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Abstract

Deep learning-based computational methods have achieved promising results in
predicting protein-protein interactions (PPIs). However, existing benchmarks pre-
dominantly focus on isolated pairwise evaluations, overlooking a model’s capability
to reconstruct biologically meaningful PPI networks, which is crucial for biology
research. To address this gap, we introduce PRING, the first comprehensive bench-
mark that evaluates PRotein-protein INteraction prediction from a Graph-level
perspective. PRING curates a high-quality, multi-species PPI network dataset com-
prising 21,484 proteins and 186,818 interactions, with well-designed strategies
to address both data redundancy and leakage. Building on this golden-standard
dataset, we establish two complementary evaluation paradigms: (1) topology-
oriented tasks, which assess intra and cross-species PPI network construction, and
(2) function-oriented tasks, including protein complex pathway prediction, GO
module analysis, and essential protein justification. These evaluations not only
reflect the model’s capability to understand the network topology but also facilitate
protein function annotation, biological module detection, and even disease mech-
anism analysis. Extensive experiments on four representative model categories,
consisting of sequence similarity-based, naive sequence-based, protein language
model-based, and structure-based approaches, demonstrate that current PPI models
have potential limitations in recovering both structural and functional properties of
PPI networks, highlighting the gap in supporting real-world biological applications.
We believe PRING provides a reliable platform to guide the development of more
effective PPI prediction models for the community. The dataset and source code of
PRING are available at https://github.com/SophieSarceau/PRING.

1 Introduction

Protein-protein interactions (PPIs) refer to the physical or functional association between proteins,
which is central to most biological processes, such as signal transduction [1], gene regulation [2],
and immune response [3]. They also play a key role in the study of disease mechanisms [4]. For
instance, the interactions between certain cellular proteins can trigger abnormal signaling pathways
that promote tumor growth and metastasis in cancer [5]. By revealing those types of PPI, small
molecules are developed to disrupt the interactions, thereby inducing cancer cell death [6]. Therefore,
characterizing the organization of PPIs is fundamental for understanding the molecular basis of health
and advancing drug discovery in precision medicine [7, 8].
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Figure 1: Overview of PRING benchmark. (a) Diverse databases are used to construct the PRING. (b)
PRING includes two topology-oriented tasks and three function-oriented tasks for extensive evaluation.
(c) List of baseline models, consisting of sequence similarity-based, naive sequence-based, structure-
based, and PLM-based methods. (d) Evaluation metrics used for each task in the PRING.

Experimental techniques are adopted to identify PPIs in traditional biological research, including
instrument-based methods such as X-ray crystallography [9, 10] and cryo-electron microscopy [11,
12], as well as high-throughput approaches like yeast two-hybrid [13, 14] and cross-linking mass
spectrometry [15, 16]. Nevertheless, these methods are limited by low scalability and incomplete
coverage of the interactome. The rise of deep learning provides powerful computational alternatives
for PPI identification [17, 18, 19, 20], which designs neural networks to capture structural and
sequence patterns of proteins to predict PPIs and demonstrates promising performance. More recently,
the development of AlphaFold [21, 22, 23] and protein language models (PLMs) [24, 25, 26, 27]
has led to remarkable breakthroughs in PPI prediction, enabling more accurate and large-scale
identification of PPI directly from protein sequences.

Although current deep learning-based PPI prediction models achieve high pairwise accuracy on
standard benchmarks [28, 29, 30, 31, 32, 17], these evaluations treat each interaction in isolation
and overlook how individual predictions contribute to the cohesive PPI networks. While some
studies [33, 17] have applied these models to reconstruct PPI networks in specific contexts (e.g.,
bovine rumen), a systematic and fair evaluation of network-level performance remains absent. Since
PPI networks support biological insights from both topological and functional perspectives [34, 35],
it is important to evaluate how well models recover both aspects. Topologically, PPI networks
exhibit properties such as sparsity and local communities, which reflect the modular organization
of cellular processes. Functionally, they offer a foundation for annotating uncharacterized proteins
and discovering coherent biological modules. Hence, we pose the following research question: How
well do current PPI models demonstrate their pure capabilities in recapitulating the structural and
functional features of PPI networks?

To fill this blank, we propose PRING, a multi-organisms holistic benchmark that evaluates the
PRotein-protein INteraction prediction from a Graph perspective. As illustrated in Fig. 1, PRING
compiles high-confidence physical interactions across four organisms, Human, Arath, Ecoli, and
Yeast, sourced from STRING [36], UniProt [37], Reactome [38], and IntAct [39], yielding 21,484
proteins and 186,818 interactions, with efforts made to minimize both data redundancy and leakage.
Through this golden dataset, we benchmark representative PPI prediction methods, including sequence
similarity-based, naive sequence-based, PLM-based models, and structure-based, across five tasks:
two topology-oriented, namely intra-species and cross-species PPI network construction, to assess
whether models can recover the topology properties of PPI networks, such as network density
and local community structures, and facilitating cross-species biological knowledge transfer study,
and three function-oriented, including protein complex pathway prediction, GO functional module
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analysis, and essential protein justification, which can support disease mechanism analysis, protein
function annotation, and therapeutic target identification. Collectively, these evaluations reveal
whether a model is capable of capturing both the topological and the functional semantics of real
interactomes, moving beyond pairwise classification to network-level understanding.

Extensive experiments yield the following insights: (1) current models tend to generate overly dense
graphs, diverging from the sparsity nature of real PPI networks; (2) predicted PPI modules exhibit
limited functional alignment with the ground-truth, restricting their utility in downstream tasks such
as pathway reconstruction and function annotation; and (3) reconstructed graphs struggle to separate
essential from non-essential proteins, indicating that critical topological signals remain uncaptured;
(4) classification metrics cannot completely reflect a model’s ability to recover network structure,
highlighting the need for graph-level evaluations. While these findings highlight challenges, we
hope they can serve as a positive step forward for the community. PRING complements existing
benchmarks and provides a reliable platform for more holistic research in modeling PPI networks.

To sum up, our key contributions include:

• We propose PRING, to the best of our knowledge, the first comprehensive benchmark that evaluates
PPI prediction models from topological and functional perspectives on PPI networks.

• Through extensive experiments, we demonstrate that existing models exhibit limited functional
awareness and poor topological fidelity, revealing a potential gap between computational approaches
and their applicability in biological research.

• We release a fully reproducible pipeline, including dataset construction and model evaluation tools,
to facilitate future research and benchmarking efforts within the community.

2 Related Work

2.1 Protein-Protein Interaction Prediction Benchmark

Numerous PPI benchmarks have been developed to assess the effectiveness of prediction models.
Most existing benchmarks [40, 41, 31, 30, 32] focus on physical interaction evaluations, which curate
Human and Yeast PPI datasets from resources such as DIP [42], UniProt [37], and HPRD [43],
applying filtering criteria to ensure data quality and evaluating models using binary classification
metrics. To address the limitations of small-scale and single-species benchmarks, D-SCRIPT [17]
introduced cross-species evaluation by sampling 65,138 interactions across multi-species from
STRING [44, 45, 36]. Meanwhile, Bernett et al. [46] further raised concerns about data leakage
caused by naive splitting strategies (e.g., random splits), which can inflate model performance by
enabling shortcut learning [47]. To mitigate this, they proposed more rigorous splitting protocols
that revealed performance drops across benchmarks. Other studies [17, 33] built PPI networks to
perform GO enrichment analysis or functional module detection in specific biological scenarios,
such as bovine rumen in cows, to broaden the scope of model applications, but lack the comparison
with ground truth. Additionally, several works [48, 49] constructed PPI benchmarks annotated with
functional interaction types or binding sites, aiming to train models to predict these properties via
multi-class classification. However, the aforementioned benchmarks primarily focus on pairwise
interaction accuracy and lack a fair and holistic evaluation of a model’s capability in PPI network
construction. To address these gaps, we introduce PRING, a graph-centric benchmark that evaluates
PPI models from both topological and functional perspectives.

2.2 Protein-Protein Interaction Prediction Model

Computational methods for PPI prediction are gaining popularity due to their efficiency and reliability
in understanding complex biological systems [50, 51]. Early studies [52] often inferred unknown
interactions by leveraging sequence similarity with known homologous interaction pairs. Although
these methods are efficient, their accuracy is limited, especially for novel interactions. The advent
of deep learning [53, 54, 55] brought a powerful computational tool for PPI prediction. Sequence-
based models [32, 48, 17, 56] utilized convolutional neural networks (CNNs) [57, 58], recurrent
neural networks (RNNs) [59, 60], to learn interaction patterns from raw protein sequences. More
recently, protein language models (PLMs) [61, 62], pre-trained on large-scale protein datasets, have
shown strong performance across biological tasks such as contact prediction and function annotation.
Motivated by this, PLM-based methods [19, 63, 64] leverage rich and context-aware representations
to predict PPIs, achieving state-of-the-art results on some benchmarks. Since proteins can be naturally
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represented as graphs, some methods [65, 66] utilized protein structure as input and employed
Graph Neural Networks (GNNs) [67, 68] to predict PPIs. Meanwhile, with the success of structure
prediction tools like AlphaFold [21] and RoseTTAFold [69], structure-based methods [70, 71] have
also emerged, offering improved biological explainability. Additionally, some studies [72, 73, 49]
applied GNNs to infer functional interaction types based on the known PPI network as input. In this
work, we evaluate PPI prediction models designed to identify physical interactions from a graph-level
perspective, providing insights into their ability to reconstruct biologically meaningful interactomes.

2.3 Multi-Modal Learning for Enhanced Biological Representation

An emerging research direction seeks to overcome the limitations of single-modality PPI models
by constructing richer representations from multimodal data. One of the approaches is to unify
molecular information, such as structure and sequence, with semantic data like natural language to
improve functional prediction. This paradigm is exemplified by models that connect protein data
to text for better interpretability [27, 74, 75]. The approach has been broadly explored by fusing
chemical structures with text [76, 77, 78, 79, 80, 81]. Such advancements in unified learning offer
a promising path to developing more powerful PPI models that can address the topological and
functional challenges identified by the PRING benchmark.

3 Protein-Protein Interaction Prediction from a Graph Perspective

Table 1: Comparison of PRING with existing PPI benchmarks.
(Seq.Sim.: sequence similarity, N/A: not available.)
Benchmark Year #Proteins #Pairs Seq.

Sim.
Multi

Species
Leakage

Free
Graph

Evaluations

GUO [40] 2008 2,497 5,594 N/A % % %

PAN [31] 2010 9,476 36,630 N/A % % %

HUANG [41] 2016 3,163 3,899 25% % % %

DU [30] 2017 4,424 17,257 40% % % %

RICHOUX [32] 2019 8,333 45,765 N/A % % %

SHS27K [48] 2019 1,663 7,401 40% % % %

SHS148K [48] 2019 5,082 43,397 40% % % %

D-SCRIPT [17] 2021 19,086 65,138 40% ! % %

HIPPIE [46] 2024 10,819 137,250 40% % ! %

PRING (Ours) 2025 21,484 186,818 40% ! ! !

In this section, we present PRING, a
comprehensive and fair benchmark de-
signed to evaluate PPI prediction mod-
els from a graph perspective. To con-
struct such a benchmark, we first cu-
rate PPIs from diverse resources and
filter redundant proteins based on se-
quence similarity and functional over-
lap to ensure data quality, and then
we partition data into training and test
sets with non-overlapping proteins to
prevent data leakage, yielding a PPI
network dataset comprising 21,484
proteins, 186,818 PPIs (Sec. 3.1). A detailed comparison between PRING and existing PPI bench-
marks is shown in Tab. 1. Based on this golden dataset, we develop a set of tasks to assess model
performance in capturing both the topology and biological functionality of PPI networks (Sec. 3.2).

3.1 Data Collection

Diverse, reliable, and non-redundant interaction data is essential for effective and comprehensive
evaluation of PPI prediction models [46]. To achieve this goal, PRING is mainly assembled in two
stages: (1) integrating high-confidence multi-species PPIs; and (2) applying homology- and function-
based filters to eliminate redundancy and utilizing a leakage-free splitting protocol to prevent potential
leakage. A pipeline overview is shown in Fig. 2, and detailed data documentation is given in Apx. C.

Resource Integration. We begin by aggregating experimentally validated PPIs from UniProt [37],
Reactome [38], and IntAct [39], and complement these sources with high-confidence interactions
(combined score > 0.7 [82]) from STRING [36] to ensure both data quality and comprehensive
coverage, while mitigating the noise inherent in some STRING interactions. To further enhance data
reliability and prepare for downstream function-oriented analyses, we retain only annotated proteins
with known functions in SwissProt [83]. Additionally, four phylogenetically distinct organisms,
including Human, Arabidopsis thaliana (Arath), Escherichia coli (Ecoli), and Yeast, are selected
using NCBI Taxonomy identifiers [84] to match with the target species and increase the species
diversity. This protein filter step not only considers data quality but also emphasizes data diversity
and coverage, providing a critical foundation for constructing our gold-standard dataset.

Minimal Redundancy and Leakage. Our primary objective is to build a gold-standard dataset with
minimal data redundancy and leakage for fair evaluations of PPI models. To this end, we first perform
sequence clustering using MMSeqs2 [85, 86] and retain only protein pairs with sequence identity ≤
40%, following prior studies [17, 30]. Meanwhile, we remove proteins that share identical function
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Figure 2: Data collection pipeline for the PRING. PPIs are first curated from comprehensive databases.
Proteins are then filtered and mapped using SwissProt and NCBI Taxonomy to target species.
Redundant interactions are removed through sequence and functional similarity checks to ensure data
quality. The resulting PPI networks include four species: Human, Arath, Yeast, and Ecoli.

IDs across species as an additional safeguard to reduce data redundancy further. Additionally, a
leakage-free protocol [46] is used to split the dataset with non-overlapping proteins, further preventing
data leakage in model learning. The above filtering steps result in high-quality PPI networks for
each organism in the PRING dataset. Specifically, the Human network comprises 10,090 proteins
and 129,861 PPIs; Arath includes 5,025 proteins and 23,584 PPIs; Ecoli contains 3,196 proteins and
17,452 PPIs; and Yeast consists of 3,173 proteins and 15,921 PPIs. We believe this dataset provides
a high-confidence resource for PPI benchmarking and can facilitate fair and rigorous comparisons
among different PPI models.

3.2 Task Suite

Through the PRING dataset, we develop five tasks to systematically evaluate how well PPI prediction
models recapitulate both the structural topology and functional properties of PPI networks.

3.2.1 Topology-Oriented Task

To evaluate whether a PPI prediction model can faithfully recover the topology of interaction networks,
we first formulate the PPI network reconstruction task as follows. Given a PPI graph with N proteins,
each protein is represented by its features xi = {si, ci}, i = 1, . . . , N , where si is the amino-acid
sequence and ci is any auxiliary context. The model f predicts an interaction label for each protein
pair (i, j) with 1 ≤ i < j ≤ N , according to: Ipredi,j = f(xi, xj) ∈ {0, 1}. Here, Ipredi,j = 1 indicates
a predicted interaction between protein i and protein j, while Ipredi,j = 0 denotes no predicted
interaction. We then aggregate all positive predictions to form the reconstructed network:

Gpred = Aggregate
{
(i, j) | Ipredi,j = 1, 1 ≤ i < j ≤ N

}
. (1)

Each reconstructed graph Gpred is then compared against its corresponding ground-truth graph Gtrue.
To evaluate the model’s ability of identifying topology properties like network density and cross-
species knowledge transfer, we introduce two tasks: (1) intra-species network construction, where
both training and test are performed on the same species; and (2) cross-species network construction,
where the model is trained on one species and evaluated on another.

Intra-Species PPI Network Construction. In this task, we focus on the Human species, following
the same intra-species subject used in previous studies [17, 19]. The full Human PPI graph is split
into training and test sets with an 8:2 ratio, using an established protocol [46] to prevent potential
data leakage. This obtains a training subgraph of 8,072 proteins and a test subgraph of 2,018 proteins.
To investigate the influence of subgraph topology and size on model performance, we sample 500
subgraphs from the test set, ranging in size from 20 to 200 nodes, using each of three traversal
algorithms, breadth-first search (BFS), depth-first search (DFS), and random walk (RW). Meanwhile,
since existing PPI prediction models require PPI pairs for training, we sample positive and negative
protein pairs from the training subgraph in a 1:1 ratio and further partition them into 80% for training
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and 20% for validation, following the previous works [46]. In total, this yields 85,824 training pairs,
21,456 validation pairs, and 500 test graphs per traversal strategy for topology recovery evaluation.

Cross-Species PPI Network Construction. For cross-species evaluations, we use models trained on
the Human PPIs to reconstruct PPI networks in the other three species: Arath, Ecoli, and Yeast. As in
the intra-species setting, we sample 500 subgraphs ranging from 20 to 200 nodes from each species
using BFS, DFS, and RW, resulting in 500 test networks per traversal method per species.

Subsequently, the above two tasks are evaluated using five topology-aware metrics, which are widely
used in graph construction tasks (Detailed mathematical definitions are provided in Apx. D.1.4.):

• Graph Similarity (GS) [87] primarily quantifies the edge differences between the predicted and
ground-truth graphs, as the node set in the PPI graph remains unchanged.

• Relative Density (RD) [88] evaluates the extent of over- or under-prediction by comparing the
edge density of the predicted network with that of the ground-truth network.

• Degree Distribution (Deg.) [89] computes the discrepancy between node degree distributions of
the predicted and ground-truth networks using maximum mean discrepancy (MMD) [90], providing
a quantitative assessment of global structural differences in terms of connectivity patterns.

• Clustering Coefficient (Clus.) [89] uses MMD to measure the discrepancy between the distribu-
tions of local clustering coefficients in the predicted and ground-truth networks, thereby assessing
the preservation of community structure.

• Spectral [91] calculates the discrepancy between eigenvalue spectra of normalized Laplacian
matrices of predicted and true networks using MMD, reflecting global structural alignment.

3.2.2 Function-Oriented Task

Besides topology-based evaluation, we introduce three function-oriented tasks that are closely aligned
with real-world biological applications. These tasks assess how well the reconstructed PPI networks
preserve biologically meaningful properties and evaluate the practical applicability of existing models.

Protein Complex Pathway Prediction. Complex pathways refer to biological processes involving
multiple proteins that interact with each other to perform coordinated cellular functions [92, 93],
which typically form densely connected subgraphs within the larger PPI network. Accurately
reconstructing these pathways can enhance our understanding of disease mechanisms and support
the development of targeted therapies [94, 95]. In this task, the model first predicts pairwise protein
interactions based on the input complex, then aggregates these predictions to construct predicted
subgraph, which are subsequently evaluated against the ground truth. To achieve fair evaluation, we
collect 235 complex pathways from Reactome [38] that share no protein overlap with the Human
training graph, with pathway sizes ranging from 4 to 20 proteins. We evaluate model performance
using the following metrics (Detailed descriptions are provided in Apx. D.2.1.):

• Pathway Precision (PP) is the proportion of predicted interactions within the complex pathway
that are present in the ground truth.

• Pathway Recall (PR) computes the proportion of ground-truth interactions within the complex
pathway that are successfully predicted.

• Pathway Connectivity (PC) calculates the fraction of predicted protein complex pathway sub-
graphs that form a connected component, reflecting biological consistency.

GO Enrichment Analysis. GO enrichment connects network topology with biological function,
supporting gene annotation and pathway discovery [96]. This task evaluates whether reconstructed PPI
networks preserve functional coherence by comparing enriched GO terms of predicted communities
to those of the ground-truth network. Specifically, we reconstruct the Human test subgraph (2,018
proteins) using a trained PPI prediction model, detect communities via the Louvain algorithm [97],
and perform GO enrichment using g: Profiler [98] tool across three ontologies: Molecular Function
(MF), Biological Process (BP), and Cellular Component (CC). Evaluations are conducted under two
metrics (Thorough definitions are included in Apx. D.2.2.):

• Functional Alignment (FA) depicts the average Jaccard similarity of enriched GO terms between
each predicted cluster and its best-matching ground-truth partner, measuring functional alignment.

• Consistency Ratio (CR) is the ratio of within-cluster GO term Jaccard similarity in the predicted
network to that in the ground-truth network, reflecting how well functional coherence is preserved.
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Essential Protein Justification. Essential proteins are critical for an organism’s survival and often
occupy central positions in PPI networks [99, 100]. A reliable model should differentiate essential
from non-essential proteins based on node degree or centrality in the reconstructed network [101]. In
this task, we use the Human test subgraph (2,018 proteins) as the evaluation set and annotate essential
and non-essential proteins using CCDS [102] and UniProt [37]. In detail, we select 100 essential
and 100 non-essential proteins whose network centrality scores [99] differ significantly (p < e−4).
Trained models are used to reconstruct the Human test graph, and performance is assessed using the
following metrics (Further details are presented in Apx. D.2.3):

• Precision@K (P@K) calculates the proportion of essential proteins among the top K nodes ranked
by network centrality scores. K is set to 100 in this task.

• Distribution Overlap (DO) evaluates the distribution overlap between the centrality scores of
essential and non-essential proteins in the reconstructed network.

4 Experiment

We conduct extensive experiments on five network-level tasks outlined in Sec. 3.2. Our experiments
aim to answer the following research questions: Q1: How effectively do current models reconstruct
PPI networks? (Sec. 4.3.1) Q2: How well do the PPI prediction models generalize? (Sec. 4.3.2) Q3:
How do these models perform in biology practice? (Sec. 4.3.3) Q4: How well do standard classifica-
tion metrics reflect network-level performance? (Sec. 4.3.4) Q5: How does the positive–negative
ratio affect model performance and network reconstruction? (Sec. 4.3.5)

4.1 Evaluation Baseline

We consider four categories of PPI prediction models based on their design principles in our bench-
mark: sequence similarity-based models, naive sequence-based models, PLM-based models, and
structure-based models. More details are provided in Apx. E.

Sequence Similarity-based Model. These models assume that protein pairs resembling known
interacting pairs are more likely to interact [46]. We adopt SPRINT [52] as a representative non-deep
learning method and investigate how effectively a functional PPI network can be predicted using only
sequence similarity information.

Naive Sequence-based Model. These models implement conventional deep learning architec-
tures [103, 104], using protein sequences as input and extracting features based on physicochemical
properties or structure embeddings [46]. We evaluate three models: PIPR [48], which utilizes a
residual Siamese RCNN to capture hierarchical sequence patterns; D-SCRIPT [17], which augments
sequence features with structure-aware embeddings to infer inter-protein contact maps; and Topsy-
Turvy [56], which integrates multi-scale sequence representations to refine interaction prediction.

PLM-based Model. Protein language models (PLMs) are typically trained on large protein datasets
(e.g., UniRef90 [105]) using self-supervised learning to produce context-aware embeddings. We
consider three PLM-based models: PPITrans [19], which leverages ProtT5 [62] with multi-layer
transformer blocks; TUnA [64], which applies ESM-2 [25] with an uncertainty-aware module; and
PLM-interact (35M & 650M) [63], which fine-tunes ESM-2 on the STRING Human database.

Structure-based Model. These models either take known protein structures as input or use end-to-end
structure prediction for PPI modeling. We include three structure-based methods: Struct2Graph [65]
and TAGPPI [66], which use GNNs to model protein structure input, and RF2-Lite [70], a lightweight
variant of RoseTTAFold2 [106] designed specifically for PPI prediction. In addition, a case study of
Chai-1 [107], the newest structure prediction model, is provided in Apx. G.5.

4.2 Experimental Setup

We adopt the model hyperparameters as recommended in the original papers, which have shown
strong performance on their respective benchmarks. We assume these configurations to be robust and
effective across diverse scenarios. Due to computational limitations, PLM-interact directly uses the
released pre-trained weights for inference, and RF2-Lite is evaluated on only 10% of the test graphs,
while all other models are trained from scratch. The model implementation details refer to Apx. F.
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Table 2: Overall results of intra-species (Human) PPI network construction task. We use three color
scales of blue to denote the first, second, and third best performance. RD closer to 1 is better.

Sampling Method BFS DFS RW
Category Model GS↑ RD→ Deg.↓ Clus.↓ Spectral↓ GS↑ RD→ Deg.↓ Clus.↓ Spectral↓ GS↑ RD→ Deg.↓ Clus.↓ Spectral↓

Avg.
Rank

Seq. Sim. SPRINT 0.227 1.61 10.9 12.5 11.2 0.145 5.91 316 207 53.8 0.178 1.32 17.9 26 15.1 3
PIPR 0.209 4.39 81.7 40.5 36.2 0.0749 12.3 518 335 77.0 0.196 5.75 165 107 41.1 11
D-SCRIPT 0.215 1.13 15.4 18.8 29.7 0.123 6.40 302 237 67.0 0.209 5.82 134 64.8 52 8Naive

Sequence Topsy-Turvy 0.183 1.74 17.3 11.4 14.6 0.130 3.22 180 201 65.9 0.232 4.88 104 64.8 36.7 5
PPITrans 0.362 3.39 52.2 29.1 26.3 0.314 4.54 418 270 46.6 0.449 2.57 71.9 46.1 19.6 5
TUnA 0.342 2.99 47.8 30.2 22.9 0.289 4.44 416 272 46.0 0.450 2.23 55.4 42.5 13.7 4
PLM-interact (35M) 0.383 2.29 24.4 16.0 12.8 0.322 2.85 209 78.2 36.3 0.429 2.47 52.6 22.6 13.6 2PLM

PLM-interact (650M) 0.396 1.64 30.9 14.8 16.5 0.350 2.03 236 63.6 42.2 0.491 1.76 50.3 21.2 15.4 1
Struct2Graph 0.27 5.58 95.1 50.5 39.2 0.132 10.8 508 321 67.6 0.237 5.83 155 103 38.3 10
TAGPPI 0.283 4.56 70.8 36.2 29.5 0.143 9.94 491 309 65.3 0.256 4.87 127 74.2 28.6 9Structure
RF2-Lite 0.227 0.524 43.8 31.7 34.9 0.243 1.10 226 39.3 61.8 0.171 0.514 81.7 73.9 60.9 7
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Figure 3: Cross-species generalization performance evaluated via graph similarity score.

4.3 Results and Analysis

4.3.1 From Pairs to Networks: Evaluating Structural Reconstruction

The intra-species PPI reconstruction results are summarized in Tab. 2. We can observe that: (1)
PLM-based models consistently outperform other types of models; among the top five models, four
are PLM-based, with PLM-interact 35M and 650M ranking first and second, respectively, highlighting
that PLM can provide rich representations while capturing biologically accurate interactions; (2)
most naive sequence-based and structure-based models perform poorly; for example, PIPR ranks last
among the 11 baselines, while Struct2Graph ranks second to last, indicating their limited capacity to
capture interaction patterns with simple architectures and features; (3) SPRINT, a non-deep learning
method, ranks third, yielding a more realistic topological structure than some deep learning models,
suggesting that the basic sequence similarity can still effectively preserve basic network structure; and
(4) all baseline models exhibit higher RD values under DFS sampling than under BFS or RW; this
is likely due to their tendency to overpredict interactions inconsistent with the underlying network
topology (RD > 1), which aligns with the distribution of DFS-sampled graphs that are sparse and
pathway-like, in contrast to the dense local connectivity preserved by BFS and RW.

Additionally, we find that the performance degrades as the PPI network size increases, demonstrating
that existing computational methods still face challenges in reconstructing large-scale PPI networks
(see Apx. G.1.4 for more details). Overall, the relative performance ranking of different model types
remains consistent across traversal strategies.

Findings. Current PPI models tend to over-predict interactions, resulting in potential false positives.
Moreover, the reconstructed PPI networks preserve low topology consistency with the ground truth:
the highest graph similarity score remains below 0.5, while the other four structural metrics even
deviate from their ideal minimum value by an order of magnitude. These findings highlight the need
for more capable models that preserve the global structure of PPI networks beyond pairwise accuracy.

4.3.2 Beyond Boundaries: Generalization Across Species

The second topology-oriented task evaluates the cross-species generalization ability of PPI prediction
models. As shown in Fig. 3, the overall performance decreases proportionately as the evolutionary
distance from Human increases, following the order of Arath, Yeast, and Ecoli, with the average
performance drops by 15.2%, 25.3%, and 35.2%, respectively. In terms of model categories,
PLM-based models continue to achieve the best performance among all baselines, with an average
graph similarity score of 0.24 across the three species. This result indicates the robustness and
generalizability of PLM-derived representations across diverse biological scenarios. In contrast, naive
sequence-based models perform the worst, with an average score of only 0.17, demonstrating that
simple deep learning architectures such as CNNs and RNNs are insufficient for capturing the complex
evolutionary and structural signals required for cross-species.
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Table 3: Overall results of function-oriented tasks. We use three color scales of blue to denote the
first, second, and third best performance.

Function-oriented Tasks Protein Complex Pathway GO Enrichment Essentail Protein
Category Model PR↑ PP↑ PC↑ FA↑ CR↑ P@100↑ DO↓

Avg.
Rank

Seq. Sim. SPRINT 0.526 0.856 0.752 0.174 0.655 0.54 0.727 5
PIPR 0.160 0.588 0.323 0.182 0.654 0.52 0.834 8
D-SCRIPT 0.225 0.466 0.316 0.175 0.678 0.47 0.629 6Naive

Sequence Topsy-Turvy 0.240 0.613 0.338 0.232 0.635 0.43 0.755 8
PPITrans 0.583 0.863 0.818 0.250 0.756 0.48 0.886 3
TUnA 0.526 0.864 0.794 0.259 0.622 0.57 0.849 4
PLM-interact (35M) 0.550 0.847 0.880 0.335 0.785 0.80 0.423 2PLM

PLM-interact (650M) 0.549 0.862 0.887 0.368 0.844 0.77 0.440 1
Struct2Graph 0.413 0.742 0.608 0.154 0.649 0.45 0.841 10
TAGPPI 0.487 0.781 0.713 0.168 0.649 0.43 0.828 6Structure
RF2-Lite 0.554 0.874 0.135 / / / / /
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Figure 4: Essential protein analysis. (a) The
network centrality score of essential and non-
essential proteins in the ground-truth PPI net-
work. (b) Network centrality score distribution
of PLM-interact (650M).

Figure 5: Relationship between classification
performance and graph-level metrics. The recall
rate is positively correlated with the degree distri-
bution (MMD), while the precision is negative.

Findings. The cross-species results highlight the challenge of transferring knowledge to evolutionarily
distant species on the genetic tree [108]. This underscores the need for developing more advanced
models that can capture conserved features to enable reliable transfer across species.

4.3.3 From Prediction to Practice: Biological Utility of PPI Models

The results of the function-oriented tasks are summarized in Tab. 3. Specifically, in the protein
complex pathway reconstruction task, models tend to achieve high precision but low recall (e.g.,
PPITrans gets a precision of 0.863 and a recall of 0.583), suggesting that predictions are accurate
yet incomplete, which in turn limits the comprehensive recovery of protein complex pathways. For
the GO enrichment analysis task, nearly all models perform poorly in the function alignment metric
FA, with scores below 0.4, demonstrating a weak ability to preserve functional modularity in the
reconstructed networks. Additionally, while most models are capable of identifying true positive hub
proteins in the essential protein justification task (e.g., the PLM-interact (35M) achieves a P@100 of
0.80), they still struggle to effectively distinguish essential from non-essential proteins based on the
reconstructed networks (e.g., even the best-performing model, PLM-interact (650M), only attains a
DO score of 0.440). As illustrated in Fig. 4, the network centrality score distributions of essential
and non-essential proteins in the ground-truth graphs are well-separated. In contrast, the distributions
generated by the PLM-interact (650M) exhibit substantial overlap, indicating a loss of discriminative
structural features. These observations suggest that current models fail to preserve the distinguishing
topological characteristics between essential and non-essential proteins in the reconstructed networks.

Findings. Current methods still fall short in capturing the underlying functional organization of
PPI networks, leading to low functional alignment, fragmented complex pathways, and disturbed
essential and non-essential proteins. These shortcomings hinder key downstream applications such as
function annotation, biological module detection, and disease mechanism discovery.

4.3.4 Metric Alignment: Do Classification Scores Tell the Whole Story?

While standard classification metrics are commonly used to evaluate PPI models, their effectiveness
in reflecting graph-level structural properties remains unclear. We investigate the correlation between
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Figure 6: Ablation on the ratio of positive to negative PPI pairs. Results are shown for the BFS-based
sampling configuration. For relative density, a value closer to 1 denotes better topological consistency.

traditional binary classification metrics and graph-level structural metrics, as shown in Fig. 5. Our
analysis reveals an inverse relationship between recall and precision in terms of their impact on the
degree distribution: higher recall increases distribution mismatch, whereas higher precision reduces
it. This indicates that recall-optimized models recover more true positive interactions at the expense
of false positives that distort the topology, whereas precision-focused models better preserve network
structure. Additional correlation analyses are provided in Apx. G.1.3.

Findings. Standard classification metrics cannot completely reflect network-level structure, revealing
the necessity for graph-aware evaluations in robust PPI modeling.

4.3.5 Data Matters: Do Positive to Negative Ratios Affect Network Construction?

Considering that real PPI networks are inherently sparse, we vary the positive-to-negative ratio
of training pairs (1:1 to 1:10) under the BFS-based sampling configuration to assess the effect of
class imbalance (Fig. 6). Since SPRINT does not require negative samples for training and the
PLM-interact models are fixed for inference, we include four representative methods in this analysis.
The complete results across three sampling strategies are provided in Apx. G.3.

For D-SCRIPT and Struct2Graph, increasing the ratio severely degrades performance—the models
tend to underpredict interactions, with RD scores approaching 0. In contrast, PPITrans and TUnA
show improved results when the ratio increases to 1:5, suggesting moderate imbalance regularizes
learning, but their performance drops again at 1:10 as excessive negatives bias the networks toward
overly sparse topologies.

Findings. Moderate class imbalance can enhance the performance of stronger models such as
PLM-based architectures by providing richer negative supervision and better reflecting the sparsity of
real PPI networks. However, the optimal positive-to-negative ratio remains task- and architecture-
dependent, warranting further investigation into more advanced strategies for biologically realistic
network learning.

5 Conclusion
In this paper, we present PRING, the first comprehensive benchmark designed to evaluate PPI
prediction models beyond pairwise classification, focusing on their ability to reconstruct biology-
aware PPI networks. By introducing topology and function-oriented tasks across multiple species
with well-designed strategies on both data redundancy and leakage, PRING enables a more rigorous
and application-driven assessment of model performance. Extensive experiments reveal that current
models typically fail to preserve the global structure and biological coherence of interaction networks.
These findings emphasize the limitations of traditional evaluation protocols and highlight the need
for more holistic and biology-informed approaches. We believe PRING is a valuable resource for
developing more reliable PPI prediction models that support real-world biological discovery.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: We conclude our main contributions in both the abstract and the introduction
section (Sec. 1).

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: We discuss the limitations and directions for future work in Apx. B.

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [NA]
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Justification: As a benchmark study, this work focuses on empirical evaluation and does not
present theoretical results.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: We provide comprehensive experimental results and evaluation in Sec. 4 and
Apx. G.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Answer: [Yes]

Justification: See project website https://github.com/SophieSarceau/PRING and
Apx. A for code and data availability.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: We provide comprehensive experimental settings in Sec. 4 and Apx. F.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [No]

Justification: Error bars are not most applicable because we propose a specific benchmark in
our work.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
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• It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

• It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: Implementation details are given in Apx. F.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: We have thoroughly reviewed the NeurIPS Code of Ethics and rigorously
followed its guidelines throughout our research.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: We state the potential social impact in Apx. H.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: This paper does not pose such risks.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: Details of the original databases and baseline models can be found in Apx. C
and Apx. E, respectively.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
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13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [Yes]
Justification: We introduce a new dataset PRING, which is available for download through
the URL provided in Apx. A.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: This paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: This paper does not involve crowdsourcing or research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
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Answer: [NA]
Justification: The core methodology of this paper does not involve large language models.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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A Data and Code Availability

A.1 PRING Dataset

The PRING dataset is available at https://huggingface.co/datasets/piaolaidangqu/
PRING.

A.2 Evaluation Code

The code for benchmarking PPI prediction models on PRING is available at https://github.com/
SophieSarceau/PRING.

A.3 Project Website

The PRING project website is available at https://zhanglab.comp.nus.edu.sg/PRING/.

B Limitations & Future Work

B.1 Data Scope

Though PRING currently benchmarks PPI prediction on four model organisms, including Human,
Ecoli, Yeast, and Arath, which are widely studied, it does not cover the full phylogenetic diversity of
life. As a result, the generalizability of PPI prediction models to non-model or underrepresented taxa
remains unexplored. To enable a more comprehensive evaluation, future extensions of PRING will
focus on expanding its taxonomic coverage by curating high-quality PPIs data from additional clades
(e.g., archaea, non-model metazoans), enabling a more comprehensive evaluation of evolutionary
transfer and model robustness across the tree of life. Moreover, certain biological applications, such
as antiviral drug development, require the modeling of PPIs between Human and pathogen proteins.
To support such use cases, future versions of PRING will incorporate Human–virus PPI networks,
advancing the benchmark’s utility in biomedical research.

B.2 Protein–Protein Interaction Scope

While PRING develops holistic downstream tasks to evaluate the model’s capability, all tasks currently
treat PPIs as binary edges, ignoring other biological details such as interaction types (e.g., activation,
inhibition). This would limit the ability to capture regulatory and signaling mechanisms. Moreover,
PPIs are often dynamic and context-specific, varying across tissues, cell types, and conditions.
Modeling them as static interactions overlooks this critical aspect of biological systems. For future
work, we plan to extend PRING to support multi-type interactions and incorporate conditional PPIs
under different biological contexts. This will enable more accurate and versatile benchmarking for
real-world applications.

C Dataset Documentation

C.1 Data Sources

In this work, we construct the PPI benchmark dataset using data integrated from multiple public
data sources. For PRING PPI network, we select UniProt, Reactome, IntAct, and STRING as our
primary source databases. These databases are chosen based on the following considerations: 1)
They collectively provide high-quality annotations and broad biological coverage; 2) Most other PPI
databases either overlap substantially with these sources (e.g., BioGrid [109], MINT [110]) or exhibit
limited scope and lower data reliability (e.g., HuRI [111], PrePPI [112]); 3) These four resources are
widely recognized and commonly adopted within the bioinformatics community [113, 114].

For function-oriented tasks, the data includes Gene Ontology (GO), and the Consensus CDS (CCDS)
project. License information for each source is provided in Tab. 4.

UniProt. UniProt is a well-known comprehensive resource for protein sequence and functional
information. In our work, we fetch PPIs and species information through manually reviewed entries
from Swiss-Prot – a section of UniProt to ensure high-quality protein annotations. The raw data are
available at:
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• https://ftp.uniprot.org/pub/databases/uniprot/current_release/
knowledgebase/complete/uniprot_sprot.dat.gz

• https://ftp.uniprot.org/pub/databases/uniprot/current_release/
knowledgebase/complete/uniprot_sprot.fasta.gz

Reactome. Reactome is a curated knowledgebase of biological pathways and reactions. We take their
high-quality PPIs to construct our dataset, and additionally collect protein - complex and pathway
information to support the protein complex pathway prediction task (Sec. D.2.1). The raw data are
available at:

• https://reactome.org/download/current/interactors/reactome.all_
species.interactions.tab-delimited.txt

• https://reactome.org/download/current/ComplexParticipantsPubMedIdentifiers_
human.txt

• https://reactome.org/download/current/Complex_2_Pathway_human.txt
• https://reactome.org/download/current/UniProt2Reactome.txt

IntAct. IntAct provides a free, open-source database system and analysis tools for molecular
interaction data. We collect PPIs from IntAct to construct our dataset. The raw data of IntAct is
available at:

• https://ftp.ebi.ac.uk/pub/databases/intact/current/psimitab/intact.
zip

STRING. STRING is a database of known and predicted PPIs, integrating evidence from multiple
sources. Following common practice, we include only high-confidence interactions with their
Combine Score > 0.7 in our dataset. The raw data is available at:

• https://stringdb-downloads.org/download

Gene Ontology. The Gene Ontology (GO) knowledgebase is the world’s largest source of information
on the functions of genes, which provides a structured vocabulary for annotating gene and protein
functions across species. We extract GO terms related to our PPI networks to support the GO
enrichment analysis task (Sec. D.2.2). The raw data is available at:

• http://current.geneontology.org/annotations/filtered_goa_uniprot_
all_noiea.gpad.gz

CCDS. The Consensus CDS (CCDS) project provides a curated set of protein-coding regions that are
consistently annotated across major genome databases. We fetch reliably annotated proteins from
CCDS for our essential protein justification task (Sec. G.2.3). The raw data is available at:

• https://ftp.ncbi.nlm.nih.gov/pub/CCDS/current_human/

Table 4: Licenses of datasets used in this work.

Dataset Usage Licence URL
UniProt PPI dataset construction (cu-

rated data)
CC BY 4.0 https://www.uniprot.org/help/license

Reactome PPI dataset construction (cu-
rated data) and relation infor-
mation for Protein Complex
Pathway Prediction task

CC0 1.0 Universal https://reactome.org/about/news

IntAct PPI dataset construction (cu-
rated data)

CC BY 4.0 https://www.ebi.ac.uk/intact/download

STRING PPI dataset construction
(high confidence data)

CC BY 4.0 https://string-db.org/cgi/access?
footer_active_subpage=licensing

Gene Ontology Functional annotation for
GO Enrichment Analysis
task

CC BY 4.0 https://geneontology.org/docs/
go-citation-policy

CCDS Protein information for Es-
sential Protein Justification
task

License not speci-
fied (redistributed via
Bioregistry under CC
BY 4.0)

http://www.ncbi.nlm.nih.gov/CCDS
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C.2 Collection Process

Our data collection process starts from UniProt, we first download the complete Swiss-Prot entries
dat file and parse each protein record to identify the "CC -!- INTERACTION" section, e.g:

CC -!- INTERACTION:
CC P12345; Q8N1H7:XYZ_HUMAN (xeno); Xeno interaction [EMBL:ABC123];
CC P12345; Q9Y6K1:DEF_HUMAN; NbExp=3; IntAct=EBI-12345, EBI-67890;

If the interacting partners is a Swiss-Prot protein, we extract the interaction as a PPI entry. Addi-
tionally, we download the full Swiss-Prot FASTA file containing 573,230 protein sequences. Using
the NCBI taxonomy ID specified in the FASTA headers (e.g., OX=9606), we extract protein sets for
four representative species: Human (Homo sapiens, 9606), Arath (Arabidopsis thaliana, 3702), Yeast
(Saccharomyces cerevisiae, 559292), and Ecoli (Escherichia coli, 83333).

We then download the complete contents file from IntAct and the Protein–Protein Interaction file
from Reactome, extract all PPI entries, and filter them based on our constructed protein sets to retain
only Swiss-Prot proteins from the four selected species. PPIs derived from UniProt, IntAct, and
Reactome are considered curated, high-quality data. To further expand our dataset, we also download
species-specific subsets from STRING for the four selected species, and retain only interactions with
a combined score greater than 0.7 as high-confidence PPIs. These are merged with the curated PPIs
to form our complete raw dataset.

To ensure fair evaluation of PPI models and minimize data redundancy, we first filter proteins to
retain only those with sequence lengths between 50 and 1000. We then apply MMSeqs2 to cluster
protein sequences and keep only those pairs with sequence identity ≤ 40%. Additionally, we remove
proteins that share the same entry name across different species to eliminate functionally redundant
cross-species homologs.

C.3 Statistical Analysis

To ensure transparency in dataset construction, we first report the detailed preprocessing steps for
building the PPI benchmark. After retrieving interaction data from four curated databases, we first
apply a protein-level filter (Fig. 2) to retain only experimentally verified proteins with annotated
functions (SwissProt) and belonging to one of the four target species. This filtering step results in
15,043 Human, 13,271 Arath, 5,232 Yeast, and 3,855 E. coli proteins.

We then perform sequence similarity filtering (≤40%) using MMSeqs2, followed by function-based
redundancy removal to eliminate homologous or functionally overlapping proteins across species.

• Arath: 7,487 proteins were removed by MMSeqs2, and 759 were excluded due to shared
functions with Human, yielding 5,025 final proteins (↓62%).

• Yeast: 1,033 proteins were filtered by MMSeqs2, and 1,026 shared functions with Human,
leaving 3,173 proteins (↓39%).

• Ecoli: 452 proteins were removed by MMSeqs2, and 207 due to function overlap, resulting
in 3,196 proteins (↓17%).

After these filtering steps, we obtain the final PRING PPI network dataset.

Then, we conduct a statistical analysis of the fully processed PPI datasets obtained through the above
pipeline, with results summarized as follows:

Fig. 7 illustrates the distributions of protein sequence lengths and node degrees across the four species
in our processed PPI dataset. Protein lengths are constrained between 50 and 1000 amino acids,
with most sequences falling in the 250–500 aa range, resembling a roughly normal distribution. The
Human PPI network, benefiting from richer data coverage, exhibits a smoother and broader degree
distribution with generally higher values. In contrast, the other three species show lower node degrees
overall, indicating sparser interaction networks.

Tab. 5 summarizes key statistics of the processed PPI datasets across the four selected species. The
number of proteins and interactions varies notably after the filter process, with Human (contributing
the training set) having the largest network (129,861 interactions among 10,090 proteins), while
Yeast and Ecoli have more compact networks. In terms of the topology, Human exhibits the smallest
diameter and average path length, suggesting a denser and more interconnected PPI network. In
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Table 5: Summary statistics of processed PPI dataset across species.

Species PPI Count Protein Count Avg. Degree Avg. Seq. Len Diameter Avg. Path Len
Human 129,861 10,090 25.74 429.55 11 3.64
Arath 23,584 5,025 9.39 417.10 15 5.62
Yeast 15,921 3,173 10.04 413.52 19 5.23
Ecoli 17,452 3,196 10.92 310.67 14 4.81

contrast, Arath shows a larger diameter and average shortest path length, indicating a more fragmented
or modular interaction structure.
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Figure 7: Distribution of protein sequence lengths (top row) and node degrees in the PPI network
(bottom row) across four species in our dataset. (The y-axis indicates the density for both distributions)

D Task Documentation

This section outlines the formal definitions of each task included in PRING and details the correspond-
ing evaluation metrics used to assess model performance.

D.1 Topology-oriented Task

This task assesses whether PPI prediction models can learn and preserve the underlying topological
structure of PPI networks. To this end, PRING requires each model to reconstruct the PPI network
from pairwise predictions and evaluates the result using graph-level metrics.

Formally, given a PPI graph with N proteins, each protein is represented by features xi = {si, ci}
for i = 1, . . . , N , where si denotes the amino acid sequence and ci denotes any auxiliary context
information. A model f predicts an interaction label for each protein pair (i, j), where 1 ≤ i < j ≤
N , as follows:

Ipredi,j = f(xi, xj) ∈ {0, 1}. (2)

Here, Ipredi,j = 1 indicates a predicted interaction, and 0 indicates no interaction.

The reconstructed PPI network is then formed by aggregating all predicted positive interactions:

Gpred = Aggregate
{
(i, j) | Ipredi,j = 1, 1 ≤ i < j ≤ N

}
. (3)

Finally, the reconstructed graph Gpred is evaluated against the ground-truth graph Gtrue using a suite
of graph-level metrics detailed below.

We consider two subtasks to evaluate the intra-species and cross-species capabilities of PPI prediction
models. Below, we detail the task definitions and corresponding evaluation protocols.

D.1.1 Comparison of Different Traversal Strategies

Since our primary focus is on protein–protein interaction (PPI) networks, we consider three widely
used graph traversal strategies for sampling: breadth-first search (BFS), depth-first search (DFS), and
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random walk (RW). Each of these strategies captures different topological and biological characteris-
tics of PPI networks. The distinct features they emphasize are summarized below, as shown in Tab.
6.
Table 6: PPI subgraph structural characteristics and biological network types corresponding to
different sampling strategies.

Sampling Strategy Biological Network Structure Functional Module Example Citation

BFS Locally dense structures, such as
protein complexes, modules

Ribosomal protein complex, intra-
cellular signaling module [115]

DFS Chain/tree structures, such as
signaling or metabolic pathways

MAPK signaling pathway, glycoly-
sis metabolic pathway [116]

RW
Hub-dominant structures, such as
regulatory networks and pan-
functional networks

TP53 regulatory network, transcrip-
tion factor network [117]

D.1.2 Intra-species PPI network Construction

This task focuses on the Human species, following the same intra-species setting used in prior
studies [17, 19]. The full Human PPI graph is partitioned into training and test subgraphs with an 8:2
split, using a leakage-free protocol to avoid data contamination. This results in a training subgraph
of 8,072 proteins and a test subgraph of 2,018 proteins with no protein overlap. To examine how
subgraph topology and size affect model performance, we sample 500 subgraphs from the test sets,
each ranging from 20 to 200 nodes, using three traversal algorithms: breadth-first search (BFS),
depth-first search (DFS), and random walk (RW). These traversal strategies can be associated with
distinct biological network types. BFS captures densely connected local neighborhoods, making it
suitable for modeling protein complexes and functional modules characterized by high intra-cluster
interaction density [115]. DFS, in contrast, tends to generate chain-like or tree-structured subgraphs,
resembling the topology of signaling or metabolic pathways, where interactions follow a directional
flow [116]. Random walk explores the network probabilistically and is more likely to visit hub
proteins, aligning with regulatory or hub-based networks that reflect transcriptional or cellular control
systems [117, 118]. By leveraging these biologically motivated sampling strategies, we systematically
evaluate how PPI models generalize across different local topologies.

Since existing PPI models are trained on protein pairs, we generate training data by sampling positive
and negative protein pairs from the training subgraph in a 1:1 ratio, and further divide them into 80%
for training and 20% for validation, following protocols in [46]. In total, this yields 85,824 training
pairs, 21,456 validation pairs, and 500 test subgraphs per traversal strategy for topological evaluation.

D.1.3 Cross-species PPI network Construction

To assess cross-species generalization, models trained on Human PPIs are used to reconstruct
networks in three additional species: Arath, Ecoli, and Yeast. For each species, we sample 500
subgraphs ranging from 20 to 200 nodes using BFS, DFS, and RW, yielding 500 test graphs per
traversal method per species for evaluation.

D.1.4 Evaluation Metrics

Both intra-species and cross-species PPI network construction tasks are evaluated under five graph-
level metrics, which are widely used in graph-generation tasks.

Graph Similarity (GS) [87]. Graph similarity primarily quantifies the edge differences between the
predicted and ground-truth graphs, as the node set in the PPI graph remains unchanged. Mathemati-
cally, it is defined as:

Graph Similarity = 1− ∥Â−A∥1
|E|+ |Ê|

, (4)

where A ∈ {0, 1}N×N is the adjacency matrix of the ground-truth graph Gtrue, Â ∈ {0, 1}N×N is
the adjacency matrix of the predicted graph Gpred. E and Ê are the sets of edges in the ground-truth
and predicted graphs, respectively.

This metric ranges between 0 and 1, and a higher value indicates better alignment between the
prediction and the ground truth.
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Relative Density (RD) [88]. Relative density evaluates the extent of over- or under-prediction by
comparing the edge density of the predicted network with that of the ground-truth network.

Relative Density =
|Ê|/

(
N
2

)
|E|/

(
N
2

) =
|Ê|
|E|

(5)

where N is the number of proteins in the PPI network, and |E| and |Ê| denote the number of edges
in the ground-truth and predicted graphs, respectively.

A value of RD > 1 indicates over-prediction, while RD < 1 suggests under-prediction. An RD of 1
implies that the predicted graph has the same edge density as the ground truth.

Degree Distribution (Deg.) [89]. Degree distribution computes the discrepancy between node
degree distributions of the predicted and ground-truth networks using maximum mean discrepancy
(MMD) [90], providing a quantitative assessment of global structural differences in terms of con-
nectivity patterns. However, the direct output of MMD lacks a reference scale and does not reflect
the relative extent of discrepancy. To address this limitation, we follow prior work [89] and report a
normalized ratio:

Degree Distribution (MMD) =
MMD2(pred, test)
MMD2(test, test)

, (6)

where pred and test denote sets of predicted and ground-truth PPI networks, respectively. Each
network is first transformed into a degree histogram (i.e., a vector summarizing its node degree
distribution), and the MMD2 is then computed over these histogram sets.

Ideally, the range of Deg. is equal to or larger than 1. A lower value of Deg. indicates better alignment
of degree distributions, with a value close to 1 suggesting that the predicted networks are as similar to
the test set as the test networks are to themselves.

Clustering Coefficient (Clus.) [89]. Clustering coefficient uses MMD to measure the discrepancy
between the distributions of local clustering coefficients in the predicted and ground-truth networks,
thereby assessing the preservation of community structure.

As with degree distribution, we compute the discrepancy in a relative form by normalizing the MMD2

between the predicted and test sets. Each network is transformed into a histogram of local clustering
coefficients, and the MMD is applied over these aggregated distributions.

Spectral [91]. Spectral calculates the discrepancy between eigenvalue spectra of normalized Lapla-
cian matrices of predicted and true networks using MMD, reflecting global structural alignment.

Again, we report the relative discrepancy by normalizing the MMD2 between predicted and test sets.
Each network is represented by a vector of eigenvalues of its normalized Laplacian matrix, and MMD
is applied over the resulting spectral distributions.

D.2 Function-oriented Task

Besides topology-based evaluation, we introduce three function-oriented tasks closely aligned with
real-world biological applications. These tasks assess how well the reconstructed PPI networks
preserve biologically meaningful properties and evaluate the practical applicability of existing
models.

D.2.1 Protein Complex Pathway Prediction

Complex pathways refer to biological processes involving multiple proteins that interact with each
other to perform coordinated cellular functions, which typically form densely connected subgraphs
within the larger PPI network. Accurately reconstructing these pathways can enhance our understand-
ing of disease mechanisms and support the development of targeted therapies [94, 95]. In this task,
the model first predicts pairwise protein interactions based on the input protein complex pathways,
then aggregates these predictions to construct predicted subgraphs Gpred, which are subsequently
evaluated against the ground truth Gtrue. For fair evaluation, we curate 235 human protein complex
pathways from Reactome [38], ensuring no protein overlap with the Human training graph. Pathway
sizes range from 4 to 20 proteins.

The model’s performance is evaluated using the following metrics:
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Pathway Precision (PP). The proportion of predicted interactions within the complex pathway that
are also present in the ground-truth subgraph:

Pathway Precision =
|Epred ∩ Etrue|

|Epred|
, (7)

where Epred and Etrue represent the sets of predicted and ground-truth interactions, respectively.

Pathway Recall (PR). The proportion of ground-truth interactions within the complex pathway that
are successfully recovered by the prediction:

Pathway Recall =
|Epred ∩ Etrue|

|Etrue|
, (8)

where Epred and Etrue represent the sets of predicted and ground-truth interactions, respectively.

Pathway Connectivity (PC). The fraction of predicted pathway subgraphs that form a single
connected component, reflecting biological plausibility:

Pathway Connectivity =
1

N

N∑
i=1

[
Gpred

i is connected
]
, (9)

where N is the total number of pathways.

D.2.2 GO Enrichment Analysis

GO enrichment connects network topology with biological function, supporting gene annotation and
pathway discovery [96]. This task evaluates whether reconstructed PPI networks preserve functional
coherence by comparing enriched GO terms of predicted communities to those of the ground-truth
network. Specifically, we reconstruct the Human test subgraph (2,018 proteins) using a trained PPI
prediction model, detect communities via the Louvain algorithm [97], and perform GO enrichment
using g: Profiler [98] tool across three ontologies: Molecular Function (MF), Biological Process
(BP), and Cellular Component (CC).

Evaluations are conducted under two metrics:

Functional Alignment (FA). Measures the average Jaccard similarity between the enriched GO
terms of each predicted cluster and its best-matching ground-truth cluster:

Functional Alignment =
1

K

K∑
i=1

max
j

|T pred
i ∩ T true

j |
|T pred

i ∪ T true
j |

, (10)

where K is the number of predicted clusters, and T pred
i , T true

j are the sets of enriched GO terms in the
ith predicted cluster and jth ground-truth cluster, respectively.

A higher functional alignment score (0 ≤ FA ≤ 1) indicates better functional alignment between
predicted and ground-truth communities

Consistency Ratio (CR). Compares the average within-cluster GO term similarity in the predicted
network to that in the ground-truth network:

CR =
1

K

K∑
i=1

Jaccard(T pred
i )

max
j

Jaccard(T true
j )

, (11)

where K is the number of predicted clusters, T pred
i denotes the set of GO terms associated with

proteins in the ith predicted cluster, and Jaccard(Ti) is the average pairwise Jaccard similarity between
the GO term sets of all protein pairs within cluster i. For each predicted cluster i, the denominator
uses the best-matching ground-truth cluster j.

A consistency ratio (0 ≤ CR ≤ 1) close to 1 indicates stronger preservation of functional coherence
within clusters.
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D.2.3 Essential Protein Justification

Essential proteins are critical for an organism’s survival and often occupy central positions in PPI
networks [99, 100]. A reliable model should differentiate essential from non-essential proteins based
on node degree or centrality in the reconstructed network [101]. In this task, we use the Human test
subgraph (2,018 proteins) as the evaluation set and annotate essential and non-essential proteins using
CCDS [102] and UniProt [37]. Specifically, we select 100 essential and 100 non-essential proteins
whose centrality scores [99] differ significantly, with p value less than 10−4 (See Fig. 4(a)).

Trained models are used to reconstruct the Human test graph, and performance is assessed using the
following metrics:

Precision@K (P@K). Measures the proportion of essential proteins among the top K nodes ranked
by network centrality scores:

Precision@K =
|TopK ∩ Essential|

K
(12)

where TopK denotes the set of top-K nodes ranked by centrality in the reconstructed graph, and
Essential is the set of ground-truth essential proteins. We set K = 100 in this study.

Distribution Overlap (DO). Quantifies the distribution overlap between the centrality score of
essential and non-essential proteins using the area under the minimum of their probability density
functions (PDFs):

Distribution Overlap =

∫ ∞

−∞
min (pessential(x), pnon-essential(x)) dx (13)

where pess(x) and pnon(x) are the estimated PDFs of the centrality scores for essential and non-
essential proteins, respectively.

Lower values of distribution overlap indicate better separability between essential and non-essential
proteins, while higher P@K reflects stronger prioritization of biologically important proteins.

E Baseline Models

This section introduces the baseline models evaluated in our benchmark.

E.1 Sequence Similarity-based Method

SPRINT [52]. SPRINT is a high-throughput, alignment-based method that identifies PPIs by
searching for local sequence similarities between query proteins and known interacting pairs. It uses
a spaced seed hashing mechanism to locate short, conserved motifs and then filters out nonspecific
matches to improve precision. By avoiding supervised learning, it remains model-free and does
not require negative sampling, making it computationally efficient to full proteome predictions. We
access the codebase via https://github.com/lucian-ilie/SPRINT.

E.2 Naive Sequence-based Method

PIPR [48]. PIPR employs a Siamese residual RCNN to learn complex interaction features directly
from protein sequences. Each protein is embedded using a property-aware amino acid encoding,
followed by convolutional and recurrent layers to extract both short-term motifs and long-range
dependencies. PIPR is trained end-to-end to predict whether two sequences interact, making it
effective for pairwise classification, though limited in capturing higher-level network structures. The
source code is provided in https://github.com/muhaochen/seq_ppi.

D-SCRIPT [17]. D-SCRIPT bridges the gap between sequence and structure by predicting physical
interactions via inferred inter-residue contact maps. It uses pretrained structure-aware embeddings,
which are then projected into a contact space using a convolutional scoring module. A key innovation
is its regularization mechanism that enforces structural plausibility, even without access to actual
3D structures. The prediction of the contacts between proteins enables its interpretability. We use
the recommended implementation method in https://d-script.readthedocs.io/en/stable/
usage.html.
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Topsy-Turvy [56]. Topsy-Turvy integrates bottom-up sequence modeling with top-down global
network patterns. During training, it incorporates graph-derived supervision to infuse sequence
embeddings with knowledge of network-level interactions. The model retains only sequence input at
test time, allowing practical use in non-model organisms. We use the recommended implementation
method in https://d-script.readthedocs.io/en/stable/usage.html.

E.3 Protein Language Model-based Method

PPITrans [19]. PPITrans leverages protein language models (PLMs) for generalizable PPI prediction,
using ProtT5 [62] to encode contextual sequence embeddings. A transformer encoder is applied to
model pairwise interactions from these embeddings. The model demonstrates strong cross-species
performance, suggesting that PLM-derived representations capture semantic and functional signals
relevant to interaction propensity and are transferable across evolutionary distances. We follow the
codebase in https://github.com/LtECoD/PPITrans.

TUnA [64]. TUnA extends PLM-based PPI prediction by incorporating uncertainty estimation. It
uses ESM-2 embeddings [25] as input to transformer layers and employs a spectral-normalized
neural Gaussian process as the output layer to quantify prediction confidence. This design enables
TUnA to provide calibrated interaction scores, which are particularly valuable for prioritizing high-
confidence predictions in large-scale or experimental screening settings. Implementation is followed
by https://github.com/Wang-lab-UCSD/TUnA.

PLM-interact [63]. PLM-interact jointly encodes protein pairs by concatenating sequences and
feeding them into ESM-2 [25], enabling attention mechanisms to directly model inter-sequence
dependencies. This paired encoding strategy captures interaction-specific features, such as co-
evolutionary signals and cross-residue contacts, allowing the model to effectively learn the “language
of interactions”. The official implementation is provided in https://github.com/liudan111/
PLM-interact.

E.4 Structure-based Method

Struct2Graph [65]. Struct2Graph models PPIs using graph neural networks (GNNs) over residue-
level graphs constructed from 3D protein structures. It employs a dual GNN encoder with shared
weights and a mutual attention mechanism to highlight interfacial regions between proteins. By
capturing spatial geometry and residue connectivity, the model effectively identifies structural deter-
minants of binding. A key limitation, however, is its reliance on experimentally resolved structures
from the Protein Data Bank (PDB), which constrains its applicability to proteins with unknown 3D
conformations. The source code is provided in https://github.com/baranwa2/Struct2Graph.

TAGPPI [66]. TAGPPI introduces structure-aware learning by combining predicted contact maps
with sequence features. It uses residue–residue graphs as input to a GNN and supplements them
with a 1D CNN over the raw sequence. The fusion of these modalities enables TAGPPI to benefit
from structural topology even when only sequence input is available. The model outperforms prior
sequence-only methods and shows robustness across different organisms, validating the utility of
predicted structures for downstream functional tasks. The source code is given in https://github.
com/xzenglab/TAGPPI.

RF2-Lite [70]. RF2-Lite is a lightweight derivative of RoseTTAFold2 [106] tailored for high-
throughput PPI screening. It uses paired multiple sequence alignments (MSAs) and a reduced
multitrack architecture to predict inter-chain distance maps efficiently. Although less accurate than
full-fledged structure predictors, RF2-Lite achieves strong performance with dramatically lower
inference time, making it suitable for proteome-scale predictions. We follow the recommended
implementation in https://github.com/SNU-CSSB/RF2-Lite.

Chai-1 [107]. Chai-1 is a state-of-the-art, multi-modal foundation model developed by the Chai
Discovery team for molecular structure prediction. It is highly effective at predicting the structures of
proteins, small molecules, DNA, RNA, and covalently modified compounds. Unlike other structure
prediction models that rely heavily on multiple sequence alignments (MSAs), Chai-1 can perform
effectively in single-sequence mode while maintaining high accuracy. A standout feature of Chai-1
is its ability to incorporate experimental data, such as epitope conditioning, to enhance prediction
accuracy, particularly in antibody-antigen interactions. This integration can significantly improve
performance, making it a valuable tool in antibody engineering and drug discovery. We use the source
code provided in https://github.com/chaidiscovery/chai-lab.
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F Experimental Settings

We follow the recommended hyperparameters provided in each model’s official codebase, as these
settings have demonstrated strong performance on their respective benchmarks. We assume these
configurations to be robust and generalizable across diverse evaluation scenarios.

Specifically, PLM-interact (35M and 650M variants) is used in inference mode with publicly released
pre-trained weights. Due to computational constraints, RF2-Lite is evaluated on only 10% of the test
graphs (a graph is randomly sampled for each node size for evaluation). All other baseline models
are trained from scratch. In addition, we conduct a case study of Chai-1 on just three Human graphs
(node sizes range from 20 to 60). For the binary-based PPI prediction models, we use the default
probability threshold of 0.5 to distinguish between interacting and non-interacting pairs.

The experiments are conducted on heterogeneous hardware platforms. For the SPRINT, which does
not need GPUs for inference, the experiments are done on Kunpeng-920, a 64-core platform. For
the model trained from scratch, NVIDIA A100-PCIE-40GB is used with the same CPU support.
Additionally, for the RF2-Lite and Chai-1, the experiments are conducted on NVIDIA-A800-SXM4-
80GB. Since RF2-Lite requires MSAs as input, we use Uniref90 [105] as the search database with
GPU-accelerated version of MMseq2 [119]. Given that Chai-1 performs well without the use of MSAs
or templates, and that generating MSAs is computationally intensive, we opt to use single-sequence
inputs exclusively.

G Experimental Results

We present detailed results for all evaluated models across both topology-oriented (Sec. G.1) and
function-oriented tasks (Sec. G.2). The following sections offer a comprehensive comparison of
model performance, highlighting their ability to preserve structural properties and capture biologically
meaningful patterns.

For topology-oriented tasks, we additionally report standard classification metrics for all baseline
models to provide complementary insights. The test dataset used for classification follows the
evaluation protocol established in prior work [46].

We further include the complete test results from the ablation study on varying positive-to-negative
PPI training ratios in Sec. G.3. We analyze the impact of different probability thresholds on the
trade-off between precision and recall in Sec. G.4 as well.

Additionally, we include a case study on Chai-1 [107] in Sec. G.5, a state-of-the-art protein structure
prediction model, to evaluate its potential in PPI network construction.

Finally, we conduct a scaling-law analysis in Sec. G.6 to investigate how model size correlates
with graph-level performance, offering insights into the trade-offs between model complexity and
predictive accuracy.

G.1 Topology-oriented Task

Table 7: Graph-level results of intra-species (Human) PPI network construction task. We use three
color scales of blue to denote the first, second, and third best performance. RD closer to 1 is better.

Sampling Method BFS DFS RW
Category Model GS↑ RD→ Deg.↓ Clus.↓ Spectral↓ GS↑ RD→ Deg.↓ Clus.↓ Spectral↓ GS↑ RD→ Deg.↓ Clus.↓ Spectral↓

Avg.
Rank

Seq. Sim. SPRINT 0.227 1.61 10.9 12.5 11.2 0.145 5.91 316 207 53.8 0.178 1.32 17.9 26 15.1 3
PIPR 0.209 4.39 81.7 40.5 36.2 0.0749 12.3 518 335 77.0 0.196 5.75 165 107 41.1 11
D-SCRIPT 0.215 1.13 15.4 18.8 29.7 0.123 6.40 302 237 67.0 0.209 5.82 134 64.8 52 8Naive

Sequence Topsy-Turvy 0.183 1.74 17.3 11.4 14.6 0.130 3.22 180 201 65.9 0.232 4.88 104 64.8 36.7 5
PPITrans 0.362 3.39 52.2 29.1 26.3 0.314 4.54 418 270 46.6 0.449 2.57 71.9 46.1 19.6 5
TUnA 0.342 2.99 47.8 30.2 22.9 0.289 4.44 416 272 46.0 0.450 2.23 55.4 42.5 13.7 4
PLM-interact (35M) 0.383 2.29 24.4 16.0 12.8 0.322 2.85 209 78.2 36.3 0.429 2.47 52.6 22.6 13.6 2PLM

PLM-interact (650M) 0.396 1.64 30.9 14.8 16.5 0.350 2.03 236 63.6 42.2 0.491 1.76 50.3 21.2 15.4 1
Struct2Graph 0.27 5.58 95.1 50.5 39.2 0.132 10.8 508 321 67.6 0.237 5.83 155 103 38.3 10
TAGPPI 0.283 4.56 70.8 36.2 29.5 0.143 9.94 491 309 65.3 0.256 4.87 127 74.2 28.6 9Structure
RF2-Lite 0.227 0.524 43.8 31.7 34.9 0.243 1.10 226 39.3 61.8 0.171 0.514 81.7 73.9 60.9 7

G.1.1 Intra-species PPI Network Construction

Tab. 7 and Tab. 8 report the performance of all models on graph-level and binary classification
metrics, respectively. A detailed analysis of the graph-level results is provided in Sec. 4.3.1.
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Table 8: Binary classification results of intra-species (Human) test set. We use three color scales of
blue to denote the first, second, and third best performance.

Category Model Accuracy↑ Precision↑ Recall↑ F1↑ AUPR↑ Avg. Rank
Seq. Sim. SPRINT 0.545 0.607 0.257 0.361 0.527 7

PIPR 0.559 0.557 0.581 0.568 0.565 5
D-SCRIPT 0.505 0.597 0.104 0.144 0.539 10Naive

Sequence Topsy-Turvy 0.508 0.596 0.120 0.160 0.541 9
PPITrans 0.674 0.657 0.738 0.694 0.769 1
TUnA 0.647 0.676 0.563 0.614 0.720 1
PLM-interact (35M) 0.640 0.653 0.597 0.623 0.706 4PLM

PLM-interact (650M) 0.671 0.735 0.534 0.619 0.707 3
Struct2Graph 0.515 0.511 0.696 0.589 0.507 8Structure TAGPPI 0.545 0.536 0.672 0.596 0.524 6

Overall, the model rankings based on binary classification metrics are broadly consistent with those
based on graph-level metrics, with PLM-based approaches outperforming other model types. Notably,
PPITrans and TUnA achieve the highest classification scores, while PLM-interact demonstrates
superior performance in reconstructing the overall PPI network topology.

Table 9: Graph-level results of cross-species (Human to Arath) PPI network construction task. We
use three color scales of blue to denote the first, second, and third best performance. RD closer to 1
is better.

Sampling Method BFS DFS RW
Category Model GS↑ RD→ Deg.↓ Clus.↓ Spectral↓ GS↑ RD→ Deg.↓ Clus.↓ Spectral↓ GS↑ RD→ Deg.↓ Clus.↓ Spectral↓

Avg.
Rank

Seq. Sim. SPRINT 0.200 1.27 10.5 15.7 21.0 0.149 2.06 9.11 108 40.5 0.204 0.847 11.8 20.8 28.2 3
PIPR 0.211 5.23 101 67.4 33.9 0.0886 11.9 80.7 306 64.9 0.219 5.47 123 81.1 35.7 10
D-SCRIPT 0.167 1.31 21.6 27.0 37.5 0.111 8.09 55.6 241 67.1 0.247 6.27 118 57.0 53.3 8Naive

Sequence Topsy-Turvy 0.163 1.91 20.6 20.5 15.6 0.153 2.32 13.0 123 61.3 0.267 3.90 60.5 33.0 30.6 4
PPITrans 0.330 4.97 59.6 47.7 32.5 0.250 6.62 62.0 252 54.9 0.423 2.79 45.6 28.9 28.8 6
TUnA 0.310 4.47 62.9 45.3 26.1 0.242 6.41 68.6 248 48.6 0.382 2.91 58.7 30.2 22.6 5
PLM-interact (35M) 0.304 2.50 23.8 13.5 20.2 0.227 4.26 35.4 124 34.6 0.339 1.78 13.5 7.49 16.3 2PLM

PLM-interact (650M) 0.364 1.59 25.8 13.7 19.2 0.276 2.38 37.0 108 32.7 0.445 1.26 22.7 12.6 19.2 1
Struct2Graph 0.241 7.10 118 76.4 37.7 0.130 14.2 83.9 349 69.8 0.242 5.38 109 60.9 30.9 11
TAGPPI 0.258 5.89 87.7 55.5 29.5 0.145 12.8 82.0 328 64.0 0.265 4.24 79.0 45.1 22.4 8Structure
RF2-Lite 0.104 0.470 49.8 87.2 52.4 0.161 1.08 7.59 167 43.9 0.184 0.442 30.0 51.8 43.8 7

Table 10: Binary classification results of cross-species (Human to Arath) test set. We use three color
scales of blue to denote the first, second, and third best performance.

Category Model Accuracy↑ Precision↑ Recall↑ F1↑ AUPR↑ Avg. Rank
Seq. Sim. SPRINT 0.552 0.702 0.181 0.287 0.537 7

PIPR 0.579 0.568 0.659 0.610 0.586 4
D-SCRIPT 0.509 0.734 0.118 0.155 0.570 9Naive

Sequene Topsy-Turvy 0.501 0.696 0.118 0.158 0.556 10
PPITrans 0.748 0.757 0.731 0.744 0.827 1
TUnA 0.702 0.758 0.593 0.665 0.780 2
PLM-interact (35M) 0.621 0.706 0.413 0.521 0.677 5PLM

PLM-interact (650M) 0.661 0.811 0.420 0.554 0.757 3
Struct2Graph 0.507 0.505 0.671 0.576 0.503 7Structure TAGPPI 0.522 0.518 0.655 0.578 0.512 6

Table 11: Graph-level results of cross-species (Human to Yeast) PPI network construction task. We
use three color scales of blue to denote the first, second, and third best performance. RD closer to 1
is better.

Sampling Method BFS DFS RW
Category Model GS↑ RD→ Deg.↓ Clus.↓ Spectral↓ GS↑ RD→ Deg.↓ Clus.↓ Spectral↓ GS↑ RD→ Deg.↓ Clus.↓ Spectral↓

Avg.
Rank

Seq. Sim. SPRINT 0.242 1.04 12.8 20.2 16.5 0.171 1.72 52.1 130 31.6 0.256 1.65 19.8 42.1 18.2 2
PIPR 0.196 4.35 90.0 49.9 30.2 0.0957 8.96 531 278 50.6 0.173 6.38 180 92.2 38.4 11
D-SCRIPT 0.168 1.14 14.2 26.5 34.8 0.106 5.28 221 189 49.7 0.202 8.04 173 90.3 59.1 7Naive

Sequence Topsy-Turvy 0.142 1.55 11.6 14.2 10.9 0.130 2.58 115 101 28.5 0.186 5.12 100.0 50.1 35.0 4
PPITrans 0.348 4.43 55.4 35.1 30.8 0.200 8.15 397 257 49.0 0.339 4.44 95.3 50.1 35.0 6
TUnA 0.332 3.60 57.7 37.8 22.6 0.219 5.47 414 225 36.1 0.323 4.07 119 56.0 26.3 5
PLM-interact (35M) 0.314 2.34 24.0 12.5 15.5 0.189 3.95 202 119 29.4 0.305 2.82 49.7 21.3 17.4 3PLM

PLM-interact (650M) 0.354 1.90 25.8 12.7 14.1 0.258 3.04 232 85.8 27.9 0.365 2.10 51.3 19.4 13.8 1
Struct2Graph 0.256 5.89 115 68.4 37.1 0.139 11.6 546 337 55.8 0.211 6.87 178 97.7 41.1 9
TAGPPI 0.279 4.82 91.7 58.8 28.8 0.154 10.1 519 311 51.2 0.230 5.67 151 78.6 31.6 8Structure
RF2-Lite 0.136 0.361 71.6 91.0 73.7 0.179 0.699 158 170 54.1 0.138 0.359 89.1 127 69.6 10
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Table 12: Binary classification results of cross-species (Human to Yeast) test set. We use three color
scales of blue to denote the first, second, and third best performance.

Category Model Accuracy↑ Precision↑ Recall↑ F1↑ AUPR↑ Avg. Rank
Seq. Sim. SPRINT 0.554 0.620 0.280 0.386 0.534 7

PIPR 0.552 0.551 0.558 0.555 0.563 5
D-SCRIPT 0.516 0.554 0.167 0.256 0.523 9Naive

Sequene Topsy-Turvy 0.509 0.529 0.168 0.255 0.506 10
PPITrans 0.729 0.700 0.806 0.749 0.815 1
TUnA 0.689 0.688 0.690 0.690 0.766 2
PLM-interact (35M) 0.615 0.655 0.484 0.557 0.667 4PLM

PLM-interact (650M) 0.660 0.743 0.490 0.590 0.725 3
Struct2Graph 0.511 0.508 0.709 0.592 0.506 8Structure TAGPPI 0.528 0.521 0.696 0.596 0.514 5

Table 13: Graph-level results of cross-species (Human to Ecoli) PPI network construction task. We
use three color scales of blue to denote the first, second, and third best performance. RD closer to 1
is better.

Sampling Method BFS DFS RW
Category Model GS↑ RD→ Deg.↓ Clus.↓ Spectral↓ GS↑ RD→ Deg.↓ Clus.↓ Spectral↓ GS↑ RD→ Deg.↓ Clus.↓ Spectral↓

Avg.
Rank

Seq. Sim. SPRINT 0.147 0.573 51.6 37.5 41.7 0.125 0.860 164 116 55.2 0.157 0.765 100.0 57.9 44.1 2
PIPR 0.172 5.27 144 46.3 45.2 0.0814 11.6 780 359 63.1 0.134 8.57 437 129 58.0 11
D-SCRIPT 0.159 1.78 20.6 30.5 40.2 0.108 10.1 624 286 58.8 0.145 10.3 410 119 75.6 7Naive

Sequence Topsy-Turvy 0.220 5.54 132 43.6 39.0 0.0810 3.26 312 126 50.1 0.160 10.8 422 152 70.4 8
PPITrans 0.298 4.94 105 40.8 39.4 0.158 9.27 711 347 54.8 0.243 5.65 327 92.0 45.5 4
TUnA 0.271 5.80 127 51.2 43.2 0.144 10.9 664 345 56.9 0.204 8.17 392 125 57.0 8
PLM-interact (35M) 0.251 3.68 83.8 26.7 24.9 0.151 5.68 459 218 37.8 0.201 4.85 273 67.5 33.2 1PLM

PLM-interact (650M) 0.267 4.88 113 38.5 33.6 0.152 7.65 589 275 44.1 0.215 6.31 326 89.5 42.6 3
Struct2Graph 0.210 5.22 144 54.1 37.7 0.0994 11.0 771 371 57.6 0.155 7.15 393 108 48.0 10Structure
TAGPPI 0.237 4.88 136 54.1 35.0 0.110 10.7 756 368 56.6 0.176 6.81 383 105 45.6 6
RF2-Lite 0.152 0.395 116 86.7 78.9 0.197 0.585 273 252 77.0 0.166 0.388 225 131 91.7 5

Table 14: Binary classification results of cross-species (Human to Ecoli) test set. We use three color
scales of blue to denote the first, second, and third best performance.

Category Model Accuracy Precision Recall F1 AUPR Avg. Rank
Seq. Sim. SPRINT 0.521 0.747 0.063 0.116 0.516 7

PIPR 0.573 0.573 0.568 0.571 0.578 5
D-SCRIPT 0.509 0.703 0.0782 0.120 0.548 6Naive

Sequene Topsy-Turvy 0.507 0.538 0.211 0.219 0.539 9
PPITrans 0.617 0.591 0.820 0.682 0.718 1
TUnA 0.624 0.598 0.756 0.667 0.675 1
PLM-interact (35M) 0.580 0.593 0.507 0.547 0.610 4PLM

PLM-interact (650M) 0.609 0.599 0.660 0.628 0.638 3
Struct2Graph 0.500 0.500 0.543 0.520 0.500 10Structure TAGPPI 0.516 0.514 0.581 0.546 0.508 7

G.1.2 Cross-species PPI network Construction

We report detailed experimental results for both graph-level and binary classification metrics in the
cross-species evaluation setting.

Specifically,

• Tab. 9 and Tab. 10 present the results on Arath,
• Tab. 11 and Tab. 12 report the performance on Yeast, and
• Tab. 13 and Tab. 14 summarize the results on Ecoli.

These tables collectively illustrate how well models generalize to phylogenetically diverse species
beyond the human training data.

We further account for numerical phylogenetic distance to provide a deeper understanding of cross-
species generalization. To investigate this, we conducted an ablation study by computing the Pearson
correlation between model performance and the estimated phylogenetic distance from Human.
Specifically, we set the intra-species (Human→Human) distance to 0, and adopt widely accepted
phylogenetic estimates [120] for other species: Human→Arath (1.5 Gyr), Human→Yeast (1.2 Gyr),
and Human→Ecoli (3.6 Gyr), which consist the distance vector d = [0, 1.5, 1.3, 1.6]. For given model
M and performance metric (e.g., graph similarity (GS)), let pM

m = [pHuman, pArath, pYeast, pEcoli]
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Table 15: Pearson correlation between phylogenetic distance and graph-level metrics.
Sampling Method BFS DFS Random Walk

Category Method r(d,pGS) r(d,pRD) r(d,pDeg.) r(d,pClus.) r(d,pSpectral) r(d,pGS) r(d,pRD) r(d,pDeg.) r(d,pClus.) r(d,pSpectral) r(d,pGS) r(d,pRD) r(d,pDeg.) r(d,pClus.) r(d,pSpectral)

Naive Seq. D-SCRIPT -0.82 0.94 0.61 0.92 0.93 -0.70 0.81 0.65 0.63 -0.30 -0.69 0.91 0.89 0.81 0.93

PPITrans -0.98 0.80 0.94 0.56 1.00 -0.90 0.89 0.53 0.81 0.79 -0.91 0.86 0.87 0.77 0.95PLM TUnA -0.97 0.97 0.96 0.94 0.92 -0.98 0.98 0.49 0.70 0.64 -0.96 0.95 0.92 0.86 0.97

Structure Struct2Graph -0.98 -0.26 1.00 -0.01 -0.55 -0.85 -0.03 0.43 0.98 -0.53 -0.88 0.63 0.84 0.17 0.61

denotes the model’s performance vector across the four species. We calculate the Pearson correlation
r(d,pM

m ) to quantify the relationship between phylogenetic distance and model performance. This
analysis is conducted on four representative baselines, and are summarized in Tab. 15.

We find that phylogenetic distance is strongly correlated with model performance degradation across
species. For all models and sampling strategies, GS consistently exhibits a strong negative correlation
with phylogenetic distance (correlations typically < -0.7). This indicates that as phylogenetic distance
increases, GS decreases—i.e., model predictions become less similar to the ground-truth network.
Most other metrics show strong positive correlations with phylogenetic distance. This means that
as the evolutionary gap widens, predicted networks increasingly diverge from true biological net-
works, reflected by higher RD, degree, clustering, or spectral values, all of which signal degraded
performance.

Table 16: Alternative Cross-species Transfer.

Transfer Direction Arath→Arath Arath→Yeast Arath→Ecoli
Category Method GS ↑ RD → Deg. ↓ Clus. ↓ Spectral ↓ GS ↑ RD → Deg. ↓ Clus. ↓ Spectral ↓ GS ↑ RD → Deg. ↓ Clus. ↓ Spectral ↓
Naive Seq. D-SCRIPT 0.407 2.24 38.4 11.6 19.0 0.288 3.68 52.3 25.0 28.9 0.243 6.11 121 46.1 44.1

PPITrans 0.470 2.96 43.7 31.4 17.8 0.376 4.68 78.0 50.8 35.8 0.312 5.14 138 51.4 44.1PLM TUnA 0.548 1.54 22.6 19.1 14.4 0.378 3.87 58.5 42.9 27.0 0.302 5.39 129 49.9 42.1

Structure Struct2Graph 0.352 2.59 67.0 70.5 16.3 0.266 4.84 92.9 62.1 30.6 0.218 5.53 145 61 38.8

In addition to the cross-species transfer direction presented in the main manuscript, we perform new
experiments on botany-to-fungi (Arath → Yeast) and botany-to-bacteria (Arath → Ecoli) transfer
learning. We followed the same data construction pipeline described in Sec. 3.1 to avoid data leakage.
We focused on the BFS sampling strategy and evaluated four representative models. The results
are presented in Tab. 16, and they confirm our previous experimental observation: cross-species
generalization becomes more challenging with greater evolutionary divergence.

Specifically, compared to the intra-species setting (Arath → Arath), the GS scores for Arath → Yeast
and Arath → Ecoli decreased by 26% and 39%, respectively. Other graph-level metrics observe
performance degradation as well, indicating the performance of the transfer learning decreases with
the increased evolutionary distances.

G.1.3 Correlation Between Binary Classification Scores and Network Metrics

To investigate whether standard classification metrics reflect the structural quality of reconstructed
PPI networks, we analyze their correlation with five topology-aware metrics across all evaluated
models. We summarize some important discoveries in Fig. 8:

• Recall often distorts the network topology: Recall measures the proportion of true posi-
tives correctly identified. To achieve higher recall, the model typically predicts more edges
to capture as many true interactions as possible, even at the cost of including false positives.
This leads to a denser predicted graph, which deviates from the sparsity characteristic of
real PPI networks, ultimately hurting the preservation of the original topological structure.

• Precision tends to preserve network topology: Precision measures the proportion of
correct positive predictions. Improving precision requires minimizing false positives, which
makes the model more conservative in predicting edges. As a result, the predicted graph
becomes sparser and more aligned with the intrinsic sparsity of real PPI networks, thereby
helping to preserve the underlying network topology.

• Composite metrics like F1-score and AUPR may hide topological differences: Since
these metrics balance both precision and recall, they may yield high scores even when the
predicted network substantially deviates from the true topology. As a result, their correlation
with topological fidelity tends to be weak, potentially masking structural distortions in the
predicted network.

These results underscore the importance of evaluating PPI prediction models beyond binary classifi-
cation, as traditional metrics alone may fail to reflect structural coherence and biological relevance.
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Figure 8: Correlation between binary classification metrics and graph-level topology metrics. Each
subplot shows the Pearson and Spearman correlation between a classification metric and a graph-level
metric. Lastly, a second-order polynomial regression is fit to the data to capture non-linear trends.

G.1.4 Impact of Subgraph Size on Topology-Oriented Performance

In the test subgraphs, as previously described, the node size ranges from 20 to 200. To investigate
the impact of node size on model performance, we visualize the results in a bar plot, as shown in
Fig. 9. We select PLM-interact (650M), the best-performing model overall, to assess how topological
fidelity changes with subgraph scale. As node size increases, we observe a gradual decline in
Graph Similarity, suggesting that reconstructing global structures becomes more challenging in
larger subgraphs. Conversely, Relative Density, Clustering Coefficient (MMD), Degree Distribution
(MMD), and Spectral (MMD) generally exhibit increasing trends, which indicate degraded alignment
with the ground truth in these structural properties. These results suggest that larger PPI networks
may exhibit more complex topological patterns, posing greater challenges for faithful reconstruction.

Table 17: Results for protein complex pathway prediction task. We use three color scales of blue to
denote the first, second, and third best performance.

Category Model Pathway Recall↑ Pathway Precision↑ Pathway Connectivity↑ Avg. Rank
Seq. Sim. SPRINT 0.526 0.856 0.752 6

PIPR 0.160 0.588 0.323 10
D-SCRIPT 0.225 0.466 0.316 11Naive

Sequene Topsy-Turvy 0.240 0.613 0.338 9
PPITrans 0.583 0.863 0.818 1
TUnA 0.526 0.864 0.794 3
PLM-interact (35M) 0.550 0.847 0.880 3PLM

PLM-interact (650M) 0.549 0.862 0.887 2
Struct2Graph 0.413 0.742 0.608 8
TAGPPI 0.487 0.781 0.713 7Structure
RF2-Lite 0.554 0.874 0.135 5

40



20 40 60 80 100 120 140 160 180 200
0.0

0.2

0.4

0.6

Number of Nodes
G

ra
ph

 S
im

ila
rit

y

20 40 60 80 100 120 140 160 180 200
0

1

2

3

Number of Nodes

R
el

at
iv

e 
D

en
si

ty

20 40 60 80 100 120 140 160 180 200
0

10

20

30

40

50

Number of Nodes

D
eg

re
e 

D
is

tri
bu

tio
n 

(M
M

D
)

20 40 60 80 100 120 140 160 180 200
0

10

20

30

40

Number of Nodes

C
lu

st
er

in
g 

C
oe

ffi
ci

en
t (

M
M

D
)

20 40 60 80 100 120 140 160 180 200
0

5

10

15

20

25

Number of Nodes

Sp
ec

tra
l (

M
M

D
)

Figure 9: Effect of subgraph node size on graph-level metrics. The error bars indicate the 95%
confidence intervals.

Table 18: Results for GO enrichment analysis task. We use three color scales of blue to denote the
first, second, and third best performance.

Category GO:BP GO:MF GO:CC Average
Category Model FA↑ CR↑ FA↑ CR↑ FA↑ CR↑ FA↑ CR↑ Avg. Rank

Seq. Sim. SPRINT 0.174 0.468 0.094 0.660 0.254 0.838 0.174 0.655 7
PIPR 0.153 0.480 0.145 0.656 0.247 0.827 0.182 0.654 4
D-SCRIPT 0.125 0.462 0.113 0.668 0.286 0.904 0.175 0.678 4Naive

Sequene Topsy-Turvy 0.131 0.333 0.242 0.652 0.323 0.919 0.232 0.635 7
PPITrans 0.183 0.632 0.236 0.717 0.330 0.919 0.250 0.756 3
TUnA 0.160 0.404 0.223 0.595 0.395 0.868 0.259 0.622 6
PLM-interact (35M) 0.264 0.684 0.322 0.713 0.419 0.959 0.335 0.785 2PLM

PLM-interact (650M) 0.337 0.789 0.359 0.773 0.408 0.970 0.368 0.844 1
Struct2Graph 0.150 0.469 0.106 0.653 0.207 0.826 0.154 0.649 10Structure TAGPPI 0.180 0.468 0.111 0.653 0.212 0.826 0.168 0.649 9

G.2 Function-oriented Task

G.2.1 Protein Complex Pathway Prediction

As shown in Tab. 17, PLM-based models outperform others, with PPITrans achieving the best overall
performance. PLM-interact (650M) ranks second, excelling in pathway connectivity. While RF2-Lite
shows strong precision, its low connectivity limits overall ranking. Among non-PLM methods,
only SPRINT performs competitively, indicating that PLMs better capture complex-level functional
organization.

G.2.2 GO Enrichment Analysis

In addition to the average scores across the three GO ontologies, Biological Process (BP), Molecular
Function (MF), and Cellular Component (CC), we report detailed results for each category in Tab.
18. PLM-interact (650M) consistently achieves the highest performance across all GO categories,
demonstrating strong functional coherence in its predicted networks. PLM-interact (35M) and
PPITrans also perform competitively. Nevertheless, the low function alignment scores observed
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across all models suggest that current PPI prediction methods still struggle to capture fine-grained
functional modules, indicating room for further improvement.

Table 19: Results for essential protein justification task. We use three color scales of blue to denote
the first, second, and third best performance.

Category Model Precision@100↑ Distribution Overlap↓ Avg. Rank
Seq. Sim. SPRINT 0.54 0.727 3

PIPR 0.52 0.834 5
D-SCRIPT 0.47 0.629 4Naive

Sequence Topsy-Turvy 0.43 0.755 7
PPITrans 0.48 0.886 9
TUnA 0.57 0.849 5
PLM-interact (35M) 0.8 0.423 1PLM

PLM-interact (650M) 0.77 0.440 2
Struct2Graph 0.45 0.841 9Structure TAGPPI 0.43 0.828 8

G.2.3 Essential Protein Justification

The more detailed results analysis for the essential protein justification task is given in Tab. 19.
Again, the PLM-interact series achieves the best performance Nevertheless, it should be noted
that all baseline methods exhibit a relatively large distribution overlap between essential and non-
essential proteins in the reconstructed PPI networks. This reflects the limited ability of current PPI
prediction models to preserve functional properties such as node centrality, which may hinder their
effectiveness in supporting downstream biological applications, including drug discovery and disease
gene prioritization. In Fig. 10, we visualize the network centrality distributions for essential and
non-essential proteins across all baseline models and compare them to the ground truth. The results
further highlight the need to improve models’ ability to preserve centrality signals to accurately
identify essential proteins.

Table 20: Ablation results on the positive-to-negative ratio of training pairs under three sampling
configurations.

BFS
Sampling Method Ratio 1:1 Ratio 1:5 Ratio 1:10

Category Model GS ↑ RD → Deg. ↓ Clus. ↓ Spectral ↓ GS ↑ RD → Deg. ↓ Clus. ↓ Spectral ↓ GS ↑ RD → Deg. ↓ Clus. ↓ Spectral ↓
Naive
Sequence D-SCRIPT 0.215 1.13 15.4 18.8 29.7 0.032 0.0705 94.2 46.6 83.2 0.035 0.0400 116 54.1 97.2

PPITrans 0.362 3.39 52.2 29.1 26.3 0.393 1.17 8.12 7.37 10.9 0.374 0.692 11.3 7.23 16.4PLM TUnA 0.342 2.99 47.8 30.2 22.9 0.346 1.14 10.7 9.06 8.77 0.314 0.579 14.4 9.58 17.3

Structure Struct2Graph 0.270 5.58 95.1 50.5 39.2 0.236 4.11 62.6 35.2 25.6 0 5.71E-05 146 65.8 117

DFS
Sampling Method Ratio 1:1 Ratio 1:5 Ratio 1:10

Category Model GS ↑ RD → Deg. ↓ Clus. ↓ Spectral ↓ GS ↑ RD → Deg. ↓ Clus. ↓ Spectral ↓ GS ↑ RD → Deg. ↓ Clus. ↓ Spectral ↓
Naive
Sequence D-SCRIPT 0.123 6.40 302 237 67.0 0.0649 0.0545 518 137 136 0.089 0.27 413 112 107

PPITrans 0.314 4.54 418 270 46.6 0.433 2.19 213 153 28.3 0.520 1.19 100 40.0 38.0PLM TUnA 0.289 4.44 416 272 46.0 0.417 1.49 127 85.6 19.7 0.414 0.933 114 21.9 38.9

Structure Struct2Graph 0.132 10.8 508 321 67.6 0.118 7.29 430 282 50.9 1.74E-05 3.50E-05 593 154 145

Random Walk
Sampling Method Ratio 1:1 Ratio 1:5 Ratio 1:10

Category Model GS ↑ RD → Deg. ↓ Clus. ↓ Spectral ↓ GS ↑ RD → Deg. ↓ Clus. ↓ Spectral ↓ GS ↑ RD → Deg. ↓ Clus. ↓ Spectral ↓
Naive
Sequence D-SCRIPT 0.209 5.82 134 64.8 52.0 0.135 0.334 83.2 51.9 55.6 0.01 0.01 188 133 134

PPITrans 0.449 2.57 71.9 46.1 19.6 0.564 1.27 10.8 10.8 12.3 0.547 0.808 23.7 14.9 25PLM TUnA 0.450 2.23 55.4 42.5 13.7 0.463 0.764 15.8 9.58 13.2 0.425 0.539 38.0 27.6 29.7

Structure Struct2Graph 0.237 5.83 155 103 38.3 0.216 3.44 87.7 72.0 18.4 0 5.71E-05 197 135 140

G.3 Ablation Study on Positive-to-Negative Ratio

To examine the effect of class imbalance on PPI network reconstruction, we vary the positive-to-
negative ratio of training pairs from 1:1 to 1:10 under three sampling configurations: BFS, DFS, and
Random Walk. This setting reflects the inherent sparsity of real PPI networks, where non-interacting
protein pairs largely outnumber interacting ones. We evaluate representative sequence-, PLM-, and
structure-based models using five network-level metrics.

Tab. 20 reports the complete results. Across sampling strategies, moderate imbalance (e.g., 1:5) tends
to improve the robustness of PLM-based models (PPITrans, TUnA), while excessive imbalance (1:10)
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Struct2Graph TAGPPI

Figure 10: Network centrality distributions of essential and non-essential proteins.

causes performance degradation and overly sparse reconstructions. In contrast, simpler models such
as D-SCRIPT and Struct2Graph deteriorate rapidly as the ratio increases, indicating their sensitivity
to biased supervision.

G.4 Ablation Study on Probability Threshold

We evaluate how varying probability thresholds influence the balance between precision and recall
across four representative models. As shown in Tab. 21, Struct2Graph and D-SCRIPT are highly
sensitive to thresholding, with recall dropping sharply, indicating that a large portion of their prediction
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Table 21: Effect of Probability Thresholds on Precision and Recall.

PIPR D-SCRIPT PPITrans Struct2Graph
Threshold Precision Recall Precision Recall Precision Recall Precision Recall

0.2 0.552 0.634 0.570 0.135 0.627 0.821 0.502 0.937
0.3 0.554 0.615 0.582 0.115 0.651 0.769 0.504 0.900
0.5 0.557 0.581 0.597 0.104 0.658 0.738 0.511 0.696
0.7 0.561 0.550 0.764 0.067 0.753 0.535 0.532 0.007
0.8 0.562 0.530 0.780 0.053 0.798 0.438 0.532 0.007

scores have low confidence and are clustered around 0.5. In contrast, PIPR and PPITrans exhibit more
stable trends: recall gradually decreases while precision increases as the threshold rises, suggesting a
trade-off between the two metrics and a limited ability to maintain a strong balance.

G.5 Case Study

We aim to assess the effectiveness of Chai-1 in reconstructing PPI networks. Owing to computational
constraints, we select three representative graphs from the Human species, with node sizes ranging
from 20 to 60. The detailed experimental setup is provided in Apx. F, and the corresponding results
are summarized in Tab. 22.

The results reveal three key observations: (1) Chai-1 fails to achieve satisfactory performance in
reconstructing PPI networks, as evidenced by a GS score of only 0.263 on a graph with 60 nodes; (2)
the performance decreases as the graph size increases—for instance, the GS score drops from 0.425
at 20 nodes to 0.263 at 60 nodes—highlighting the challenge posed by larger topological scales; and
(3) Chai-1 typically overpredicts interactions, resulting in high false positive rates, as reflected by an
RD score of 6.14 on the 60-node graph, which is consistent with prior findings [70].

Furthermore, we visualize the predictions of Chai-1 in Fig. 11 to support our observations: while the
ground-truth PPI networks are generally sparse, Chai-1’s predictions are considerably denser.

Table 22: Graph-eval results of the Chai-1 on three graphs. RD closer to 1 is better.

Node Size 20 40 60
Category Model GS↑ RD→ Deg.↓ Clus.↓ Spectral↓ GS↑ RD→ Deg.↓ Clus.↓ Spectral↓ GS↑ RD→ Deg.↓ Clus.↓ Spectral↓
Structure Chai-1 0.425 3.33 0.522 0.338 0.574 0.346 4.380 0.449 0.384 0.563 0.263 6.14 0.787 0.666 0.747

G.6 Scaling Analysis

Fig. 12 illustrates the graph similarity score against the size of the PPI prediction models. Overall,
larger models tend to achieve better network reconstruction performance. The best model, PLM-
interact (650M), reaches a graph similarity score of 0.41. Some structure-based models, such as
Struct2Graph and TAGPPI, have comparable sizes to PLM-based models but fall much behind, achiev-
ing only half of the performance. This highlights that biologically-informed protein representations
learned by PLMs play a crucial role in accurate PPI network reconstruction.

Nevertheless, the performance gains from increasing model size are relatively modest, suggesting
that sheer model capacity alone is insufficient. Further improvements may require enhanced training
objectives, or integration of complementary biological priors.

H Broader Societary Impacts

This work introduces PRING, a comprehensive benchmark for PPI prediction, designed to advance
evaluation from pairwise classification toward biologically grounded, network-level assessment.
By offering a unified suite of topology-oriented and function-oriented tasks across multiple model
organisms, PRING facilitates rigorous evaluation of a model’s ability to reconstruct the structural
topology of PPI networks, preserve functional coherence within biological modules, identify essential
proteins, and recover meaningful functional pathways. This enables more faithful modeling of
cellular systems and supports applications in systems biology, disease mechanism discovery, and
therapeutic target identification. Moreover, our empirical analysis highlights the limitations of
current computational approaches, revealing a gap between predictive accuracy and biological utility.
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Figure 11: Visualization of Chai-1 predictions on three subgraphs with node sizes between 20 and 60.
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Figure 12: Scaling analysis of graph similarity.

Bridging this gap is essential for the responsible deployment of AI models in biomedical research
and for accelerating foundational discoveries in life sciences.

Nevertheless, the potential risks associated with such dual-use scenarios are non-negligible. As PPI
prediction models become more accurate and scalable, partly enabled by benchmarks like PRING, they
may inadvertently lower the barrier for malicious actors to rationally design harmful biological agents.
For example, enhanced understanding of host-pathogen interaction networks could be exploited to
engineer synthetic pathogens that selectively disrupt immune functions or hijack critical cellular
pathways [121, 122]. These scenarios, though speculative, underscore the need for vigilance in
how such tools are disseminated and applied. Moving forward, it is essential to develop community
norms and safeguards that promote transparency, ethical use, and oversight. This includes clear
documentation of limitations, appropriate licensing, and collaboration with biosecurity experts to
ensure that scientific progress does not come at the expense of public safety.
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