T/5)), the
output is eyy,-close to qo with discretization complexity K = O (R*d? log® (T/8)/€,)-

Proof. For the theoretical-friendly exponential decay stepsize, we have that

K=11og(T/$)

R2dhYS RPhyescore
e n (T )
k=1

B (dehif’ R?hkem> o RdIog " (T/5) | Réueons lo8(T/9)
k=1

) o ~ VK§ 8
Combined with the reverse beginning term and discretization term, we know that

R®  R%dlog™®(T/8) ¢ log(T'/9)
w. 0, T2I ’ < v score
2 (.fH,OﬁN( d) qO) ~ T2 \/Eé + 5
In order to guarantee the right hand of above inequality smaller than eyy,, we choose T' > R/, /ey,
§ = ew,/Vd, €%, < €}, /T?, and guarantee

R%dlog"®(T/6)

<

+ e + Vd5 .

VRs S
R4d3log3<R 5\/2)
4437 3 >
which indicates the discretizaiton complexity is K > -2 leig (/o) = Y2 /. After
Wa Wa
obtaining the requirement of K, we can also obtain the requirement of approximated score function
€score < 6VVg/ IOg(T/é) u
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At the end of this part, we provide the proof of multi-step sampling.

Corollary 2. Assume Assumption[d] 2| B} H| holds and consider the EDM stepsize. Then, for 2-step
generation, we have that

R®  R2d(T/8)za  (R?log(T/8)/73 +log(12/8)) R2escore  ( R2T

B RAT/0)E | (B oy(T/0)/7 + log(ra/) T e
T3 T \/Rd ) T

2
Proof. Take a couple of (Y, Z) ~ v(y, z) where v € T (p,—1, qs), take & ~ N (0, 1), then we
have

Wa (p2,q0) S Vdd +

f’:YJrTné'N,un,

Z:Z+Tn£NQTH-
Similar with Corollary 10 of [Lyu et al.|(2024), we have that

R2d(7/6)2a N R2egcore l0g(12/6)

W2 (p2,q0) S Wa(gs,q0) + Lyr—7,Wa (fins r,) + NS 5 + €cmT2
< Walgs.a0) + Ly, (JEVIIYA' - Z||§)1/2 N RQd\(/TIQ?/;)i . RQeSCore(lsog(m/é) + ety
< Waas,a0) + Liar, (E]1¥ - 2])7* + 10 )= ) Roclobn/d) o,
<Vds + R; <7R,z + R2d\(/%/§);a + R%S“’”;og(T/ o 4 ecmT>
N RQd\(/z;?/s)i N R%€gcore (1sog(72 /6) e

where the first line of the last inequality is introduced by the previous sampling process, and the
remaining term is the discretization error of this phase.

B THE ERROR OF ONE STEP PFODE FOR THE VESDE FORWARD PROCESS

When considering the consistency distillation training paradigm, we need to run a one-step reverse

PFODE starting from Y3, to obtain Y;‘,b . Hence, we need to control one step starting from the same
k41

distribution q.

2 2
Lemma 2. Suppose Assumption 1| and Assumption [2| hold and assuming 7=+ < 2171 for any

7 =

0 <t < s <T, then for the small interval t € [ty t; ] for Vk € [0, K — 1], we have that
2 (tehe sty o ChE s

W5 (4Qdpe» 1PopE | S T_p T i €score -

k

Proof. Fort € [t} ], the reverse PFODE is
g(T —t)?
2
9(T = 1)

Yt = Vingr_; (Yt) ,

)L/t: S(b()?t;caT_t;c)a

fortj, <t <tj,,, withYy =Yy ~ ¢, Yy 1n ~ qQopg, and Yy 1, ~ ¢Pope. Then, we have
that

Vi - Yil|* =2 (i~ Vi, i - ¥i)

_ 2<Yt _z7M (Vlan_t (V) — 54 (Y@;@,T—t;))>

| o Wg(T—1)
hjCHYt—YtH + A

IN

_ 2
|Vinar— () = so (V. 7~ 1) |
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As the next step,we use the Gronwall’s inequality to control the one-step discretization error.

Gronwall’s inequality. Let 77(-) be a nonnegative, absolutely continuous function on [0, &},], which
satisfies for a.e. ¢ the differential inequality

n'(t) < o(t)n(t) + (1)

where ¢(t) and ¢ (¢) are nonnegative, summable function on [0, 2}]. Then

n(t) < elo 2l {71(0) + /O t ’w(é‘)dé} :

. =112 , hlg(T—t)* > AP
By setting n(t) = ||V; — Y3||” and ¢ (t) = “:L—1 vaqT—f (Ye) = 54 (Ytﬁ-’T - t"’) H - We

note that Y3, = Yf&- ~ ¢ starts from the same distribution, 1(0) = 0. Then, we can obtain that
2
dl |

Ry ! 2
< exp (/ h—/dt) / %E |:HVIH(]T—1‘, (Yi) — s (Yti,vT - t?«) H } dt
0 k . t;c

Yo vn, — Yi 1

th+hi _ 2
< / g(T — t)*h,E {HVln qr—t (Yz) — s¢ (Yt;\;T - t;) H } dt,
. ,

Jt
k
2:|

t;€+h;€ 491 \ / 2
g/ g(T — t)*R,E {vath (Y;) — s, (Yt/k,T—tk)H ]dt

t

Then, by using[6] we have that

E |:HYt§C+h§C — Y imy

<

~

/t;ﬁh; dg(T — t)*hj (o3, —o}) L (T — D) e
t o7y T |

Finally, we have that

12 2
+ hk €score -

2] _ Ay

E [HYt'kJrh'k —Yoin| | S Tt

C THE DISCUSSION ON THE PREVIOUS WORK DETAIL CALCULATION OF
PREVIOUS CONSISTENCY MODELS RESULTS

C.1 THE DETAIL CALCULATION OF PREVIOUS CONSISTENCY MODELS RESULTS

In this part, we show how to replace Ly with our Assumptionto obtain (¥) in TableEl and discuss
the reason why the noise schedule of (2024) relies heavily on the VPSDE forward process.

The results of (2024).  As shown in Corollary 8 of (2024)), the discretization

complexity of consistency distillation is

5 <d1/2R3 (R°V d°) Lf>

7
€ Wo

Since (2024) assume the Lipschitz constant of approximated consistency function holds
for t € [6,T], we use the largest Lipschitz constant Ly max = Ly,7—5s = R?/0? (Assumption d).

17
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Since |Lyu et al.| (2024) use VPSDE as the forward process, ag = ¢ for small enough and we

need § = €%, /(Vd(RV V/d)) to guarantee W3 (g5, qo) < €%, (Lemma . Then, we obtain the
discretization complexity of |Lyu et al.| (2024) is

5 (dR5 (RS v d®) (RV ﬁ))

9
6W2

The results of [Li et al.| (2024). In this part, we first show the noise schedule of L1 et al.| (2024)
and discuss the reason why this schedule depends heavily on VPSDE. [Li et al.|(2024]) describe the
VPSDE in a discrete perspective instead of a continuous forward process:

XO ~ (o,

Xp =V1—=BpXk—1+VBeBr, 1<k<K.

Let

k
ag :=1— By, O_szZHOék-/, 1<k<K.
k=1
Then, we know that X, = y/arXo + 1 — apW,  for some Wy, ~ N (0, I;), which indicates
Xk is approximately N (0, I;) (VPSDE) with suitable noise schedule. [Li et al| (2024) choose a
specific noise schedule

1
ﬁlzl_alzKCOa

log K log K\ "
ﬂkzl—akzcl;(gmin{ﬁ1<l+01;§> ,1}, 2< k<K,

where cg, ¢; > 0 are large enough numerical constants. We note that when K goes to +oc0, S5 will
goes to 0. It is quietly different from VESDE forward process since o2 = t? would goes to +0o when
T goes to +o00 (K — +00). Hence, this noise schedule heavily depends on the form of VPSDE.

After that, we show how to transfer the results of |L1 et al.| (2024)) to the results under our setting.
Li et al.|(2024) show the discretization complexity of consistency training paradigm with VPSDE

forward process:
[ I3d5/2
K=0[-L :
Ew,

Similar to the above paragraph, we replace Ly in |Li et al.| (2024) with Ly = RTZ and § =
€, /(Vd(RV V/d)). Then, we require at least

RS (VAR Y V)

6
EWI 6W2

discretization steps.

The results of Dou et al., As shown in Theorem 4.1 of |Dou et al., when considering W distance,

the discretization error of ODE is L\/JLT;‘“, where M is the step number discussed in Section H To
make the above term smaller than ey, , we require
L2L2  d?
fscore
M > =
Wi

Following the above discussion, We choose Ly = L max = R?/8, Lyeore = R?/0} = R?/56? and
§ = €%, /(Vd(R Vv V/d)). Then, the discretization complexity is
R3?(VA(RV Vd))"

2 12
EWl 6W2

M >

18
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C.2 THE L1PSCHITZ CONSTANT OF THE NONPARAMETRIC EMPIRICAL SCORE FUNCTION

At the beginning of this part, we first recall the time-dependent Lipschitz constant of empirical score,
which is proposed by

Lemma 3. For the mixture of Gaussian distribution % Z?:1 N (X 7,01 d), we denote q as its density.
Assume ||X i ||2 < R forVj € [n], then its score function V log q(+) is L-Lipschitz continuous. Here
L = max (R?/o*,1/0?).

When considering VESDE forward process, the mixture of Gaussian at the forward time ¢ becomes
1 Z;L=1 N (X7,0714). Hence, the Lipschitz constant of Vlog g;(-) is max(R?/o{,1/0?). Since
the dominated time is the early stopping time &, where R?/§, is larger than 1/62. Hence, both the
ground truth score V log ¢;(+) and empirical score V log g;(-) has Lipschitz constant R?/o}.

D AUXILIARY LEMMAS

At the beginning of this part, we provide the previous results of the control of Vlog ¢ (-) and
V?21og q:(+). We note that the proof sketch is almost the same with [Benton et al|(2024) (VPSDE),
and we provide this part for completeness.

Lemma 1. [The VESDE version of Lemma 5.(Benton et al) [2024)] Considering VESDE forward
process Eq. , forallt > 0and VX, € R we have that

m; — X
Vliog q:(Xt) = % and V?log q; (X3) = —o; 21y + 0,5, .
t

Proof. For the first part, we have that

1
Vlogq; (Xt) = 7/ Vlog gs10 (Xt Xo) qo,¢ (Xo, X¢) dXo .
a (Xt) Jre

Due to the VESDE forward process, we have that gy (X:|Xo) = N (Xy;Xo,071) and
Vlog gijo (X¢|Xo) = —o; % (X; — Xo). Then, we have that

Vlog e (XT) = Eflu\z,('|Xt) [_0;2 (Xt - XO)}

-2 —2
—0y XL +G’L my .

For the second term, we have that
v? log q; (X¢)

1 L,

- log gsjo (X¢] X Xo, X;) dX,

@ (Xy) Rdv 08 qrjo (X¢| Xo) qo,t (Xo, X¢) dXo
1

' T
+ s [ (Viogago (XlXo) (VIogao (Xl Xo)) " g (Xo. X0) Ao
qt(Xt) R4

T
1
Ca(XP) (/ V1og o (Xi|Xo) qo.e (X07Xt)dX0> (/ V1og gsjo (X1 Xo) o.¢ (X07Xt)dX0>
qr (X7) Rd 3
1 —
= — O?I + IE(IUH(-DG) |:O't 4 (Xf - XO) ()(1L _ XO)T:|
;- - T
_ ]Equ\t,(-IXt) [_Ut 2 (Xt - XU)} qu\t,(‘\Xf,) [_O.t 2 (X, — Xo)]
= — 0';2[ + 0';4 COV(IUH('\X,,) (XL _ XO)

:*”;2I+Ut_42t-

In the rest of this section, similar to [Chen et al.| (2023a)), we provide a more refined control on the
Hessian Matrix V2 log q;(X;), where X; ~ ¢; instead of the uniform bound. These auxiliary lemmas
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are useful for the aggressive exponential decay stepsize. The following two lemmas are exactly the
same compared to (Chen et al.|(2023a), and these lemmas can be used in the VESDE setting since
these lemmas do not involve the specific process.

Lemmad4. Let Q) be a probability measure on R, Consider the density its Gaussian perturbation
4o () X [paexp ( HZU‘ZH ) dQ(y). Then for x ~ q,, we have the sub-exponential norm bound

d
2
IV*1og 4o (2)][ y, S 75
and
<. /4
IV log 4o ()], S 1/ 5
where || - |p,p, = ||| - || £l 5, denote the sub-exponential norm of the Frobenius norm of a random
matrix.

Let 0 < ¢ < s < T, the VESDE with o7 = t? indicates X|X; ~ N (a¢ Xy, (02 — 07)14), where
oy s = 1. Then, we directly use Lemma 11 of (Chen et al.|(2023a) to control the discretization error
of ground truth socre function.

Lemma 5. Forany 0 <t < s < T, the forward process Eq. (1) satisfies
E|(|Vlogg; (X:) — Vloggs (X,)||”
2 12
<AE||Viog g (X:) — Viog g (e i X,) || + 2E [ Viog g (X)|1* (1 - a;))

When considering VESDE with o7 = ¢2, oy s = 1, the above lemma indicates the discretization error
is controlled by the space discretization error. Hence, we control the space discretization error of
ground truth score function. The following lemma is almost identical compared to Lemma 13 of
Chen et al.|(2023a)) (choosing o , = 1 since the VESDE setting) except the order of the diffusion
(variance) term and the relationship between the variable stepsize and the variance term. For the sake
of completeness, we also give the proof process of this part.

Lemma 6. For0 <t < s <T with Z Ut § - and the forward process Eq. l) we have

d?(c2 — g2
E [V log g: (X:) — Viog s (X,)|? < % —t)

0y
Proof. To bound the above term by using the Hessian matrix, we have that

1
Vioga (Xi) - Viogg, (X.) = / V2 log g (X +a (X, — X)) (X, — X;)da
0

1
2
EHVIOth(Xt)—VIOth(Xs)HQS/ E||V?log g (Xi + azts) 25| da,
0

where 2; ; is defined by 2z, s = X, — X; ~ N (0 ( ( — o} )Id) and is independent of X;. For
random vectors X,Y, we use Px y to denote the ]OIHt probablhty measure of (X,Y’) and Px|y to
denote the condltlonal probability measure of X glven Y. Then for 0 < a < 1, we use change of

measure to bound E HV2 log g (Xt + azts) 2t H

dP AZt,s52t,s Xa ,8
EHvzlog% (Xt +azs) Zt,S||2 =E [||V210gq'f (X4) Zt,s||2 N (&, 2 )]

dPXtaZt,s (Xt7 Zt,s)

dPXt-&-azt 512t s (Xt7 ZtAs) 2
5\/]E||v210g% (Xt)zt,s||4]E< dPx : (Xt P )

Similar to Chen et al. (2023a), we define M; = V?log ¢; (X;) (V?log g (Xlt))T Zis = 2,52 -
For A, B € R?*9, define the tensor product A ® B € (R‘i)®4 as (A® B) = A, B;

11,%2,13,%4 i1ig Pigia-
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Since M, and Z, , are independent, then we can bound the two terms in the above inequality
separately

4
E||V?logq: (X¢) 2es]|” = (EMy ® My, EZy s @ Zys) -
Term EZ; , ® Z; , is purely determined by the diffusion (variance) term:
3(0’3 — 0'752)2, i1 = ig = ’i3 = i4,
E(Zts ® Zt,s);, iy inis = § (05 —08)% i1 # 2, (i,2) = (i3,44) or (i1,i2) = (ia,i3),
0, else.

Then, we can bound the inner product term by using exactly the same process compared to |(Chen
et al. (2023a):

(EM; @ My, BEZ; s @ Zis) S 04y oo+ Y B (M @ M), 504
(i1,42)=(i3,ia)  (i1,92)=(is,i3)
4
S (03 = a})’E ||V log g, (X4) ||

d 4
< (0% = 02)? ()

O
For the rest term, we have that

E <dPXt+azt,,37zt,s (Xtv Zt,$)>2 —F (dPXt,+aZt,,s|Zt,s (Xt|zt,s)>2
dPx, z, . (Xt 216) dPx, |z, . (Xtl2t,s)

<E <dPXt+aZt.s|Zt,s7$0 (Xt|zt73’ ‘TO))2
B dPx, |z, (Xt|2o)

We also know that X; + azy | (21,5, 20) ~ N (20 + azs,0714) and Xy|zo ~ N (20,0714). Then,
the above term has the following equation by the chi-squared divergence explicitly:

2 2
. (dPx+ (Xt|zt,s@0)> e ( 21 ) |

dPx, |z, (Xt|20) o

2 2
Recall that we assume 2257t < we have that

p)
Ty

—d/2
2 2 2( 2 9
]Eexp a Hzt’SH — 1_2a (05 Jt) < 17
of of ~

||2 dQ(UE_UtQ)

< I
~
( t

1
2d°

and
E HV2 log g (Xi + azis) 2.6

Then, we complete the proof. ]
Lemma 7. Suppose Assumption|[l|holds. Let ey, > 0. (1) If considering VESDE with o? = t2, we

€W2

choose the early stopping parameter 6 = L (2) If consider VPSDE, we choose § = e%% / (\/a(R \Y
Vd)) then we have Wy (s, qo) < €w,.

Proof. For the VESDE forward process Eq. , we know that X; := Xy + o0;z, where z ~
normal (0, I) is independent of X,. Hence, for § < 1,

W3 (q0,495) <E [HO&ZHQ} =o3d.

6W2

R

For the VPSDE forward process, we directly use Lemma 20 of |Chen et al.| (2022b)) to obtain the final
results.

Then, for the setting o7 = ¢?, we can take § <
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