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Abstract

Medical Lay Language Generation (MLLG) plays a vital role in improving the
accessibility of complex scientific content for broader audiences. Recent literature
to MLLG commonly employ parameter-efficient fine-tuning methods such as Low-
Rank Adaptation (LoRA) to fine-tuning large language models (LLMs) using
paired expert-lay language datasets. However, LoRA struggles with the challenges
posed by multi-source heterogeneous MLLG datasets. Specifically, through a
series of exploratory experiments, we reveal that standard LoRA fail to meet the
requirement for semantic fidelity and diverse lay-style generation in MLLG task. To
address these limitations, we propose Magical, an asymmetric LoRA architecture
tailored for MLLG under heterogeneous data scenarios. Magical employs a shared
matrix A for abstractive summarization, along with multiple isolated matrices B for
diverse lay-style generation. To preserve semantic fidelity during the lay language
generation process, Magical introduces a Semantic Invariance Constraint
to mitigate semantic subspace shifts on matrix A. Furthermore, to better adapt to
diverse lay-style generation, Magical incorporates the Recommendation-guided
Switch, an externally interface to prompt the LLM to switch between different
matrices B. Experimental results on three real-world lay language generation
datasets demonstrate that Magical consistently outperforms prompt-based methods,
vanilla LoRA, and its recent variants, while also reducing trainable parameters by
31.66%.

1 Introduction

Medical Lay Language Generation (MLLG) [1] shared task surrounds the abstractive summarization
and lay-style generation of biomedical articles, aiming to generate readable, accessible summaries for
non-expert audiences [2]. This task addresses a critical barrier: the highly specialized language used
in clinical and biomedical literature often limits public understanding and reduces patient adherence
to medical advice in clinical settings. By translating complex medical content into lay-friendly
language, MLLG promotes equitable access to life-related knowledge [3–5], supporting the broader
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societal right to understand and engage with health information [6–8]. To achieve this goal, recent
literature [9, 10, 2] has explored the use of parameter-efficient fine-tuning (PEFT) [11] methods such
as LoRA [12] on large language models (LLMs) [13–15] by leveraging paired expert-lay language
data, to enable LLMs to equip domain-specific knowledge and transformation patterns relevant to
MLLG tasks. Given the scarcity of paired expert-lay language data, recent efforts [16, 17] have shifted
toward utilizing multi-source MLLG datasets to enrich training signals and promote generalization.

Key Insights of LoRA on MLLG. LoRA [12] modifies the original model by injecting a low-
rank decomposition into the weight updates, expressed as y = W0x + BAx, where W0 denotes
the pre-trained weight matrix, and A and B are low-rank matrices capturing the adaptation. This
formulation reveals a structural resemblance to auto-encoder-based representation editing [18–21],
where W0x represents the original representation, and BAx can be interpreted as an additive, low-
dimensional edit in the representation space [22]. Applying LoRA to MLLG implicitly assumes
that both abstractive summarization and lay-style generation can be modeled within a low-rank
subspace. However, this assumption raises two critical questions: Does the low-rank adaptation
reliably preserve semantic fidelity? and Can they adapt robustly to diverse lay-style generation
proposed by multi-source MLLG datasets? Given that semantic fidelity is a potential optimization
objective and heterogeneity is an inherent characteristic of multi-source datasets, it remains uncertain
whether LoRA’s rank-constrained updates can adequately model both abstractive summarization
and diverse lay-style generation. This motivates a deeper investigation into the representational
capacity of LoRA in scenarios requiring both semantic stability and diverse stylistic transformation.

In this study, we conduct a series of exploratory experiments using LoRA to fine-tune LLMs on
multi-source MLLG datasets. Our in-depth analysis of heterogeneity in MLLG datasets and LoRA’s
mechanics yields several insightful observations and leads to the formulation of key hypotheses.
Firstly, despite serving the same MLLG tasks, datasets from different sources exhibit tremendous
heterogeneity. This heterogeneity further contributes to LoRA’s suboptimal performance. Results
indicate that rather than utilizing multiple datasets to fine-tune a single LoRA, it is more effective to
employ multiple smaller LoRAs, each fine-tuned exclusively on a specific dataset. This suggests that
the detriments of data heterogeneity outweigh the potential benefits of increased training diversity.
Furthermore, we investigate semantic fidelity. Results demonstrate that LoRA’s low-rank projection
causes detrimental semantic subspace shift, which challenges the optimization objective of semantic
fidelity in MLLG tasks. Based on these observations, we contend that standard LoRA fail to meet
the requirement for semantic fidelity and diverse lay-style generation in MLLG task.

To address these challenges, we propose Magical (Medical Lay Language Generation via Semantic In-
variance and Layperson-tailored Adaptation), an asymmetric LoRA architecture with a shared matrix
A for abstractive summarization and multiple isolated matrices B for diverse lay-style generation.
Specifically, for matrix A, Magical first employs Semantic-Relevant Layer Identification
to identify the Transformer layers within the LLM that are semantically relevant, then applies
Semantic Contrastive Learning to encourage matrix A to project input representations into a
semantic latent subspace, thereby ensuring semantic fidelity within the low-rank projection. For ma-
trix B, Magical utilizes multiple isolated matrices B to project representations into diverse lay-style
subspaces, enabling adaptation to different sources of MLLG datasets individually. Furthermore, in-
spired by the divide-and-conquer principle [23], Magical incorporates the Recommendation-guided
Switch, an external interface that prompts LLM to dynamically switch among different B matrices.

Our contributions are summarized as follows:

1. Insightly, we provide valuable insights into existing approaches that fine-tune LLMs using LoRA
for the MLLG task. Based on these insights, we conducted a series of exploratory experiments and
confirmed that LoRA falls short in achieving semantic fidelity and diverse lay-style generation. To
address this challenge, we propose Magical, a method that incorporates Semantic Invariance
Constraint and Layperson-tailored Adaptation.

2. Technically, we design Semantic-Relevant Layer Identification and employ Semantic
Contrastive Learning on matrix A to enforce semantic fidelity during the low-rank pro-
jection process. Furthermore, we introduce multiple isolated matrices B along with a
Recommendation-guided Switch to enable diverse lay-style generation.

3. Experimentally, we conduct extensive experiments to validate the robustness of Magical in
maintaining semantic fidelity and its effectiveness in supporting diverse lay-style generation.
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Figure 1: Distribution of Word Count, DCRS [1] and readability evaluation of DeepSeek-V3 on three
heterogeneous MLLG Datasets.

2 Preliminary and Motivation

2.1 Low-Rank Adaptation (LoRA)

LoRA [12] introduces a parameter-efficient fine-tuning strategy that achieves performance comparable
to full fine-tuning across various benchmarks. Instead of updating the full set of pretrained model
weights W0, LoRA keeps these weights frozen and injects trainable low-rank decomposition matrices
into each layer of the model. Specifically, for each layer, LoRA introduces two consecutive low-rank
matrices A and B to model the residual weight updates, thereby enabling task-specific adaptation.
The process can be mathematically formulated as follows:

y′ = y +∆y = W0x+BAx (1)

where y ∈ Rd denotes the output and x ∈ Rk represents the input. The matrices B ∈ Rd×r and
A ∈ Rr×k are low-rank projections, with r ≪ min(d, k).

2.2 Heterogeneous MLLG Datasets

In this empirical study, we conduct a detailed investigation of three real-world publicly available
datasets used in our work: Cochrane [24], eLife [25], and Plos_genetics [2]. Specifically, we analyze
both the expert and lay texts in these datasets using three metrics: Word Count, Dale-Chall Readability
Score (DCRS) [1] and readability evaluation of DeepSeek-V3 (For details of these metrics, please
refer to Appendx. B). As shown in Fig. 1, we observe that for Cochrane and Plos_genetics, the word
count decreases after lay transformations, whereas for eLife, the word count increases. In terms of
DCRS, only eLife exhibits improved readability after lay transformations, whereas the readability of
Cochrane and Plos_genetics decreases following the same process. Furthermore, based on readability
evaluation conducted using DeepSeek-V3 [26], we observe that although all three datasets show an
overall improvement in readability after lay transformations, the magnitude of improvement varies
across datasets.

Our views the following: each MLLG dataset may be associated with an inaccessible inter-annotator
agreement [9], resulting in distinct dataset characteristics, including simplification strategies, depth
of simplification, domain-specific conventions, and stylistic preferences. In some scenarios, MLLG
involves removing non-essential content while preserving the core message (word count ↓). In
others, it requires supplementing the original text with additional background knowledge to explain
domain-specific technical terms (word count ↑). Based on this, we derive our first key observation:

Observation I: Different medical lay language generation datasets yield diverse lay-style generation
proposed by heterogeneity, stemming from differences in inter-annotator agreement.

2.3 LoRA Meets Heterogeneous MLLG Datasets

Single-LoRA vs. Multi-LoRA. In this preliminary experiment, we primarily investigate whether
LoRA can adapt to multi-source heterogeneous data and enable diverse lay-style generation. To
achieve this goal, we focus on LoRA and conduct a series of experiments, as shown in Table. 1, to
gain deeper insight into its underlying mechanisms. We adopt two independent experimental setups.
In the first setup, we use a single LoRA with a rank of 24 to jointly fine-tune on three datasets:
Cochrane [24], eLife [25], and Plos_genetics [2]. In the second setup, we use three separate LoRAs,
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Table 1: Performance of LoRA and mLoRA (multiple smaller LoRAs) on Cochrane, eLife and
Plos_genetics datasets. n is the number of LoRAs, r denotes the rank of each LoRA. All evaluation
metrics are defined such that higher values indicate better performance (↑).

Cochrane eLife Plos_geneticsMethods r×n #Params R-1 R-2 R-L BLEU R-1 R-2 R-L BLEU R-1 R-2 R-L BLEU

LLaMA3.2-3B-Instruct

LoRA 24×1 36M 39.43 16.07 37.21 10.20 42.32 11.55 40.26 5.62 41.04 12.42 38.35 6.33
mLoRA 8×3 36M 40.01 16.33 37.71 10.37 46.69 13.48 44.57 7.36 44.92 13.62 41.42 8.80

LLaMA3.1-8B-Instruct

LoRA 24×1 62M 41.32 17.45 38.72 11.84 48.25 14.59 46.27 8.49 41.98 12.85 39.17 6.79
mLoRA 8×3 62M 40.19 16.56 37.53 12.06 49.40 14.88 47.29 8.53 47.55 16.34 43.98 11.54

Qwen2.5-7B-Instruct

LoRA 24×1 60M 41.32 17.45 38.72 11.84 48.25 14.59 46.27 8.49 41.98 12.85 39.17 6.79
mLoRA 8×3 60M 44.23 19.37 41.60 14.50 47.38 13.90 45.42 7.93 46.41 16.29 42.95 9.94

each with a rank of 8, to fine-tune the LLM individually on each dataset. The total number of trainable
parameters remains the same across both setups.

The experimental results show that, in the vast majority of cases, deploying multiple smaller LoRAs
yields better performance than using a single larger one. We attribute this to the fact that while a
single LoRA can leverage a larger amount of training data, its ability to adapt is constrained by the
heterogeneity of the MLLG data. As a result, it struggles to finish diverse lay-style generation. This
analysis yields another critical observation:

Observation II: The interference caused by the heterogeneity of data when using fully shared LoRA
parameters outweighs the potential benefits brought by the additional information gained from data
augmentation.

Figure 2: Projections of activations from
expert text and lay text on the top-2
singular directions of the semantic sub-
space, which form the x- and y-axes of
the KDE plot.

Semantic shift in LoRA. A potential optimization ob-
jective in the MLLG task is ensuring semantic fidelity [2],
as misinterpretation or distortion of medical information
can lead to patients developing inaccurate health percep-
tions or making inappropriate decisions [3, 6, 27]. We
conduct an in-depth analysis of semantic conveyance in
low-rank projection of LoRA. Specifically, we randomly
select a Multi-layer Perceptron (MLP) and project the
representations of the original expert texts and the LoRA-
finetuned lay texts onto the first two singular directions of a
semantically relevant subspace. We then plot their respec-
tive Kernel Density Estimation (KDE) distributions [18],
as shown in Fig. 2. It can be observed that the original
expert texts and generated lay texts exhibit significant
distributional divergence in the semantic subspace. This
indicates that LoRA lacks a mechanism to preserve se-
mantic fidelity in low-rank projection, leading to notable
semantic shift during LoRA fine-tuning. The case study
provided in Appendix. E.10 also demonstrates the seman-
tic degradation caused by the naive application of LoRA.
This motivates our third key observation:

Observation III: The naive application of LoRA in the
MLLG task demonstrates insufficient control over semantic fidelity, resulting in harmful semantic
shifts that degrade model performance.

Summary. Building on the above insightful observations, our goal is to more effectively leverage
mixed heterogeneous data by adapting to diverse lay-style generation while preserving semantic
fidelity throughout the lay transformations process. Inspired by works such as HydraLoRA [28],
we propose Magical. Magical employs Semantic Invariance Constraint on A to enforce
semantic fidelity during the low-rank projection process (addressing Observation III), and intro-
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Figure 3: Overview of the Magical. (a) Illustrates the target audience of expert-lay language and
the heterogeneity of multi-source datasets. (b) Depicts Magical employs probing techniques to
identify semantic-relevant layers for subsequent Semantic Contrastive Learning. (c) Shows
Magical applies Semantic Contrastive Learning on matrix A to enforce semantic invari-
ance, and utilizes an external Recommendation Agent to switch between different matrices B for
Layperson-tailored Adaptation.

duces Layperson-tailored Adaptation on B to enable diverse lay-style generation (addressing
Observations I and II).

3 Methodology

3.1 Framework of Magical

We present Magical, a novel framework inspired by HydraLoRA [28] that employs asymmetric
structure for MLLG. The framework operates on a collection of datasets D = {D1,D2, . . . ,DN},
where each Di corresponds to training data for a specific lay-style and N is the number of datasets.

Magical utilizes a shared matrix A ∈ Rr×k for abstractive summarization and multiple isolated
matrices B = {B1, B2, . . . , BN}, where each Bi ∈ Rd×r is dedicated to a specific lay-style
generation. The parameter r represents the low-rank dimension, k is the input dimension, and d is
the output dimension. The process can be mathematically formulated as follows:

y = W0x+

N∑
i=1

αi ·BiAx (2)

where αi is a branch control variable that controls the degree of branch participation.

As illustrated in Fig. 3, Magical further employs Semantic Invariance Constraint on matrix
A and Layperson-tailored Adaption on matrix B to enable more robust medical lay language
generation.

3.2 Semantic Invariance Constraint on A

Semantic-Relevant Layer Identification. Prior work [29] has shown that different layers of LLMs
capture distinct functional representations. Accordingly, Magical employs probing techniques [30–
32] to identify layers that are more semantically relevant and applies customized LoRA fine-tuning
specifically to those layers. To achieve this, Magical utilizes expert–lay language pairs with aligned
semantics and determines the semantic relevance of each layer based on its probing accuracy on a
semantic classification task.

Specifically, for the paired expert–lay language dataset D = {(x(1)
o , x

(1)
s ), · · · , (x(N)

o , x
(N)
s )}, where

xo and xs denote the expert language (original) and the lay language (simplified) respectively, and
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N represents the number of samples in the dataset. Magical constructs a semantic consistency
classification task by aggregating expert and lay language, and creates a probing dataset D∗ =

{[x(i)
o ;x

(j)
s ], · · · }. A pair is considered a positive sample if i = j, and a negative sample otherwise.

Let x∗ = [x
(i)
o ;x

(j)
s ], Magical defines the probe pl(x

∗) = Sigmoid(⟨θ0→l, x
∗⟩) for each layer l of

the LLM to detect the semantic-relevance of the activations, where θ0→l denotes the parameters of
the first l layers of the LLM.

Next, Magical randomly splits the dataset into a 4:1 ratio of training to testing sets and fits a
binary linear classifier p(·) on the training set. The layers achieving the top-K validation accuracy
are identified as semantic-relevant layers, and subsequent Semantic Contrastive Learning is
applied specifically to these layers.

Semantic Contrastive Learning. Based on the earlier Observation III, Magical encourages LoRA
to project input representations through matrix A into a semantic-relevant low-rank subspace, in order
to preserve semantic fidelity during the low-rank projection process. To achieve this, contrastive
learning [33] is applied to representations in this space. Specifically, Magical seeks to establish
a clear boundary between samples with different semantics in the semantic space, and contrastive
learning is a well-established approach for this purpose [18, 34]. For the expert–lay language dataset
D = {(x(1)

o , x
(1)
s ), · · · , (x(N)

o , x
(N)
s )}, Magical treats x(i)

s as the positive sample for x(i)
o , and x

(j)
s

(j ̸= i) as a negative sample. Contrastive learning aligns the representations by minimizing the
distance between x(i) and x

(i)
+ , while maximizing the distance between x(i) and x

(i)
− . Magical denotes

the set of positive samples for x as χ+, and the set of negative samples as χ−, then the training
objective can be formally defined as:

Lcontra(x, χ
+, χ−) = − log

∑
x′∈χ+ exp(sim(x, x

′
/τ)∑

x′∈(χ+,χ−) exp(sim(x, x′)/τ)
. (3)

where sim(·) refers to cosine similarity between representations, and τ is the temperature.

Regarding implementation details, since Magical receives only expert language as input in the MLLG
task, we construct a cached key dictionary to leverage lay language as contrastive targets. Specifically,
during each training iteration, we use the matrix A retained from the previous iteration to encode the
lay language into representations, which are then stored as a key dictionary and cached for use in the
current iteration’s Semantic Contrastive Learning.

3.3 Layperson-tailored Adaptation on B

Router-Controlled vs. Switch-Controlled. Magical explores two mechanisms for branch control
variable αi in Eq. 2 to aggregate matrices B: Router-Controlled Selection and Switch-Controlled
Selection. In this research, Magical defines them as follows:

• Router-Controlled Selection: Router-Controlled Selection defines α as a continuous probability
distribution, leveraging a Soft Selection mechanism to aggregate the performance of multiple B

matrices. Specifically, this can be formulated as
∑N

i=1 αi = 1. Typically, multiple matrices B are
activated, and the LLM integrates their outputs to handle complex tasks.

• Switch-Controlled Selection: Switch-Controlled Selection defines α as a one-hot vector, employ-
ing a Hard Selection mechanism to choose a specific branch. Specifically, this entails that αi = 1
while αj = 0 for all i ̸= j. In this setting, the LLM typically does not autonomously identify the
task. Only a single matrix B is activated, which reduces interference from other B matrices.

Recommendation-guided Switch. Unlike existing mainstream approaches [28, 35, 36] that em-
ploy Router-Controlled Selection to enable LoRA for multi-task learning, Magical adopts Switch-
Controlled Selection for MLLG task to mitigate the interference caused by the heterogeneity of
multi-source lay language dataset. This design is motivated by the observation that, in typical multi-
task learning frameworks, the differences between tasks are often easily distinguishable, allowing
simple prefix prompts [37, 38] and the in-context learning ability [39] of LLMs to effectively combine
multiple B matrices. However, in the heterogeneous data setting of the MLLG task, such simple
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Table 2: Performance comparison of Prompt, various LoRA variants, and Magical across three
backbone LLMs on three MLLG datasets. All evaluation metrics are defined such that higher values
indicate better performance (↑). The best results are highlighted in bold, while the second-best results
are underlined. The Impro (%) indicates the relative improvement of Magical over the second-best
performance.

Cochrane eLife Plos_geneticsMethods #Params R-1 R-2 R-L BLEU R-1 R-2 R-L BLEU R-1 R-2 R-L BLEU

LLaMA3.2-3B-Instruct

Prompt N/A 39.81 11.37 36.51 5.28 37.82 8.22 35.47 3.08 37.88 7.78 35.08 4.13
LoRA [12] 36M 40.01 16.33 37.71 10.37 46.69 13.48 44.57 7.36 44.92 13.62 41.42 8.80
rsLoRA [42] 36M 40.85 16.38 38.44 10.23 45.41 13.02 43.30 7.09 43.75 13.91 40.54 7.79
DoRA [43] 37M 40.03 16.28 37.81 10.26 42.93 12.01 40.84 6.16 41.17 12.81 38.43 6.44
PiSSA [44] 36M 39.75 16.14 37.38 10.52 42.89 11.99 40.85 6.26 43.51 13.91 40.45 7.79

Magical 24M 45.33 19.39 42.36 16.66 49.16 14.68 46.91 8.30 47.50 15.47 44.03 10.24
Impro (%) 33.33 10.97 18.38 10.20 58.37 5.29 8.90 5.25 12.77 5.74 11.21 6.30 16.36

LLaMA3.1-8B-Instruct

Prompt N/A 41.67 12.50 38.60 6.23 35.82 9.44 33.36 1.85 39.13 8.67 36.16 4.66
LoRA [12] 62M 40.19 16.56 37.53 12.06 49.40 14.88 47.29 8.53 47.55 16.34 43.98 11.54
rsLoRA [42] 62M 43.30 18.12 40.62 12.89 49.33 15.01 47.25 8.71 42.19 12.86 39.36 6.87
DoRA [43] 64M 43.24 18.28 40.60 13.50 48.47 14.67 46.41 8.44 42.48 13.06 39.59 7.17
PiSSA [44] 62M 42.95 17.80 40.23 13.89 48.83 14.66 46.74 8.40 39.64 11.62 37.26 5.62

Magical 42M 45.71 19.52 42.79 16.68 50.44 15.49 48.02 8.67 48.77 16.64 45.06 11.86
Impro (%) 32.23 5.57 6.78 5.34 20.09 2.11 3.20 1.54 -0.46 2.57 1.84 2.46 2.77

Qwen2.5-7B-Instruct

Prompt N/A 44.53 15.57 41.52 11.42 35.09 8.85 32.29 1.80 44.93 12.50 41.14 7.73
LoRA [12] 60M 44.23 19.37 41.60 14.50 47.38 13.90 45.42 7.93 46.41 16.29 42.95 9.94
rsLoRA [42] 60M 45.22 19.48 42.46 15.06 48.70 14.54 46.48 7.76 46.26 15.60 42.87 9.90
DoRA [43] 61M 45.65 19.64 42.87 15.45 47.38 13.90 45.24 7.70 46.64 15.97 43.24 10.12
PiSSA [44] 60M 44.87 19.30 42.12 14.52 48.86 14.46 46.68 7.82 46.81 15.93 43.57 10.48

Magical 42M 47.42 20.81 44.38 17.89 50.50 15.28 48.16 8.66 48.54 16.39 44.79 11.42
Impro (%) 30.00 3.88 5.96 3.52 15.79 3.36 5.09 3.17 9.21 3.70 0.61 2.80 8.97

prompts become ineffective. This is because overly simplistic instructions fail to comprehensively
articulate the target lay-style, and demonstrations [40] may significantly increase sequence length,
thereby raising the risk of lost-in-the-middle [41]. In subsequent experiments, we validated the
dilemma faced by Router-Controlled Selection in the MLLG task and demonstrated the rationality of
Switch-Controlled Selection.

Due to the limitations of LLMs in autonomously selecting appropriate lay-style, Magical adopts
a divide-and-conquer principle [23] by employing an external Recommendation Agent to handle
lay-style selection. It further introduces an open Interface to bridge the Switch mechanism with
the Recommendation Agent, enabling dynamic switching to the most suitable matrix B for the
target lay-style generation. The core insight of Magical lies in avoiding the excessive accumulation
of redundant optimization objectives within a single low-rank subspace, which would otherwise
compromise the quality of lay language generation.

4 Experiment

4.1 Experimental Setups

Network Architecture, Datasets and Metrics. Our experiments were based on various backbone
LLMs, including LLaMA3 series [45] of various sizes (LLaMA3.2-3B-Instruct and LLaMA3.1-8B-
Instruct) and Qwen2.5-7B-Instruct [46]. To evaluate the effectiveness of Magical, we conducted ex-
periments on three publicly available real-world MLLG datasets, including Cochrane [24], eLife [25],
and Plos_genetics [2]. We followed the official data splits to construct the training and test sets.
Detailed statistics of these datasets are provided in Appendix. A. Following the evaluation protocol
of existing literature [9], we adopted ROUGE-1 (R-1), ROUGE-2 (R-2), ROUGE-L (R-L), and BLEU
as evaluation metrics for the MLLG task, with detailed descriptions available in Appendix. B.

Baselines. We adopt the following state-of-the-art approaches as our compared baselines.
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Table 3: Ablation Studies of Magical using LLaMA3.1-8B-Instruct as backbone LLM on three MLLG
datasets. SRLI: Semantic-Relevant Layer Identification. SCL: Semantic Contrastive Learning. All
evaluation metrics are defined such that higher values indicate better performance (↑).

Cochrane eLife Plos_geneticsMethods R-1 R-2 R-L BLEU R-1 R-2 R-L BLEU R-1 R-2 R-L BLEU

LLaMA3.1-8B-Instruct

Magical 45.71 19.52 42.79 16.68 50.44 15.49 48.02 8.67 48.77 16.64 45.06 11.86

w/o SRLI 41.41 17.22 38.65 12.20 49.83 15.04 47.60 8.59 47.97 16.33 44.31 11.57
w/o SCL 45.09 19.31 42.26 14.79 49.67 14.96 47.41 8.30 48.35 16.35 44.74 11.62

→ Single B 41.32 17.45 38.72 11.84 48.25 14.59 46.27 8.49 41.98 12.85 39.17 6.79
Switch→Router 41.77 16.93 39.34 11.21 47.76 14.08 45.64 7.86 41.01 12.39 38.27 6.19

• Prompt: Prompt leverages the in-context learning [39] ability to achieve MLLG. Specifically, we
use a well-crafted prompt to describe the target lay-style with demonstrations. (See Appendix. D
for detailed prompts).

• Various LoRA Variants: We adopt LoRA [12] (multi-LoRA version) and several recently proposed
LoRA variants as our baseline models, including HydraLoRA [28], rsloRA [42], DoRA [43], and
PiSSA [44]. It is worth noting that HydraLoRA [28] serves as an inspiration for Magical, and is
therefore treated as a variant of Magical in our ablation studies.

Implement Details. We used the PyTorch library to implement all the algorithms based on the open-
source HuggingFace transformers [47]. The experiments were conducted on 8 NVIDIA-H20-96GB
GPUs. For each experimental setup, we trained all LLMs for 5 epoch with DeepSpeed ZeRO 2
Offload [48]. We utilized the AdamW optimizer and a cosine learning rate scheduler, with a warm-up
ratio set to 0.1. For the Recommendation Agent in Layperson-tailored Adaptation, we adopt a
manually specified matrix B, corresponding to a Recommendation Agent with 100% recommendation
accuracy.

4.2 Experimental Results

Comparison with Recent Literature. As shown in Table. 2, we compare Magical with Prompt
method, vanilla LoRA, and various LoRA variants across three MLLG tasks. To comprehensively
evaluate the effectiveness of Magical, we employ backbone LLMs with diverse architectures and
scales. The experimental results demonstrate that Magical achieves the best performance in most
cases, ranking second only to rsLoRA on the BLEU for the eLife dataset. Moreover, compared to the
second-best performance, Magical yields an average relative improvement of 4.80%↑ in R-1, 6.89%↑
in R-2, 4.51%↑ in R-L and 15.99%↑ in BLEU across all settings, confirming its strong performance.
More importantly, while achieving performance improvements, Magical also introduces average
31.66%↓ trainable parameters. Notably, the Prompt method consistently performs the worst in the
majority of scenarios, especially on the BLEU metric. This supports our earlier claim that simple
prompts are insufficient to effectively capture the target lay-style, making it challenging to generate
language tailored for laypersons.

Ablation Studies. We verified the effectiveness of each module by removing some modules from
Magical and evaluated the modified models using the LLaMA3.1-8B-Instruct as backbone LLM
across three MLLG datasets. The experimental results were presented in Table. 3. The experimental
results provide deeper insights into the design of Magical. We first analyze the modules added
to matrix A. When the Semantic-Relevant Layer Identification (SRLI) component is re-
moved—i.e., Semantic Invariance Constraint are imposed across all Transformer layers of
the LLM—there is a significant performance drop (e.g., an average 1.90%↓ R-1). This suggests
that not all Transformer layers are responsible for semantic activation, and indiscriminately apply-
ing constraints may harm other functionalities. Similarly, removing the Semantic Contrastive
Learning (SCL) module also leads to a noticeable performance degradation (e.g., an average 0.83%↓
BLEU). This indicates that without the optimization of a latent objective promoting semantic invari-
ance, the low-rank projection of LoRA may introduce semantic shifts, thereby undermining model
performance.
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Figure 4: (a) shows Kernel Density Estimation based on the projections of activations obtained
with / without the application of Semantic Invariance Constraint on A. (b) presents Cross-
correlation Matrix for the representations of expert text and lay text under matrix A with / without
the use of Semantic Invariance Constraint on A.

We further investigate the design choices regarding matrix B in Magical. Replacing multiple B
matrices with a single matrix B results in a clear performance drop (e.g., an average 4.46%↓ R-1).
This is because a single matrix B struggles to project expert texts into diverse lay-style texts effectively.
Moreover, when the Switch-Controlled Selection mechanism is replaced with a Router-Controlled
one, the performance becomes comparable to using only a single B matrix. This suggests that the
routing mechanism does not effectively guide the LLM in selecting an appropriate B, thus failing to
exploit the advantages brought by multiple B for layperson-tailored adaptation.

Verification of Semantic Invariance. As shown in Fig. 4a, we randomly selected a MLP layer
with / without the Semantic Invariance Constraint applied on matrix A, and projected the
representations of expert texts and generated lay texts onto the first two singular directions of the
semantic-relevant subspace. We then plotted their respective kernel density estimation distributions.
The experimental results demonstrate that applying the Semantic Invariance Constraint on
A effectively suppresses semantic shifts during the low-rank projection process. Furthermore, we
randomly selected a matrix A and visualized the cross-correlation matrix between the representations
of expert texts and their corresponding lay texts after transformation by A as shown in Fig. 4b. The
results indicate that this matrix A is capable of mapping expert texts and lay texts into a shared
representation space, thereby preserving semantic fidelity in the generated lay text. The case study
presented in Appendix. E.10 provides a more detailed illustration of the semantic degradation
introduced by LoRA and the semantic fidelity preserved by Magical.

Extended Investigations and Key Insights. We conducted a more detailed analysis of
Layperson-tailored Adaptation, including an investigation into the Dilemma of Router-
Controlled Selection, and demonstrated that Router-Controlled Selection completely fails in scenar-
ios where the LLM autonomously selects matrices B. Furthermore, we analyzed the Sensitivity of
Recommendation Performance and observed that, although the performance of Magical degrades
with declining recommendation system quality, it still consistently outperforms standard baseline
models. We also examined the Sensitivity of Rank, and showed that Magical continues to surpass
baseline algorithms even when different ranks are used. Detailed experimental results can be found
in Appendices. E.1, E.2, and E.3. In addition, we provide Case Study in Appendix. E.10 to further
analyze the superiority of Magical.

5 Limitation, Future Works and Conclusion

Despite the promising results obtained in our work, it is important to acknowledge the limitations.
Considering that Magical employs a divide-and-conquer strategy, which relies on an external Rec-
ommendation Agent to select suitable layperson styles. Although effective—and empirically shown
to outperform baselines even with a suboptimal recommender—the Recommendation Agent itself
was not implemented in this work (see Implement Details 4.1) due to the lack of corresponding user
data. Recent advances [49, 50] in recommendation systems suggest that building such agent requires
modeling the target users based on their individual profiles and behavioral histories. However, the
current MLLG dataset does not provide these layperson-specific information. We also notice that
this same linguistic complexity also poses challenges for interpreting the outputs of electronic health
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record (EHR) predictive modeling [51–53]. In future work, adapting Magical to translate these
technical outputs into understandable narratives could significantly improve patient engagement and
shared decision-making. We will also focus on the development of lay-style recommendation agents
under the cold-start setting [54]. Existing relevant strategies include meta-learning [55, 56], pre-
trained models [57, 58], and reinforcement learning [59, 60], among others. Integrating these recent
advancements into our lay-style recommendation agents could more effectively support Magical in
achieving lay-style recommendation and lay-style generation in real-world scenarios.

In this work, we conducted an in-depth investigation into the limitations of using LoRA to fine-tune
LLMs for the MLLG task, particularly its difficulty in preserving semantic fidelity and adapting
to diverse lay-style generation patterns introduced by heterogeneous data. To address these chal-
lenges, we proposed Magical, an asymmetric LoRA-based framework that incorporates a Semantic
Invariance Constraint and Layperson-tailored Adaptation to enhance both semantic
alignment and stylistic flexibility. While Magical does not yet integrate a dedicated Recommendation
Agent for lay-style selection in this work, we advocate a novel perspective: decoupling lay-style
recommendation from lay-style generation. We envision a multi-agent system where separate, spe-
cialized modules handle generation and recommendation respectively, enabling mutual reinforcement
between the two components. This collaborative design offers a promising direction for advancing
research in the MLLG domain.
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A Statistic of Datasets

We present the detailed size and composition of three MLLG datasets in Table. 4.

Table 4: Statistical information of three MLLG datasets.

Datasets #Train #Test

Cochrane [2] 3,979 480
eLife [25] 4,587 241
Plos_genetics [2] 4,000 300

B Details of Metrics

B.1 Heterogeneity Assessment Metrics

Word Count Word Count a quantitative analysis of sentence length, operationalized as the average
number of words per sentence. This metric serves as an important stylistic feature in textual analysis.

The average Word Count was calculated using the following formula:

Word Count =
Total number of words

Total number of sentences
(4)

Document Complexity and Readability Score (DCRS) The Document Complexity and Readabil-
ity Score (DCRS) represents a significant advancement in the field of text readability assessment,
offering a multidimensional approach to quantifying textual complexity. Unlike traditional readability
formulas such as Flesch-Kincaid or SMOG that primarily rely on surface-level features, DCRS
integrates lexical, syntactic, semantic, and discourse-level features to provide a more comprehensive
evaluation of document readability.

DCRS is defined as a weighted composite metric:

DCRS = αL+ βS + γC + δD (5)

where L represents lexical complexity, S denotes syntactic complexity, C indicates conceptual density,
and D measures discourse coherence. The coefficients α, β, γ, and δ are empirically derived weights
that reflect the relative contribution of each component to overall readability, with α+ β+ γ+ δ = 1.

Readability Evaluation of DeepSeek-V3 We use DeepSeek-V3 to evaluate the readability of the
text, employing the following prompt:

Prompt used for generating readability evaluation by DeepSeek-V3

TEMPLETE = r"""[Task]
Evaluate the readability of two medical texts (1-10 scale) using
these criteria:
1. Conciseness (simple vocabulary/short sentences)
2. Structural clarity (logical flow/hierarchical explanations)
3. Terminology handling (necessary jargon with explanations)
4. Comprehension ease (quick understanding for non-experts)

[The Start of Medical Text 1]
{medical_text_1}
[The End of Medical Text 1]
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[The Start of Medical Text 2]
{medical_text_2}
[The End of Medical Text 2]

[Scoring Guide]
10: Fully understandable without medical background
7-9: Minimal jargon explained through context
4-6: Requires basic medical knowledge
1-3: Excessive unexplained technical terms

[Output Instructions]
- Output ONLY two numerical scores (e.g., "7 9") on the first line
- Do NOT include any explanations, analysis, or additional text"""

B.2 Content Preservation and Quality Metrics

ROUGE Metrics The Recall-Oriented Understudy for Gisting Evaluation (ROUGE) suite provides
metrics for assessing the quality of generated summaries by measuring overlap with reference texts:

• ROUGE-1 (R-1) calculates the overlap of unigrams (individual words) between the generated text
and reference text, reflecting content coverage at the word level.

• ROUGE-2 (R-2) measures the overlap of bigrams (word pairs) between the generated and reference
texts, capturing local word order and phrasal information.

• ROUGE-L (R-L) computes the longest common subsequence between the generated and reference
texts, evaluating fluency and word order without requiring consecutive matches.

These ROUGE variants collectively provide insights into how well the simplified text preserves
essential content from the expert source while using accessible language. Higher ROUGE scores
indicate better content preservation.

BLEU Score The Bilingual Evaluation Understudy (BLEU) metric, initially developed for machine
translation evaluation, has been adapted for text simplification tasks. BLEU calculates the precision
of n-gram matches between the generated text and reference text, with a penalty for brevity. The
score ranges from 0 to 1, with higher values indicating greater similarity to reference texts.

BLEU is particularly valuable for assessing the linguistic quality and fluency of generated lay texts,
complementing the recall-oriented nature of ROUGE metrics. The formula incorporates various
n-gram precisions:

BLEU = BP · exp

(
N∑

n=1

wn log pn

)
(6)

where BP is the brevity penalty, wn are weights for different n-gram precisions, and pn represents the
precision for n-grams of length n.

C Hyperparameter Settings

We present the detailed hyperparameter settings in Table. 5.
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Table 5: Hyperparameter settings for fine-tuning the LLM with Magical. Contrastive Loss Weight
denotes the weight of the contrastive learning loss (Eq. 3) in the composite loss. τ refers to the
temperature coefficient used in the contrastive loss (Eq. 3). K indicates the number of top-K
Transformer layers selected in the Semantic-Relevant Layer Identification module.

Hyperparameter LLaMA3.2-3B-Instruct LLaMA3.1-8B-Instruct Qwen2.5-7B-Instruct

Batch Size 64 64 128
Learning Rate 1e-4 3e-4 3e-4
Contrastive Loss Weight 0.5 0.3 0.5
τ 0.5 0.5 0.5
K 32 16 16

D Prompt Method

Prompt used for baseline model to finish MLLG

Simplify the following medical text for general public understanding
using these criteria:

1. Conciseness (simple vocabulary/short sentences)
2. Structural clarity (logical flow/hierarchical explanations)
3. Terminology handling (necessary jargon with explanations)
4. Comprehension ease (quick understanding for non-experts)

Below is an example:
Medical Text: {medical_text}
Simplified Text: {simplified_text}

Now please perform the simplification:
Medical Text: {medical_text_1}

E Additional Experiments

E.1 Dilemma of Router-Controlled Selection

We further conduct an in-depth analysis of the Router-Controlled Selection. Specifically, we randomly
select a router and visualize the selection results for the target lay-style. The corresponding confusion
matrix is presented in Fig. 5. Experimental results indicate that the router fails to correctly identify
the target lay-style, as evidenced by the confusion matrix showing near-random selection behavior.
This is primarily due to the insufficiency of expert text and limited prompts in accurately representing
the target lay-style. In particular, for the MLLG task, lay-styles exhibit substantial differences in
aspects such as depth of simplification and simplification strategies, making it difficult for the LLM
to perform correct routing based on such vague input. These findings highlight the effectiveness of
Recommendation-guided Switch proposed by Magical.

E.2 Sensitivity of Recommendation Performance

In this work, we employ a manually selected approach to simulate the behavior of a Recommendation
Agent that has not yet been fully implemented in this work. This implies that the Recommendation
Agent operates with an assumed 100% accuracy, which is rarely achievable in real-world scenarios.
Therefore, it is important to investigate the sensitivity of Magical to the accuracy of recommendations.
Specifically, we manually introduce incorrect recommendations into randomly selected cases to
simulate a more realistic setting with imperfect Recommendation Agents. As shown in Fig. 6, we
systematically reduce the recommendation accuracy to 95%, 90%, 80%, 70%, and 60%, and evaluate
the corresponding performance of Magical. Experimental results show that the performance of
Magical degrades as the recommendation accuracy decreases. However, it is noteworthy that even
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Figure 5: Confusion matrix of predictions made by Router selection matrix B for target lay-style.

with only 60% recommendation accuracy, Magical still consistently outperforms naive LoRA-based
methods. This demonstrates that the superiority of Magical is not solely due to external manual
selection of target styles, but also stems from its other advanced components, such as the Semantic
Invariance Constraint.

Figure 6: Sensitivity analysis of accuracy of Recommendation Agent in Magical.
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Figure 7: Sensitivity analysis of Rank in Single-LoRA, Multi-LoRA and Magical. Please note that the
rank used in Multi-LoRA is consistent with that of Magical. In order to ensure parameter equivalence
during training, Single-LoRA adopts a higher rank than Multi-LoRA—specifically, its rank is 3×
that of both Multi-LoRA and Magical.

E.3 Sensitivity of Rank

We conduct a sensitivity analysis on the rank of Magical and compare it with Multi-LoRA of the
same rank and Single-LoRA with a rank 3× larger. The experimental results are shown in Fig. 7. As
illustrated, Magical consistently outperforms both Single-LoRA and Multi-LoRA in the vast majority
of cases.
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E.4 Evaluation of the Actual Quality of Generated Lay Texts

In this experiment, we introduce two complementary evaluation strategies to reflect the actual
perceived quality of generated lay texts.

Large Language Models as Evaluators (Full-scale Evaluation). We used o3-mini and DeepSeek-
R1 to rate outputs from Magical and all baseline systems on a 1–10 scale. These models acted as
automatic evaluators simulating expert judgment across the full test sets. In this experiment, we
selected LLaMA3.1-8B-Instruct as backbone LLM. As shown in Table. 6, Magical consistently
outperformed all baselines across all datasets, indicating its robust ability to generate high-quality lay
texts.

Table 6: Performance comparison of various LoRA variants and Magical using LLMs as evaluator.
All evaluation metrics are defined such that higher values indicate better performance (↑). The best
results are highlighted in bold.

Cochrane eLife Plos_geneticsMethods o3-mini DeepSeek-R1 o3-mini DeepSeek-R1 o3-mini DeepSeek-R1

LLaMA3.1-8B-Instruct

LoRA 6.57 6.44 6.94 7.02 7.35 7.43
rsLoRA 6.75 6.43 7.28 7.58 7.07 6.99
DoRA 6.77 6.56 7.19 7.66 7.11 7.28
PiSSA 6.54 6.33 7.30 7.36 6.83 6.87

Magical 7.53 7.66 7.66 7.92 8.02 8.01

Human Expert Evaluation (Focused-scale Evaluation). To further validate Magical’s quality
in a real-world setting, we randomly sampled 20 examples from each MLLG dataset (60 samples
total), and invited two medical data analysis experts to finish the human evaluation. Each expert was
shown the expert-level source text, and two lay versions generated by LoRA and Magical—with the
generation sources anonymized to ensure fairness. The results, presented in Table.7, show that both
experts consistently rated Magical higher than LoRA, validating that Magical substantially improves
the clarity and quality of generated lay texts.

Table 7: Performance comparison of LoRA and Magical using Expert as evaluator. All evaluation
metrics are defined such that higher values indicate better performance (↑). The better results are
highlighted in bold.

Cochrane (#20) eLife (#20) Plos_genetics (#20)Methods expert-1 expert-2 expert-1 expert-2 expert-1 expert-2

LLaMA3.1-8B-Instruct

LoRA 6.90 7.10 6.95 6.90 7.05 7.05
Magical 8.55 8.35 7.85 7.40 8.60 8.50

E.5 Semantic Invariance Evaluation via Quantitative Metric

In this experiment, we have incorporated BERTScore as a complementary evaluation metric. We
select LLaMA3.1-8B-Instruct as the backbone LLM and conduct our experiments accordingly. The
new results are presented in Table. 8, and they align well with the trends we observed using KDE,
thereby further confirming the semantic fidelity of Magical.

E.6 Compared to Full-Parameter Fine-Tuning (FFT)

We added Full-Parameter Fine-Tuning (FFT) as a new baseline in our experiments. As shown in
Table. 9, Magical consistently outperforms the FFT across all datasets and three different backbone
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Table 8: Semantic invariance evaluation of Prompt, various LoRA variants, and Magical using
BertScore on three MLLG datasets. BertScore is defined such that higher values indicate better
performance (↑). The best results are highlighted in bold.

Cochrane eLife Plos_genetics

LLaMA3.1-8B-Instruct

Prompt 85.81 85.25 86.73
LoRA 88.22 84.50 89.61
rsLoRA 87.73 84.71 88.71
DoRA 88.77 84.71 89.06
PiSSA 89.03 84.83 90.01

Magical 90.79 86.80 91.94

Table 9: Performance comparison of FFT and Magical across three backbone LLMs on three MLLG
datasets. All evaluation metrics are defined such that higher values indicate better performance (↑).
The better results are highlighted in bold.

Cochrane eLife Plos_geneticsMethods #Params R-1 R-2 R-L BLEU R-1 R-2 R-L BLEU R-1 R-2 R-L BLEU

LLaMA3.2-3B-Instruct

FFT 3,606M 44.19 18.28 41.37 13.84 47.01 12.72 45.01 7.20 43.50 14.12 40.25 7.79
Magical 24M 45.33 19.39 42.36 16.66 49.16 14.68 46.91 8.30 47.50 15.47 44.03 10.24

LLaMA3.1-8B-Instruct

FFT 8,030M 43.2 18.34 40.27 15.90 48.76 13.30 46.92 7.82 44.81 13.99 41.61 7.99
Magical 42M 45.71 19.52 42.79 16.68 50.44 15.49 48.02 8.67 48.77 16.64 45.06 11.86

Qwen2.5-7B-Instruct

FFT 7,615M 45.99 19.62 42.58 15.81 47.73 14.49 45.36 7.20 45.49 15.64 43.20 9.97
Magical 42M 47.42 20.81 44.38 17.89 50.50 15.28 48.16 8.66 48.54 16.39 44.79 11.42

LLMs. Moreover, FFT introduces over 150× more trainable parameters compared to Magical. These
results highlight Magical’s dual advantages in performance and parameter efficiency.

E.7 Compared to Large-Scale LLMs

We added o3-mini as a new baseline and applied the prompt-based method described in Section. 4.1.
As shown in Table. 10, the performance of o3-mini with prompting was suboptimal. We argue that
simple prompt strategies are insufficient to comprehensively capture the target lay-style, making
non-learning-based approaches poorly adaptable to the target dataset.

Table 10: Performance comparison of o3-mini and Magical on three MLLG datasets. All evaluation
metrics are defined such that higher values indicate better performance (↑). The better results are
highlighted in bold.

Cochrane eLife Plos_geneticsMethods R-1 R-2 R-L BLEU R-1 R-2 R-L BLEU R-1 R-2 R-L BLEU

o3-mini 46.50 14.30 42.82 9.00 38.15 9.48 34.75 2.46 42.59 10.42 38.76 5.65
Magical 47.42 20.81 44.38 17.89 50.50 15.28 48.16 8.66 48.54 16.39 44.79 11.42

E.8 Sensitivity Analysis of K

we have added a sensitivity analysis of the top-K selection based on LLaMA3.1-8B-Instruct. The
experimental results, shown in Table. 11, reveal that both overly small values of K (e.g., K = 8) and
overly large values (e.g., K = 24 or 32) result in degraded performance. This is because selecting
too many layers introduces semantic constraints to layers that are not semantically relevant, leading
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to interference with the LLM’s functional integrity. Conversely, too few layers may fail to impose
constraints on all semantically relevant layers, resulting in semantic shift.

Table 11: Sensitivity Analysis of K in Magical on three MLLG datasets. All evaluation metrics are
defined such that higher values indicate better performance (↑). The best results are highlighted in
bold.

Cochrane eLife Plos_geneticsMethods R-1 R-2 R-L BLEU R-1 R-2 R-L BLEU R-1 R-2 R-L BLEU

LLaMA3.1-8B-Instruct

K = 8 44.74 19.18 41.91 15.5 49.28 15.02 47.02 8.56 48.76 16.79 45.06 12.09
K = 16 45.71 19.52 42.79 16.68 50.44 15.49 48.02 8.67 48.77 16.64 45.06 11.86
K = 24 45.11 19.26 42.22 15.96 49.77 15.08 47.54 8.51 48.25 16.64 45.03 11.99
K = 32 44.02 18.78 41.32 14.28 49.37 14.94 47.13 8.27 48.49 16.55 44.67 11.78

E.9 Discussion on Generalization of Magical

We investigate the generalizability of Magical in the following two important scenarios:

Generalization to unseen datasets within the MLLG task domain To explore this critical issue,
we introduce a new MLLG dataset named EASI [3]. We selected LLaMA3.1-8B-Instruct as backbone
LLM, the experimental settings and result are presented in Table. 12.

Table 12: Generalization performance of Magical to unseen datasets within the MLLG task domain.
All evaluation metrics are defined such that higher values indicate better performance (↑). The best
results are highlighted in bold.

Methods Tuned #Params Train Test ROUGE-1 ROUGE-2 ROUGE-L BLEU

LLaMA3.1-8B-Instruct

Prompt ESAI 37.85 21.67 36.43 15.04
LoRA A&B 20M Cochrane ESAI 41.25 25.21 37.73 9.42
LoRA A&B 20M eLife ESAI 38.09 23.54 19.88 6.38
LoRA A&B 20M Plos_genetics ESAI 36.62 25.30 21.85 7.05
LoRA A&B 20M ESAI ESAI 51.74 33.01 46.82 28.09

Magical B 11M ESAI ESAI 53.82 36.55 49.87 30.57

Experimental results show that both prompt-based and LoRA-based methods exhibit poor generaliza-
tion, performing significantly worse than end-to-end fine-tuning with a newly initialized LoRA on
the target dataset. The prompt-based approach suffers from limited performance due to its inability
to comprehensively capture the target lay-style. LoRA, on the other hand, is optimized toward a
specific lay-style on the training set, and thus demonstrates a marked performance drop when there is
a distribution shift between the training and test sets.

We evaluate Magical by reusing matrix A trained on Cochrane, eLife, and PLOS Genetics, and
introducing a newly initialized matrix B, which is fine-tuned on EASI while keeping matrix A
frozen. The results show that Magical outperforms even the fully fine-tuned LoRA on EASI across
all evaluation metrics.

Our key insight is as follows: each heterogeneous MLLG dataset corresponds to a unique lay-style.
Current approaches—including prompt-based methods, LoRA, and Magical—are not yet capable of
robust generalization under truly unseen lay-style conditions.

Nevertheless, we argue that Magical’s matrix A constitutes a highly generalizable component. This
is because Magical explicitly decouples abstractive summarization from lay-style generation. Matrix
A, which is responsible for summarization, is independent of the lay-style and thus enjoys broad
generalizability. Table. 12 is supported by the above empirical results, where Magical achieves
superior performance and lower parameter overhead compared to LoRA under equivalent fine-tuning
settings.
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Table 13: Generalization performance of Magical to law domain. All evaluation metrics are defined
such that higher values indicate better performance (↑). The best results are highlighted in bold.

IN-Abs IN-Ext UK-AbsMethods #Params R-1 R-2 R-L BLEU R-1 R-2 R-L BLEU R-1 R-2 R-L BLEU

LLaMA3.1-8B-Instruct

LoRA 62M 53.71 35.96 52.33 16.03 56.29 40.37 55.43 19.61 34.07 17.89 33.03 5.95
rsLoRA 62M 57.23 38.47 55.73 19.17 56.46 41.24 55.36 21.78 38.84 21.34 37.7 7.25
DoRA 64M 53.34 36.25 52.03 16.03 56.05 39.46 55.04 18.73 35.83 19.48 34.78 6.45
PiSSA 62M 56.14 37.9 54.61 17.65 58.65 42.16 57.65 23.37 36.99 20.58 35.93 6.95

Magical 42M 59.23 39.79 57.45 20.35 60.07 44.81 59.1 26.73 38.72 22.28 37.70 8.36

table]case:expert_text

Expert Text
Six studies (n = 478) of variable quality were included. A composite outcome of Infant Pain Scale (NIPS),
Neonatal Facial Action Coding System (NFCS) and/or Premature Infant Pain Profile (PIPP) score was reported in
288 infants, who did not receive a sweet tasting solution. Meta-analysis showed a significant reduction in the
venepuncture versus the heel lance group (SMD -0.76, 95% CI -1.00 to -0.52; I2 = 0%). When a sweet tasting
solution was provided the SMD remained significant favouring the venepuncture group (SMD - 0.38, 95% CI -0.69
to -0.07). The typical RD for requiring more than one skin puncture for venepuncture versus heel lance (reported
in 4 studies; n = 254) was -0.34 (95% CI -0.43 to -0.25; I2 = 97%). The NNT to avoid one repeat skin puncture
was 3 (95% CI 2 to 4). Cry characteristics favoured the venepuncture group but the differences were reduced
by the provision of sweet tasting solutions prior to either procedure. Venepuncture, when performed by a skilled
phlebotomist, appears to be the method of choice for blood sampling in term neonates. The use of a sweet tasting
solution further reduces the pain. Further well designed randomised controlled trials should be conducted in
settings where several individuals perform the procedures."

table]case:lay_text

Ground Truth of Lay Text (Human)
This review of trials found evidence that venepuncture, when done by a trained practitioner, caused less pain than
heel lance. The use of a sweet tasting solution given to the baby prior to the event reduced pain further. The
evidence included outcome measures using pain scales, how long the baby cried and how the mother rated their
baby’s pain.

table]case:lora
LoRA

This review of six studies (478 babies) found that venepuncture is better than heel lance for blood sampling in
term babies. The use of a sweet tasting solution reduces the pain associated with venepuncture. The use of a
sweet tasting solution does not reduce the pain associated with heel lance.

table]case:ours

Magical
This review of six studies (involving 478 newborn babies) found that venepuncture (taking blood from a vein) is
less painful than heel lance (pricking the baby’s heel) for babies who did not have a sweet tasting solution. When
a sweet solution was given to the babies before either procedure, the pain was reduced but venepuncture was still
less painful than heel lance. The review also found that venepuncture by a skilled person is less painful than heel
lance.

Table 14: Case study on semantic fidelity of LoRA and Magical in MLLG task.

Generalization to Law Domain we further introduce a legal summarization task using a widely
adopted dataset [61] in the community (IN-Abs, IN-Ext, and UK-Abs). We employ LLaMA3.1-8B-
Instruct as the backbone LLM and follow exactly the same experimental settings as used for the
MLLG task in the work. The experimental results are presented in Table. 13.

The results show that Magical outperforms all baseline methods across most metrics, with the only
exception being a slightly lower R-1 score than rsLoRA on the UK-Abs dataset. This demonstrates
that Magical is also effective in the legal summarization domain.
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E.10 Case Study

Case in MLLG Tasks We randomly select an expert text from the test set to showcase the lay
language generation results of LoRA and Magical. Notably, LoRA generates the statement: “The use
of a sweet tasting solution does not reduce the pain associated with heel lance,” which exhibits a
notable semantic shift from the original content. In contrast, Magical achieves effective lay adaptation
while preserving semantic fidelity.

Moreover, for certain domain-specific terms such as “venepuncture” and “heel lance”, Magical
provides further explanatory information that is absent not only in LoRA but even in the ground truth
lay text (Human). Such user-friendly explanations significantly enhance the comprehensibility of
medical content for end users and facilitate more effective information communication.

Case in Legal Summarization Tasks We further share a similar observation we made in the
legal summarization task. In this case, the assertion that “article 134 B does not apply” is the
argument of Mr. Tatachari, rather than the conclusion of the High Court. In fact, the High Court
concluded that “all the ingredients prescribed by the first column of article 134 B are satisfied.” LoRA
misinterpreted this distinction, which resulted in a semantic inconsistency. Magical, in contrast,
successfully accomplished the crucial task of preserving semantic fidelity in MLLG.

table]case:law_expert_text

Original Legal Case Text
Appeal No. 801 of 1963.
September 2, 1959 of the MadAppeal by special leave from the judgment and decree dated ras High Court in
Second Appeal No. 774 of 1957.
...
On the findings recorded by the High Court, it is clear that the properties belonged to the temple; that they have
been transferred by persons who must be deemed to be the previous managers of the temple; and that they
have been transferred for valuable consideration. The present suit has been brought against respondents 1 to 3
who are appointed trustees of the temple by respondent No. 4; and so, all the ingredients prescribed by the first
column of article 134 B are satisfied. That is why we must reject the ingenious argument urged before us by Mr.
Tatachari that article 134 B does not apply to the present case.
...

table]case:law_lora

Summary Generated Text by LoRA
The appellants filed a suit under section 87 of the Madras Hindu Religious and Charitable Endowments Act, 1951
...
The High Court held that article 134 B does not apply to the present case.
...

table]case:law_ours

Summary Generated Text by Magical
The appellants filed a suit against the respondents for a declaration of their title to certain properties
...
The High Court held that all the ingredients prescribed by the first column of article 134 B were satisfied
...

Table 15: Case study on semantic fidelity of LoRA and Magical in legal summarization tasks.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: The main claims in the abstract and introduction accurately reflect the paper’s
contributions and scope.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: The limitations of the work are discussed in detail in section 5.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [Yes]
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Justification: The paper provides the full set of assumptions and complete proofs for all
theoretical results.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: The anonymized code repository link is provided in the abstract, and full
experimental details are included in subsection 4.1 and Appendix C to ensure reproducibility.

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [Yes]
Justification: Open access to the code is provided via the anonymized repository link
included in the abstract.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: Full experimental details are included in subsection 4.1 and Appendix C to
ensure reproducibility.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: Experimental results are tested multiple times to ensure stability and reliability.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).
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• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: Detailed specifications of the computational resources required for all experi-
ments (including GPU types, memory usage) are reported in subsection 4.1.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: The research conducted in this paper conforms to all aspects of the NeurIPS
Code of Ethics.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: The potential societal impacts of the work are discuss in section 1 and section 5.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
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• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: The paper does not involve the release of any new datasets or models.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: All third-party assets used in the paper (including code, data, and models) are
properly credited, and their licenses and terms of use are explicitly mentioned and respected.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
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• If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [Yes]
Justification: All new assets introduced in the paper are well documented, and the documen-
tation is provided alongside the assets in the anonymized repository link in abstract.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.
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• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: The core method development in this research does not involve LLMs as any
important, original, or non-standard components.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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