PRING: Rethinking Protein-Protein Interaction Prediction from Pairs to Graphs

Xinzhe Zheng^{1,2*} Hao Du^{2*} Fanding Xu^{1,7*} Jinzhe Li^{2,4*}
Zhiyuan Liu^{1†} Wenkang Wang^{1,8} Tao Chen^{3,4} Wanli Ouyang^{2,6,9}
Stan Z. Li⁵ Yan Lu^{2,6†} Nanqing Dong^{2,3†} Yang Zhang^{1†}

¹National University of Singapore ²Shanghai Artificial Intelligence Laboratory ³Shanghai Innovation Institute ⁴Fudan University ⁵Westlake University ⁶Chinese University of Hong Kong ⁷Xi'an Jiaotong University ⁸Central South University ⁹Shenzhen Loop Area Institute

Abstract

Deep learning-based computational methods have achieved promising results in predicting protein-protein interactions (PPIs). However, existing benchmarks predominantly focus on isolated pairwise evaluations, overlooking a model's capability to reconstruct biologically meaningful PPI networks, which is crucial for biology research. To address this gap, we introduce PRING, the first comprehensive benchmark that evaluates PRotein-protein INteraction prediction from a Graph-level perspective. PRING curates a high-quality, multi-species PPI network dataset comprising 21,484 proteins and 186,818 interactions, with well-designed strategies to address both data redundancy and leakage. Building on this golden-standard dataset, we establish two complementary evaluation paradigms: (1) topologyoriented tasks, which assess intra and cross-species PPI network construction, and (2) **function-oriented** tasks, including protein complex pathway prediction, GO module analysis, and essential protein justification. These evaluations not only reflect the model's capability to understand the network topology but also facilitate protein function annotation, biological module detection, and even disease mechanism analysis. Extensive experiments on four representative model categories, consisting of sequence similarity-based, naive sequence-based, protein language model-based, and structure-based approaches, demonstrate that current PPI models have potential limitations in recovering both structural and functional properties of PPI networks, highlighting the gap in supporting real-world biological applications. We believe PRING provides a reliable platform to guide the development of more effective PPI prediction models for the community. The dataset and source code of PRING are available at https://github.com/SophieSarceau/PRING.

1 Introduction

Protein-protein interactions (PPIs) refer to the physical or functional association between proteins, which is central to most biological processes, such as signal transduction [1], gene regulation [2], and immune response [3]. They also play a key role in the study of disease mechanisms [4]. For instance, the interactions between certain cellular proteins can trigger abnormal signaling pathways that promote tumor growth and metastasis in cancer [5]. By revealing those types of PPI, small molecules are developed to disrupt the interactions, thereby inducing cancer cell death [6]. Therefore, characterizing the organization of PPIs is fundamental for understanding the molecular basis of health and advancing drug discovery in precision medicine [7, 8].

^{*}Equal contribution.

[†]Corresponding author.

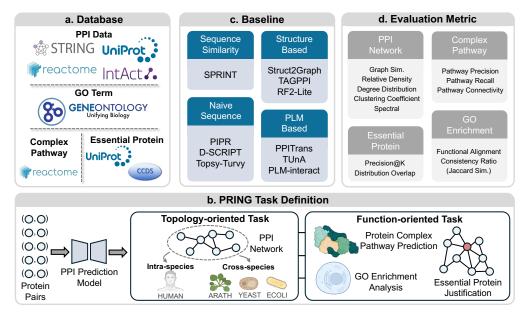


Figure 1: Overview of PRING benchmark. (a) Diverse databases are used to construct the PRING. (b) PRING includes two topology-oriented tasks and three function-oriented tasks for extensive evaluation. (c) List of baseline models, consisting of sequence similarity-based, naive sequence-based, structure-based, and PLM-based methods. (d) Evaluation metrics used for each task in the PRING.

Experimental techniques are adopted to identify PPIs in traditional biological research, including instrument-based methods such as X-ray crystallography [9, 10] and cryo-electron microscopy [11, 12], as well as high-throughput approaches like yeast two-hybrid [13, 14] and cross-linking mass spectrometry [15, 16]. Nevertheless, these methods are limited by low scalability and incomplete coverage of the interactome. The rise of deep learning provides powerful computational alternatives for PPI identification [17, 18, 19, 20], which designs neural networks to capture structural and sequence patterns of proteins to predict PPIs and demonstrates promising performance. More recently, the development of AlphaFold [21, 22, 23] and protein language models (PLMs) [24, 25, 26, 27] has led to remarkable breakthroughs in PPI prediction, enabling more accurate and large-scale identification of PPI directly from protein sequences.

Although current deep learning-based PPI prediction models achieve high pairwise accuracy on standard benchmarks [28, 29, 30, 31, 32, 17], these evaluations treat each interaction in isolation and overlook how individual predictions contribute to the cohesive PPI networks. While some studies [33, 17] have applied these models to reconstruct PPI networks in specific contexts (*e.g.*, bovine rumen), a systematic and fair evaluation of network-level performance remains absent. Since PPI networks support biological insights from both **topological** and **functional** perspectives [34, 35], it is important to evaluate how well models recover both aspects. Topologically, PPI networks exhibit properties such as sparsity and local communities, which reflect the modular organization of cellular processes. Functionally, they offer a foundation for annotating uncharacterized proteins and discovering coherent biological modules. Hence, we pose the following research question: *How well do current PPI models demonstrate their pure capabilities in recapitulating the structural and functional features of PPI networks*?

To fill this blank, we propose PRING, a multi-organisms holistic benchmark that evaluates the **PR**otein-protein **IN**teraction prediction from a **G**raph perspective. As illustrated in Fig. 1, PRING compiles high-confidence physical interactions across four organisms, Human, Arath, Ecoli, and Yeast, sourced from STRING [36], UniProt [37], Reactome [38], and IntAct [39], yielding 21,484 proteins and 186,818 interactions, with efforts made to minimize both data redundancy and leakage. Through this golden dataset, we benchmark representative PPI prediction methods, including sequence similarity-based, naive sequence-based, PLM-based models, and structure-based, across five tasks: two topology-oriented, namely intra-species and cross-species PPI network construction, to assess whether models can recover the topology properties of PPI networks, such as network density and local community structures, and facilitating cross-species biological knowledge transfer study, and three function-oriented, including protein complex pathway prediction, GO functional module

analysis, and essential protein justification, which can support disease mechanism analysis, protein function annotation, and therapeutic target identification. Collectively, these evaluations reveal whether a model is capable of capturing both the topological and the functional semantics of real interactomes, moving beyond pairwise classification to network-level understanding.

Extensive experiments yield the following insights: (1) current models tend to generate overly dense graphs, diverging from the sparsity nature of real PPI networks; (2) predicted PPI modules exhibit limited functional alignment with the ground-truth, restricting their utility in downstream tasks such as pathway reconstruction and function annotation; and (3) reconstructed graphs struggle to separate essential from non-essential proteins, indicating that critical topological signals remain uncaptured; (4) classification metrics cannot completely reflect a model's ability to recover network structure, highlighting the need for graph-level evaluations. While these findings highlight challenges, we hope they can serve as a positive step forward for the community. PRING complements existing benchmarks and provides a reliable platform for more holistic research in modeling PPI networks.

To sum up, our key contributions include:

- We propose PRING, to the best of our knowledge, the first comprehensive benchmark that evaluates PPI prediction models from topological and functional perspectives on PPI networks.
- Through extensive experiments, we demonstrate that existing models exhibit limited functional awareness and poor topological fidelity, revealing a potential gap between computational approaches and their applicability in biological research.
- We release a fully reproducible pipeline, including dataset construction and model evaluation tools, to facilitate future research and benchmarking efforts within the community.

2 Related Work

2.1 Protein-Protein Interaction Prediction Benchmark

Numerous PPI benchmarks have been developed to assess the effectiveness of prediction models. Most existing benchmarks [40, 41, 31, 30, 32] focus on physical interaction evaluations, which curate Human and Yeast PPI datasets from resources such as DIP [42], UniProt [37], and HPRD [43], applying filtering criteria to ensure data quality and evaluating models using binary classification metrics. To address the limitations of small-scale and single-species benchmarks, D-SCRIPT [17] introduced cross-species evaluation by sampling 65,138 interactions across multi-species from STRING [44, 45, 36]. Meanwhile, Bernett et al. [46] further raised concerns about data leakage caused by naive splitting strategies (e.g., random splits), which can inflate model performance by enabling shortcut learning [47]. To mitigate this, they proposed more rigorous splitting protocols that revealed performance drops across benchmarks. Other studies [17, 33] built PPI networks to perform GO enrichment analysis or functional module detection in specific biological scenarios, such as bovine rumen in cows, to broaden the scope of model applications, but lack the comparison with ground truth. Additionally, several works [48, 49] constructed PPI benchmarks annotated with functional interaction types or binding sites, aiming to train models to predict these properties via multi-class classification. However, the aforementioned benchmarks primarily focus on pairwise interaction accuracy and lack a fair and holistic evaluation of a model's capability in PPI network construction. To address these gaps, we introduce PRING, a graph-centric benchmark that evaluates PPI models from both topological and functional perspectives.

2.2 Protein-Protein Interaction Prediction Model

Computational methods for PPI prediction are gaining popularity due to their efficiency and reliability in understanding complex biological systems [50, 51]. Early studies [52] often inferred unknown interactions by leveraging sequence similarity with known homologous interaction pairs. Although these methods are efficient, their accuracy is limited, especially for novel interactions. The advent of deep learning [53, 54, 55] brought a powerful computational tool for PPI prediction. Sequence-based models [32, 48, 17, 56] utilized convolutional neural networks (CNNs) [57, 58], recurrent neural networks (RNNs) [59, 60], to learn interaction patterns from raw protein sequences. More recently, protein language models (PLMs) [61, 62], pre-trained on large-scale protein datasets, have shown strong performance across biological tasks such as contact prediction and function annotation. Motivated by this, PLM-based methods [19, 63, 64] leverage rich and context-aware representations to predict PPIs, achieving state-of-the-art results on some benchmarks. Since proteins can be naturally

represented as graphs, some methods [65, 66] utilized protein structure as input and employed Graph Neural Networks (GNNs) [67, 68] to predict PPIs. Meanwhile, with the success of structure prediction tools like AlphaFold [21] and RoseTTAFold [69], structure-based methods [70, 71] have also emerged, offering improved biological explainability. Additionally, some studies [72, 73, 49] applied GNNs to infer functional interaction types based on the known PPI network as input. In this work, we evaluate PPI prediction models designed to identify physical interactions from a graph-level perspective, providing insights into their ability to reconstruct biologically meaningful interactomes.

2.3 Multi-Modal Learning for Enhanced Biological Representation

An emerging research direction seeks to overcome the limitations of single-modality PPI models by constructing richer representations from multimodal data. One of the approaches is to unify molecular information, such as structure and sequence, with semantic data like natural language to improve functional prediction. This paradigm is exemplified by models that connect protein data to text for better interpretability [27, 74, 75]. The approach has been broadly explored by fusing chemical structures with text [76, 77, 78, 79, 80, 81]. Such advancements in unified learning offer a promising path to developing more powerful PPI models that can address the topological and functional challenges identified by the PRING benchmark.

3 Protein-Protein Interaction Prediction from a Graph Perspective

In this section, we present PRING, a comprehensive and fair benchmark designed to evaluate PPI prediction models from a graph perspective. To construct such a benchmark, we first curate PPIs from diverse resources and filter redundant proteins based on sequence similarity and functional overlap to ensure data quality, and then we partition data into training and test sets with non-overlapping proteins to prevent data leakage, yielding a PPI network dataset comprising 21,484

In this section, we present PRING, a Table 1: Comparison of PRING with existing PPI benchmarks. comprehensive and fair benchmark de- (Seq.Sim.: sequence similarity, N/A: not available.)

Benchmark	Year	#Proteins	#Pairs	Seq. Sim.	Multi Species	Leakage Free	Graph Evaluations
GUO [40]	2008	2,497	5,594	N/A	×	×	Х
PAN [31]	2010	9,476	36,630	N/A	X	X	×
HUANG [41]	2016	3,163	3,899	25%	X	X	×
DU [30]	2017	4,424	17,257	40%	X	X	×
RICHOUX [32]	2019	8,333	45,765	N/A	X	X	×
SHS27K [48]	2019	1,663	7,401	40%	X	X	×
SHS148K [48]	2019	5,082	43,397	40%	X	X	×
D-SCRIPT [17]	2021	19,086	65,138	40%	✓	X	×
HIPPIE [46]	2024	10,819	137,250	40%	×	\checkmark	X
PRING (Ours)	2025	21,484	186,818	40%	✓	✓	✓

proteins, 186,818 PPIs (Sec. 3.1). A detailed comparison between PRING and existing PPI benchmarks is shown in Tab. 1. Based on this golden dataset, we develop a set of tasks to assess model performance in capturing both the topology and biological functionality of PPI networks (Sec. 3.2).

3.1 Data Collection

Diverse, reliable, and non-redundant interaction data is essential for effective and comprehensive evaluation of PPI prediction models [46]. To achieve this goal, PRING is mainly assembled in two stages: (1) integrating high-confidence multi-species PPIs; and (2) applying homology- and function-based filters to eliminate redundancy and utilizing a leakage-free splitting protocol to prevent potential leakage. A pipeline overview is shown in Fig. 2, and detailed data documentation is given in Apx. C.

Resource Integration. We begin by aggregating experimentally validated PPIs from UniProt [37], Reactome [38], and IntAct [39], and complement these sources with high-confidence interactions (combined score > 0.7 [82]) from STRING [36] to ensure both data quality and comprehensive coverage, while mitigating the noise inherent in some STRING interactions. To further enhance data reliability and prepare for downstream function-oriented analyses, we retain only annotated proteins with known functions in SwissProt [83]. Additionally, four phylogenetically distinct organisms, including Human, Arabidopsis thaliana (Arath), Escherichia coli (Ecoli), and Yeast, are selected using NCBI Taxonomy identifiers [84] to match with the target species and increase the species diversity. This protein filter step not only considers data quality but also emphasizes data diversity and coverage, providing a critical foundation for constructing our gold-standard dataset.

Minimal Redundancy and Leakage. Our primary objective is to build a gold-standard dataset with minimal data redundancy and leakage for fair evaluations of PPI models. To this end, we first perform sequence clustering using MMSeqs2 [85, 86] and retain only protein pairs with sequence identity \leq 40%, following prior studies [17, 30]. Meanwhile, we remove proteins that share identical function

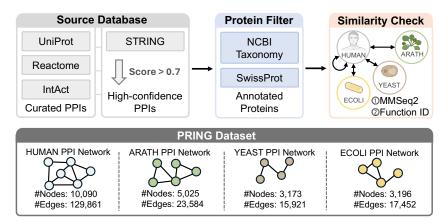


Figure 2: Data collection pipeline for the PRING. PPIs are first curated from comprehensive databases. Proteins are then filtered and mapped using SwissProt and NCBI Taxonomy to target species. Redundant interactions are removed through sequence and functional similarity checks to ensure data quality. The resulting PPI networks include four species: Human, Arath, Yeast, and Ecoli.

IDs across species as an additional safeguard to reduce data redundancy further. Additionally, a leakage-free protocol [46] is used to split the dataset with non-overlapping proteins, further preventing data leakage in model learning. The above filtering steps result in high-quality PPI networks for each organism in the PRING dataset. Specifically, the Human network comprises 10,090 proteins and 129,861 PPIs; Arath includes 5,025 proteins and 23,584 PPIs; Ecoli contains 3,196 proteins and 17,452 PPIs; and Yeast consists of 3,173 proteins and 15,921 PPIs. We believe this dataset provides a high-confidence resource for PPI benchmarking and can facilitate fair and rigorous comparisons among different PPI models.

3.2 Task Suite

Through the PRING dataset, we develop five tasks to systematically evaluate how well PPI prediction models recapitulate both the **structural topology** and **functional properties** of PPI networks.

3.2.1 Topology-Oriented Task

To evaluate whether a PPI prediction model can faithfully recover the topology of interaction networks, we first formulate the PPI network reconstruction task as follows. Given a PPI graph with N proteins, each protein is represented by its features $x_i = \{s_i, c_i\}, \quad i = 1, \ldots, N$, where s_i is the amino-acid sequence and c_i is any auxiliary context. The model f predicts an interaction label for each protein pair (i,j) with $1 \le i < j \le N$, according to: $I_{i,j}^{\mathrm{pred}} = f(x_i, x_j) \in \{0, 1\}$. Here, $I_{i,j}^{\mathrm{pred}} = 1$ indicates a predicted interaction between protein i and protein j, while $I_{i,j}^{\mathrm{pred}} = 0$ denotes no predicted interaction. We then aggregate all positive predictions to form the reconstructed network:

$$G^{\mathrm{pred}} = \mathrm{Aggregate} \big\{ (i,j) \mid I^{\mathrm{pred}}_{i,j} = 1, \ 1 \leq i < j \leq N \big\}. \tag{1}$$

Each reconstructed graph $G^{\rm pred}$ is then compared against its corresponding ground-truth graph $G^{\rm true}$. To evaluate the model's ability of identifying topology properties like network density and cross-species knowledge transfer, we introduce two tasks: (1) intra-species network construction, where both training and test are performed on the same species; and (2) cross-species network construction, where the model is trained on one species and evaluated on another.

Intra-Species PPI Network Construction. In this task, we focus on the Human species, following the same intra-species subject used in previous studies [17, 19]. The full Human PPI graph is split into training and test sets with an 8:2 ratio, using an established protocol [46] to prevent potential data leakage. This obtains a training subgraph of 8,072 proteins and a test subgraph of 2,018 proteins. To investigate the influence of subgraph topology and size on model performance, we sample 500 subgraphs from the test set, ranging in size from 20 to 200 nodes, using each of three traversal algorithms, breadth-first search (BFS), depth-first search (DFS), and random walk (RW). Meanwhile, since existing PPI prediction models require PPI pairs for training, we sample positive and negative protein pairs from the training subgraph in a 1:1 ratio and further partition them into 80% for training

and 20% for validation, following the previous works [46]. In total, this yields 85,824 training pairs, 21,456 validation pairs, and 500 test graphs per traversal strategy for topology recovery evaluation.

Cross-Species PPI Network Construction. For cross-species evaluations, we use models trained on the Human PPIs to reconstruct PPI networks in the other three species: Arath, Ecoli, and Yeast. As in the intra-species setting, we sample 500 subgraphs ranging from 20 to 200 nodes from each species using BFS, DFS, and RW, resulting in 500 test networks per traversal method per species.

Subsequently, the above two tasks are evaluated using five topology-aware metrics, which are widely used in graph construction tasks (Detailed mathematical definitions are provided in Apx. D.1.4.):

- **Graph Similarity (GS) [87]** primarily quantifies the edge differences between the predicted and ground-truth graphs, as the node set in the PPI graph remains unchanged.
- Relative Density (RD) [88] evaluates the extent of over- or under-prediction by comparing the edge density of the predicted network with that of the ground-truth network.
- **Degree Distribution (Deg.)** [89] computes the discrepancy between node degree distributions of the predicted and ground-truth networks using maximum mean discrepancy (MMD) [90], providing a quantitative assessment of global structural differences in terms of connectivity patterns.
- Clustering Coefficient (Clus.) [89] uses MMD to measure the discrepancy between the distributions of local clustering coefficients in the predicted and ground-truth networks, thereby assessing the preservation of community structure.
- **Spectral [91]** calculates the discrepancy between eigenvalue spectra of normalized Laplacian matrices of predicted and true networks using MMD, reflecting global structural alignment.

3.2.2 Function-Oriented Task

Besides topology-based evaluation, we introduce three function-oriented tasks that are closely aligned with real-world biological applications. These tasks assess how well the reconstructed PPI networks preserve biologically meaningful properties and evaluate the practical applicability of existing models.

Protein Complex Pathway Prediction. Complex pathways refer to biological processes involving multiple proteins that interact with each other to perform coordinated cellular functions [92, 93], which typically form densely connected subgraphs within the larger PPI network. Accurately reconstructing these pathways can enhance our understanding of disease mechanisms and support the development of targeted therapies [94, 95]. In this task, the model first predicts pairwise protein interactions based on the input complex, then aggregates these predictions to construct predicted subgraph, which are subsequently evaluated against the ground truth. To achieve fair evaluation, we collect 235 complex pathways from Reactome [38] that share no protein overlap with the Human training graph, with pathway sizes ranging from 4 to 20 proteins. We evaluate model performance using the following metrics (Detailed descriptions are provided in Apx. D.2.1.):

- Pathway Precision (PP) is the proportion of predicted interactions within the complex pathway that are present in the ground truth.
- Pathway Recall (PR) computes the proportion of ground-truth interactions within the complex pathway that are successfully predicted.
- Pathway Connectivity (PC) calculates the fraction of predicted protein complex pathway subgraphs that form a connected component, reflecting biological consistency.

GO Enrichment Analysis. GO enrichment connects network topology with biological function, supporting gene annotation and pathway discovery [96]. This task evaluates whether reconstructed PPI networks preserve functional coherence by comparing enriched GO terms of predicted communities to those of the ground-truth network. Specifically, we reconstruct the Human test subgraph (2,018 proteins) using a trained PPI prediction model, detect communities via the Louvain algorithm [97], and perform GO enrichment using g: Profiler [98] tool across three ontologies: Molecular Function (MF), Biological Process (BP), and Cellular Component (CC). Evaluations are conducted under two metrics (Thorough definitions are included in Apx. D.2.2.):

- Functional Alignment (FA) depicts the average Jaccard similarity of enriched GO terms between each predicted cluster and its best-matching ground-truth partner, measuring functional alignment.
- Consistency Ratio (CR) is the ratio of within-cluster GO term Jaccard similarity in the predicted network to that in the ground-truth network, reflecting how well functional coherence is preserved.

Essential Protein Justification. Essential proteins are critical for an organism's survival and often occupy central positions in PPI networks [99, 100]. A reliable model should differentiate essential from non-essential proteins based on node degree or centrality in the reconstructed network [101]. In this task, we use the Human test subgraph (2,018 proteins) as the evaluation set and annotate essential and non-essential proteins using CCDS [102] and UniProt [37]. In detail, we select 100 essential and 100 non-essential proteins whose network centrality scores [99] differ significantly ($p < e^{-4}$). Trained models are used to reconstruct the Human test graph, and performance is assessed using the following metrics (Further details are presented in Apx. D.2.3):

- **Precision**@**K** (**P**@**K**) calculates the proportion of essential proteins among the top *K* nodes ranked by network centrality scores. *K* is set to 100 in this task.
- **Distribution Overlap (DO)** evaluates the distribution overlap between the centrality scores of essential and non-essential proteins in the reconstructed network.

4 Experiment

We conduct extensive experiments on five network-level tasks outlined in Sec. 3.2. Our experiments aim to answer the following research questions: **Q1:** How effectively do current models reconstruct PPI networks? (Sec. 4.3.1) **Q2:** How well do the PPI prediction models generalize? (Sec. 4.3.2) **Q3:** How do these models perform in biology practice? (Sec. 4.3.3) **Q4:** How well do standard classification metrics reflect network-level performance? (Sec. 4.3.4) **Q5:** How does the positive–negative ratio affect model performance and network reconstruction? (Sec. 4.3.5)

4.1 Evaluation Baseline

We consider four categories of PPI prediction models based on their design principles in our benchmark: sequence similarity-based models, naive sequence-based models, PLM-based models, and structure-based models. More details are provided in Apx. E.

Sequence Similarity-based Model. These models assume that protein pairs resembling known interacting pairs are more likely to interact [46]. We adopt SPRINT [52] as a representative non-deep learning method and investigate how effectively a functional PPI network can be predicted using only sequence similarity information.

Naive Sequence-based Model. These models implement conventional deep learning architectures [103, 104], using protein sequences as input and extracting features based on physicochemical properties or structure embeddings [46]. We evaluate three models: PIPR [48], which utilizes a residual Siamese RCNN to capture hierarchical sequence patterns; D-SCRIPT [17], which augments sequence features with structure-aware embeddings to infer inter-protein contact maps; and Topsy-Turvy [56], which integrates multi-scale sequence representations to refine interaction prediction.

PLM-based Model. Protein language models (PLMs) are typically trained on large protein datasets (*e.g.*, UniRef90 [105]) using self-supervised learning to produce context-aware embeddings. We consider three PLM-based models: PPITrans [19], which leverages ProtT5 [62] with multi-layer transformer blocks; TUnA [64], which applies ESM-2 [25] with an uncertainty-aware module; and PLM-interact (35M & 650M) [63], which fine-tunes ESM-2 on the STRING Human database.

Structure-based Model. These models either take known protein structures as input or use end-to-end structure prediction for PPI modeling. We include three structure-based methods: Struct2Graph [65] and TAGPPI [66], which use GNNs to model protein structure input, and RF2-Lite [70], a lightweight variant of RoseTTAFold2 [106] designed specifically for PPI prediction. In addition, a case study of Chai-1 [107], the newest structure prediction model, is provided in Apx. G.5.

4.2 Experimental Setup

We adopt the model hyperparameters as recommended in the original papers, which have shown strong performance on their respective benchmarks. We assume these configurations to be robust and effective across diverse scenarios. Due to computational limitations, PLM-interact directly uses the released pre-trained weights for inference, and RF2-Lite is evaluated on only 10% of the test graphs, while all other models are trained from scratch. The model implementation details refer to Apx. F.

Table 2: Overall results of intra-species (Human) PPI network construction task. We use three color scales of blue to denote the first, second, and third best performance. **RD** closer to 1 is better.

Sa	mpling Method	1		BFS	3				DFS					RW			Avg.
Category	Model	GS↑	$RD\!\!\to$	Deg.↓	Clus.↓	Spectral ↓	GS↑	$RD\!\!\to$	Deg.↓	Clus.↓	Spectral↓	GS↑	$RD\!\!\to$	Deg.↓	Clus.↓	Spectral↓	Rank
Seq. Sim.	SPRINT	0.227	1.61	10.9	12.5	11.2	0.145	5.91	316	207	53.8	0.178	1.32	17.9	26	15.1	3
Naive Sequence	PIPR D-SCRIPT Topsy-Turvy	0.209 0.215 0.183	4.39 1.13 1.74	81.7 15.4 17.3	40.5 18.8 11.4	36.2 29.7 14.6	0.0749 0.123 0.130	12.3 6.40 3.22	518 302 180	335 237 201	77.0 67.0 65.9	0.196 0.209 0.232	5.75 5.82 4.88	165 134 104	107 64.8 64.8	41.1 52 36.7	11 8 5
PLM	PPITrans TUnA PLM-interact (35M) PLM-interact (650M)	0.362 0.342 0.383 0.396	3.39 2.99 2.29 1.64	52.2 47.8 24.4 30.9	29.1 30.2 16.0 14.8	26.3 22.9 12.8 16.5	0.314 0.289 0.322 0.350	4.54 4.44 2.85 2.03	418 416 209 236	270 272 78.2 63.6	46.6 46.0 36.3 42.2	0.449 0.450 0.429 0.491	2.57 2.23 2.47 1.76	71.9 55.4 52.6 50.3	46.1 42.5 22.6 21.2	19.6 13.7 13.6 15.4	5 4 2 1
Structure	Struct2Graph TAGPPI RF2-Lite	0.27 0.283 0.227	5.58 4.56 0.524	95.1 70.8 43.8	50.5 36.2 31.7	39.2 29.5 34.9	0.132 0.143 0.243	10.8 9.94 1.10	508 491 226	321 309 39.3	67.6 65.3 61.8	0.237 0.256 0.171	5.83 4.87 0.514	155 127 81.7	103 74.2 73.9	38.3 28.6 60.9	10 9 7

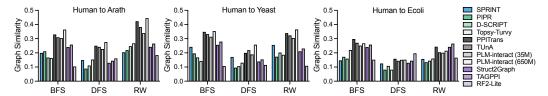


Figure 3: Cross-species generalization performance evaluated via graph similarity score.

4.3 Results and Analysis

4.3.1 From Pairs to Networks: Evaluating Structural Reconstruction

The intra-species PPI reconstruction results are summarized in Tab. 2. We can observe that: (1) PLM-based models consistently outperform other types of models; among the top five models, four are PLM-based, with PLM-interact 35M and 650M ranking first and second, respectively, highlighting that PLM can provide rich representations while capturing biologically accurate interactions; (2) most naive sequence-based and structure-based models perform poorly; for example, PIPR ranks last among the 11 baselines, while Struct2Graph ranks second to last, indicating their limited capacity to capture interaction patterns with simple architectures and features; (3) SPRINT, a non-deep learning method, ranks third, yielding a more realistic topological structure than some deep learning models, suggesting that the basic sequence similarity can still effectively preserve basic network structure; and (4) all baseline models exhibit higher RD values under DFS sampling than under BFS or RW; this is likely due to their tendency to overpredict interactions inconsistent with the underlying network topology (RD > 1), which aligns with the distribution of DFS-sampled graphs that are sparse and pathway-like, in contrast to the dense local connectivity preserved by BFS and RW.

Additionally, we find that the performance degrades as the PPI network size increases, demonstrating that existing computational methods still face challenges in reconstructing large-scale PPI networks (see Apx. G.1.4 for more details). Overall, the relative performance ranking of different model types remains consistent across traversal strategies.

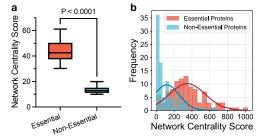
Findings. Current PPI models tend to over-predict interactions, resulting in potential false positives. Moreover, the reconstructed PPI networks preserve low topology consistency with the ground truth: the highest graph similarity score remains below 0.5, while the other four structural metrics even deviate from their ideal minimum value by an order of magnitude. These findings highlight the need for more capable models that preserve the global structure of PPI networks beyond pairwise accuracy.

4.3.2 Beyond Boundaries: Generalization Across Species

The second topology-oriented task evaluates the cross-species generalization ability of PPI prediction models. As shown in Fig. 3, the overall performance decreases proportionately as the evolutionary distance from Human increases, following the order of Arath, Yeast, and Ecoli, with the average performance drops by 15.2%, 25.3%, and 35.2%, respectively. In terms of model categories, PLM-based models continue to achieve the best performance among all baselines, with an average graph similarity score of 0.24 across the three species. This result indicates the robustness and generalizability of PLM-derived representations across diverse biological scenarios. In contrast, naive sequence-based models perform the worst, with an average score of only 0.17, demonstrating that simple deep learning architectures such as CNNs and RNNs are insufficient for capturing the complex evolutionary and structural signals required for cross-species.

Table 3: Overall results of function-oriented tasks. We use three color scales of blue to denote the first, second, and third best performance.

Funct	ion-oriented Tasks	Protein	ı Compl	ex Pathway	GO En	richment	Essentail	Protein	Avg.
Category	Model	PR↑	PP↑	PC↑	FA↑	CR↑	P@100↑	DO↓	Rank
Seq. Sim.	SPRINT	0.526	0.856	0.752	0.174	0.655	0.54	0.727	5
Naive Sequence	PIPR D-SCRIPT Topsy-Turvy	0.160 0.225 0.240	0.588 0.466 0.613	0.323 0.316 0.338	0.182 0.175 0.232	0.654 0.678 0.635	0.52 0.47 0.43	0.834 0.629 0.755	8 6 8
PLM	PPITrans TUnA PLM-interact (35M) PLM-interact (650M)	0.583 0.526 0.550 0.549	0.863 0.864 0.847 0.862	0.818 0.794 0.880 0.887	0.250 0.259 0.335 0.368	0.756 0.622 0.785 0.844	0.48 0.57 0.80 0.77	0.886 0.849 0.423 0.440	3 4 2 1
Structure	Struct2Graph TAGPPI RF2-Lite	0.413 0.487 0.554	0.742 0.781 0.874	0.608 0.713 0.135	0.154 0.168 /	0.649 0.649 /	0.45	0.841 0.828 /	10 6 /



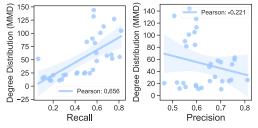


Figure 4: Essential protein analysis. (a) The network centrality score of essential and non-essential proteins in the ground-truth PPI network. (b) Network centrality score distribution of PLM-interact (650M).

Figure 5: Relationship between classification performance and graph-level metrics. The recall rate is positively correlated with the degree distribution (MMD), while the precision is negative.

Findings. The cross-species results highlight the challenge of transferring knowledge to evolutionarily distant species on the genetic tree [108]. This underscores the need for developing more advanced models that can capture conserved features to enable reliable transfer across species.

4.3.3 From Prediction to Practice: Biological Utility of PPI Models

The results of the function-oriented tasks are summarized in Tab. 3. Specifically, in the protein complex pathway reconstruction task, models tend to achieve high precision but low recall (*e.g.*, PPITrans gets a precision of 0.863 and a recall of 0.583), suggesting that predictions are accurate yet incomplete, which in turn limits the comprehensive recovery of protein complex pathways. For the GO enrichment analysis task, nearly all models perform poorly in the function alignment metric FA, with scores below 0.4, demonstrating a weak ability to preserve functional modularity in the reconstructed networks. Additionally, while most models are capable of identifying true positive hub proteins in the essential protein justification task (e.g., the PLM-interact (35M) achieves a P@100 of 0.80), they still struggle to effectively distinguish essential from non-essential proteins based on the reconstructed networks (*e.g.*, even the best-performing model, PLM-interact (650M), only attains a DO score of 0.440). As illustrated in Fig. 4, the network centrality score distributions of essential and non-essential proteins in the ground-truth graphs are well-separated. In contrast, the distributions generated by the PLM-interact (650M) exhibit substantial overlap, indicating a loss of discriminative structural features. These observations suggest that current models fail to preserve the distinguishing topological characteristics between essential and non-essential proteins in the reconstructed networks.

Findings. Current methods still fall short in capturing the underlying functional organization of PPI networks, leading to low functional alignment, fragmented complex pathways, and disturbed essential and non-essential proteins. These shortcomings hinder key downstream applications such as function annotation, biological module detection, and disease mechanism discovery.

4.3.4 Metric Alignment: Do Classification Scores Tell the Whole Story?

While standard classification metrics are commonly used to evaluate PPI models, their effectiveness in reflecting graph-level structural properties remains unclear. We investigate the correlation between

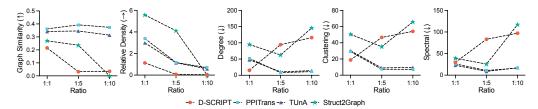


Figure 6: Ablation on the ratio of positive to negative PPI pairs. Results are shown for the BFS-based sampling configuration. For relative density, a value closer to 1 denotes better topological consistency.

traditional binary classification metrics and graph-level structural metrics, as shown in Fig. 5. Our analysis reveals an inverse relationship between recall and precision in terms of their impact on the degree distribution: higher recall increases distribution mismatch, whereas higher precision reduces it. This indicates that recall-optimized models recover more true positive interactions at the expense of false positives that distort the topology, whereas precision-focused models better preserve network structure. Additional correlation analyses are provided in Apx. G.1.3.

Findings. Standard classification metrics cannot completely reflect network-level structure, revealing the necessity for graph-aware evaluations in robust PPI modeling.

4.3.5 Data Matters: Do Positive to Negative Ratios Affect Network Construction?

Considering that real PPI networks are inherently sparse, we vary the positive-to-negative ratio of training pairs (1:1 to 1:10) under the BFS-based sampling configuration to assess the effect of class imbalance (Fig. 6). Since SPRINT does not require negative samples for training and the PLM-interact models are fixed for inference, we include four representative methods in this analysis. The complete results across three sampling strategies are provided in Apx. G.3.

For D-SCRIPT and Struct2Graph, increasing the ratio severely degrades performance—the models tend to underpredict interactions, with RD scores approaching 0. In contrast, PPITrans and TUnA show improved results when the ratio increases to 1:5, suggesting moderate imbalance regularizes learning, but their performance drops again at 1:10 as excessive negatives bias the networks toward overly sparse topologies.

Findings. Moderate class imbalance can enhance the performance of stronger models such as PLM-based architectures by providing richer negative supervision and better reflecting the sparsity of real PPI networks. However, the optimal positive-to-negative ratio remains task- and architecture-dependent, warranting further investigation into more advanced strategies for biologically realistic network learning.

5 Conclusion

In this paper, we present PRING, the first comprehensive benchmark designed to evaluate PPI prediction models beyond pairwise classification, focusing on their ability to reconstruct biology-aware PPI networks. By introducing topology and function-oriented tasks across multiple species with well-designed strategies on both data redundancy and leakage, PRING enables a more rigorous and application-driven assessment of model performance. Extensive experiments reveal that current models typically fail to preserve the global structure and biological coherence of interaction networks. These findings emphasize the limitations of traditional evaluation protocols and highlight the need for more holistic and biology-informed approaches. We believe PRING is a valuable resource for developing more reliable PPI prediction models that support real-world biological discovery.

Acknowledgment

This work was partially supported by the New Generation Artificial Intelligence-National Science and Technology Major Project of China (2025ZD0121801). This work was also partially supported by the Ministry of Education, Singapore (MOE T1251RES2309, MOE T2EP20125-0039) and the Agency for Science, Technology and Research (A*STAR H25J6a0034). This work was also partially supported by the JC STEM Lab of AI for Science and Engineering, funded by The Hong Kong Jockey Club Charities Trust, the Research Grants Council of Hong Kong (Project No. CUHK14213224). This work was also partially supported by Shanghai Artificial Intelligence Laboratory.

References

- [1] Arunachalam Vinayagam, Ulrich Stelzl, Raphaele Foulle, Stephanie Plassmann, Martina Zenkner, Jan Timm, Heike E Assmus, Miguel A Andrade-Navarro, and Erich E Wanker. A directed protein interaction network for investigating intracellular signal transduction. *Science signaling*, 4(189):rs8–rs8, 2011.
- [2] Daogang Guan, Jiaofang Shao, Zhongying Zhao, Panwen Wang, Jing Qin, Youping Deng, Kenneth R Boheler, Junwen Wang, and Bin Yan. Pthgrn: unraveling post-translational hierarchical gene regulatory networks using ppi, chip-seq and gene expression data. *Nucleic acids research*, 42(W1):W130–W136, 2014.
- [3] Sheng Li, Xuefeng Zhang, Yiming Wang, and et al. Innate immunity interactome dynamics. *Journal of Proteome Research*, 13(12):5630–5641, 2014.
- [4] Nahid Safari-Alighiarloo, Mohammad Taghizadeh, Mostafa Rezaei-Tavirani, Bahram Goliaei, and Ali Asghar Peyvandi. Protein-protein interaction networks (ppi) and complex diseases. *Gastroenterology and Hepatology from bed to bench*, 7(1):17, 2014.
- [5] G. Steven Martin. Cell signaling and cancer. Cancer Cell, 4(3):167–174, 2003.
- [6] X. Zhou, Y. Zhang, Y. Wang, and J. Wang. Small molecules targeting protein–protein interactions for cancer therapy. *Signal Transduction and Targeted Therapy*, 8(1):1–24, 2023.
- [7] Yuan Zhou, Yuhong Liu, Yuxuan Zhang, Yuting Luo, Yifan Zhu, Qian Wang, Yufeng Zhang, Yitao Wang, Zhen Zhang, and Yixue Li. New insights into protein–protein interaction modulators in drug discovery and therapeutic advance. *Signal Transduction and Targeted Therapy*, 9(1):1–3, 2024.
- [8] Duan Ni, Shaoyong Lu, and Jian Zhang. Emerging roles of allosteric modulators in the regulation of protein-protein interactions (ppis): A new paradigm for ppi drug discovery. *Medicinal research reviews*, 39(6):2314–2342, 2019.
- [9] Pavol Skubák and Navraj S Pannu. Automatic protein structure solution from weak x-ray data. *Nature communications*, 4(1):2777, 2013.
- [10] Richard A Engh and Robert Huber. Accurate bond and angle parameters for x-ray protein structure refinement. *Foundations of Crystallography*, 47(4):392–400, 1991.
- [11] Xiechao Zhan, Chuangye Yan, Xiaofeng Zhang, Jianlin Lei, and Yigong Shi. Structure of a human catalytic step i spliceosome. *Science*, 359(6375):537–545, 2018.
- [12] Qiang Su, Mengying Chen, Yan Shi, Xiaofeng Zhang, Gaoxingyu Huang, Bangdong Huang, Dongwei Liu, Zhangsuo Liu, and Yigong Shi. Cryo-em structure of the human igm b cell receptor. *Science*, 377(6608):875–880, 2022.
- [13] Barry Causier and Brendan Davies. Analysing protein-protein interactions with the yeast two-hybrid system. *Plant Molecular Biology*, 50:855–870, 2002.
- [14] Anna Brückner, Cécile Polge, Nicolas Lentze, Daniel Auerbach, and Uwe Schlattner. Yeast two-hybrid, a powerful tool for systems biology. *International journal of molecular sciences*, 10(6):2763–2788, 2009.
- [15] Francis J O'Reilly and Juri Rappsilber. Cross-linking mass spectrometry: methods and applications in structural, molecular and systems biology. *Nature structural & molecular biology*, 25(11):1000–1008, 2018.
- [16] Swantje Lenz, Ludwig R Sinn, Francis J O'Reilly, Lutz Fischer, Fritz Wegner, and Juri Rappsilber. Reliable identification of protein-protein interactions by crosslinking mass spectrometry. *Nature communications*, 12(1):3564, 2021.
- [17] Samuel Sledzieski, Rohit Singh, Lenore Cowen, and Bonnie Berger. D-script translates genome to phenome with sequence-based, structure-aware, genome-scale predictions of protein-protein interactions. *Cell Systems*, 12(10):969–982, 2021.

- [18] Aerin Yang, Kevin M Jude, Ben Lai, Mason Minot, Anna M Kocyla, Caleb R Glassman, Daisuke Nishimiya, Yoon Seok Kim, Sai T Reddy, Aly A Khan, et al. Deploying synthetic coevolution and machine learning to engineer protein-protein interactions. *Science*, 381(6656):eadh1720, 2023.
- [19] Sen Yang, Peng Cheng, Yang Liu, Dawei Feng, and Shengqi Wang. Exploring the knowledge of an outstanding protein to protein interaction transformer. *IEEE/ACM Transactions on Computational Biology and Bioinformatics*, 21(5):1287–1298, 2024.
- [20] Varun Ullanat, Bowen Jing, Samuel Sledzieski, and Bonnie Berger. Learning the language of protein-protein interactions. *bioRxiv*, 2025.
- [21] John Jumper, Richard Evans, Alexander Pritzel, Tim Green, Michael Figurnov, Olaf Ronneberger, Kathryn Tunyasuvunakool, Russ Bates, Augustin Žídek, Anna Potapenko, et al. Highly accurate protein structure prediction with alphafold. *Nature*, 596(7873):583–589, 2021.
- [22] Richard Evans, Michael O'Neill, Alexander Pritzel, Natasha Antropova, Andrew Senior, Tim Green, Augustin Žídek, Russ Bates, Sam Blackwell, Jason Yim, et al. Protein complex prediction with alphafold-multimer. *biorxiv*, 2021.
- [23] Josh Abramson, Jonas Adler, Jack Dunger, Richard Evans, Tim Green, Alexander Pritzel, Olaf Ronneberger, Lindsay Willmore, Andrew J Ballard, Joshua Bambrick, et al. Accurate structure prediction of biomolecular interactions with alphafold 3. *Nature*, 630(8016):493–500, 2024.
- [24] Alexander Rives, Joshua Meier, Tom Sercu, Siddharth Goyal, Zeming Lin, Jason Liu, Demi Guo, Myle Ott, C Lawrence Zitnick, Jerry Ma, et al. Biological structure and function emerge from scaling unsupervised learning to 250 million protein sequences. *Proceedings of the National Academy of Sciences*, 118(15):e2016239118, 2021.
- [25] Zeming Lin, Halil Akin, Roshan Rao, Brian Hie, Zhongkai Zhu, Wenting Lu, Nikita Smetanin, Robert Verkuil, Ori Kabeli, Yaniv Shmueli, et al. Evolutionary-scale prediction of atomic-level protein structure with a language model. *Science*, 379(6637):1123–1130, 2023.
- [26] Thomas Hayes, Roshan Rao, Halil Akin, Nicholas J Sofroniew, Deniz Oktay, Zeming Lin, Robert Verkuil, Vincent Q Tran, Jonathan Deaton, Marius Wiggert, et al. Simulating 500 million years of evolution with a language model. *Science*, page eads0018, 2025.
- [27] Zhiyuan Liu, An Zhang, Hao Fei, Enzhi Zhang, Xiang Wang, Kenji Kawaguchi, and Tat-Seng Chua. Prott3: Protein-to-text generation for text-based protein understanding. arXiv preprint arXiv:2405.12564, 2024.
- [28] Lun Hu, Xiaojuan Wang, Yu-An Huang, Pengwei Hu, and Zhu-Hong You. A survey on computational models for predicting protein–protein interactions. *Briefings in bioinformatics*, 22(5):bbab036, 2021.
- [29] Tao Tang, Xiaocai Zhang, Yuansheng Liu, Hui Peng, Binshuang Zheng, Yanlin Yin, and Xiangxiang Zeng. Machine learning on protein–protein interaction prediction: models, challenges and trends. *Briefings in Bioinformatics*, 24(2):bbad076, 2023.
- [30] Xiuquan Du, Shiwei Sun, Changlin Hu, Yu Yao, Yuanting Yan, and Yanping Zhang. Deepppi: boosting prediction of protein–protein interactions with deep neural networks. *Journal of Chemical Information and Modeling*, 57(6):1499–1510, 2017.
- [31] Xiao-Yong Pan, Ya-Nan Zhang, and Hong-Bin Shen. Large-scale prediction of human proteinprotein interactions from amino acid sequence based on latent topic features. *Journal of Proteome Research*, 9(10):4992–5001, 2010.
- [32] Florian Richoux, Charlène Servantie, Cynthia Borès, and Stéphane Téletchéa. Comparing two deep learning sequence-based models for protein-protein interaction prediction. *arXiv* preprint *arXiv*:1901.06268, 2019.
- [33] Jiahui Wu, Bo Liu, Jidong Zhang, Zhihan Wang, and Jianqiang Li. Dl-ppi: a method on prediction of sequenced protein–protein interaction based on deep learning. *BMC bioinformatics*, 24(1):473, 2023.

- [34] Jean-François Rual, Kavitha Venkatesan, Tong Hao, Tomoko Hirozane-Kishikawa, Amélie Dricot, Ning Li, Gabriel F Berriz, Francis D Gibbons, Matija Dreze, Nono Ayivi-Guedehoussou, et al. Towards a proteome-scale map of the human protein–protein interaction network. *Nature*, 437(7062):1173–1178, 2005.
- [35] Anne-Claude Gavin, Patrick Aloy, Paola Grandi, Roland Krause, Markus Boesche, Martina Marzioch, Christina Rau, Lars Juhl Jensen, Sonja Bastuck, Birgit Dümpelfeld, et al. Proteome survey reveals modularity of the yeast cell machinery. *Nature*, 440(7084):631–636, 2006.
- [36] Damian Szklarczyk, Rebecca Kirsch, Mikaela Koutrouli, Katerina Nastou, Farrokh Mehryary, Radja Hachilif, Annika L Gable, Tao Fang, Nadezhda T Doncheva, Sampo Pyysalo, et al. The string database in 2023: protein–protein association networks and functional enrichment analyses for any sequenced genome of interest. *Nucleic Acids Research*, 51(D1):D638–D646, 2023.
- [37] Uniprot: the universal protein knowledgebase in 2023. Nucleic acids research, 51(D1):D523–D531, 2023.
- [38] Marija Milacic, Deidre Beavers, Patrick Conley, Chuqiao Gong, Marc Gillespie, Johannes Griss, Robin Haw, Bijay Jassal, Lisa Matthews, Bruce May, et al. The reactome pathway knowledgebase 2024. Nucleic acids research, 52(D1):D672–D678, 2024.
- [39] Noemi Del Toro, Anjali Shrivastava, Eliot Ragueneau, Birgit Meldal, Colin Combe, Elisabet Barrera, Livia Perfetto, Karyn How, Prashansa Ratan, Gautam Shirodkar, et al. The intact database: efficient access to fine-grained molecular interaction data. *Nucleic acids research*, 50(D1):D648–D653, 2022.
- [40] Yanzhi Guo, Lezheng Yu, Zhining Wen, and Menglong Li. Using support vector machine combined with auto covariance to predict protein–protein interactions from protein sequences. *Nucleic Acids Research*, 36(9):3025–3030, 2008.
- [41] Yu-An Huang, Zhu-Hong You, Xin Gao, Leon Wong, and Lirong Wang. Using weighted sparse representation model combined with discrete cosine transformation to predict protein-protein interactions from protein sequence. *BioMed Research International*, 2015(1):902198, 2015.
- [42] Ioannis Xenarios, Danny W Rice, Lukasz Salwinski, Marisa K Baron, Edward M Marcotte, and David Eisenberg. Dip: the database of interacting proteins. *Nucleic acids research*, 28(1):289–291, 2000.
- [43] TS Keshava Prasad, Renu Goel, Kumaran Kandasamy, Shivakumar Keerthikumar, Sameer Kumar, Suresh Mathivanan, Deepthi Telikicherla, Rajesh Raju, Beema Shafreen, Abhilash Venugopal, et al. Human protein reference database—2009 update. *Nucleic acids research*, 37(suppl_1):D767–D772, 2009.
- [44] Damian Szklarczyk, Annika L Gable, David Lyon, Alexander Junge, Stefan Wyder, Jaime Huerta-Cepas, Milan Simonovic, Nadezhda T Doncheva, John H Morris, Peer Bork, et al. String v11: protein–protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets. *Nucleic Acids Research*, 47(D1):D607–D613, 2019.
- [45] Damian Szklarczyk, Annika L Gable, Katerina C Nastou, David Lyon, Rebecca Kirsch, Sampo Pyysalo, Nadezhda T Doncheva, Marc Legeay, Tao Fang, Peer Bork, et al. The string database in 2021: customizable protein–protein networks, and functional characterization of user-uploaded gene/measurement sets. *Nucleic Acids Research*, 49(D1):D605–D612, 2021.
- [46] Judith Bernett, David B Blumenthal, and Markus List. Cracking the black box of deep sequence-based protein–protein interaction prediction. *Briefings in Bioinformatics*, 25(2):bbae076, 2024.
- [47] Robert Geirhos, Jörn-Henrik Jacobsen, Claudio Michaelis, Richard Zemel, Wieland Brendel, Matthias Bethge, and Felix A Wichmann. Shortcut learning in deep neural networks. *Nature Machine Intelligence*, 2(11):665–673, 2020.
- [48] Muhao Chen, Chelsea J-T Ju, Guangyu Zhou, Xuelu Chen, Tianran Zhang, Kai-Wei Chang, Carlo Zaniolo, and Wei Wang. Multifaceted protein–protein interaction prediction based on siamese residual rcnn. *Bioinformatics*, 35(14):i305–i314, 2019.

- [49] Guofeng Lv, Zhiqiang Hu, Yanguang Bi, and Shaoting Zhang. Learning unknown from correlations: Graph neural network for inter-novel-protein interaction prediction. arXiv preprint arXiv:2105.06709, 2021.
- [50] Jack F Greenblatt, Bruce M Alberts, and Nevan J Krogan. Discovery and significance of protein-protein interactions in health and disease. *Cell*, 187(23):6501–6517, 2024.
- [51] Greta Grassmann, Mattia Miotto, Fausta Desantis, Lorenzo Di Rienzo, Gian Gaetano Tartaglia, Annalisa Pastore, Giancarlo Ruocco, Michele Monti, and Edoardo Milanetti. Computational approaches to predict protein–protein interactions in crowded cellular environments. *Chemical Reviews*, 124(7):3932–3977, 2024.
- [52] Yiwei Li and Lucian Ilie. Sprint: ultrafast protein-protein interaction prediction of the entire human interactome. *BMC bioinformatics*, 18:1–11, 2017.
- [53] Yann LeCun, Yoshua Bengio, and Geoffrey Hinton. Deep learning. *Nature*, 521(7553):436–444, 2015.
- [54] Ian Goodfellow, Yoshua Bengio, Aaron Courville, and Yoshua Bengio. *Deep learning*, volume 1. MIT press Cambridge, 2016.
- [55] Shixiang Tang, Dapeng Chen, Jinguo Zhu, Shijie Yu, and Wanli Ouyang. Layerwise optimization by gradient decomposition for continual learning. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pages 9634–9643, 2021.
- [56] Rohit Singh, Kapil Devkota, Samuel Sledzieski, Bonnie Berger, and Lenore Cowen. Topsyturvy: integrating a global view into sequence-based ppi prediction. *Bioinformatics*, 38(Supplement_1):i264–i272, 2022.
- [57] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification with deep convolutional neural networks. *Advances in neural information processing systems*, 25, 2012.
- [58] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recognition. In *Proceedings of the IEEE conference on computer vision and pattern recognition*, pages 770–778, 2016.
- [59] Mike Schuster and Kuldip K Paliwal. Bidirectional recurrent neural networks. *IEEE Transactions on Signal Processing*, 45(11):2673–2681, 1997.
- [60] Felix A Gers, Jürgen Schmidhuber, and Fred Cummins. Learning to forget: Continual prediction with lstm. *Neural Computation*, 12(10):2451–2471, 2000.
- [61] Zeming Lin, Halil Akin, Roshan Rao, Brian Hie, Zhongkai Zhu, Wenting Lu, Allan dos Santos Costa, Maryam Fazel-Zarandi, Tom Sercu, Sal Candido, et al. Language models of protein sequences at the scale of evolution enable accurate structure prediction. *BioRxiv*, 2022:500902, 2022.
- [62] Suresh Pokharel, Pawel Pratyush, Michael Heinzinger, Robert H Newman, and Dukka B Kc. Improving protein succinylation sites prediction using embeddings from protein language model. *Scientific reports*, 12(1):16933, 2022.
- [63] Dan Liu, Francesca Young, Kieran D Lamb, Adalberto Claudio Quiros, Alexandrina Pancheva, Crispin Miller, Craig Macdonald, David L Robertson, and Ke Yuan. Plm-interact: extending protein language models to predict protein-protein interactions. bioRxiv, pages 2024–11, 2024.
- [64] Young Su Ko, Jonathan Parkinson, Cong Liu, and Wei Wang. Tuna: an uncertainty-aware transformer model for sequence-based protein–protein interaction prediction. *Briefings in Bioinformatics*, 25(5):bbae359, 2024.
- [65] Mayank Baranwal, Abram Magner, Jacob Saldinger, Emine S Turali-Emre, Paolo Elvati, Shivani Kozarekar, J Scott VanEpps, Nicholas A Kotov, Angela Violi, and Alfred O Hero. Struct2graph: a graph attention network for structure based predictions of protein–protein interactions. *BMC bioinformatics*, 23(1):370, 2022.

- [66] Bosheng Song, Xiaoyan Luo, Xiaoli Luo, Yuansheng Liu, Zhangming Niu, and Xiangxiang Zeng. Learning spatial structures of proteins improves protein–protein interaction prediction. *Briefings in bioinformatics*, 23(2):bbab558, 2022.
- [67] Zonghan Wu, Shirui Pan, Fengwen Chen, Guodong Long, Chengqi Zhang, and Philip S Yu. A comprehensive survey on graph neural networks. *IEEE Transactions on Neural Networks and Learning Systems*, 32(1):4–24, 2020.
- [68] Franco Scarselli, Marco Gori, Ah Chung Tsoi, Markus Hagenbuchner, and Gabriele Monfardini. The graph neural network model. *IEEE Transactions on Neural Networks*, 20(1):61–80, 2008.
- [69] Minkyung Baek, Frank DiMaio, Ivan Anishchenko, Justas Dauparas, Sergey Ovchinnikov, Gyu Rie Lee, Jue Wang, Qian Cong, Lisa N Kinch, R Dustin Schaeffer, et al. Accurate prediction of protein structures and interactions using a three-track neural network. *Science*, 373(6557):871–876, 2021.
- [70] Ian R Humphreys, Jing Zhang, Minkyung Baek, Yaxi Wang, Aditya Krishnakumar, Jimin Pei, Ivan Anishchenko, Catherine A Tower, Blake A Jackson, Thulasi Warrier, et al. Protein interactions in human pathogens revealed through deep learning. *Nature Microbiology*, 9(10):2642–2652, 2024.
- [71] Patrick Bryant and Frank Noé. Rapid protein-protein interaction network creation from multiple sequence alignments with deep learning. *bioRxiv*, pages 2023–04, 2023.
- [72] Ziqi Gao, Chenran Jiang, Jiawen Zhang, Xiaosen Jiang, Lanqing Li, Peilin Zhao, Huanming Yang, Yong Huang, and Jia Li. Hierarchical graph learning for protein–protein interaction. *Nature Communications*, 14(1):1093, 2023.
- [73] Lirong Wu, Yijun Tian, Yufei Huang, Siyuan Li, Haitao Lin, Nitesh V Chawla, and Stan Z. Li. MAPE-PPI: Towards effective and efficient protein-protein interaction prediction via microenvironment-aware protein embedding. In *The Twelfth International Conference on Learning Representations*, 2024.
- [74] Zhengyan Zhang, Arjun Li, Meng Zhao, Zhaocheng Wang, Chi Zhang, Jiawei Chen, Yijia Li, Zhiyuan Liu, and Maosong Sun. Ontoprotein: Protein pretraining with gene ontology embedding. In *The Eleventh International Conference on Learning Representations (ICLR)*, 2023.
- [75] Chuan Gao. Biotranslator: a multi-modal deep learning framework for translating between biological data. *Nature*, 2023.
- [76] Zhiyuan Liu, Sihang Li, Yanchen Luo, Hao Fei, Yixin Cao, Kenji Kawaguchi, Xiang Wang, and Tat-Seng Chua. Molca: Molecular graph-language modeling with cross-modal projector and uni-modal adapter. In *EMNLP*, 2023.
- [77] Sihang Li, Zhiyuan Liu, Yanchen Luo, Xiang Wang, Xiangnan He, Kenji Kawaguchi, Tat-Seng Chua, and Qi Tian. 3d-molm: Towards 3d molecule-text interpretation in language models. In *ICLR*, 2024.
- [78] Zhiyuan Liu, Yaorui Shi, An Zhang, Enzhi Zhang, Kenji Kawaguchi, Xiang Wang, and Tat-Seng Chua. Rethinking tokenizer and decoder in masked graph modeling for molecules. In *NeurIPS*, 2023.
- [79] Zhiyuan Liu, Yaorui Shi, An Zhang, Sihang Li, Enzhi Zhang, Xiang Wang, Kenji Kawaguchi, and Tat-Seng Chua. Reactxt: Understanding molecular "reaction-ship" via reaction-contextualized molecule-text pretraining. In *Findings of the Association for Computational Linguistics: ACL 2024*. Association for Computational Linguistics, 2024.
- [80] Zhiyuan Liu, Yanchen Luo, Han Huang, Enzhi Zhang, Sihang Li, Junfeng Fang, Yaorui Shi, Xiang Wang, Kenji Kawaguchi, and Tat-Seng Chua. NExt-mol: 3d diffusion meets 1d language modeling for 3d molecule generation. In *The Thirteenth International Conference on Learning Representations*, 2025.

- [81] Yanchen Luo, Zhiyuan Liu, Yi Zhao, Sihang Li, Hengxing Cai, Kenji Kawaguchi, Tat-Seng Chua, Yang Zhang, and Xiang Wang. Towards unified and lossless latent space for 3d molecular latent diffusion modeling. *arXiv preprint arXiv:2503.15567*, 2025.
- [82] Md Kamrul Islam, Diego Amaya-Ramirez, Bernard Maigret, Marie-Dominique Devignes, Sabeur Aridhi, and Malika Smaïl-Tabbone. Molecular-evaluated and explainable drug repurposing for covid-19 using ensemble knowledge graph embedding. *Scientific Reports*, 13(1):3643, 2023.
- [83] Amos Bairoch and Rolf Apweiler. The swiss-prot protein sequence database and its supplement trembl in 2000. *Nucleic acids research*, 28(1):45–48, 2000.
- [84] Conrad L Schoch, Stacy Ciufo, Mikhail Domrachev, Carol L Hotton, Sivakumar Kannan, Rogneda Khovanskaya, Detlef Leipe, Richard Mcveigh, Kathleen O'Neill, Barbara Robbertse, et al. Ncbi taxonomy: a comprehensive update on curation, resources and tools. *Database*, 2020:baaa062, 2020.
- [85] Martin Steinegger and Johannes Söding. Mmseqs2 enables sensitive protein sequence searching for the analysis of massive data sets. *Nature biotechnology*, 35(11):1026–1028, 2017.
- [86] Martin Steinegger and Johannes Söding. Clustering huge protein sequence sets in linear time. *Nature communications*, 9(1):2542, 2018.
- [87] Xun Zheng, Bryon Aragam, Pradeep K Ravikumar, and Eric P Xing. Dags with no tears: Continuous optimization for structure learning. *Advances in neural information processing systems*, 31, 2018.
- [88] Rylee Thompson, Boris Knyazev, Elahe Ghalebi, Jungtaek Kim, and Graham W Taylor. On evaluation metrics for graph generative models. *arXiv preprint arXiv:2201.09871*, 2022.
- [89] Clement Vignac, Igor Krawczuk, Antoine Siraudin, Bohan Wang, Volkan Cevher, and Pascal Frossard. Digress: Discrete denoising diffusion for graph generation. *arXiv preprint arXiv:2209.14734*, 2022.
- [90] Renjie Liao, Yujia Li, Yang Song, Shenlong Wang, Will Hamilton, David K Duvenaud, Raquel Urtasun, and Richard Zemel. Efficient graph generation with graph recurrent attention networks. *Advances in neural information processing systems*, 32, 2019.
- [91] Karolis Martinkus, Andreas Loukas, Nathanaël Perraudin, and Roger Wattenhofer. Spectre: Spectral conditioning helps to overcome the expressivity limits of one-shot graph generators. In *International Conference on Machine Learning*, pages 15159–15179. PMLR, 2022.
- [92] Qian Cong, Ivan Anishchenko, Sergey Ovchinnikov, and David Baker. Protein interaction networks revealed by proteome coevolution. *Science*, 365(6449):185–189, 2019.
- [93] Michael Costanzo, Benjamin VanderSluis, Elizabeth N Koch, Anastasia Baryshnikova, Carles Pons, Guihong Tan, Wen Wang, Matej Usaj, Julia Hanchard, Susan D Lee, et al. A global genetic interaction network maps a wiring diagram of cellular function. *Science*, 353(6306):aaf1420, 2016.
- [94] L Therese Bergendahl, Lukas Gerasimavicius, Jamilla Miles, Lewis Macdonald, Jonathan N Wells, Julie PI Welburn, and Joseph A Marsh. The role of protein complexes in human genetic disease. *Protein Science*, 28(8):1400–1411, 2019.
- [95] Mileidy W Gonzalez and Maricel G Kann. Chapter 4: Protein interactions and disease. PLoS computational biology, 8(12):e1002819, 2012.
- [96] Yingyao Zhou, Bin Zhou, Lars Pache, Max Chang, Alireza Hadj Khodabakhshi, Olga Tanaseichuk, Christopher Benner, and Sumit K Chanda. Metascape provides a biologist-oriented resource for the analysis of systems-level datasets. *Nature communications*, 10(1):1523, 2019.
- [97] Xinyu Que, Fabio Checconi, Fabrizio Petrini, and John A Gunnels. Scalable community detection with the louvain algorithm. In 2015 IEEE international parallel and distributed processing symposium, pages 28–37. IEEE, 2015.

- [98] Uku Raudvere, Liis Kolberg, Ivan Kuzmin, Tambet Arak, Priit Adler, Hedi Peterson, and Jaak Vilo. g: Profiler: a web server for functional enrichment analysis and conversions of gene lists (2019 update). *Nucleic acids research*, 47(W1):W191–W198, 2019.
- [99] Jianxin Wang, Min Li, Huan Wang, and Yi Pan. Identification of essential proteins based on edge clustering coefficient. *IEEE/ACM Transactions on Computational Biology and Bioinformatics*, 9(4):1070–1080, 2011.
- [100] Hawoong Jeong, Sean P Mason, A-L Barabási, and Zoltan N Oltvai. Lethality and centrality in protein networks. *Nature*, 411(6833):41–42, 2001.
- [101] Jiashuai Zhang, Wenkai Li, Min Zeng, Xiangmao Meng, Lukasz Kurgan, Fang-Xiang Wu, and Min Li. Netepd: a network-based essential protein discovery platform. *Tsinghua Science and Technology*, 25(4):542–552, 2020.
- [102] Kim D Pruitt, Jennifer Harrow, Rachel A Harte, Craig Wallin, Mark Diekhans, Donna R Maglott, Steve Searle, Catherine M Farrell, Jane E Loveland, Barbara J Ruef, et al. The consensus coding sequence (ccds) project: Identifying a common protein-coding gene set for the human and mouse genomes. *Genome research*, 19(7):1316–1323, 2009.
- [103] Keiron O'shea and Ryan Nash. An introduction to convolutional neural networks. *arXiv* preprint arXiv:1511.08458, 2015.
- [104] Larry R Medsker, Lakhmi Jain, et al. Recurrent neural networks. *Design and Applications*, 5(64-67):2, 2001.
- [105] Baris E Suzek, Hongzhan Huang, Peter McGarvey, Raja Mazumder, and Cathy H Wu. Uniref: comprehensive and non-redundant uniprot reference clusters. *Bioinformatics*, 23(10):1282– 1288, 2007.
- [106] Minkyung Baek, Ivan Anishchenko, Ian R Humphreys, Qian Cong, David Baker, and Frank DiMaio. Efficient and accurate prediction of protein structure using rosettafold2. *BioRxiv*, pages 2023–05, 2023.
- [107] Chai Discovery team, Jacques Boitreaud, Jack Dent, Matthew McPartlon, Joshua Meier, Vinicius Reis, Alex Rogozhonikov, and Kevin Wu. Chai-1: Decoding the molecular interactions of life. *BioRxiv*, pages 2024–10, 2024.
- [108] Wayne P Maddison. Gene trees in species trees. Systematic biology, 46(3):523–536, 1997.
- [109] Chris Stark, Bobby-Joe Breitkreutz, Teresa Reguly, Lorrie Boucher, Ashton Breitkreutz, and Mike Tyers. Biogrid: a general repository for interaction datasets. *Nucleic Acids Research*, 34(suppl_1):D535–D539, 2006.
- [110] Andrew Chatr-Aryamontri, Arnaud Ceol, Luisa Montecchi Palazzi, Giuliano Nardelli, Maria Victoria Schneider, Luisa Castagnoli, and Gianni Cesareni. Mint: the molecular interaction database. *Nucleic acids research*, 35(suppl_1):D572–D574, 2007.
- [111] Katja Luck, Dae-Kyum Kim, Luke Lambourne, Kerstin Spirohn, Bridget E Begg, Wenting Bian, Ruth Brignall, Tiziana Cafarelli, Francisco J Campos-Laborie, Benoit Charloteaux, et al. A reference map of the human binary protein interactome. *Nature*, 580(7803):402–408, 2020.
- [112] Qiangfeng Cliff Zhang, Donald Petrey, José Ignacio Garzón, Lei Deng, and Barry Honig. Preppi: a structure-informed database of protein-protein interactions. *Nucleic acids research*, 41(D1):D828–D833, 2012.
- [113] Tunca Doğan, Heval Atas, Vishal Joshi, Ahmet Atakan, Ahmet Sureyya Rifaioglu, Esra Nalbat, Andrew Nightingale, Rabie Saidi, Vladimir Volynkin, Hermann Zellner, et al. Crossbar: comprehensive resource of biomedical relations with knowledge graph representations. *Nucleic acids research*, 49(16):e96–e96, 2021.
- [114] Payal Chandak, Kexin Huang, and Marinka Zitnik. Building a knowledge graph to enable precision medicine. *Scientific Data*, 10(1):67, 2023.

- [115] Mengxin Wu, Guantao Chen, Xiangtao Fan, and et al. Clusterbfs: a method of identifying protein complexes by local searching in protein–protein interaction networks. BMC Bioinformatics, 15:120, 2014.
- [116] Hongwu Ma and An-Ping Zeng. Constructing signaling pathway structures by a depth-first search algorithm. *Bioinformatics*, 24(2):174–181, 2008.
- [117] Wei Li, Hui Wang, Yong Zhang, and et al. A random walk-based method for detecting essential proteins by integrating the topological and biological features of ppi network. BMC Bioinformatics, 2022.
- [118] Xiaoyang Zhang, Tianyu Chen, and Xiang Zhang. Pwn: Prior-guided random walk on warped networks for disease target prioritization. BMC Bioinformatics, 2023.
- [119] Felix Kallenborn, Alejandro Chacon, Christian Hundt, Hassan Sirelkhatim, Kieran Didi, Sooyoung Cha, Christian Dallago, Milot Mirdita, Bertil Schmidt, and Martin Steinegger. Gpu-accelerated homology search with mmseqs2. bioRxiv, pages 2024–11, 2024.
- [120] Sudhir Kumar, Michael Suleski, Jack M Craig, Adrienne E Kasprowicz, Maxwell Sanderford, Michael Li, Glen Stecher, and S Blair Hedges. Timetree 5: an expanded resource for species divergence times. *Molecular biology and evolution*, 39(8):msac174, 2022.
- [121] Charlotte Nicod, Amir Banaei-Esfahani, and Ben C Collins. Elucidation of host–pathogen protein–protein interactions to uncover mechanisms of host cell rewiring. *Current opinion in microbiology*, 39:7–15, 2017.
- [122] Zachary H Davis, Stefan Huber, Rohan K Suryawanshi, et al. Large-scale discovery of coronavirus-host factor protein interaction motifs reveals slim-mediated host-virus interactions. *Nature Communications*, 12(1):1–13, 2021.

NeurIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the paper's contributions and scope?

Answer: [Yes]

Justification: We conclude our main contributions in both the abstract and the introduction section (Sec. 1).

Guidelines:

- The answer NA means that the abstract and introduction do not include the claims made in the paper.
- The abstract and/or introduction should clearly state the claims made, including the contributions made in the paper and important assumptions and limitations. A No or NA answer to this question will not be perceived well by the reviewers.
- The claims made should match theoretical and experimental results, and reflect how much the results can be expected to generalize to other settings.
- It is fine to include aspirational goals as motivation as long as it is clear that these goals
 are not attained by the paper.

2. Limitations

Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: We discuss the limitations and directions for future work in Apx. B.

Guidelines:

- The answer NA means that the paper has no limitation while the answer No means that the paper has limitations, but those are not discussed in the paper.
- The authors are encouraged to create a separate "Limitations" section in their paper.
- The paper should point out any strong assumptions and how robust the results are to violations of these assumptions (e.g., independence assumptions, noiseless settings, model well-specification, asymptotic approximations only holding locally). The authors should reflect on how these assumptions might be violated in practice and what the implications would be.
- The authors should reflect on the scope of the claims made, e.g., if the approach was only tested on a few datasets or with a few runs. In general, empirical results often depend on implicit assumptions, which should be articulated.
- The authors should reflect on the factors that influence the performance of the approach. For example, a facial recognition algorithm may perform poorly when image resolution is low or images are taken in low lighting. Or a speech-to-text system might not be used reliably to provide closed captions for online lectures because it fails to handle technical jargon.
- The authors should discuss the computational efficiency of the proposed algorithms and how they scale with dataset size.
- If applicable, the authors should discuss possible limitations of their approach to address problems of privacy and fairness.
- While the authors might fear that complete honesty about limitations might be used by reviewers as grounds for rejection, a worse outcome might be that reviewers discover limitations that aren't acknowledged in the paper. The authors should use their best judgment and recognize that individual actions in favor of transparency play an important role in developing norms that preserve the integrity of the community. Reviewers will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and a complete (and correct) proof?

Answer: [NA]

Justification: As a benchmark study, this work focuses on empirical evaluation and does not present theoretical results.

Guidelines:

- The answer NA means that the paper does not include theoretical results.
- All the theorems, formulas, and proofs in the paper should be numbered and cross-referenced.
- All assumptions should be clearly stated or referenced in the statement of any theorems.
- The proofs can either appear in the main paper or the supplemental material, but if they appear in the supplemental material, the authors are encouraged to provide a short proof sketch to provide intuition.
- Inversely, any informal proof provided in the core of the paper should be complemented by formal proofs provided in appendix or supplemental material.
- Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main experimental results of the paper to the extent that it affects the main claims and/or conclusions of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We provide comprehensive experimental results and evaluation in Sec. 4 and Apx. G.

Guidelines:

- The answer NA means that the paper does not include experiments.
- If the paper includes experiments, a No answer to this question will not be perceived well by the reviewers: Making the paper reproducible is important, regardless of whether the code and data are provided or not.
- If the contribution is a dataset and/or model, the authors should describe the steps taken to make their results reproducible or verifiable.
- Depending on the contribution, reproducibility can be accomplished in various ways. For example, if the contribution is a novel architecture, describing the architecture fully might suffice, or if the contribution is a specific model and empirical evaluation, it may be necessary to either make it possible for others to replicate the model with the same dataset, or provide access to the model. In general, releasing code and data is often one good way to accomplish this, but reproducibility can also be provided via detailed instructions for how to replicate the results, access to a hosted model (e.g., in the case of a large language model), releasing of a model checkpoint, or other means that are appropriate to the research performed.
- While NeurIPS does not require releasing code, the conference does require all submissions to provide some reasonable avenue for reproducibility, which may depend on the nature of the contribution. For example
 - (a) If the contribution is primarily a new algorithm, the paper should make it clear how to reproduce that algorithm.
 - (b) If the contribution is primarily a new model architecture, the paper should describe the architecture clearly and fully.
- (c) If the contribution is a new model (e.g., a large language model), then there should either be a way to access this model for reproducing the results or a way to reproduce the model (e.g., with an open-source dataset or instructions for how to construct the dataset).
- (d) We recognize that reproducibility may be tricky in some cases, in which case authors are welcome to describe the particular way they provide for reproducibility. In the case of closed-source models, it may be that access to the model is limited in some way (e.g., to registered users), but it should be possible for other researchers to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instructions to faithfully reproduce the main experimental results, as described in supplemental material?

Answer: [Yes]

Justification: See project website https://github.com/SophieSarceau/PRING and Apx. A for code and data availability.

Guidelines:

- The answer NA means that paper does not include experiments requiring code.
- Please see the NeurIPS code and data submission guidelines (https://nips.cc/ public/guides/CodeSubmissionPolicy) for more details.
- While we encourage the release of code and data, we understand that this might not be possible, so "No" is an acceptable answer. Papers cannot be rejected simply for not including code, unless this is central to the contribution (e.g., for a new open-source benchmark).
- The instructions should contain the exact command and environment needed to run to reproduce the results. See the NeurIPS code and data submission guidelines (https: //nips.cc/public/guides/CodeSubmissionPolicy) for more details.
- The authors should provide instructions on data access and preparation, including how to access the raw data, preprocessed data, intermediate data, and generated data, etc.
- The authors should provide scripts to reproduce all experimental results for the new proposed method and baselines. If only a subset of experiments are reproducible, they should state which ones are omitted from the script and why.
- At submission time, to preserve anonymity, the authors should release anonymized versions (if applicable).
- Providing as much information as possible in supplemental material (appended to the paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyperparameters, how they were chosen, type of optimizer, etc.) necessary to understand the results?

Answer: [Yes]

Justification: We provide comprehensive experimental settings in Sec. 4 and Apx. F.

Guidelines:

- The answer NA means that the paper does not include experiments.
- The experimental setting should be presented in the core of the paper to a level of detail that is necessary to appreciate the results and make sense of them.
- The full details can be provided either with the code, in appendix, or as supplemental material.

7. Experiment statistical significance

Ouestion: Does the paper report error bars suitably and correctly defined or other appropriate information about the statistical significance of the experiments?

Answer: [No]

Justification: Error bars are not most applicable because we propose a specific benchmark in our work.

Guidelines:

- The answer NA means that the paper does not include experiments.
- The authors should answer "Yes" if the results are accompanied by error bars, confidence intervals, or statistical significance tests, at least for the experiments that support the main claims of the paper.
- The factors of variability that the error bars are capturing should be clearly stated (for example, train/test split, initialization, random drawing of some parameter, or overall run with given experimental conditions).
- The method for calculating the error bars should be explained (closed form formula, call to a library function, bootstrap, etc.)
- The assumptions made should be given (e.g., Normally distributed errors).

- It should be clear whether the error bar is the standard deviation or the standard error
 of the mean.
- It is OK to report 1-sigma error bars, but one should state it. The authors should preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis of Normality of errors is not verified.
- For asymmetric distributions, the authors should be careful not to show in tables or figures symmetric error bars that would yield results that are out of range (e.g. negative error rates).
- If error bars are reported in tables or plots, The authors should explain in the text how they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the computer resources (type of compute workers, memory, time of execution) needed to reproduce the experiments?

Answer: [Yes]

Justification: Implementation details are given in Apx. F.

Guidelines:

- The answer NA means that the paper does not include experiments.
- The paper should indicate the type of compute workers CPU or GPU, internal cluster, or cloud provider, including relevant memory and storage.
- The paper should provide the amount of compute required for each of the individual experimental runs as well as estimate the total compute.
- The paper should disclose whether the full research project required more compute than the experiments reported in the paper (e.g., preliminary or failed experiments that didn't make it into the paper).

9. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: We have thoroughly reviewed the NeurIPS Code of Ethics and rigorously followed its guidelines throughout our research.

Guidelines:

- The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
- If the authors answer No, they should explain the special circumstances that require a
 deviation from the Code of Ethics.
- The authors should make sure to preserve anonymity (e.g., if there is a special consideration due to laws or regulations in their jurisdiction).

10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative societal impacts of the work performed?

Answer: [Yes]

Justification: We state the potential social impact in Apx. H.

Guidelines:

- The answer NA means that there is no societal impact of the work performed.
- If the authors answer NA or No, they should explain why their work has no societal impact or why the paper does not address societal impact.
- Examples of negative societal impacts include potential malicious or unintended uses (e.g., disinformation, generating fake profiles, surveillance), fairness considerations (e.g., deployment of technologies that could make decisions that unfairly impact specific groups), privacy considerations, and security considerations.

- The conference expects that many papers will be foundational research and not tied to particular applications, let alone deployments. However, if there is a direct path to any negative applications, the authors should point it out. For example, it is legitimate to point out that an improvement in the quality of generative models could be used to generate deepfakes for disinformation. On the other hand, it is not needed to point out that a generic algorithm for optimizing neural networks could enable people to train models that generate Deepfakes faster.
- The authors should consider possible harms that could arise when the technology is being used as intended and functioning correctly, harms that could arise when the technology is being used as intended but gives incorrect results, and harms following from (intentional or unintentional) misuse of the technology.
- If there are negative societal impacts, the authors could also discuss possible mitigation strategies (e.g., gated release of models, providing defenses in addition to attacks, mechanisms for monitoring misuse, mechanisms to monitor how a system learns from feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible release of data or models that have a high risk for misuse (e.g., pretrained language models, image generators, or scraped datasets)?

Answer: [NA]

Justification: This paper does not pose such risks.

Guidelines:

- The answer NA means that the paper poses no such risks.
- Released models that have a high risk for misuse or dual-use should be released with necessary safeguards to allow for controlled use of the model, for example by requiring that users adhere to usage guidelines or restrictions to access the model or implementing safety filters.
- Datasets that have been scraped from the Internet could pose safety risks. The authors should describe how they avoided releasing unsafe images.
- We recognize that providing effective safeguards is challenging, and many papers do
 not require this, but we encourage authors to take this into account and make a best
 faith effort.

12. Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in the paper, properly credited and are the license and terms of use explicitly mentioned and properly respected?

Answer: [Yes]

Justification: Details of the original databases and baseline models can be found in Apx. C and Apx. E, respectively.

Guidelines:

- The answer NA means that the paper does not use existing assets.
- The authors should cite the original paper that produced the code package or dataset.
- The authors should state which version of the asset is used and, if possible, include a URL.
- The name of the license (e.g., CC-BY 4.0) should be included for each asset.
- For scraped data from a particular source (e.g., website), the copyright and terms of service of that source should be provided.
- If assets are released, the license, copyright information, and terms of use in the
 package should be provided. For popular datasets, paperswithcode.com/datasets
 has curated licenses for some datasets. Their licensing guide can help determine the
 license of a dataset.
- For existing datasets that are re-packaged, both the original license and the license of the derived asset (if it has changed) should be provided.
- If this information is not available online, the authors are encouraged to reach out to the asset's creators.

13. New assets

Question: Are new assets introduced in the paper well documented and is the documentation provided alongside the assets?

Answer: [Yes]

Justification: We introduce a new dataset PRING, which is available for download through the URL provided in Apx. A.

Guidelines:

- The answer NA means that the paper does not release new assets.
- Researchers should communicate the details of the dataset/code/model as part of their submissions via structured templates. This includes details about training, license, limitations, etc.
- The paper should discuss whether and how consent was obtained from people whose asset is used.
- At submission time, remember to anonymize your assets (if applicable). You can either create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper include the full text of instructions given to participants and screenshots, if applicable, as well as details about compensation (if any)?

Answer: [NA]

Justification: This paper does not involve crowdsourcing nor research with human subjects. Guidelines:

- The answer NA means that the paper does not involve crowdsourcing nor research with human subjects.
- Including this information in the supplemental material is fine, but if the main contribution of the paper involves human subjects, then as much detail as possible should be included in the main paper.
- According to the NeurIPS Code of Ethics, workers involved in data collection, curation, or other labor should be paid at least the minimum wage in the country of the data collector.

15. Institutional review board (IRB) approvals or equivalent for research with human subjects

Question: Does the paper describe potential risks incurred by study participants, whether such risks were disclosed to the subjects, and whether Institutional Review Board (IRB) approvals (or an equivalent approval/review based on the requirements of your country or institution) were obtained?

Answer: [NA]

Justification: This paper does not involve crowdsourcing or research with human subjects. Guidelines:

- The answer NA means that the paper does not involve crowdsourcing nor research with human subjects.
- Depending on the country in which research is conducted, IRB approval (or equivalent) may be required for any human subjects research. If you obtained IRB approval, you should clearly state this in the paper.
- We recognize that the procedures for this may vary significantly between institutions and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the guidelines for their institution.
- For initial submissions, do not include any information that would break anonymity (if applicable), such as the institution conducting the review.

16. Declaration of LLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or non-standard component of the core methods in this research? Note that if the LLM is used only for writing, editing, or formatting purposes and does not impact the core methodology, scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]

Justification: The core methodology of this paper does not involve large language models. Guidelines:

- The answer NA means that the core method development in this research does not involve LLMs as any important, original, or non-standard components.
- Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM) for what should or should not be described.

Appendix

A	Data	and Code Availability	27
	A.1	PRING Dataset	27
	A.2	Evaluation Code	27
	A.3	Project Website	27
В	Lim	itations & Future Work	27
	B.1	Data Scope	27
	B.2	Protein–Protein Interaction Scope	27
C	Data	set Documentation	27
	C.1	Data Sources	27
	C.2	Collection Process	29
	C.3	Statistical Analysis	29
D	Task	Documentation	30
	D.1	Topology-oriented Task	30
	D.2	Function-oriented Task	32
E	Base	eline Models	34
	E.1	Sequence Similarity-based Method	34
	E.2	Naive Sequence-based Method	34
	E.3	Protein Language Model-based Method	35
	E.4	Structure-based Method	35
F	Exp	erimental Settings	36
G	Exp	erimental Results	36
	G.1	Topology-oriented Task	36
	G.2	Function-oriented Task	41
	G.3	Ablation Study on Positive-to-Negative Ratio	42
	G.4	Ablation Study on Probability Threshold	43
	G.5	Case Study	44
	G.6	Scaling Analysis	44
Н	Broa	nder Societary Impacts	44

A Data and Code Availability

A.1 PRING Dataset

The PRING dataset is available at https://huggingface.co/datasets/piaolaidangqu/PRING.

A.2 Evaluation Code

The code for benchmarking PPI prediction models on PRING is available at https://github.com/SophieSarceau/PRING.

A.3 Project Website

The PRING project website is available at https://zhanglab.comp.nus.edu.sg/PRING/.

B Limitations & Future Work

B.1 Data Scope

Though PRING currently benchmarks PPI prediction on four model organisms, including Human, Ecoli, Yeast, and Arath, which are widely studied, it does not cover the full phylogenetic diversity of life. As a result, the generalizability of PPI prediction models to non-model or underrepresented taxa remains unexplored. To enable a more comprehensive evaluation, future extensions of PRING will focus on expanding its taxonomic coverage by curating high-quality PPIs data from additional clades (e.g., archaea, non-model metazoans), enabling a more comprehensive evaluation of evolutionary transfer and model robustness across the tree of life. Moreover, certain biological applications, such as antiviral drug development, require the modeling of PPIs between Human and pathogen proteins. To support such use cases, future versions of PRING will incorporate Human—virus PPI networks, advancing the benchmark's utility in biomedical research.

B.2 Protein-Protein Interaction Scope

While PRING develops holistic downstream tasks to evaluate the model's capability, all tasks currently treat PPIs as binary edges, ignoring other biological details such as interaction types (e.g., activation, inhibition). This would limit the ability to capture regulatory and signaling mechanisms. Moreover, PPIs are often dynamic and context-specific, varying across tissues, cell types, and conditions. Modeling them as static interactions overlooks this critical aspect of biological systems. For future work, we plan to extend PRING to support multi-type interactions and incorporate conditional PPIs under different biological contexts. This will enable more accurate and versatile benchmarking for real-world applications.

C Dataset Documentation

C.1 Data Sources

In this work, we construct the PPI benchmark dataset using data integrated from multiple public data sources. For PRING PPI network, we select UniProt, Reactome, IntAct, and STRING as our primary source databases. These databases are chosen based on the following considerations: 1) They collectively provide high-quality annotations and broad biological coverage; 2) Most other PPI databases either overlap substantially with these sources (*e.g.*, BioGrid [109], MINT [110]) or exhibit limited scope and lower data reliability (*e.g.*, HuRI [111], PrePPI [112]); 3) These four resources are widely recognized and commonly adopted within the bioinformatics community [113, 114].

For function-oriented tasks, the data includes Gene Ontology (GO), and the Consensus CDS (CCDS) project. License information for each source is provided in Tab. 4.

UniProt. UniProt is a well-known comprehensive resource for protein sequence and functional information. In our work, we fetch PPIs and species information through manually reviewed entries from Swiss-Prot – a section of UniProt to ensure high-quality protein annotations. The raw data are available at:

- https://ftp.uniprot.org/pub/databases/uniprot/current_release/knowledgebase/complete/uniprot_sprot.dat.gz
- https://ftp.uniprot.org/pub/databases/uniprot/current_release/ knowledgebase/complete/uniprot_sprot.fasta.gz

Reactome. Reactome is a curated knowledgebase of biological pathways and reactions. We take their high-quality PPIs to construct our dataset, and additionally collect protein - complex and pathway information to support the **protein complex pathway prediction** task (Sec. D.2.1). The raw data are available at:

- https://reactome.org/download/current/interactors/reactome.all_ species.interactions.tab-delimited.txt
- https://reactome.org/download/current/ComplexParticipantsPubMedIdentifiers_ human.txt
- https://reactome.org/download/current/Complex_2_Pathway_human.txt
- https://reactome.org/download/current/UniProt2Reactome.txt

IntAct. IntAct provides a free, open-source database system and analysis tools for molecular interaction data. We collect PPIs from IntAct to construct our dataset. The raw data of IntAct is available at:

https://ftp.ebi.ac.uk/pub/databases/intact/current/psimitab/intact.zip

STRING. STRING is a database of known and predicted PPIs, integrating evidence from multiple sources. Following common practice, we include only high-confidence interactions with their Combine Score > 0.7 in our dataset. The raw data is available at:

• https://stringdb-downloads.org/download

Gene Ontology. The Gene Ontology (GO) knowledgebase is the world's largest source of information on the functions of genes, which provides a structured vocabulary for annotating gene and protein functions across species. We extract GO terms related to our PPI networks to support the **GO enrichment analysis** task (Sec. D.2.2). The raw data is available at:

• http://current.geneontology.org/annotations/filtered_goa_uniprot_all_noiea.gpad.gz

CCDS. The Consensus CDS (CCDS) project provides a curated set of protein-coding regions that are consistently annotated across major genome databases. We fetch reliably annotated proteins from CCDS for our **essential protein justification** task (Sec. G.2.3). The raw data is available at:

• https://ftp.ncbi.nlm.nih.gov/pub/CCDS/current_human/

Table 4: Licenses of datasets used in this work.

Dataset	Usage	Licence	URL
UniProt	PPI dataset construction (curated data)	CC BY 4.0	https://www.uniprot.org/help/license
Reactome	PPI dataset construction (curated data) and relation information for Protein Complex Pathway Prediction task	CC0 1.0 Universal	https://reactome.org/about/news
IntAct	PPI dataset construction (curated data)	CC BY 4.0	https://www.ebi.ac.uk/intact/download
STRING	PPI dataset construction (high confidence data)	CC BY 4.0	https://string-db.org/cgi/access? footer_active_subpage=licensing
Gene Ontology	Functional annotation for GO Enrichment Analysis task	CC BY 4.0	https://geneontology.org/docs/ go-citation-policy
CCDS	Protein information for Essential Protein Justification task	License not specified (redistributed via Bioregistry under CC BY 4.0)	http://www.ncbi.nlm.nih.gov/CCDS

C.2 Collection Process

Our data collection process starts from UniProt, we first download the complete Swiss-Prot entries dat file and parse each protein record to identify the "CC -!- INTERACTION" section, e.g.

```
CC -!- INTERACTION:
CC P12345; Q8N1H7:XYZ_HUMAN (xeno); Xeno interaction [EMBL:ABC123];
CC P12345; Q9Y6K1:DEF_HUMAN; NbExp=3; IntAct=EBI-12345, EBI-67890;
```

If the interacting partners is a Swiss-Prot protein, we extract the interaction as a PPI entry. Additionally, we download the full Swiss-Prot FASTA file containing 573,230 protein sequences. Using the NCBI taxonomy ID specified in the FASTA headers (e.g., OX=9606), we extract protein sets for four representative species: Human (Homo sapiens, 9606), Arath (Arabidopsis thaliana, 3702), Yeast (Saccharomyces cerevisiae, 559292), and Ecoli (Escherichia coli, 83333).

We then download the complete contents file from IntAct and the Protein–Protein Interaction file from Reactome, extract all PPI entries, and filter them based on our constructed protein sets to retain only Swiss-Prot proteins from the four selected species. PPIs derived from UniProt, IntAct, and Reactome are considered curated, high-quality data. To further expand our dataset, we also download species-specific subsets from STRING for the four selected species, and retain only interactions with a combined score greater than 0.7 as high-confidence PPIs. These are merged with the curated PPIs to form our complete raw dataset.

To ensure fair evaluation of PPI models and minimize data redundancy, we first filter proteins to retain only those with sequence lengths between 50 and 1000. We then apply MMSeqs2 to cluster protein sequences and keep only those pairs with sequence identity $\leq 40\%$. Additionally, we remove proteins that share the same entry name across different species to eliminate functionally redundant cross-species homologs.

C.3 Statistical Analysis

To ensure transparency in dataset construction, we first report the detailed preprocessing steps for building the PPI benchmark. After retrieving interaction data from four curated databases, we first apply a protein-level filter (Fig. 2) to retain only experimentally verified proteins with annotated functions (SwissProt) and belonging to one of the four target species. This filtering step results in 15,043 Human, 13,271 Arath, 5,232 Yeast, and 3,855 E. coli proteins.

We then perform sequence similarity filtering (\leq 40%) using MMSeqs2, followed by function-based redundancy removal to eliminate homologous or functionally overlapping proteins across species.

- **Arath**: 7,487 proteins were removed by MMSeqs2, and 759 were excluded due to shared functions with Human, yielding 5,025 final proteins (↓62%).
- Yeast: 1,033 proteins were filtered by MMSeqs2, and 1,026 shared functions with Human, leaving 3,173 proteins (↓39%).
- Ecoli: 452 proteins were removed by MMSeqs2, and 207 due to function overlap, resulting in 3,196 proteins (↓17%).

After these filtering steps, we obtain the final PRING PPI network dataset.

Then, we conduct a statistical analysis of the fully processed PPI datasets obtained through the above pipeline, with results summarized as follows:

Fig. 7 illustrates the distributions of protein sequence lengths and node degrees across the four species in our processed PPI dataset. Protein lengths are constrained between 50 and 1000 amino acids, with most sequences falling in the 250–500 aa range, resembling a roughly normal distribution. The Human PPI network, benefiting from richer data coverage, exhibits a smoother and broader degree distribution with generally higher values. In contrast, the other three species show lower node degrees overall, indicating sparser interaction networks.

Tab. 5 summarizes key statistics of the processed PPI datasets across the four selected species. The number of proteins and interactions varies notably after the filter process, with Human (contributing the training set) having the largest network (129,861 interactions among 10,090 proteins), while Yeast and Ecoli have more compact networks. In terms of the topology, Human exhibits the smallest diameter and average path length, suggesting a denser and more interconnected PPI network. In

Table 5: Summary statistics of processed PPI dataset across species.

Species	PPI Count	Protein Count	Avg. Degree	Avg. Seq. Len	Diameter	Avg. Path Len
Human	129,861	10,090	25.74	429.55	11	3.64
Arath	23,584	5,025	9.39	417.10	15	5.62
Yeast	15,921	3,173	10.04	413.52	19	5.23
Ecoli	17,452	3,196	10.92	310.67	14	4.81

contrast, Arath shows a larger diameter and average shortest path length, indicating a more fragmented or modular interaction structure.

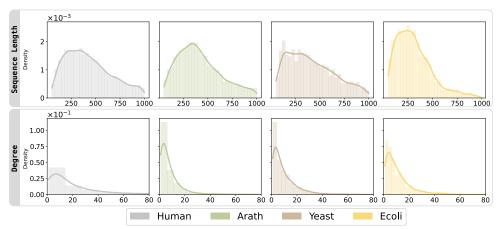


Figure 7: Distribution of protein sequence lengths (top row) and node degrees in the PPI network (bottom row) across four species in our dataset. (The y-axis indicates the density for both distributions)

D Task Documentation

This section outlines the formal definitions of each task included in PRING and details the corresponding evaluation metrics used to assess model performance.

D.1 Topology-oriented Task

This task assesses whether PPI prediction models can learn and preserve the underlying topological structure of PPI networks. To this end, PRING requires each model to reconstruct the PPI network from pairwise predictions and evaluates the result using graph-level metrics.

Formally, given a PPI graph with N proteins, each protein is represented by features $x_i = \{s_i, c_i\}$ for $i = 1, \ldots, N$, where s_i denotes the amino acid sequence and c_i denotes any auxiliary context information. A model f predicts an interaction label for each protein pair (i, j), where $1 \le i < j \le N$, as follows:

$$I_{i,j}^{\text{pred}} = f(x_i, x_j) \in \{0, 1\}.$$
 (2)

Here, $I_{i,j}^{\text{pred}} = 1$ indicates a predicted interaction, and 0 indicates no interaction.

The reconstructed PPI network is then formed by aggregating all predicted positive interactions:

$$G^{\mathrm{pred}} = \mathrm{Aggregate} \big\{ (i,j) \mid I^{\mathrm{pred}}_{i,j} = 1, \ 1 \leq i < j \leq N \big\}. \tag{3}$$

Finally, the reconstructed graph G^{pred} is evaluated against the ground-truth graph G^{true} using a suite of graph-level metrics detailed below.

We consider two subtasks to evaluate the intra-species and cross-species capabilities of PPI prediction models. Below, we detail the task definitions and corresponding evaluation protocols.

D.1.1 Comparison of Different Traversal Strategies

Since our primary focus is on protein-protein interaction (PPI) networks, we consider three widely used graph traversal strategies for sampling: breadth-first search (BFS), depth-first search (DFS), and

random walk (RW). Each of these strategies captures different topological and biological characteristics of PPI networks. The distinct features they emphasize are summarized below, as shown in Tab. 6.

Table 6: PPI subgraph structural characteristics and biological network types corresponding to different sampling strategies.

Sampling Strategy	Biological Network Structure	Functional Module Example	Citation
BFS	Locally dense structures, such as protein complexes, modules	Ribosomal protein complex, intra- cellular signaling module	[115]
DFS	Chain/tree structures, such as signaling or metabolic pathways	MAPK signaling pathway, glycolysis metabolic pathway	[116]
RW	Hub-dominant structures, such as regulatory networks and pan-functional networks	TP53 regulatory network, transcription factor network	[117]

D.1.2 Intra-species PPI network Construction

This task focuses on the Human species, following the same intra-species setting used in prior studies [17, 19]. The full Human PPI graph is partitioned into training and test subgraphs with an 8:2 split, using a leakage-free protocol to avoid data contamination. This results in a training subgraph of 8,072 proteins and a test subgraph of 2,018 proteins with no protein overlap. To examine how subgraph topology and size affect model performance, we sample 500 subgraphs from the test sets, each ranging from 20 to 200 nodes, using three traversal algorithms: breadth-first search (BFS), depth-first search (DFS), and random walk (RW). These traversal strategies can be associated with distinct biological network types. BFS captures densely connected local neighborhoods, making it suitable for modeling protein complexes and functional modules characterized by high intra-cluster interaction density [115]. DFS, in contrast, tends to generate chain-like or tree-structured subgraphs, resembling the topology of signaling or metabolic pathways, where interactions follow a directional flow [116]. Random walk explores the network probabilistically and is more likely to visit hub proteins, aligning with regulatory or hub-based networks that reflect transcriptional or cellular control systems [117, 118]. By leveraging these biologically motivated sampling strategies, we systematically evaluate how PPI models generalize across different local topologies.

Since existing PPI models are trained on protein pairs, we generate training data by sampling positive and negative protein pairs from the training subgraph in a 1:1 ratio, and further divide them into 80% for training and 20% for validation, following protocols in [46]. In total, this yields 85,824 training pairs, 21,456 validation pairs, and 500 test subgraphs per traversal strategy for topological evaluation.

D.1.3 Cross-species PPI network Construction

To assess cross-species generalization, models trained on Human PPIs are used to reconstruct networks in three additional species: *Arath, Ecoli*, and *Yeast*. For each species, we sample 500 subgraphs ranging from 20 to 200 nodes using BFS, DFS, and RW, yielding 500 test graphs per traversal method per species for evaluation.

D.1.4 Evaluation Metrics

Both intra-species and cross-species PPI network construction tasks are evaluated under five graph-level metrics, which are widely used in graph-generation tasks.

Graph Similarity (**GS**) [87]. Graph similarity primarily quantifies the edge differences between the predicted and ground-truth graphs, as the node set in the PPI graph remains unchanged. Mathematically, it is defined as:

Graph Similarity =
$$1 - \frac{\|\hat{A} - A\|_1}{|E| + |\hat{E}|},$$
 (4)

where $A \in \{0,1\}^{N \times N}$ is the adjacency matrix of the ground-truth graph G^{true} , $\hat{A} \in \{0,1\}^{N \times N}$ is the adjacency matrix of the predicted graph G^{pred} . E and \hat{E} are the sets of edges in the ground-truth and predicted graphs, respectively.

This metric ranges between 0 and 1, and a higher value indicates better alignment between the prediction and the ground truth.

Relative Density (RD) [88]. Relative density evaluates the extent of over- or under-prediction by comparing the edge density of the predicted network with that of the ground-truth network.

Relative Density =
$$\frac{|\hat{E}|/\binom{N}{2}}{|E|/\binom{N}{2}} = \frac{|\hat{E}|}{|E|}$$
 (5)

where N is the number of proteins in the PPI network, and |E| and $|\hat{E}|$ denote the number of edges in the ground-truth and predicted graphs, respectively.

A value of RD > 1 indicates over-prediction, while RD < 1 suggests under-prediction. An RD of 1 implies that the predicted graph has the same edge density as the ground truth.

Degree Distribution (Deg.) [89]. Degree distribution computes the discrepancy between node degree distributions of the predicted and ground-truth networks using maximum mean discrepancy (MMD) [90], providing a quantitative assessment of global structural differences in terms of connectivity patterns. However, the direct output of MMD lacks a reference scale and does not reflect the relative extent of discrepancy. To address this limitation, we follow prior work [89] and report a normalized ratio:

Degree Distribution (MMD) =
$$\frac{\text{MMD}^2(\text{pred}, \text{test})}{\text{MMD}^2(\text{test}, \text{test})}$$
, (6)

where **pred** and **test** denote sets of predicted and ground-truth PPI networks, respectively. Each network is first transformed into a degree histogram (*i.e.*, a vector summarizing its node degree distribution), and the MMD² is then computed over these histogram sets.

Ideally, the range of Deg. is equal to or larger than 1. A lower value of Deg. indicates better alignment of degree distributions, with a value close to 1 suggesting that the predicted networks are as similar to the test set as the test networks are to themselves.

Clustering Coefficient (Clus.) [89]. Clustering coefficient uses MMD to measure the discrepancy between the distributions of local clustering coefficients in the predicted and ground-truth networks, thereby assessing the preservation of community structure.

As with degree distribution, we compute the discrepancy in a relative form by normalizing the MMD² between the predicted and test sets. Each network is transformed into a histogram of local clustering coefficients, and the MMD is applied over these aggregated distributions.

Spectral [91]. Spectral calculates the discrepancy between eigenvalue spectra of normalized Laplacian matrices of predicted and true networks using MMD, reflecting global structural alignment.

Again, we report the relative discrepancy by normalizing the MMD² between predicted and test sets. Each network is represented by a vector of eigenvalues of its normalized Laplacian matrix, and MMD is applied over the resulting spectral distributions.

D.2 Function-oriented Task

Besides topology-based evaluation, we introduce three function-oriented tasks closely aligned with real-world biological applications. These tasks assess how well the reconstructed PPI networks preserve biologically meaningful properties and evaluate the practical applicability of existing models.

D.2.1 Protein Complex Pathway Prediction

Complex pathways refer to biological processes involving multiple proteins that interact with each other to perform coordinated cellular functions, which typically form densely connected subgraphs within the larger PPI network. Accurately reconstructing these pathways can enhance our understanding of disease mechanisms and support the development of targeted therapies [94, 95]. In this task, the model first predicts pairwise protein interactions based on the input protein complex pathways, then aggregates these predictions to construct predicted subgraphs G^{pred} , which are subsequently evaluated against the ground truth G^{true} . For fair evaluation, we curate 235 human protein complex pathways from Reactome [38], ensuring no protein overlap with the Human training graph. Pathway sizes range from 4 to 20 proteins.

The model's performance is evaluated using the following metrics:

Pathway Precision (PP). The proportion of predicted interactions within the complex pathway that are also present in the ground-truth subgraph:

Pathway Precision =
$$\frac{|E^{\text{pred}} \cap E^{\text{true}}|}{|E^{\text{pred}}|},$$
 (7)

where E^{pred} and E^{true} represent the sets of predicted and ground-truth interactions, respectively.

Pathway Recall (PR). The proportion of ground-truth interactions within the complex pathway that are successfully recovered by the prediction:

Pathway Recall =
$$\frac{|E^{\text{pred}} \cap E^{\text{true}}|}{|E^{\text{true}}|},$$
 (8)

where E^{pred} and E^{true} represent the sets of predicted and ground-truth interactions, respectively.

Pathway Connectivity (PC). The fraction of predicted pathway subgraphs that form a single connected component, reflecting biological plausibility:

Pathway Connectivity =
$$\frac{1}{N} \sum_{i=1}^{N} \left[G_i^{\text{pred}} \text{ is connected} \right],$$
 (9)

where N is the total number of pathways.

D.2.2 GO Enrichment Analysis

GO enrichment connects network topology with biological function, supporting gene annotation and pathway discovery [96]. This task evaluates whether reconstructed PPI networks preserve functional coherence by comparing enriched GO terms of predicted communities to those of the ground-truth network. Specifically, we reconstruct the Human test subgraph (2,018 proteins) using a trained PPI prediction model, detect communities via the Louvain algorithm [97], and perform GO enrichment using g: Profiler [98] tool across three ontologies: Molecular Function (MF), Biological Process (BP), and Cellular Component (CC).

Evaluations are conducted under two metrics:

Functional Alignment (FA). Measures the average Jaccard similarity between the enriched GO terms of each predicted cluster and its best-matching ground-truth cluster:

Functional Alignment =
$$\frac{1}{K} \sum_{i=1}^{K} \max_{j} \frac{|T_i^{\text{pred}} \cap T_j^{\text{true}}|}{|T_i^{\text{pred}} \cup T_j^{\text{true}}|},$$
 (10)

where K is the number of predicted clusters, and T_i^{pred} , T_j^{true} are the sets of enriched GO terms in the ith predicted cluster and jth ground-truth cluster, respectively.

A higher functional alignment score ($0 \le FA \le 1$) indicates better functional alignment between predicted and ground-truth communities

Consistency Ratio (**CR**). Compares the average within-cluster GO term similarity in the predicted network to that in the ground-truth network:

$$CR = \frac{1}{K} \sum_{i=1}^{K} \frac{\text{Jaccard}(T_i^{\text{pred}})}{\max_{j} \text{Jaccard}(T_j^{\text{true}})},$$
(11)

where K is the number of predicted clusters, $T_i^{\rm pred}$ denotes the set of GO terms associated with proteins in the ith predicted cluster, and Jaccard (T_i) is the average pairwise Jaccard similarity between the GO term sets of all protein pairs within cluster i. For each predicted cluster i, the denominator uses the best-matching ground-truth cluster j.

A consistency ratio (0 \leq CR \leq 1) close to 1 indicates stronger preservation of functional coherence within clusters.

D.2.3 Essential Protein Justification

Essential proteins are critical for an organism's survival and often occupy central positions in PPI networks [99, 100]. A reliable model should differentiate essential from non-essential proteins based on node degree or centrality in the reconstructed network [101]. In this task, we use the Human test subgraph (2,018 proteins) as the evaluation set and annotate essential and non-essential proteins using CCDS [102] and UniProt [37]. Specifically, we select 100 essential and 100 non-essential proteins whose centrality scores [99] differ significantly, with p value less than 10^{-4} (See Fig. 4(a)).

Trained models are used to reconstruct the Human test graph, and performance is assessed using the following metrics:

Precision@K (P@K). Measures the proportion of essential proteins among the top K nodes ranked by network centrality scores:

$$\operatorname{Precision@K} = \frac{|\operatorname{Top}_K \cap \operatorname{Essential}|}{K} \tag{12}$$

where Top_K denotes the set of $\mathrm{top}\text{-}K$ nodes ranked by centrality in the reconstructed graph, and Essential is the set of ground-truth essential proteins. We set K=100 in this study.

Distribution Overlap (DO). Quantifies the distribution overlap between the centrality score of essential and non-essential proteins using the area under the minimum of their probability density functions (PDFs):

Distribution Overlap =
$$\int_{-\infty}^{\infty} \min \left(p_{\text{essential}}(x), \, p_{\text{non-essential}}(x) \right) dx \tag{13}$$

where $p_{\text{ess}}(x)$ and $p_{\text{non}}(x)$ are the estimated PDFs of the centrality scores for essential and non-essential proteins, respectively.

Lower values of distribution overlap indicate better separability between essential and non-essential proteins, while higher P@K reflects stronger prioritization of biologically important proteins.

E Baseline Models

This section introduces the baseline models evaluated in our benchmark.

E.1 Sequence Similarity-based Method

SPRINT [52]. SPRINT is a high-throughput, alignment-based method that identifies PPIs by searching for local sequence similarities between query proteins and known interacting pairs. It uses a spaced seed hashing mechanism to locate short, conserved motifs and then filters out nonspecific matches to improve precision. By avoiding supervised learning, it remains model-free and does not require negative sampling, making it computationally efficient to full proteome predictions. We access the codebase via https://github.com/lucian-ilie/SPRINT.

E.2 Naive Sequence-based Method

PIPR [48]. PIPR employs a Siamese residual RCNN to learn complex interaction features directly from protein sequences. Each protein is embedded using a property-aware amino acid encoding, followed by convolutional and recurrent layers to extract both short-term motifs and long-range dependencies. PIPR is trained end-to-end to predict whether two sequences interact, making it effective for pairwise classification, though limited in capturing higher-level network structures. The source code is provided in https://github.com/muhaochen/seq_ppi.

D-SCRIPT [17]. D-SCRIPT bridges the gap between sequence and structure by predicting physical interactions via inferred inter-residue contact maps. It uses pretrained structure-aware embeddings, which are then projected into a contact space using a convolutional scoring module. A key innovation is its regularization mechanism that enforces structural plausibility, even without access to actual 3D structures. The prediction of the contacts between proteins enables its interpretability. We use the recommended implementation method in https://d-script.readthedocs.io/en/stable/usage.html.

Topsy-Turvy [56]. Topsy-Turvy integrates bottom-up sequence modeling with top-down global network patterns. During training, it incorporates graph-derived supervision to infuse sequence embeddings with knowledge of network-level interactions. The model retains only sequence input at test time, allowing practical use in non-model organisms. We use the recommended implementation method in https://d-script.readthedocs.io/en/stable/usage.html.

E.3 Protein Language Model-based Method

PPITrans [19]. PPITrans leverages protein language models (PLMs) for generalizable PPI prediction, using ProtT5 [62] to encode contextual sequence embeddings. A transformer encoder is applied to model pairwise interactions from these embeddings. The model demonstrates strong cross-species performance, suggesting that PLM-derived representations capture semantic and functional signals relevant to interaction propensity and are transferable across evolutionary distances. We follow the codebase in https://github.com/LtECoD/PPITrans.

TUnA [64]. TUnA extends PLM-based PPI prediction by incorporating uncertainty estimation. It uses ESM-2 embeddings [25] as input to transformer layers and employs a spectral-normalized neural Gaussian process as the output layer to quantify prediction confidence. This design enables TUnA to provide calibrated interaction scores, which are particularly valuable for prioritizing high-confidence predictions in large-scale or experimental screening settings. Implementation is followed by https://github.com/Wang-lab-UCSD/TUnA.

PLM-interact [63]. PLM-interact jointly encodes protein pairs by concatenating sequences and feeding them into ESM-2 [25], enabling attention mechanisms to directly model inter-sequence dependencies. This paired encoding strategy captures interaction-specific features, such as coevolutionary signals and cross-residue contacts, allowing the model to effectively learn the "language of interactions". The official implementation is provided in https://github.com/liudan111/PLM-interact.

E.4 Structure-based Method

Struct2Graph [65]. Struct2Graph models PPIs using graph neural networks (GNNs) over residue-level graphs constructed from 3D protein structures. It employs a dual GNN encoder with shared weights and a mutual attention mechanism to highlight interfacial regions between proteins. By capturing spatial geometry and residue connectivity, the model effectively identifies structural determinants of binding. A key limitation, however, is its reliance on experimentally resolved structures from the Protein Data Bank (PDB), which constrains its applicability to proteins with unknown 3D conformations. The source code is provided in https://github.com/baranwa2/Struct2Graph.

TAGPPI [66]. TAGPPI introduces structure-aware learning by combining predicted contact maps with sequence features. It uses residue—residue graphs as input to a GNN and supplements them with a 1D CNN over the raw sequence. The fusion of these modalities enables TAGPPI to benefit from structural topology even when only sequence input is available. The model outperforms prior sequence-only methods and shows robustness across different organisms, validating the utility of predicted structures for downstream functional tasks. The source code is given in https://github.com/xzenglab/TAGPPI.

RF2-Lite [70]. RF2-Lite is a lightweight derivative of RoseTTAFold2 [106] tailored for high-throughput PPI screening. It uses paired multiple sequence alignments (MSAs) and a reduced multitrack architecture to predict inter-chain distance maps efficiently. Although less accurate than full-fledged structure predictors, RF2-Lite achieves strong performance with dramatically lower inference time, making it suitable for proteome-scale predictions. We follow the recommended implementation in https://github.com/SNU-CSSB/RF2-Lite.

Chai-1 [107]. Chai-1 is a state-of-the-art, multi-modal foundation model developed by the Chai Discovery team for molecular structure prediction. It is highly effective at predicting the structures of proteins, small molecules, DNA, RNA, and covalently modified compounds. Unlike other structure prediction models that rely heavily on multiple sequence alignments (MSAs), Chai-1 can perform effectively in single-sequence mode while maintaining high accuracy. A standout feature of Chai-1 is its ability to incorporate experimental data, such as epitope conditioning, to enhance prediction accuracy, particularly in antibody-antigen interactions. This integration can significantly improve performance, making it a valuable tool in antibody engineering and drug discovery. We use the source code provided in https://github.com/chaidiscovery/chai-lab.

F Experimental Settings

We follow the recommended hyperparameters provided in each model's official codebase, as these settings have demonstrated strong performance on their respective benchmarks. We assume these configurations to be robust and generalizable across diverse evaluation scenarios.

Specifically, PLM-interact (35M and 650M variants) is used in inference mode with publicly released pre-trained weights. Due to computational constraints, RF2-Lite is evaluated on only 10% of the test graphs (a graph is randomly sampled for each node size for evaluation). All other baseline models are trained from scratch. In addition, we conduct a case study of Chai-1 on just three Human graphs (node sizes range from 20 to 60). For the binary-based PPI prediction models, we use the default probability threshold of 0.5 to distinguish between interacting and non-interacting pairs.

The experiments are conducted on heterogeneous hardware platforms. For the SPRINT, which does not need GPUs for inference, the experiments are done on Kunpeng-920, a 64-core platform. For the model trained from scratch, NVIDIA A100-PCIE-40GB is used with the same CPU support. Additionally, for the RF2-Lite and Chai-1, the experiments are conducted on NVIDIA-A800-SXM4-80GB. Since RF2-Lite requires MSAs as input, we use Uniref90 [105] as the search database with GPU-accelerated version of MMseq2 [119]. Given that Chai-1 performs well without the use of MSAs or templates, and that generating MSAs is computationally intensive, we opt to use single-sequence inputs exclusively.

G Experimental Results

We present detailed results for all evaluated models across both topology-oriented (Sec. G.1) and function-oriented tasks (Sec. G.2). The following sections offer a comprehensive comparison of model performance, highlighting their ability to preserve structural properties and capture biologically meaningful patterns.

For topology-oriented tasks, we additionally report standard classification metrics for all baseline models to provide complementary insights. The test dataset used for classification follows the evaluation protocol established in prior work [46].

We further include the complete test results from the ablation study on varying positive-to-negative PPI training ratios in Sec. G.3. We analyze the impact of different probability thresholds on the trade-off between precision and recall in Sec. G.4 as well.

Additionally, we include a case study on Chai-1 [107] in Sec. G.5, a state-of-the-art protein structure prediction model, to evaluate its potential in PPI network construction.

Finally, we conduct a scaling-law analysis in Sec. G.6 to investigate how model size correlates with graph-level performance, offering insights into the trade-offs between model complexity and predictive accuracy.

G.1 Topology-oriented Task

Table 7: Graph-level results of intra-species (Human) PPI network construction task. We use three color scales of blue to denote the **first**, **second**, and **third** best performance. **RD** closer to 1 is better.

Sa	mpling Method	1		BFS	;			DFS					RW				Avg.
Category	Model	GS↑	$RD \rightarrow$	Deg.↓	Clus.↓	Spectral↓	GS↑	$\mathbf{RD} {\rightarrow}$	Deg.↓	Clus.↓	Spectral↓	GS↑	$RD \rightarrow$	Deg.↓	Clus.↓	Spectral↓	Rank
Seq. Sim.	SPRINT	0.227	1.61	10.9	12.5	11.2	0.145	5.91	316	207	53.8	0.178	1.32	17.9	26	15.1	3
Naive Sequence	PIPR D-SCRIPT Topsy-Turvy	0.209 0.215 0.183	4.39 1.13 1.74	81.7 15.4 17.3	40.5 18.8 11.4	36.2 29.7 14.6	0.0749 0.123 0.130	12.3 6.40 3.22	518 302 180	335 237 201	77.0 67.0 65.9	0.196 0.209 0.232	5.75 5.82 4.88	165 134 104	107 64.8 64.8	41.1 52 36.7	11 8 5
PLM	PPITrans TUnA PLM-interact (35M) PLM-interact (650M)	0.362 0.342 0.383 0.396	3.39 2.99 2.29 1.64	52.2 47.8 24.4 30.9	29.1 30.2 16.0 14.8	26.3 22.9 12.8 16.5	0.314 0.289 0.322 0.350	4.54 4.44 2.85 2.03	418 416 209 236	270 272 78.2 63.6	46.6 46.0 36.3 42.2	0.449 0.450 0.429 0.491	2.57 2.23 2.47 1.76	71.9 55.4 52.6 50.3	46.1 42.5 22.6 21.2	19.6 13.7 13.6 15.4	5 4 2 1
Structure	Struct2Graph TAGPPI RF2-Lite	0.27 0.283 0.227	5.58 4.56 0.524	95.1 70.8 43.8	50.5 36.2 31.7	39.2 29.5 34.9	0.132 0.143 0.243	10.8 9.94 1.10	508 491 226	321 309 39.3	67.6 65.3 61.8	0.237 0.256 0.171	5.83 4.87 0.514	155 127 81.7	103 74.2 73.9	38.3 28.6 60.9	10 9 7

G.1.1 Intra-species PPI Network Construction

Tab. 7 and Tab. 8 report the performance of all models on graph-level and binary classification metrics, respectively. A detailed analysis of the graph-level results is provided in Sec. 4.3.1.

Table 8: Binary classification results of intra-species (Human) test set. We use three color scales of blue to denote the first, second, and third best performance.

Category	Model	Accuracy [†]	Precision [↑]	Recall [↑]	F1↑	AUPR↑	Avg. Rank
Seq. Sim.	SPRINT	0.545	0.607	0.257	0.361	0.527	7
Naive Sequence	PIPR D-SCRIPT Topsy-Turvy	0.559 0.505 0.508	0.557 0.597 0.596	0.581 0.104 0.120	0.568 0.144 0.160	0.565 0.539 0.541	5 10 9
PLM	PPITrans TUnA PLM-interact (35M) PLM-interact (650M)	0.674 0.647 0.640 0.671	0.657 0.676 0.653 0.735	0.738 0.563 0.597 0.534	0.694 0.614 0.623 0.619	0.769 0.720 0.706 0.707	1 1 4 3
Structure	Struct2Graph TAGPPI	0.515 0.545	0.511 0.536	0.696 0.672	0.589 0.596	0.507 0.524	8 6

Overall, the model rankings based on binary classification metrics are broadly consistent with those based on graph-level metrics, with PLM-based approaches outperforming other model types. Notably, PPITrans and TUnA achieve the highest classification scores, while PLM-interact demonstrates superior performance in reconstructing the overall PPI network topology.

Table 9: Graph-level results of cross-species (Human to Arath) PPI network construction task. We use three color scales of blue to denote the **first**, **second**, and **third** best performance. **RD** closer to 1 is better.

Sa	mpling Method	1		BFS	;				DFS					RW			Avg.
Category	Model	GS↑	$RD \!\! \to \!\!$	Deg.↓	Clus.↓	Spectral↓	GS↑	$RD\!\!\to\!$	Deg.↓	Clus.↓	$\textbf{Spectral} \downarrow$	GS↑	$RD\!\!\to$	Deg.↓	Clus.↓	Spectral↓	Rank
Seq. Sim.	SPRINT	0.200	1.27	10.5	15.7	21.0	0.149	2.06	9.11	108	40.5	0.204	0.847	11.8	20.8	28.2	3
Naive	PIPR D-SCRIPT	0.211	5.23 1.31	101	67.4 27.0	33.9 37.5	0.0886	11.9 8.09	80.7 55.6	306 241	64.9 67.1	0.219 0.247	5.47 6.27	123 118	81.1 57.0	35.7 53.3	10
Sequence	Topsy-Turvy	0.167	1.91	21.6	20.5	15.6	0.111 0.153	2.32	13.0	123	61.3	0.247	3.90	60.5	33.0	30.6	4
PLM	PPITrans TUnA PLM-interact (35M)	0.330 0.310 0.304	4.97 4.47 2.50	59.6 62.9 23.8	47.7 45.3 13.5	32.5 26.1 20.2	0.250 0.242 0.227	6.62 6.41 4.26	62.0 68.6 35.4	252 248 124	54.9 48.6 34.6	0.423 0.382 0.339	2.79 2.91 1.78	45.6 58.7 13.5	28.9 30.2 7.49	28.8 22.6 16.3	5 2
	PLM-interact (650M)	0.364	1.59	25.8	13.7	19.2	0.276	2.38	37.0	108	32.7	0.445	1.26	22.7	12.6	19.2	ĩ
Structure	Struct2Graph TAGPPI RF2-Lite	0.241 0.258 0.104	7.10 5.89 0.470	118 87.7 49.8	76.4 55.5 87.2	37.7 29.5 52.4	0.130 0.145 0.161	14.2 12.8 1.08	83.9 82.0 7.59	349 328 167	69.8 64.0 43.9	0.242 0.265 0.184	5.38 4.24 0.442	109 79.0 30.0	60.9 45.1 51.8	30.9 22.4 43.8	11 8 7

Table 10: Binary classification results of cross-species (Human to Arath) test set. We use three color scales of blue to denote the first, second, and third best performance.

Category	Model	Accuracy [†]	Precision [↑]	Recall [↑]	F1↑	AUPR↑	Avg. Rank
Seq. Sim.	SPRINT	0.552	0.702	0.181	0.287	0.537	7
Naive Sequene	PIPR D-SCRIPT Topsy-Turvy	0.579 0.509 0.501	0.568 0.734 0.696	0.659 0.118 0.118	0.610 0.155 0.158	0.586 0.570 0.556	4 9 10
PLM	PPITrans TUnA PLM-interact (35M) PLM-interact (650M)	0.748 0.702 0.621 0.661	0.757 0.758 0.706 0.811	0.731 0.593 0.413 0.420	0.744 0.665 0.521 0.554	0.827 0.780 0.677 0.757	1 2 5 3
Structure	Struct2Graph TAGPPI	0.507 0.522	0.505 0.518	0.671 0.655	0.576 0.578	0.503 0.512	7 6

Table 11: Graph-level results of cross-species (Human to Yeast) PPI network construction task. We use three color scales of blue to denote the **first**, **second**, and **third** best performance. **RD** closer to 1 is better.

Sa	mpling Method			BFS					DFS				RW				Avg.
Category	Model	GS↑	$RD \!\! \to \!\!$	Deg.↓	Clus.↓	Spectral↓	GS↑	$RD {\rightarrow}$	Deg.↓	Clus.↓	Spectral↓	GS↑	$RD {\rightarrow}$	Deg.↓	Clus.↓	Spectral↓	Rank
Seq. Sim.	SPRINT	0.242	1.04	12.8	20.2	16.5	0.171	1.72	52.1	130	31.6	0.256	1.65	19.8	42.1	18.2	2
Naive	PIPR	0.196	4.35	90.0	49.9	30.2	0.0957	8.96	531	278	50.6	0.173	6.38	180	92.2	38.4	11
	D-SCRIPT	0.168	1.14	14.2	26.5	34.8	0.106	5.28	221	189	49.7	0.202	8.04	173	90.3	59.1	7
Sequence	Topsy-Turvy	0.142	1.55	11.6	14.2	10.9	0.130	2.58	115	101	28.5	0.186	5.12	100.0	50.1	35.0	4
	PPITrans	0.348	4.43	55.4	35.1	30.8	0.200	8.15	397	257	49.0	0.339	4.44	95.3	50.1	35.0	6
PLM	TUnA	0.332	3.60	57.7	37.8	22.6	0.219	5.47	414	225	36.1	0.323	4.07	119	56.0	26.3	5
FLIVI	PLM-interact (35M)	0.314	2.34	24.0	12.5	15.5	0.189	3.95	202	119	29.4	0.305	2.82	49.7	21.3	17.4	3
	PLM-interact (650M)	0.354	1.90	25.8	12.7	14.1	0.258	3.04	232	85.8	27.9	0.365	2.10	51.3	19.4	13.8	1
	Struct2Graph	0.256	5.89	115	68.4	37.1	0.139	11.6	546	337	55.8	0.211	6.87	178	97.7	41.1	9
Structure	TAGPPI	0.279	4.82	91.7	58.8	28.8	0.154	10.1	519	311	51.2	0.230	5.67	151	78.6	31.6	8
	RF2-Lite	0.136	0.361	71.6	91.0	73.7	0.179	0.699	158	170	54.1	0.138	0.359	89.1	127	69.6	10

Table 12: Binary classification results of cross-species (Human to Yeast) test set. We use three color scales of blue to denote the first, second, and third best performance.

Category	Model	Accuracy [†]	Precision [↑]	Recall↑	F1↑	AUPR↑	Avg. Rank
Seq. Sim.	SPRINT	0.554	0.620	0.280	0.386	0.534	7
Naive Sequene	PIPR D-SCRIPT Topsy-Turvy	0.552 0.516 0.509	0.551 0.554 0.529	0.558 0.167 0.168	0.555 0.256 0.255	0.563 0.523 0.506	5 9 10
PLM	PPITrans TUnA PLM-interact (35M) PLM-interact (650M)	0.729 0.689 0.615 0.660	0.700 0.688 0.655 0.743	0.806 0.690 0.484 0.490	0.749 0.690 0.557 0.590	0.815 0.766 0.667 0.725	1 2 4 3
Structure	Struct2Graph TAGPPI	0.511 0.528	0.508 0.521	0.709 0.696	0.592 0.596	0.506 0.514	8 5

Table 13: Graph-level results of cross-species (Human to Ecoli) PPI network construction task. We use three color scales of blue to denote the **first**, **second**, and third best performance. **RD** closer to 1 is better.

Sa	mpling Method			BFS	5				DFS					RW	,		Avg.
Category	Model	GS↑	$RD \rightarrow$	Deg.↓	Clus.↓	Spectral↓	GS↑	$RD \rightarrow$	Deg.↓	Clus.↓	Spectral↓	GS↑	$RD \rightarrow$	Deg.↓	Clus.↓	Spectral↓	Rank
Seq. Sim.	SPRINT	0.147	0.573	51.6	37.5	41.7	0.125	0.860	164	116	55.2	0.157	0.765	100.0	57.9	44.1	2
Naive Sequence	PIPR D-SCRIPT	0.172 0.159	5.27 1.78	144 20.6	46.3 30.5	45.2 40.2	0.0814 0.108	11.6 10.1	780 624	359 286	63.1 58.8	0.134 0.145	8.57 10.3	437 410	129 119	58.0 75.6	11 7
	Topsy-Turvy	0.220	5.54	132	43.6	39.0	0.0810	3.26	312	126	50.1	0.160	10.8	422	152	70.4	8
PLM	PPITrans TUnA	0.298	4.94 5.80	105 127	40.8 51.2	39.4 43.2	0.158	9.27 10.9	711 664	347 345	54.8 56.9	0.243	5.65 8.17	327 392	92.0 125	45.5 57.0	8
I Livi	PLM-interact (35M) PLM-interact (650M)	0.251	3.68 4.88	83.8 113	26.7 38.5	24.9 33.6	0.151 0.152	5.68 7.65	459 589	218 275	37.8 44.1	0.201	4.85 6.31	273 326	67.5 89.5	33.2 42.6	1 3
Structure	Struct2Graph TAGPPI RF2-Lite	0.210 0.237 0.152	5.22 4.88 0.395	144 136 116	54.1 54.1 86.7	37.7 35.0 78.9	0.0994 0.110 0.197	11.0 10.7 0.585	771 756 273	371 368 252	57.6 56.6 77.0	0.155 0.176 0.166	7.15 6.81 0.388	393 383 225	108 105 131	48.0 45.6 91.7	10 6 5

Table 14: Binary classification results of cross-species (Human to Ecoli) test set. We use three color scales of blue to denote the first, second, and third best performance.

Category	Model	Accuracy	Precision	Recall	F1	AUPR	Avg. Rank
Seq. Sim.	SPRINT	0.521	0.747	0.063	0.116	0.516	7
Naive Sequene	PIPR D-SCRIPT Topsy-Turvy	0.573 0.509 0.507	0.573 0.703 0.538	0.568 0.0782 0.211	0.571 0.120 0.219	0.578 0.548 0.539	5 6 9
PLM	PPITrans TUnA PLM-interact (35M) PLM-interact (650M)	0.617 0.624 0.580 0.609	0.591 0.598 0.593 0.599	0.820 0.756 0.507 0.660	0.682 0.667 0.547 0.628	0.718 0.675 0.610 0.638	1 1 4 3
Structure	Struct2Graph TAGPPI	0.500 0.516	0.500 0.514	0.543 0.581	0.520 0.546	0.500 0.508	10 7

G.1.2 Cross-species PPI network Construction

We report detailed experimental results for both graph-level and binary classification metrics in the cross-species evaluation setting.

Specifically,

- Tab. 9 and Tab. 10 present the results on **Arath**,
- Tab. 11 and Tab. 12 report the performance on Yeast, and
- Tab. 13 and Tab. 14 summarize the results on **Ecoli**.

These tables collectively illustrate how well models generalize to phylogenetically diverse species beyond the human training data.

We further account for numerical phylogenetic distance to provide a deeper understanding of cross-species generalization. To investigate this, we conducted an ablation study by computing the Pearson correlation between model performance and the estimated phylogenetic distance from Human. Specifically, we set the intra-species (Human \rightarrow Human) distance to 0, and adopt widely accepted phylogenetic estimates [120] for other species: Human \rightarrow Arath (1.5 Gyr), Human \rightarrow Yeast (1.2 Gyr), and Human \rightarrow Ecoli (3.6 Gyr), which consist the distance vector $\mathbf{d} = [0, 1.5, 1.3, 1.6]$. For given model M and performance metric (e.g., graph similarity (GS)), let $\mathbf{p}_m^M = [p_{\text{Human}}, p_{\text{Arath}}, p_{\text{Yeast}}, p_{\text{Ecoli}}]$

Table 15: Pearson correlation between phylogenetic distance and graph-level metrics.

Sampling	Method			BFS					DFS					Random W	alk	
Category	Method	$r(\mathbf{d}, \mathbf{p}_{GS})$	$r(\mathbf{d}, \mathbf{p}_{\mathrm{RD}})$	$r(\mathbf{d}, \mathbf{p}_{\mathrm{Deg.}})$	$r(\mathbf{d}, \mathbf{p}_{\text{Clus.}})$	$r(\mathbf{d}, \mathbf{p}_{\text{Spectral}})$	$r(\mathbf{d}, \mathbf{p}_{GS})$	$r(\mathbf{d}, \mathbf{p}_{\mathrm{RD}})$	$r(\mathbf{d}, \mathbf{p}_{\text{Deg.}})$	$r(\mathbf{d}, \mathbf{p}_{\text{Clus.}})$	$r(\mathbf{d}, \mathbf{p}_{\text{Spectral}})$	$r(\mathbf{d}, \mathbf{p}_{\mathrm{GS}})$	$r(\mathbf{d}, \mathbf{p}_{\mathrm{RD}})$	$r(\mathbf{d}, \mathbf{p}_{\text{Deg.}})$	$r(\mathbf{d}, \mathbf{p}_{\text{Clus.}})$	$r(\mathbf{d}, \mathbf{p}_{\text{Spectral}})$
Naive Seq.	D-SCRIPT	-0.82	0.94	0.61	0.92	0.93	-0.70	0.81	0.65	0.63	-0.30	-0.69	0.91	0.89	0.81	0.93
PLM	PPITrans TUnA	-0.98 -0.97	0.80 0.97	0.94 0.96	0.56 0.94	1.00 0.92	-0.90 -0.98	0.89 0.98	0.53 0.49	0.81 0.70	0.79 0.64	-0.91 -0.96	0.86 0.95	0.87 0.92	0.77 0.86	0.95 0.97
Structure	Struct2Graph	-0.98	-0.26	1.00	-0.01	-0.55	-0.85	-0.03	0.43	0.98	-0.53	-0.88	0.63	0.84	0.17	0.61

denotes the model's performance vector across the four species. We calculate the Pearson correlation $r(\mathbf{d}, \mathbf{p}_m^M)$ to quantify the relationship between phylogenetic distance and model performance. This analysis is conducted on four representative baselines, and are summarized in Tab. 15.

We find that phylogenetic distance is strongly correlated with model performance degradation across species. For all models and sampling strategies, GS consistently exhibits a strong negative correlation with phylogenetic distance (correlations typically < -0.7). This indicates that as phylogenetic distance increases, GS decreases—i.e., model predictions become less similar to the ground-truth network. Most other metrics show strong positive correlations with phylogenetic distance. This means that as the evolutionary gap widens, predicted networks increasingly diverge from true biological networks, reflected by higher RD, degree, clustering, or spectral values, all of which signal degraded performance.

Table 16: Alternative Cross-species Transfer.

Transfer I	Direction			Arath→A	rath				Arath→	Yeast				Arath→E	coli	
Category	Method	GS↑	$\mathbf{RD} \rightarrow$	Deg. ↓	Clus. ↓	Spectral \	GS↑	$\mathbf{RD} \rightarrow$	Deg. ↓	Clus. ↓	Spectral \	GS ↑	$\mathbf{RD} \rightarrow$	Deg. ↓	Clus. ↓	Spectral ↓
Naive Seq.	D-SCRIPT	0.407	2.24	38.4	11.6	19.0	0.288	3.68	52.3	25.0	28.9	0.243	6.11	121	46.1	44.1
PLM	PPITrans TUnA	0.470 0.548	2.96 1.54	43.7 22.6	31.4 19.1	17.8 14.4	0.376 0.378	4.68 3.87	78.0 58.5	50.8 42.9	35.8 27.0	0.312 0.302	5.14 5.39	138 129	51.4 49.9	44.1 42.1
Structure	Struct2Grap	n 0.352	2.59	67.0	70.5	16.3	0.266	4.84	92.9	62.1	30.6	0.218	5.53	145	61	38.8

In addition to the cross-species transfer direction presented in the main manuscript, we perform new experiments on botany-to-fungi (Arath \rightarrow Yeast) and botany-to-bacteria (Arath \rightarrow Ecoli) transfer learning. We followed the same data construction pipeline described in Sec. 3.1 to avoid data leakage. We focused on the BFS sampling strategy and evaluated four representative models. The results are presented in Tab. 16, and they confirm our previous experimental observation: cross-species generalization becomes more challenging with greater evolutionary divergence.

Specifically, compared to the intra-species setting (Arath \rightarrow Arath), the GS scores for Arath \rightarrow Yeast and Arath \rightarrow Ecoli decreased by 26% and 39%, respectively. Other graph-level metrics observe performance degradation as well, indicating the performance of the transfer learning decreases with the increased evolutionary distances.

G.1.3 Correlation Between Binary Classification Scores and Network Metrics

To investigate whether standard classification metrics reflect the structural quality of reconstructed PPI networks, we analyze their correlation with five topology-aware metrics across all evaluated models. We summarize some important discoveries in Fig. 8:

- Recall often distorts the network topology: Recall measures the proportion of true positives correctly identified. To achieve higher recall, the model typically predicts more edges to capture as many true interactions as possible, even at the cost of including false positives. This leads to a denser predicted graph, which deviates from the sparsity characteristic of real PPI networks, ultimately hurting the preservation of the original topological structure.
- **Precision tends to preserve network topology**: Precision measures the proportion of correct positive predictions. Improving precision requires minimizing false positives, which makes the model more conservative in predicting edges. As a result, the predicted graph becomes sparser and more aligned with the intrinsic sparsity of real PPI networks, thereby helping to preserve the underlying network topology.
- Composite metrics like F1-score and AUPR may hide topological differences: Since these metrics balance both precision and recall, they may yield high scores even when the predicted network substantially deviates from the true topology. As a result, their correlation with topological fidelity tends to be weak, potentially masking structural distortions in the predicted network.

These results underscore the importance of evaluating PPI prediction models beyond binary classification, as traditional metrics alone may fail to reflect structural coherence and biological relevance.

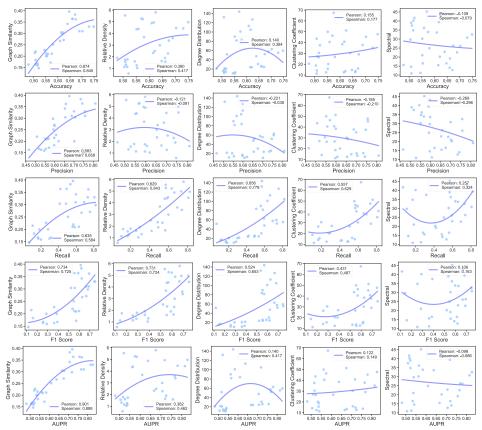


Figure 8: Correlation between binary classification metrics and graph-level topology metrics. Each subplot shows the Pearson and Spearman correlation between a classification metric and a graph-level metric. Lastly, a second-order polynomial regression is fit to the data to capture non-linear trends.

G.1.4 Impact of Subgraph Size on Topology-Oriented Performance

In the test subgraphs, as previously described, the node size ranges from 20 to 200. To investigate the impact of node size on model performance, we visualize the results in a bar plot, as shown in Fig. 9. We select PLM-interact (650M), the best-performing model overall, to assess how topological fidelity changes with subgraph scale. As node size increases, we observe a gradual decline in Graph Similarity, suggesting that reconstructing global structures becomes more challenging in larger subgraphs. Conversely, Relative Density, Clustering Coefficient (MMD), Degree Distribution (MMD), and Spectral (MMD) generally exhibit increasing trends, which indicate degraded alignment with the ground truth in these structural properties. These results suggest that larger PPI networks may exhibit more complex topological patterns, posing greater challenges for faithful reconstruction.

Table 17: Results for protein complex pathway prediction task. We use three color scales of blue to denote the first, second, and third best performance.

Category	Model	Pathway Recall↑	Pathway Precision ?	Pathway Connectivity \(\)	Avg. Rank
Seq. Sim.	SPRINT	0.526	0.856	0.752	6
Naive	PIPR	0.160	0.588	0.323	10
Sequene	D-SCRIPT	0.225	0.466	0.316	11
Sequene	Topsy-Turvy	0.240	0.613	0.338	9
	PPITrans	0.583	0.863	0.818	1
PLM	TUnA	0.526	0.864	0.794	3
PLM	PLM-interact (35M)	0.550	0.847	0.880	3
	PLM-interact (650M)	0.549	0.862	0.887	2
	Struct2Graph	0.413	0.742	0.608	8
Structure	TAGPPI	0.487	0.781	0.713	7
	RF2-Lite	0.554	0.874	0.135	5

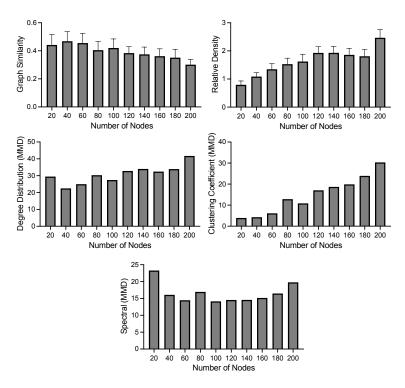


Figure 9: Effect of subgraph node size on graph-level metrics. The error bars indicate the 95% confidence intervals.

Table 18: Results for GO enrichment analysis task. We use three color scales of blue to denote the first, second, and third best performance.

	Category	GO	:BP	GO	:MF	GO	:CC	Ave	rage	l
Category	Model	FA↑	CR↑	FA↑	CR↑	FA↑	CR↑	FA↑	CR↑	Avg. Rank
Seq. Sim.	SPRINT	0.174	0.468	0.094	0.660	0.254	0.838	0.174	0.655	7
Naive Sequene	PIPR D-SCRIPT Topsy-Turvy	0.153 0.125 0.131	0.480 0.462 0.333	0.145 0.113 0.242	0.656 0.668 0.652	0.247 0.286 0.323	0.827 0.904 0.919	0.182 0.175 0.232	0.654 0.678 0.635	4 4 7
PLM	PPITrans TUnA PLM-interact (35M) PLM-interact (650M)	0.183 0.160 0.264 0.337	0.632 0.404 0.684 0.789	0.236 0.223 0.322 0.359	0.717 0.595 0.713 0.773	0.330 0.395 0.419 0.408	0.919 0.868 0.959 0.970	0.250 0.259 0.335 0.368	0.756 0.622 0.785 0.844	3 6 2 1
Structure	Struct2Graph TAGPPI	0.150 0.180	0.469 0.468	0.106 0.111	0.653 0.653	0.207 0.212	0.826 0.826	0.154 0.168	0.649 0.649	10 9

G.2 Function-oriented Task

G.2.1 Protein Complex Pathway Prediction

As shown in Tab. 17, PLM-based models outperform others, with PPITrans achieving the best overall performance. PLM-interact (650M) ranks second, excelling in pathway connectivity. While RF2-Lite shows strong precision, its low connectivity limits overall ranking. Among non-PLM methods, only SPRINT performs competitively, indicating that PLMs better capture complex-level functional organization.

G.2.2 GO Enrichment Analysis

In addition to the average scores across the three GO ontologies, Biological Process (BP), Molecular Function (MF), and Cellular Component (CC), we report detailed results for each category in Tab. 18. PLM-interact (650M) consistently achieves the highest performance across all GO categories, demonstrating strong functional coherence in its predicted networks. PLM-interact (35M) and PPITrans also perform competitively. Nevertheless, the low function alignment scores observed

across all models suggest that current PPI prediction methods still struggle to capture fine-grained functional modules, indicating room for further improvement.

Table 19: Results for essential protein justification task. We use three color scales of blue to denote the first, second, and third best performance.

Category	Model	Precision@100↑	Distribution Overlap↓	Avg. Rank
Seq. Sim.	SPRINT	0.54	0.727	3
Naive	PIPR	0.52	0.834	5
	D-SCRIPT	0.47	0.629	4
Sequence	Topsy-Turvy	0.43	0.755	7
	PPITrans	0.48	0.886	9
PLM	TUnA	0.57	0.849	5
PLIVI	PLM-interact (35M)	0.8	0.423	1
	PLM-interact (650M)	0.77	0.440	2
Structure	Struct2Graph	0.45	0.841	9
Structure	TAGPPI	0.43	0.828	8

G.2.3 Essential Protein Justification

The more detailed results analysis for the essential protein justification task is given in Tab. 19. Again, the PLM-interact series achieves the best performance Nevertheless, it should be noted that all baseline methods exhibit a relatively large distribution overlap between essential and non-essential proteins in the reconstructed PPI networks. This reflects the limited ability of current PPI prediction models to preserve functional properties such as node centrality, which may hinder their effectiveness in supporting downstream biological applications, including drug discovery and disease gene prioritization. In Fig. 10, we visualize the network centrality distributions for essential and non-essential proteins across all baseline models and compare them to the ground truth. The results further highlight the need to improve models' ability to preserve centrality signals to accurately identify essential proteins.

Table 20: Ablation results on the positive-to-negative ratio of training pairs under three sampling configurations.

								BFS								
Sampling	Method			Ratio 1	1:1				Ratio 1	:5			$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			
Category	Model	GS↑	$\mathbf{RD} \rightarrow$	Deg. ↓	Clus. ↓	Spectral ↓	GS↑	$\mathbf{RD} \rightarrow$	Deg. ↓	Clus. ↓	Spectral ↓	GS↑	$RD \rightarrow$	Deg. ↓	Clus. ↓	Spectral ↓
Naive Sequence	D-SCRIPT	0.215	1.13	15.4	18.8	29.7	0.032	0.0705	94.2	46.6	83.2	0.035	0.0400	116	54.1	97.2
PLM	PPITrans TUnA	0.362 0.342	3.39 2.99	52.2 47.8	29.1 30.2	26.3 22.9	0.393 0.346	1.17 1.14	8.12 10.7	7.37 9.06	10.9 8.77	0.374 0.314				16.4 17.3
Structure	Struct2Graph	0.270	5.58	95.1	50.5	39.2	0.236	4.11	62.6	35.2	25.6	0	5.71E-05	146	65.8	117
								DFS								
Sampling	Method			Ratio 1	1:1				Ratio 1	:5			R	atio 1:10		
Category	Model	GS↑	$RD \rightarrow$	Deg. ↓	Clus. ↓	Spectral	GS↑	$RD \rightarrow$	Deg. ↓	Clus. ↓	Spectral ↓	GS↑	$RD \rightarrow$	Deg. ↓	Clus. ↓	Spectral ↓
Naive Sequence	D-SCRIPT	0.123	6.40	302	237	67.0	0.0649	0.0545	518	137	136	0.089	0.27	413	112	107
PLM	PPITrans TUnA	0.314 0.289	4.54 4.44	418 416	270 272	46.6 46.0	0.433 0.417	2.19 1.49	213 127	153 85.6	28.3 19.7	0.520 0.414				38.0 38.9
Structure	Struct2Graph	0.132	10.8	508	321	67.6	0.118	7.29	430	282	50.9	1.74E-05	3.50E-05	593	154	145
							R	andom W	alk							
Sampling	Method			Ratio 1	l:1				Ratio 1	:5			R	atio 1:10		
Category	Model	GS↑	$RD \rightarrow$	Deg. ↓	Clus. ↓	Spectral ↓	GS↑	$RD \rightarrow$	Deg. ↓	Clus. ↓	Spectral \	GS ↑	$\mathbf{RD} \to$	Deg. ↓	Clus. ↓	Spectral ↓
Naive Sequence	D-SCRIPT	0.209	5.82	134	64.8	52.0	0.135	0.334	83.2	51.9	55.6	0.01	0.01	188	133	134
PLM	PPITrans TUnA	0.449 0.450	2.57 2.23	71.9 55.4	46.1 42.5	19.6 13.7	0.564 0.463	1.27 0.764	10.8 15.8	10.8 9.58	12.3 13.2	0.547 0.425	0.808 0.539	23.7 38.0	14.9 27.6	25 29.7
Structure	Struct2Graph	0.237	5.83	155	103	38.3	0.216	3.44	87.7	72.0	18.4	0	5.71E-05	197	135	140

G.3 Ablation Study on Positive-to-Negative Ratio

To examine the effect of class imbalance on PPI network reconstruction, we vary the positive-to-negative ratio of training pairs from 1:1 to 1:10 under three sampling configurations: BFS, DFS, and Random Walk. This setting reflects the inherent sparsity of real PPI networks, where non-interacting protein pairs largely outnumber interacting ones. We evaluate representative sequence-, PLM-, and structure-based models using five network-level metrics.

Tab. 20 reports the complete results. Across sampling strategies, moderate imbalance (e.g., 1:5) tends to improve the robustness of PLM-based models (PPITrans, TUnA), while excessive imbalance (1:10)

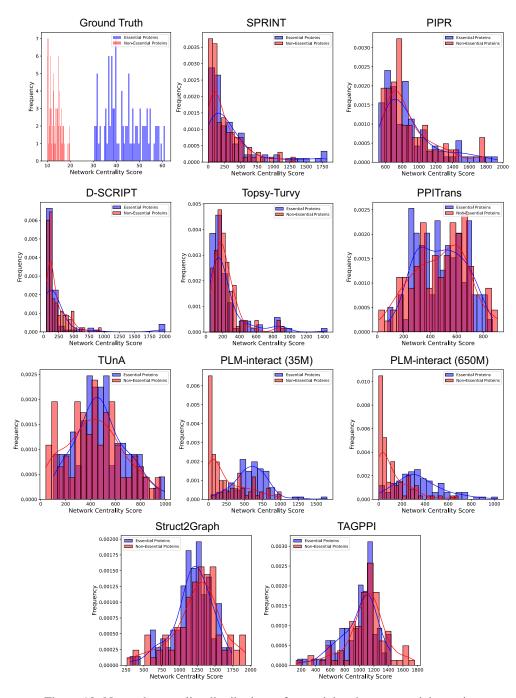


Figure 10: Network centrality distributions of essential and non-essential proteins.

causes performance degradation and overly sparse reconstructions. In contrast, simpler models such as D-SCRIPT and Struct2Graph deteriorate rapidly as the ratio increases, indicating their sensitivity to biased supervision.

G.4 Ablation Study on Probability Threshold

We evaluate how varying probability thresholds influence the balance between precision and recall across four representative models. As shown in Tab. 21, Struct2Graph and D-SCRIPT are highly sensitive to thresholding, with recall dropping sharply, indicating that a large portion of their prediction

Table 21: Effect of Probability Thresholds on Precision and Recall.

	PIP	R	D-SCR	IPT	PPITr	ans	Struct2Graph			
Threshold	Precision	Recall	Precision	Recall	Precision	Recall	Precision	Recall		
0.2	0.552	0.634	0.570	0.135	0.627	0.821	0.502	0.937		
0.3	0.554 0.615		0.582 0.115		0.651	0.769	0.504	0.900		
0.5	0.557	0.581	0.597	0.104	0.658	0.738	0.511	0.696		
0.7	0.561	0.550	0.764	0.067	0.753	0.535	0.532	0.007		
0.8	0.8 0.562 0.530		0.780	0.053	0.798	0.438	0.532	0.007		

scores have low confidence and are clustered around 0.5. In contrast, PIPR and PPITrans exhibit more stable trends: recall gradually decreases while precision increases as the threshold rises, suggesting a trade-off between the two metrics and a limited ability to maintain a strong balance.

G.5 Case Study

We aim to assess the effectiveness of Chai-1 in reconstructing PPI networks. Owing to computational constraints, we select three representative graphs from the Human species, with node sizes ranging from 20 to 60. The detailed experimental setup is provided in Apx. F, and the corresponding results are summarized in Tab. 22.

The results reveal three key observations: (1) Chai-1 fails to achieve satisfactory performance in reconstructing PPI networks, as evidenced by a GS score of only 0.263 on a graph with 60 nodes; (2) the performance decreases as the graph size increases—for instance, the GS score drops from 0.425 at 20 nodes to 0.263 at 60 nodes—highlighting the challenge posed by larger topological scales; and (3) Chai-1 typically overpredicts interactions, resulting in high false positive rates, as reflected by an RD score of 6.14 on the 60-node graph, which is consistent with prior findings [70].

Furthermore, we visualize the predictions of Chai-1 in Fig. 11 to support our observations: while the ground-truth PPI networks are generally sparse, Chai-1's predictions are considerably denser.

Table 22: Graph-eval results of the Chai-1 on three graphs. **RD** closer to 1 is better.

Noo	le Size			20					40			60				
Categor	Model	GS↑	$\textbf{RD}{\rightarrow}$	Deg.↓	Clus.↓	$Spectral \downarrow$	GS↑	$RD\!\!\to$	Deg.↓	Clus.↓	$Spectral \downarrow$	GS↑	$RD\!\!\to$	Deg.↓	Clus.↓	Spectral↓
Structure	Chai-1	0.425	3.33	0.522	0.338	0.574	0.346	4.380	0.449	0.384	0.563	0.263	6.14	0.787	0.666	0.747

G.6 Scaling Analysis

Fig. 12 illustrates the graph similarity score against the size of the PPI prediction models. Overall, larger models tend to achieve better network reconstruction performance. The best model, PLM-interact (650M), reaches a graph similarity score of 0.41. Some structure-based models, such as Struct2Graph and TAGPPI, have comparable sizes to PLM-based models but fall much behind, achieving only half of the performance. This highlights that biologically-informed protein representations learned by PLMs play a crucial role in accurate PPI network reconstruction.

Nevertheless, the performance gains from increasing model size are relatively modest, suggesting that sheer model capacity alone is insufficient. Further improvements may require enhanced training objectives, or integration of complementary biological priors.

H Broader Societary Impacts

This work introduces PRING, a comprehensive benchmark for PPI prediction, designed to advance evaluation from pairwise classification toward biologically grounded, network-level assessment. By offering a unified suite of topology-oriented and function-oriented tasks across multiple model organisms, PRING facilitates rigorous evaluation of a model's ability to reconstruct the structural topology of PPI networks, preserve functional coherence within biological modules, identify essential proteins, and recover meaningful functional pathways. This enables more faithful modeling of cellular systems and supports applications in systems biology, disease mechanism discovery, and therapeutic target identification. Moreover, our empirical analysis highlights the limitations of current computational approaches, revealing a gap between predictive accuracy and biological utility.

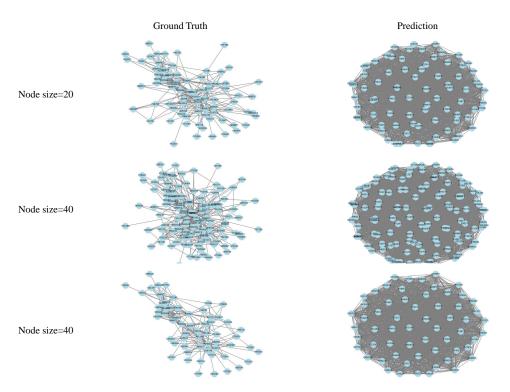


Figure 11: Visualization of Chai-1 predictions on three subgraphs with node sizes between 20 and 60.

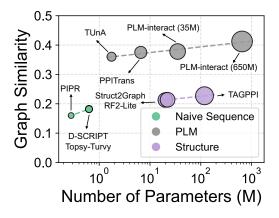


Figure 12: Scaling analysis of graph similarity.

Bridging this gap is essential for the responsible deployment of AI models in biomedical research and for accelerating foundational discoveries in life sciences.

Nevertheless, the potential risks associated with such dual-use scenarios are non-negligible. As PPI prediction models become more accurate and scalable, partly enabled by benchmarks like PRING, they may inadvertently lower the barrier for malicious actors to rationally design harmful biological agents. For example, enhanced understanding of host-pathogen interaction networks could be exploited to engineer synthetic pathogens that selectively disrupt immune functions or hijack critical cellular pathways [121, 122]. These scenarios, though speculative, underscore the need for vigilance in how such tools are disseminated and applied. Moving forward, it is essential to develop community norms and safeguards that promote transparency, ethical use, and oversight. This includes clear documentation of limitations, appropriate licensing, and collaboration with biosecurity experts to ensure that scientific progress does not come at the expense of public safety.