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Abstract

Detecting electric vehicle (EV) charging on residential con-
nections is essential for distribution system operators (DSOs)
to manage grid load, forecast demand, and plan infrastruc-
ture upgrades. However, the widespread availability of la-
beled data for such detection remains limited, especially in
non-intrusive settings. Notably, while there is often a reli-
able positive label for EV presence through EV registration,
the negative labels tend to be unreliable due to the presence
of non-registered EVs. This paper addresses the problem of
EV charging detection as a positive and unlabeled (PU) con-
trastive learning task, where only a subset of the measure-
ments is positively identified based on the households reg-
istered with EV, and the rest of the data remains unlabeled.
Based on contrastive learning, we learn representations that
pull together examples likely to contain EV charging sig-
natures and push apart background load patterns and non-
EV signatures, while explicitly accounting for the label un-
certainty inherent in PU data. We propose an approach that
works with raw, aggregated electricity load data at the house-
hold level, without relying on intrusive metering or exten-
sive manual labeling. Our primary dataset consists of quarter-
hourly household electricity consumption data provided by
Fluvius, the distribution system operator (DSO) in Flanders,
Belgium, and we additionally validate our method using other
publicly available open datasets. Our results highlight the fea-
sibility of scalable EV detection with minimal supervision,
offering critical observability for DSOs aiming to monitor EV
adoption and manage localized grid impacts.

1 Introduction

The rapid adoption of electric vehicles (EVs) is reshap-
ing electricity consumption patterns in residential areas, in-
troducing new challenges for distribution system operators
(DSOs). Unlike traditional household loads, EV charging
sessions can be substantial, sporadic, and time-dependent,
creating considerable stress on low-voltage distribution net-
works (Becker et al. 2025). Accurately detecting residential
with EV charging events is therefore critical for DSOs to en-
sure grid stability, optimize demand response, and plan fu-
ture infrastructure investments. However, identifying house-
holds with EV charging from aggregated residential elec-

Copyright © 2026, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

tricity consumption data is a non-trivial task. In many real-
world scenarios, a separate submeter for EV is unavailable,
and therefore ground-truth labels for EV charging sessions
are missing. This creates a significant barrier for the ap-
plication of traditional supervised machine learning tech-
niques, which typically require large amounts of labeled data
to achieve reliable performance. To address this challenge,
we propose framing the EV detection problem as a positive
and unlabeled (PU) learning task, which reflects the realis-
tic constraints of partial labeling: some households with EV
are known through EV registration (positive samples), but
most of the households are unlabeled, and due to the non-
registered households with EV, this subset contains a mix of
EV and non-EV consumption. This formulation aligns well
with the nature of residential energy data and allows for the
application of semi-supervised learning strategies.

In this work, we present a non-erosive, end-to-end cluster-
ing pipeline for identifying households with EV charging ac-
tivity from load profiles. Unlike methods that rely on exten-
sive preprocessing or signal transformation, which can dis-
tort the original load signature, our approach preserves the
temporal structure of the data and seeks to uncover charg-
ing patterns directly from the raw electricity consumption.
By using representation learning and clustering techniques,
we aim to identify consistent EV charging behaviors in the
absence of explicit labels.

Our contributions are: (1) we frame EV detection as a
PU-contrastive learning problem and analyze its implica-
tions for residential energy monitoring, (2) we introduce an
end-to-end pipeline capable of identifying households with
and without EV from aggregated load data, (3) we evaluate
our approach on multiple datasets and show that it can learn
meaningful representations for identifying households with
and without EV, offering a scalable solution for DSOs.

We review related work and describe our methodology,
experiments, and results in detail in the following sections.

2 Related Works

Prior research on detecting EVs from residential electric-
ity consumption can be broadly divided into two cate-
gories: (1) EV charging sequence or event detection and
(2) household-level EV ownership identification. Event de-
tection approaches aim to locate and characterize individ-



ual charging sessions from aggregated load profiles. For ex-
ample, (Vavouris et al. 2022) used Random Forests with
load reconstruction and deep neural networks with GAN-
based post-processing for generalizable EV charging dis-
aggregation. (Wang et al. 2022) proposed EVSense, a deep
learning framework for robust large-scale detection trained
with labeled EV charging events. (Yin et al. 2023) pre-
sented a multi-kernel convolutional neural network (CNN)
for substation-level EV load disaggregation, requiring de-
tailed ground-truth for EV power sequences. (Martin, Ke,
and Wang 2023) applied sliding-window feature extraction
with classical machine learning models like XGBoost and
Random Forest for feeder-level event inference using la-
beled EV charging activity. In the unsupervised and training-
free space, (Zhang et al. 2014) detected EV events from low-
sampling-rate data without any ground-truth, using a rule-
based algorithm that combines signal thresholding and fil-
tering to isolate EV charging patterns from household loads.
While (Ghaffar et al. 2022) and (Criado-Ramén et al. 2024)
used clustering and graph-based techniques for appliance
disaggregation, these methods can also be adapted to EV de-
tection. Household-level identification methods instead de-
termine whether a home owns an EV without localizing spe-
cific charging events. (Neubert et al. 2022) employed a su-
pervised CNN-MLP classifier on smart meter data to detect
EV presence. (Hoffmann and Fesche 2019) used convolu-
tional and recurrent models to classify EV households from
hourly data. Similarly, (Aly et al. 2024) introduced RES-EV,
a residual-based model for EV household detection under
high AC loads. Several of these studies rely on datasets in
which EV charging is submetered as a separate load, pro-
viding full ground-truth labels for EV events.

Our work also addresses the problem of identifying
households with EV but departs from prior supervised clas-
sification frameworks. Instead of directly training a clas-
sifier, we learn discriminative representations of EV and
non-EV households from positive and unlabeled data us-
ing contrastive learning, followed by clustering to distin-
guish household types. Unlike previous studies using syn-
thetic data or explicit EV submetering, our approach lever-
ages real-world utility data with limited but reliable positive
labels obtained from EV registration process, ensuring prac-
tical relevance and robustness.

3 Preliminary

In this section, we briefly define the two core components of
the proposed framework: Positive-Unlabeled (PU) learning
and contrastive learning. These paradigms enable learning
meaningful representations from data where only partial su-
pervision is available.

3.1 Positive-Unlabeled Learning

Positive-Unlabeled (PU) learning is a weakly supervised
learning setting in which only positive examples and unla-
beled data are available during training. Unlike standard su-
pervised learning, where both positive and negative labels
are provided, PU learning must account for the fact that the
unlabeled set contains a mixture of both positive and nega-

tive examples (Bekker and Davis 2020). This setup is partic-
ularly relevant in real-world scenarios where obtaining neg-
ative labels is costly, ambiguous, or impossible.

Formally, let X = {1, 22,...,2,} denote a dataset of
instances, where a small subset Xp C X are labeled as
positives, and the remainder X;; = X \ Xp are unlabeled.
The goal is to learn a representation that distinguishes latent
positive instances from negative instances in U using infor-
mation from P. PU learning techniques generally fall into
two categories: (1) those that estimate the class prior and
reweight examples accordingly (e.g., unbiased risk estima-
tors), and (2) those that use heuristics or iterative re-labeling
strategies to identify likely negatives or pseudo-label the un-
labeled data.

3.2 Contrastive Learning

Contrastive learning is a self-supervised representation
learning that learns to distinguish between similar and dis-
similar data points by optimizing a contrastive loss. The core
idea is to bring embeddings of similar (positive) pairs closer
together in the embedding space while pushing apart embed-
dings of dissimilar (negative) pairs. Formally, given an input
x, an encoder function f maps z to a latent representation
h = f(z). This representation is then passed through a pro-
jection head g to obtain latent embedding z = g(h), which
is used to compute the contrastive loss.

Typically, positive pairs are created through multiple
stochastic augmentations of the same input, while nega-
tive pairs are formed from other instances in the augmented
batch. A common loss function used in contrastive learning
is the InfoNCE loss (van den Oord, Li, and Vinyals 2019):
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where 7 is a temperature hyperparameter that controls
the sharpness of the similarity distribution. The set I =
{1,...,2b}, with b as batch-size, indexes all samples in the

two-view augmented batch D;, and a(z) denotes the index
of the positive (augmented) pair corresponding to sample .
The denominator Z; sums over one positive and 2(b — 1)
negatives, i.e., all other samples in the batch. This loss en-
courages the model to correctly identify the positive exam-
ple among a set of negatives given an anchor.

SimCLR (Chen et al. 2020) is a popular framework for vi-
sual representation learning. It uses a CNN backbone, typi-
cally a ResNet, to extract latent representation, followed by a
projection head that maps representation into the embedding
space where the contrastive loss is applied. The learning ob-
jective is the InfoNCE loss, which encourages the network
to produce semantically meaningful representation suitable
for downstream visual tasks such as classification.

3.3 PU-Contrastive Learning

In PU settings, constructing reliable negative pairs is chal-
lenging because the unlabeled data may contain hidden pos-
itives. To address this, recent approaches in PU-contrastive
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Figure 1: Overview of the proposed Positive-Unlabeled (PU) contrastive learning pipeline for identifying households with
EV. Raw household electricity consumption time series are transformed into two-dimensional heatmap representation and
augmented to create multi-view batches. Each image is encoded by a ResNet-18 backbone f(-) to produce representations h,
which are then passed through a projection head ¢(-) to obtain embeddings z for optimizing the puNCE loss. After training, the
projection head is discarded and the encoder outputs h are used as representations for downstream task. These representations
are further processed with dimensionality reduction (t-SNE) and clustering (e.g., k-means, spectral clustering) to infer EV

presence.

learning (Acharya et al. 2024) proposed adjusted loss formu-
lations. In particular, puNCE (positive unlabeled InfoNCE)
extends the self-supervised InfoNCE loss to the PU learn-
ing setting by treating each unlabeled sample as positive
with probability 7 and negative with probability 1 — 7. This
formulation reduces the penalty for treating actual positive
samples in the unlabeled set as negative, thus preserving rep-
resentation quality. For a labeled anchor x; € Xp, puNCE
pulls together embeddings of all labeled samples in the aug-
mented batch Dt, unlike InfoNCE which considers only a
single positive. Let P and U denote the labeled and unla-
beled indices where I = P U U. The empirical risk for la-
beled samples is:
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For unlabeled anchors x; € Xy, puNCE considers them
positive with probability 7 and negative with 1 — 7, weight-
ing the contributions accordingly:
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Then, the total empirical loss is given by: Loynce =
1/2b[¢p + £y]. Essentially, puNCE assigns unit weight to
labeled samples, while unlabeled samples are duplicated and
weighted by 7 and 1 — 7 for positive and negative contribu-
tions, respectively.

“

4 Methodology

Our objective is to identify households with EV under par-
tial supervision, where only a small subset of households are
labeled as EV users through EV registration process and the
remaining households are unlabeled. To address this, we de-
sign a clustering pipeline based on Positive-Unlabeled (PU)
contrastive learning that operates on heatmap representation
of household electricity consumption time series. The over-
all workflow of pipeline is illustrated in Figure 1, outlining
the process from raw consumption data to the learned repre-
sentation used for clustering.

The approach treats labeled EV households as anchors
and learns latent embeddings that distinguish them from
unlabeled households, while explicitly incorporating prior
knowledge about the uncertainty inherent in the unlabeled
set. By leveraging both contrastive objectives and PU learn-
ing principles, the model captures consumption patterns in-
dicative of EV charging behavior even when explicit nega-
tive labels are absent. Finally, the learned representations are
clustered to infer EV presence across all households.

4.1 Time Series Heatmap Representation

To capture meaningful consumption patterns over time,
we represent energy usage of each household as a two-
dimensional heatmap. Specifically, we reshape the time se-
ries into a matrix where columns correspond to time inter-
vals within a day (e.g., hours of day) and rows represent se-
quential days. Each element in the heatmap encodes energy
consumption at a specific time and day. This format enables
the model to capture both short-term (daily) and long-term
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Figure 2: Time series heatmap representations of two house-
holds from Fluvius dataset. The household with an regis-
tered EV (right) shows distinct recurring high-consumption
patterns, while the household with no registered EV does
not. This illustrates how heatmap patterns can serve as a
strong visual indicator of EV charging behavior.
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Figure 3: Histogram and KDE of aggregated load for two
households from Fluvius dataset. The household with reg-
istered EV (right) shows a pronounced peak in the typical
EV charging range, unlike the non-EV household (left), il-
lustrating that detecting peaks in KDE can be an informative
feature to identify households with EV.

(weekly or monthly) temporal patterns that are indicative of
EV charging behavior, such as repeated high-consumption
events during evening hours.

The heatmap representation allows us to treat the prob-
lem as a visual clustering task, where we can leverage CNN’s
to learn spatially-localized patterns. Compared to raw time
series or hand-crafted features, this approach preserves the
temporal structure of the data while enabling powerful and
scalable feature extraction through modern deep learning
techniques. Figure 2 illustrates two exemplary households,
one with registered EV and one without. As can be seen,
even to a human expert, the household with an EV exhibits
distinct recurring evening consumption patterns, while the
non-EV household does not, demonstrating the discrimina-
tive power of the heatmap representation.

4.2 Model Architecture

Inspired by the SImCLR framework (Chen et al. 2020), we
adopt a contrastive learning approach tailored to the PU set-
ting, as described in Section 3. While SimCLR is designed
for three-channel images, our inputs are two-dimensional

heatmap representations of household electricity consump-
tion time series. To accommodate this, we modify the first
convolutional layer of a ResNet-18 backbone to accept
single-channel heatmaps. The encoder maps each heatmap
into a compact latent representation of size 512 for standard
ResNet-18, which is then passed through a projection head
consisting of a two-layer multilayer perceptron (MLP) with
ReLU activation that maps the latent representations to la-
tent embedding where contrastive loss is applied.

We employ the puNCE loss (Acharya et al. 2024) by
weighting unlabeled samples according to their estimated
probability of being positive. Under the SCAR (Selected
Completely At Random) assumption, we set the class prior
m = 0.15 based on domain expertise.

4.3 Data Augmentation Strategy

Multi-view batches are generated through data augmenta-
tions inspired by the empirical survey in (Iwana and Uchida
2021) including random scaling, additive noise, and tem-
poral masking which randomly masks several days of con-
sumption data in the heatmap by replacing the values with
zeros. This augmentation improves robustness to varying
data availability during validation or deployment, as the
model can generalize from partial time series to an extended
one-year span.

4.4 Clustering and Label Inference

After contrastive training converges, we obtain a fixed-
length representation for each household. These representa-
tions are designed to capture differences between EV and
non-EV consumption patterns. We choose clustering as a
downstream task to assess whether the learned features in
the representation space are truly discriminative of EV sig-
natures. To facilitate clustering and mitigate the curse of
dimensionality, we first apply t-SNE (Maaten and Hinton
2008) to reduce the high-dimensional representation to a
two-dimensional space that preserves neighborhood rela-
tionships. We select t-SNE because it preserves local neigh-
borhoods, captures non-linear relationships in the data, and
often produces well-separated clusters in two-dimensional
space, making it suitable for clustering and visualization.
The resulting components are then normalized to have zero
mean and unit variance, ensuring balanced feature scaling
before clustering. We evaluate multiple clustering methods
on the normalized t-SNE components, including k-means
and spectral clustering, both configured with £ = 2 (number
of clusters). Cluster-to-class assignments are determined via
majority voting: the cluster containing the highest propor-
tion of positive labels is designated as the EV-positive class,
while the other is treated as the negative class.

This approach remains non-parametric and leverages the
learned representation space to separate EV consumption
patterns from background load is a positive and unlabeled
setting. The result is an end-to-end clustering pipeline that
requires neither event detection nor signal disaggregation,
relying instead on the aggregated consumption signature
over time.



Dataset | Metric [ #Instances [Pos / (Neg/Unlabeled)] | k-means Clustering [ Spectral Clustering | Baseline
Fluvius (Train ) | Recall 2455 /3904 0.81 0.86 0.67
Fluvius (Test) Recall 614 /976 0.82 0.84 0.67
Irish_synthetic | F1-score 1919/1919 0.91 0.99 0.92
UK F1-score 99/193 0.68 0.68 0.52

Table 1: Clustering performance on PU—contrastive representation. Feature representations are learned via PU-contrastive learn-
ing and reduced to two dimensions using t-SNE, k-means and spectral clustering are applied. Recall is reported for the PU-
labeled Fluvius dataset (train and test), F1-score for the fully labeled synthetic Irish and UK datasets. Instances shows the
number of positive and negative/unlabeled samples. Clustering on PU—contrastive representation outperforms the histogram

peak detection baseline to identify EV and non-EV households.

5 Experimental Results

In this section, we describe the datasets, training details,
baselines, evaluation metrics, and report the results. The ex-
periments aim to demonstrate that the proposed pipeline ef-
fectively learns discriminative representations of EV charg-
ing behavior from raw aggregated household consumption,
even when only a limited number of positive labels are avail-
able and the majority of the data remains unlabeled.

Fluvius Dataset We use a private dataset provided by Flu-
vius, the Flemish DSO in Belgium. It contains smart me-
ter electricity consumption data from households through-
out 2023, recorded at 15-minute intervals. Due to the EV
registration process (households self-report or register their
EVs), a subset of households are labeled as EV users (pos-
itives), while the remainder are unlabeled. The dataset in-
cludes approximately 3%k households with EV and 5k unla-
beled households.

Validation Datasets For validation of the clustering per-
formance, where trusted labels are required, we use publicly
available datasets as well:

* Irish dataset: One-year electricity consumption (2010)
for 1,919 households (Commission for Energy Regula-
tion (CER) 2025), resampled to 15-minute intervals. No
households originally had EVs, so synthetic EV charg-
ing patterns were added with randomized EV charging
power (2.3-7.4 kW), duration (4-20 hours), start hour
(18:00-23:00), and number of charging days (150-300).

e UK dataset: Two-month electricity consumption for
292 households, 99 with EVs (Energy Systems Catapult
2023), sampled at 30-minute intervals. Data was resam-
pled to 15-minute intervals and extended with zeros to
create one-year time series for model input consistency,
which is compatible with the temporal masking augmen-
tation applied during training.

Training Setup The model is trained on the Fluvius
dataset using the PU-contrastive learning framework de-
scribed in Section 4. We use a ResNet-18 backbone modi-
fied for two-dimensional heatmap inputs, followed by a fully
connected projection head with 128 hidden dimension. The
model is trained for 200 epochs with a batch-size of 256, us-
ing the Adam optimizer with an initial learning rate of 10~%.
The temperature 7 in the puNCE loss is also tuned to 0.07,

and the estimated fraction of positives in the unlabeled set ™
is set to 0.15 based on the knowledge of experts.

Evaluation Metrics For the Fluvius PU dataset, only re-
call is computed as the evaluation metric on the positive-
labeled households, as the true labels for the unlabeled set
are unknown. For the Irish and UK datasets, where fully la-
beled data is available (with synthetic EV patterns added in
the Irish case), F1-score is used to evaluate the performance.

Evaluation Setup After training, we extract latent repre-
sentations for all households in the validation datasets. We
discard the projection head since it is specifically optimized
for the contrastive loss, not for general representations and
removing it often gives better representation for downstream
task (Chen et al. 2020). The representations are normalized
and reduced to two dimensions using t-SNE to mitigate the
curse of dimensionality. We then perform clustering using
k-means and spectral clustering with & = 2 as the number
of clusters, assigning cluster labels based on the majority
of known positives within each cluster. For spectral cluster-
ing, we tune the kernel variance -y to achieve the best perfor-
mance. This downstream evaluation tests whether the PU-
contrastive learned representations are truly discriminative
for EV presence.

Baseline 'We compare our PU-contrastive approach with a
histogram-based peak detection baseline, inspired by (Neu-
bert et al. 2022), where histogram peaks in aggregated load
data are used as informative features to detect potential EV
charging events. Notably, the method currently used by Flu-
vius DSO to identify households with EV is based on this
approach. Figure 3 illustrates this feature by comparing the
kernel density estimates (KDE) of two exemplary house-
holds with and without registered EV. To implement this,
we first compute a kernel density estimation (KDE) of the
consumption and then detect local maxima within a man-
ually defined range corresponding to expected EV charging
power. A threshold is applied to distinguish significant peaks
from background fluctuations.

Reporting Results Results are reported on separate
train/test splits for Fluvius, and synthetic Irish and UK
datasets which can be found in Table 1 and Figure 4. The
t-SNE visualizations show that the learned representations
clearly separate EV and non-EV households, confirming
their discriminative power. Some overlap remains in the
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Figure 4: t-SNE visualization of learned representations with cluster boundaries. Top and bottom rows show k-means and
spectral clustering on Fluvius, synthetic Irish, and UK datasets. Points are colored by EV registration status (Fluvius) or EV
presence (Irish, UK), with cluster boundaries and predicted labels overlaid. The figure shows that both clustering methods
roughly separate EV and non-EV households. In Fluvius, overlap occurs as registered EVs during observation year show weaker
charging patterns, and some non-registered households may actually have EVs. The UK dataset shows mixed clusters due to
the short two-month observation period, limiting the ability to distinguish EV charging patterns. The clustering of learned
representations still outperforms baseline model in identifying potential EV households. The synthetic Irish dataset shows a

clear separation between EV and non-EV households.

Fluvius dataset. This can be attributed to households that
registered an EV only during the observation year, result-
ing in weaker charging patterns that place them closer to
the non-EV cluster, while some households labeled as non-
registered may actually own EVs which shifts them toward
the EV cluster. In the UK dataset, the overlap is largely
due to the limited two-month observation period, which re-
stricts the visibility of consistent charging behavior. Despite
these limitations, the overall clustering structure demon-
strates that the proposed representations capture meaning-
ful distinctions between EV and non-EV households and are
more effective than baseline feature for distinguishing EVs.

6 Conclusion

We present a PU-contrastive learning approach for detect-
ing electric vehicle (EV) adoption using real-world smart
meter data. Our study leverages a private dataset obtained
through our collaboration with Fluvius, the Flemish DSO,
where only households with registered EV are labeled, and
the majority of households remain unlabeled. This setup re-
flects practical deployment conditions, removing the need
for costly or intrusive labeling of households. By learning
latent representations from heatmaps of aggregated elec-
tricity consumption, our model effectively distinguishes EV
users from non-EV households, even in the absence of neg-
ative labels. The resulting representation can be clustered
to infer EV adoption. This framework offers DSOs a scal-
able, non-intrusive tool to identify households with EV, en-

abling them to anticipate localized increases in electricity
demand caused by EVs and better manage grid resources.
Such insights can improve load forecasting, guide infrastruc-
ture upgrades, and inform strategic planning. Given its prac-
ticality and strong performance, we are working toward de-
ploying this approach within Fluvius to support data-driven
decision-making for low-voltage grid operations.
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