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ABSTRACT

Event prediction aims to forecast the time and type of a future event based on a
historical event sequence. Despite its significance, several challenges exist, in-
cluding the irregularity of time intervals between events, cycles, periodicity, and
the complex multi-scale nature of event interactions, as well as the potentially high
computational costs for long event sequences. However, current neural temporal
point processes (TPPs) methods do not capture the multi-scale nature of event
interactions, which is common in many real-world applications such as clinical
event data. To address these issues, we propose the cross-temporal-scale trans-
former (XTSFormer), designed specifically for irregularly timed event data. Our
model comprises two vital components: a novel Feature-based Cycle-aware Po-
sitional Encoding (FCPE) that adeptly captures the cyclical nature of time, and
a hierarchical multi-scale temporal attention mechanism. These scales are deter-
mined by a bottom-up clustering algorithm. Extensive experiments on several
real-world datasets show that our XTSFormer outperforms several baseline meth-
ods in prediction performance.

1 INTRODUCTION

Given a sequence of historical events with timestamps and types, event prediction aims to predict
the time and type of the next event. This problem is common in many application domains, such as
user behavior modeling in recommender systems (Wang et al., 2021; Yan et al., 2019), fraud detec-
tion in financial transactions (Bacry et al., 2015), and disease modeling based on electronic health
records (EHRs) (Tomašev et al., 2021; Duan et al., 2019; Liu et al., 2022b). In the health domain,
adverse events related to unsafe care are among the top ten causes of death in the U.S. (Dingley
et al., 2011; Weinger et al., 2003). The large volume of EHR data being collected in hospitals,
together with recent advancements in machine learning and artificial intelligence, provide unique
opportunities for data-driven and evidence-based clinical decision-making systems. Event predic-
tion by learning common clinical operation patterns can identify anomalous or potentially erroneous
clinical operations deviating from clinical practice guidelines before they occur, e.g., forgetting a
certain medication or lab order by mistake. The learned event patterns can also facilitate generating
real-world evidence through retrospective analysis of EHRs to help design improvement of clinical
operations in medical practice. Figure 1 presents an illustrative example, where the event sequence
represents a patient’s medication intake. In this sequence, medication type 1 is taken nearly every
12 hours, and medication type 2 is taken about every two days. This scenario exhibits multi-scale
and cyclic patterns commonly observed in healthcare event data.

However, this domain presents several challenges. First, the irregularity of time intervals between
events makes common time series prediction methods insufficient. Second, the event sequence pat-
terns exhibit cycles, periodicity, and the multi-scale effect. For example, clinical operational events
such as medication administration in operating rooms occur on a fine scale, typically within min-
utes. Conversely, events pre- or post-operation are on a coarser scale, often spanning hours or days.
Similarly, in the realm of consumer behavior, purchasing frequency markedly rises during festivals
compared to normal days, which see less frequent buying activities. Both scenarios exemplify the
multi-scale nature of events in different contexts. However, accurately modeling these complex
patterns, especially within extended event sequences, can involve high computational costs.
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Figure 1: An example of medication taken sequence in EHR.

Existing methods are generally based on the temporal point processes (TPPs), a common frame-
work for modeling asynchronous event sequences in continuous time (Cox & Isham, 1980; Schoen-
berg et al., 2002). Traditional statistical TPPs models (Daley & Vere-Jones, 2008) characterize the
stochastic nature of event timing but can only capture simple patterns in event occurrences such
as self-excitation (Hawkes, 1971). More recently, deep learning methods (also called neural TPPs)
have become more popular due to the capability of modeling complex event dependencies in the
intensity function of TPPs. Recurrent neural networks (RNNs), known for their inherent ability to
process sequential data, were first introduced to neural TPPs, with models like Recurrent Marked
Temporal Point Process (RMTPP) (Du et al., 2016), continuous-time LSTM (CT-LSTM) (Mei &
Eisner, 2017), and Intensity Function-based models (Xiao et al., 2017; Omi et al., 2019). While
LSTM-based approaches address some challenges like vanishing gradients, other issues such as
long-range dependencies remained unresolved. Transformers (Vaswani et al., 2017), leveraging
their self-attention mechanism, circumvent the long-range dependency problem by allowing direct
interactions between all events in a sequence. For example, Transformer Hawkes Process (THP)
(Zuo et al., 2020) leverages the self-attention mechanism to efficiently capture long-term term de-
pendencies across varied event sequence data. Meanwhile, Self-Attentive Hawkes Process (SAHP)
(Zhang et al., 2020) employs the translation of time intervals into phase shifts of sinusoidal func-
tions, coupled with self-attention, as a strategy for enhanced feature learning. Moreover, (Yang et al.,
2022) enhance the neural Hawkes process (Mei & Eisner, 2017) by replacing its architecture with a
flatter attention-based model. However, these methods do not capture the important multi-scale pat-
terns within event sequences. There are some works on multi-scale transformers (e.g., Scaleformer
(Shabani et al., 2023) and Pyraformer (Liu et al., 2022a)) and efficient transformers (e.g., LogTrans
(Li et al., 2019) and Informer (Zhou et al., 2021)) for time series data, but these methods assume
regular time intervals and thus are not applicable for irregular time event prediction.

To address these challenges, we propose a novel cross-temporal-scale transformer (XTSFormer) for
irregular time event prediction. Our XTSFormer consists of Feature-based Cycle-aware positional
encoding (FCPE) and cross-scale temporal attention within a multi-scale time hierarchy. Specifi-
cally, we define the time scale on irregular time event sequences by the merging order of a bottom-
up clustering algorithm (e.g., agglomerative). The intuition is that events with shorter intervals (at
smaller scales) will be merged earlier. of irregular time events. We designed a cross-scale attention
operation by specifying the key set as nodes in the same scale level. In summary, we make the
following contributions.

• Our XTSFormer is the first work to take into account multi-scale features in neural TPPs.
Such multi-scale patterns are of important practical value in clinical event analysis.

• We introduce a novel time positional encoding, the Feature-based Cycle-aware Positional
Encoding (FCPE), which incorporates both feature and cyclical information. This approach
strengthens our model’s capacity to capture complex temporal patterns.

• We design a cross-scale attention operation within the multi-scale hierarchy and compare
the time cost with default all-pair attention.

• Experiments on two public datasets and two real patient safety datasets demonstrate the
superior performance of our proposed XTSformer. We present a detailed evaluation that
shows our model outperforms established benchmarks, thereby validating the effectiveness
of our methodological contributions.
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2 PROBLEM STATEMENT

Consider a temporal sequence Q of events denoted as < e1, ..., ei, ..., eL >, where L represents
the sequence length. Each event, ei, can be characterized by a pair (ti, ki): ti signifies the event
time, and ki ∈ {1, 2, ..., nK} indicates the event type, with K denoting the total number of type
classes. The objective of the event prediction problem is to predict the subsequent event, eL+1 =
(tL+1, kL+1). It’s important to note that the time of each event, ti, is irregular, i.e., events don’t occur
at fixed intervals. These event times can exhibit patterns across various temporal scales. To illustrate,
clinical operational events like medication administration may be recorded at minute intervals within
an operation room, yet they might be logged hourly when noted pre- or post-operation.

3 METHODOLOGY

3.1 OVERALL MODEL ARCHITECTURE

This section introduces our proposed cross-temporal-scale transformer (XTSFormer) model, as il-
lustrated in Figure 2. Our main idea is to establish a multi-scale time hierarchy and conduct cross-
scale attention with selective key sets in each scale. Latent features are processed using pooling
operations across multiple scale levels. In order to capture complex cyclic patterns in irregular time,
we design a Feature-based Cycle-ware time Positional Encoding (FCPE).

Starting from the irregular time event sequence, we first do a bottom-up clustering to specify
multiple-scale hierarchy of event points. This is done in the preprcessing phase. Within our model,
we start with embedding operations, including our FCPE and semantic feature embedding as shown
in Figure 2(a). Then we do cross-scale attention operations, from the smallest scale till the largest
scale as shown in Figure 2(b). For each scale, our model conducts cross-scale attention at the same
scale level, an average pooling operation (based on the tree hierarchy), and concatenation of pooled
clusters with the clusters in the next scale. The iterations continue until reaching the root node. This
process learns complex multi-scale representation within a multi-level hierarchy without sacrificing
granularity or specificity. Moreover, the approach enhances computational efficiency by reducing
the size of a key set in cross-attention operations. Finally, our model incorporates a decoder that
leverages the representation of the entire past event sequence. This decoder is adept at forecasting
both the type and timing of future events, utilizing a Weibull distribution for accurate predictions, as
depicted in Figure 2(c).

3.2 FEATURE-BASED CYCLE-AWARE TIME POSITIONAL ENCODING

The goal of temporal position encoding is to capture the relative timespan between events. Previous
temporal positional encoding methods have typically focused on encoding a continuous timestamp
only. However, it has been shown that semantic features can play a crucial role in accurately captur-
ing the periodic patterns in many real-world phenomena (Ke et al., 2021; Zhang et al., 2019). Thus,
we introduce a novel feature-based cycle-aware time positional encoding (FCPE).

Time positional encoding can be described as a function P : T → Rd×1, mapping from the time
domain T ⊂ R to a d-dimensional vector space. In attention mechanisms, it is the dot product of
time positional encodings that matters (Xu et al., 2019). Therefore, the relative timespan |ta − tb|
between events a and b implies crucial temporal information. Considering events a and b, we define
a temporal kernel K : T × T → R, such that

K (ta, tb) = P (ta) · P (tb) = F (ta − tb) , (1)
where F is a location invariant function of the timespan. As proofed in Appendix A.1.1, the kernel
K defined above satisfies the assumptions of Bochner’s Theorem, as stated below:

Theorem 1 (Bochner’s Theorem). A continuous, translation-invariant kernel K (ta, tb) =
F (ta − tb) is positive definite if and only if there exists a non-negative measure on R such that
F is the Fourier transform of the measure.

Given this, the kernel K can be represented as Eq. (2):

F (ta − tb) =

∫ ∞

−∞
eiw(ta−tb)p (w) dw. (2)
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Figure 2: The flowchart of the proposed XTSFormer, which consists of three parts: (a) scale clus-
tering; (b) multi-scale time hierarchy; (c) event time and type prediction (decoder).

Different from (Xu et al., 2020), which uses the Monte Carlo integral to approximate the expectation
of F , we sample the probability density p(wk) on several frequencies wk and learn p(wk) based on
the event feature, where k = 0, ..., d

2 − 1 (d is an even integer). The frequencies wk are learnable
parameters initialized as 2πk

d
2

, corresponding to the Discrete Fourier Transform (DFT) of the spectral
density function, as follows.

F (ta − tb) ≈
d
2∑

k=1

µ (k) e
i2πk

ta−tb
d
2 =

d
2∑

k=1

µ (k) cos

(
2πk

ta − tb
d
2

)
, (3)

where µ(k) (representing p(wk)) is the non-negative power spectrum at the frequency index k and
d
2 denotes the number of frequencies. Considering that wk is learnable, we have

F (ta − tb) =

d
2∑

k=1

µk cos (wk (ta − tb)), (4)

where µk is the learned probability density corresponding to frequency wk.

Thus in accordance with the above conditions and to satisfy Eq. (1) and Eq. (4), we propose the final
positional encoding P(ti) for time ti as shown in Eq. (5), where d is the encoding dimension, wk is
the k-th sample of frequency, and µk

i is the learned feature-based probability density corresponding

to wk. Specifically, µi = [µ1
i , µ

2
i , ..., µ

d
2
i ]

T can be expressed as µi = Wµki, where Wµ ∈ R d
2×K is

a learnable parameter matrix, ki ∈ RK×1 is the one-hot encoding of event type ki.

P(ti) = [µ1
i cos (w1ti) , µ

1
i sin (w1ti) , . . . , µ

d
2
i cos

(
w d

2
ti

)
, µ

d
2
i sin

(
w d

2
ti

)
]T ∈ Rd×1. (5)

The advantages of our FCPE are twofold. First, it builds upon the assumption that any point in time
can be represented as a vector derived from a series of sine and cosine functions that reflect the cycli-
cal nature of time with varying intensities and frequencies, which is suitable for modeling irregular
time interval. Second, we propose learning the intensities associated with each sample frequency
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(a) Agglomerative clustering of irregular time
points.
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(b) Scale hierarchy based on merging order.

Figure 3: An illustration of multi-scale hierarchy on irregular time points by bottom-up clustering.

based on the event semantic features (e.g., event type) at a particular time. Ideally, event types
that occur frequently will be reflected in higher density values µk on the higher frequency wk. As
shown in Appendix A.1.2, FCPE’s translation invariance ensures stability, sustaining performance
even when there are shifts in the input feature.

After temporal position encoding with FCPE, we add it into a non-temporal feature embedding, i.e.,
fi = W kki+Pi, where fi is the entire embedding i-th event, W k ∈ Rd×K are learnable parameters
for non-temporal embedding, ki is the one-hot encoding of event type ki, and Pi ∈ Rd×1 is the
FCPE of time ti.

3.3 CROSS-SCALE ATTENTION ON IRREGULAR-TIME SEQUENCE

One unique challenge of designing cross-scale attention on irregular time event sequences is that
there is no obvious definition of temporal scales. This is different from regular time series data,
where different temporal scales can be easily defined based on the original or downsampled reso-
lutions. For irregular time event sequences, intuitively, events that occur with short time intervals
tend to interact with each other at a small time scale (e.g., medications every few minutes within the
operation room), while events with longer intervals are at a large time scale (e.g., medication every
few days post-operation). Here we would like to establish the temporal scale concept on irregular
time sequences in an algorithmic manner. We do this by hierarchical clustering.

3.3.1 MULTI-SCALE TIME HIERARCHY

We define the temporal scales on irregular time points through a bottom-up hierarchical clustering,
e.g., agglomerative (Tan et al., 2016; Day & Edelsbrunner, 1984). The agglomerative algorithm
starts with each time point as an initial cluster and recursively merges the two closest clusters each
time (measured by the minimum, maximum, or centroid distance among point pairs), until all in-
termediate clusters are merged into one. The greedy criteria used in the agglomeration algorithm
enforce that time points that are closer to each other (in smaller scales) be merged earlier. Therefore,
we can determine the temporal scale based on the cluster merging order in a multi-level hierarchy.
Figure 3 illustrates this process with an example. There are nine events e1 to e9. Figure 3(a) shows
the bottom-up clustering process with one merging operation at a time. The merging order of inter-
mediate clusters is shown by the levels of vertical bars. In this example, points e1 to e2 are merged
first, then e3 and e4, followed by e5 and e6. Next, two leftmost intermediate clusters are merged.
The process continues until all clusters are merged into a root node. The merging order indicates
that e7 and e8 are at a larger time scale than e1 and e2. This is consistent with our intuition when
looking at the point distribution.

To quantify the time scales of event points, we can vertically slice the merging order of all initial and
intermediate clusters into different intervals. Those clusters that are merged in the s-th vertical in-
terval from the bottom are in the scale of s. For example, in Figure 3(a), we can use three thresholds
to split merging operations into four intervals. Within each interval, we can check the initial clusters
before any merging in the interval and the final clusters before this interval ends. For example, e1
and e2 as well as e3 and e4 are merged into two internal nodes (red triangles) in the first (bottom)
interval. Therefore, they are in scale 1. As another instance of example, e7, e8, and e9 are merged in
the third interval, and thus they are in scale 3. The cumulative merging process can be summarized
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in a hierarchical tree structure like Figure 3(b), in which the temporal scale of a tree node can be
defined by its level.

One important question is how to choose the slicing thresholds. The thresholds control the granular-
ity of multiple scales. If we need fine-grained multi-scale levels, we need to set up a larger number
of thresholds (intervals, or tree levels). In an extreme case, the total number of levels equals the
number of event points. In practice, such a scale choice is likely inefficient. To control the number
of (leaf or internal) points at each scale level, we can configure the slicing thresholds based on the
number of merging operations. The multi-scale hierarchy in Figure 3(b) can be configured by set-
ting the number of merging operations as 2, 2, 3, and 1 respectively. This will help us manage the
number of intermediate clusters at each scale.

We denote the latent representations at different tree nodes in each scale level s as Hs =
[hs

1, h
s
2, ..., h

s
ns
], where hs

j is the j-th node, and ns is the number of nodes in scale s. Note that
hs
j = fj (raw embedding) for a leaf node (ej) at the beginning. In Figure 3(b), there are four node

representations in the 1st scale, four in the 2nd scale, and so on.

3.3.2 CROSS-SCALE ATTENTION

We now introduce our attention operation in the multi-scale time hierarchy. In the common all-pair
attention, for each time point (query), we have to compute its attention weights to all points (keys).
In our cross-scale temporal attention, for each tree node (query), we only do temporal attention on
a selective key set, i.e., nodes in the same scale level. The cross-attention operation is expressed in
Eq. (6), where h̃s

j is the representation of hs
j after cross-attention, qs

j is the query vector for jth node
at scale s, ks

l is the key vector for the l-th node, vl is the value vector, N s
j as the selective key set of

hs
j , and DK is the dimension of key and query vectors as a normalizing term. Consider the example

in Figure 3(b). The key set for e6 (h2
4) has four nodes (h2

1, h2
2, h2

3, and h2
4), including itself. This

reduces the total number of keys from 9 to 4.

h̃s
j =

∑
l∈N s

j

exp(qs
jk

sT
l /

√
DK)vl∑

l∈N s
j
exp(qs

jk
sT
l /

√
DK)

. (6)

3.3.3 TIME COST ANALYSIS

The main advantages of the cross-scale transformer include that it captures the multi-scale hierar-
chical patterns and more importantly that it can reduce the attention operations. Assume the number
of input temporal points is L̂, batch size is B, number of heads is h, and hidden dimension is d.
In our attention computation, the query matrix dimensions is represented by Q ∈ RB×h×L×d. For
each query point Qi (where 1 ≤ i ≤ L̂), its selective key set size is M (depend on the threshold
in each level). Thus the key matrix results from concatenating key sets of all query points, yielding
a dimension of RB×h×L̂×M×d. Consequently, the Flops of the attention computation with our ap-
proach is B · h · L̂ ·M · d, with the key set size M scaling O(logL̂). This results in a significantly
more efficient attention computation Flops, specifically B · h · L̂ · log L̂ · d, compared to the vanilla
transformer computation of B · h · L̂2 · d.

3.4 DECODER AND LOSS FUNCTION

Our decoder comprises two parts: predicting event type and event time, as shown in Figure 2(c).
We first derive a comprehensive latent representation, HL, of the entire past event sequence. This
is achieved by applying a dense layer to H̃s. Given that H̃s consolidates features across various
scales, it effectively captures the temporal patterns of the upcoming item we aim to predict.

3.4.1 EVENT TYPE PREDICTION

To predict the type of the next event based on the latent embedding HL of past events, we utilize a
dense transformation layer, which is then followed by a softmax function. This process yields the
predicted probability distribution of the event type Ptype,i. Given the true event type labels ytrue,
we compute the cross-entropy loss: Lp = −

∑
i ytrue,i log(Ptype,i).
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Table 1: Results (average ± std) of all methods on Medications and Providers dataset.

Methods Medications Providers

Accuracy (%) F1-score (%) RMSE NLL Accuracy (%) F1-score (%) RMSE NLL

HP 21.9±1.1 18.1±2.1 2.78±0.33 3.54±0.38 32.1±2.5 31.9±2.6 5.17±1.30 2.19±0.13

RMTPP 23.4±0.6 20.1±1.8 1.87±0.77 3.10±0.18 35.7±2.1 33.2±2.7 4.11±1.40 2.23±0.11
CTLSTM 22.5±0.6 19.2±1.7 1.61±0.41 3.23±0.18 34.5±1.4 32.5±1.9 3.12±1.50 1.93±0.08

SAHP 28.4±0.9 25.5±2.1 1.81±0.30 2.44±0.21 38.0±1.9 37.2±2.1 3.55±1.93 2.10±0.09
THP 27.1±0.7 26.1±1.3 1.41±0.33 2.49±0.19 37.5±2.2 33.8±1.9 2.84±1.48 1.82±0.09

A-NHP 30.2±0.5 25.5±0.8 1.57±0.29 2.54±0.22 38.9±1.5 34.9±1.5 2.89±1.54 1.83±0.11
XTSFormer 33.5±0.8 29.4±1.1 1.12±0.24 2.23±0.20 43.9±1.3 37.2±1.5 2.33±1.74 1.75±0.10

Table 2: Results (average ± std) of all methods on Financial and StackOverflow dataset.

Methods Financial StackOverflow

Accuracy (%) F1-score (%) RMSE NLL Accuracy (%) F1-score (%) RMSE NLL

HP 50.8±1.8 48.7±1.8 2.92±0.87 3.24±0.13 37.5±1.3 28.1±2.3 9.45±2.23 3.87±0.11

RMTPP 52.0±1.9 52.9±2.0 1.56±0.58 3.60±0.26 41.9±3.5 28.9±2.2 9.78±1.85 3.76±0.09
CTLSTM 68.8±2.6 64.2±2.5 1.89±0.50 2.11±0.41 44.5±1.9 33.4±1.8 5.86±1.19 2.70±0.15

SAHP 74.6±0.8 75.2±1.4 3.52±0.41 1.30±0.24 43.2±1.8 35.1±2.1 5.57±0.79 2.83±0.06
THP 72.4±2.1 73.5±2.6 1.30±0.33 1.33±0.15 46.8±2.3 34.6±1.7 4.99±1.18 2.85±0.07

A-NHP 72.8±1.2 72.4±2.3 0.93±0.47 1.16±0.27 46.8±1.4 33.7±2.2 5.85±0.75 2.05±0.05
XTSFormer 77.5±1.9 78.8±1.3 0.88±0.41 1.18±0.11 49.4±1.1 35.0±1.9 4.21±0.60 1.89±0.07

3.4.2 EVENT TIME PREDICTION

For event time prediction, we add another dense layer on top of HL to learn the distribution param-
eters, scale parameter λ and shape parameter γ, of the temporal point process, e.g., intensity in the
Poisson point process. Here we adopt the Weibull distribution (Rinne, 2008) to model the intensity
function, in contrast to the commonly used exponential distribution. The exponential distribution
is a special case of the Weibull distribution with γ = 1. Its constant intensity function implies
events occur with consistent likelihood, independent of past occurrences. This lack of historical
memory limits its suitability in contexts influenced by past events. In contrast, the Weibull distribu-
tion’s hazard function can be increasing, decreasing, or constant, providing a versatile framework to
model the influence of past events on future likelihoods. We evaluate the effectiveness of these two
distributions as intensity functions in our subsequent experimental section.

We use the negative log likelihood (NLL) of event time as the loss function for event time prediction:

Lt = − logP (t′;λ, γ) = − log

(
γ

λ

(
t′

λ

)γ−1

e
−
(

t′
λ

)γ
)
, (7)

where t′ is the label time. The final loss is L = (1− α)Lt + αLp, where α is a hyperparameter for
trade-off.

4 EXPERIMENTAL EVALUATION

The goal of the evaluation section is to compare our proposed XTSFormer with baseline models in
neural TPPs in prediction accuracy (both event time and event type). We also want to understand
the importance of different components within our model through an ablation study. For the event
type prediction task, given a large number of classes, we utilized the accuracy and the F1-score
as evaluation metrics. Meanwhile, for the event time prediction task, the root mean square error
(RMSE) and NLL was chosen as the performance metric. The detailed experimental setup is in
Appendix A.2.1.

4.1 DATASETS AND COMPARATIVE METHODS

In our experiments, four benchmark datasets were used, comprising two Electronic Health Record
(EHR) datasets (Medications and Providers) from our university hospital, Financial Transactions
(Du et al., 2016), and StackOverflow (Leskovec & Krevl, 2014), as summarized in Table 4 (details
are in Appendix A.2.2).
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The comparative methods include one traditional algorithm, i.e., Hawkes Processes (HP) (Zhang
et al., 2020), two RNN-based algorithms, i.e., RMTPP (Du et al., 2016) and CT-LSTM (Mei &
Eisner, 2017) , and three Transformer-based algorithms, i.e., SAHP (Zhang et al., 2020), THP (Zuo
et al., 2020), and A-NHP(Yang et al., 2022).

4.2 COMPARISON ON PREDICTION ACCURACY

Table 1 and Table 2 summarize the accuracy, F1-score, RMSE, and negative log likelihood (NLL)
of all candidate methods on four real-world datasets. We can see that the traditional Hawkes pro-
cess model (HP) has the lowest accuracy in event-type prediction. The RNN-based models perform
slightly better than HP in overall accuracy and F1-score. The Transformer-based models are gener-
ally more accurate than the RNN-based models. Their overall accuracy is around 4% to 5% higher
than RNN-based models. Among transformer models, XTSFormer performs the best, whose overall
accuracy is 3% to 5% higher than other transformers. This could be explained by the fact that our
model captures the multi-scale temporal interactions among events. For event time prediction, we
observe similar trends, except that the RMSE of event time prediction for SAHP is somehow worse
than other transformers (close to the RNN-based models). The reason could be that the event se-
quences in our real-world datasets do not contain self-exciting patterns as assumed in the Hawkes
process.

4.3 ABLATION STUDY

To evaluate the effectiveness of our proposed model components, we conducted an ablation study on
various datasets, including Medications, Providers, Financial, and StackOverflow. The study inves-
tigates the impact of Feature-based Cycle-Aware Positional Encoding (FCPE), multi-scale temporal
attention, and choice of event time distribution (Exponential or Weibull). Table 3 shows the accu-
racy results of the ablation study. Specifically, we compare two kinds of positional encoding (PE),
i.e., traditional positional encoding (written as ‘base’) (Zuo et al., 2020) and our FCPE. Moreover,
we compare our model with (w/) and without (w/o) multi-scale parts. Meanwhile, we compare two
kinds of distribution, i.e., exponential distribution and Weibull distribution.

Base vs. FCPE. When transitioning from the base positional encoding to FCPE, we observe con-
sistent performance improvements (2% to 4%) across all datasets. This highlights the effectiveness
of FCPE in capturing the cyclic patterns and multi-scale temporal dependencies present in event
sequences.

Multi-scale attention. Introducing multi-scale attention further enhances predictive accuracy. The
model with multi-scale attention consistently outperforms its counterpart without it. This demon-
strates the significance of modeling interactions at different temporal scales, which is crucial for
capturing complex event dependencies.

Exponential vs. Weibull. Comparing the two event time distributions, we find that the Weibull
distribution yields better results. This aligns with our theoretical justification that the Weibull distri-
bution can better reflect the varying influences of history on current events. The Weibull distribution,
when incorporated into the point process, allows for capturing intricate temporal patterns influenced
by past events, whereas the Exponential distribution remains memoryless.

4.4 COMPUTATIONAL TIME COSTS

We maintained a consistent configuration by fixing the batch size, embedding dimension, and other
hyperparameters such as the learning rate. We compared the time costs of different methods on the
two datasets Medications and Providers. The results are shown in Figure 4(a). Our model has lower
time costs compared with other baseline transformers. Furthermore, we use extended sequence in
the medication dataset and evaluated XTSFormer against its single-scale variant. As illustrated in
Figure 4(b), the time discrepancy between XTSFormer and its single-scale counterpart widens with
increasing sequence length, underscoring the efficiency of the multi-scale approach.
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Table 3: Accuracy results (average ± std) of ablation study expressed in percentages, where PE
means positional encoding.

PE Multi-Scale Distribution Medications Providers Financial StackOverflow
base w/o Exponential 25.2±0.3 36.7±1.3 71.1±1.5 45.1±1.5

FCPE w/o Exponential 27.8±0.2 38.9±0.9 72.0±1.8 47.0±0.9

base w/ Exponential 28.3±0.5 37.9±1.0 73.6±1.6 46.9±1.0

FCPE w/ Exponential 30.9±0.6 38.1±0.8 74.8±2.6 48.5±1.0

base w/o Weibull 26.8±0.6 37.1±0.8 73.9±2.0 46.5±1.1

FCPE w/o Weibull 28.9±0.3 39.6±0.6 74.1±1.9 47.1±0.5

base w/ Weibull 29.3±0.6 40.2±1.3 73.5±1.8 45.1±0.6

FCPE w/ Weibull 33.5±0.8 43.9±1.3 77.5±1.9 49.4±1.1

Figure 4: (a) is the time cost of different baselines on two datasets. (b) is the time cost comparison of
XTSFormer and its single scale version on Medication. (c) is the comparison of accuracy on various
S scales.

4.5 SENSITIVITY ANALYSIS

We investigate the parameter sensitivity by varying the largest scale S ∈ {1, 3, 5, 7, 9} and report
the accuracy results on four datasets in Figure 4(c). Notably, our method displays sensitivity to the
largest scale S, as it determines the multi-scale intensity. For instance, when S = 1, only a single
scale is present, leading to suboptimal performance.

5 CONCLUSION AND FUTURE WORKS

This paper introduces a new multi-scale neural point process model called XTSFormer. Our XTS-
Former consists of feature-based cycle-aware positional encoding (FCPE) and cross-scale temporal
attention within a multi-scale time hierarchy. Specifically, we define the time scale on irregular
time event sequences by the merging order of a bottom-up clustering algorithm. The idea is mo-
tivated by the fact that events with shorter intervals (at smaller scales) will be merged earlier. We
designed a cross-scale attention operation by specifying the key set as nodes in the same scale level.
Experiments on two real patient safety datasets and two public datasets demonstrate the superior
performance of our proposed XTSformer. In future work, we intend to further analyze and improve
our proposed model to enhance its robustness and reliability, particularly in situations with outliers
and noisy event data.
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A APPENDIX

A.1 THEORY OF FCPE

This section delves into the theoretical base of the Feature-based Cycle-aware Positional Encoding
(FCPE).

A.1.1 COMPLIANCE WITH BOCHNER’S THEOREM

Consider the temporal kernel defined as:
K (ta, tb) = P (ta) · P (tb) = F (ta − tb) . (8)

This kernel, dictated by its Gram matrix, exhibits translation invariance. Specifically, for any con-
stant c:

K (ta, tb) = F (ta − tb) = K (ta + c, tb + c) . (9)
Given that the mapping

P : T → Rd×1

is continuous, the kernel meets the condition set by Bochner’s Theorem.

Theorem 2 (Bochner’s Theorem). A kernel that is both continuous and translation-invariant, given
by

K (ta, tb) = F (ta − tb) ,
is positive definite if and only if there exists a non-negative measure on R such that F is the Fourier
transform of this measure.

A.1.2 TRANSLATION INVARIANCE OF FCPE

The translation invariance property ensures its consistent performance irrespective of shifts in the
input feature, and enhancing its generalizability towards timespan, as proofed below.

P (ta)P (tb) =

d∑
i=1

[
µi
aµ

i
b cos (wita) cos (witb) + µi

aµ
i
b sin (wita) sin (witb)

]
=

d∑
i=1

µi
aµ

i
b [cos (wita) cos (witb) + sin (wita) sin (witb)]

=

d∑
i=1

µi
aµ

i
b cos (wi (ta − tb)) .

(10)

Thus,

P (ta + c)P (tb + c) =

d∑
i=1

µi
aµ

i
b cos (wi (ta − tb)) = P (ta)P (tb) , (11)

which implies that P (ta)P (tb) only influenced by the timespan ta − tb.

A.2 EXPERIMENTS

A.2.1 EXPERIMENTAL SETUP

All experiments were conducted using PyTorch on a server equipped with NVIDIA A100 80GB
Tensor Core GPU. During training, we set the initial learning rate in the range of [0.0001, 0.001]
and the weight decay within [0, 0.0001] for all datasets, respectively, with the Adam optimizer
(Kingma & Ba, 2015). The dimension of embedding, the epoch number, the learning rate, and the
weight decay of our methods, respectively, are set as 256, 200, 1× 10−3 and 1× 10−4. In addition
to directly adding the FCPE temporal embedding to the non-temporal feature embedding, we also
experimented with concatenating them, setting the dimension for each at 128. We employ an early
stopping patience of 25, terminating training if there’s no decrease in loss over 25 epochs. To avoid
the over-fitting issue on the datasets with limited subjects, in all experiments, we repeat the 5 times
with different random seeds on all datasets for all methods. We finally report the average results and
the corresponding standard deviation (std).
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Table 4: The statistic of all datasets.
Dataset # of Event Types # of Events Length of Sequence # of Sequence

Min Mean Max Train Validation Test
Medications 86 355,490 10 70 878 4,064 508 508

Providers 48 704,496 10 13 48 45,010 5,626 5,626
Financial 2 414,800 829 2,074 3,319 160 20 20

StackOverflow 22 480,413 41 72 736 4,777 530 1,326

A.2.2 DATASETS DESCRIPTION

Medications dataset originates from our university’s hospital and encompasses approximately 5,000
patient encounters. Each encounter, treated as a sequence, chronologically details the patient’s med-
ication records, spanning 86 distinct subcategories. The medication timelines cover pre-operations,
intra-operations, and post-operations periods.

Providers dataset, sourced from our university’s hospital, parallels the structure of the Medications
dataset, containing around 55,000 patient encounters. Each encounter is treated as a sequence de-
tailing the patient’s provider interactions in chronological order, with a breakdown into 48 distinct
provider classifications by function. These interactions span the pre-operations, intra-operations,
and post-operations periods.

Financial (Du et al., 2016) dataset comprises high-frequency transaction records for a stock in a
single day. Each entry is timestamped (in milliseconds) and indicates an action (buy/sell). While
the data forms a continuous sequence, it is partitioned for training and testing purposes. The goal is
to predict the timing of a particular action.

StackOverflow (Leskovec & Krevl, 2014) is a Questions and Answers platform that incentivizes
user engagement through badge rewards, with users potentially receiving the same badge multiple
times. We analyze a two-year data span, representing each user’s badge acquisition as a sequence,
where each event denotes a specific badge receipt.
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