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ABSTRACT

The 3D occupancy prediction task has witnessed remarkable progress in re-
cent years, playing a crucial role in vision-based autonomous driving systems.
While traditional methods are limited to fixed semantic categories, recent ap-
proaches have moved towards predicting text-aligned features to enable open-
vocabulary text queries in real-world scenes. However, there exists a trade-off in
text-aligned scene modeling: sparse Gaussian representation struggles to capture
small objects in the scene, while dense representation incurs significant compu-
tational overhead. To address these limitations, we present PG-Occ, an innova-
tive Progressive Gaussian Transformer Framework that enables open-vocabulary
3D occupancy prediction. Our framework employs progressive online densifi-
cation, a feed-forward strategy that gradually enhances the 3D Gaussian repre-
sentation to capture fine-grained scene details. By iteratively enhancing the rep-
resentation, the framework achieves increasingly precise and detailed scene un-
derstanding. Another key contribution is the introduction of an anisotropy-aware
sampling strategy with spatio-temporal fusion, which adaptively assigns receptive
fields to Gaussians at different scales and stages, enabling more effective feature
aggregation and richer scene information capture. Through extensive evaluations,
we demonstrate that PG-Occ achieves state-of-the-art performance with a rela-
tive 14.3% mIoU improvement over the previous best performing method. The
source code will be made publicly available upon publication.

1 INTRODUCTION

3D Occupancy perception technology has emerged as a pivotal trend in autonomous driving percep-
tion systems, garnering substantial attention from both industry and academia due to its comprehen-
sive perception capabilities (Xu et al., 2025; Zhang et al., 2024). Unlike previous BEV representa-
tions (Li et al., 2022), 3D occupancy enriches scene understanding with crucial height information,
enabling a complete three-dimensional representation of the environment. Accurate prediction of
3D occupancy and semantic information serves as a cornerstone for robust scene understanding
and reconstruction (Cao & de Charette, 2021; Ye & Xu, 2022; Huang et al., 2023). While several
benchmarks (Wang et al., 2023; Tian et al., 2024; Sun et al., 2020) have been established to provide
semantic annotations for 3D occupancy supervision, they inherently constrain semantic information
to predefined categories. This limitation severely hinders the system’s ability to perceive general
objects beyond these predefined categories.

To enable semantic occupancy detection based on arbitrary user inputs, recent approaches (Tan
et al., 2023; Vobecky et al., 2024; Boeder et al., 2024; Zheng et al., 2024a) have shifted away from
directly predicting predefined semantic categories of occupancy. Instead, they focus on predicting
text-aligned features, which can then be used to calculate similarity scores with text queries to ob-
tain semantic correspondences. This paradigm shift allows open-vocabulary detection capabilities,
where the system can identify objects beyond predefined categories by leveraging the rich semantic
space of text embeddings. By establishing this text feature alignment in 3D space, these methods
effectively bridge the gap between language understanding and spatial perception, enabling more
flexible and generalizable occupancy prediction systems. However, due to the high-dimensional na-
ture of text features, densely modeling the entire scene incurs substantial memory and computational
overhead, severely impacting system efficiency.
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Figure 1: Overview of the proposed PG-Occ framework. The radar chart compares occupancy pre-
diction accuracy across multiple methods, showing the superior performance of PG-Occ. The central
panel highlights the key components: progressive Gaussian modeling with online feed-forward den-
sification, anisotropy-aware sampling with adaptive receptive fields, and open-vocabulary retrieval
conditioned on prompt inputs. The bottom row illustrates an example progression from the current
input view through successive densification stages to the final occupancy prediction.

Inspired by Gaussian representation (Kerbl et al., 2023) and its applications in perception tasks (Gan
et al., 2024; Huang et al., 2024b; Cao et al., 2024), recent work such as GaussTR (Jiang et al., 2024)
leverages sparse Gaussian representation to achieve efficient scene perception. However, due to the
inherent sparsity of Gaussians, these approaches often struggle to capture fine-grained details in
complex scenes, limiting their effectiveness in comprehensive environmental understanding.

To overcome the aforementioned limitations, we introduce PG-Occ, a novel Progressive Gaussian
Transformer framework for open-vocabulary 3D occupancy prediction. Our framework preserves
the computational efficiency of sparse Gaussian representations while overcoming their limitation in
modeling fine-grained scene details through an iterative feed-forward densification strategy. Specif-
ically, the framework first leverages coarse base Gaussians to model the global scene structure. It
then progressively refines regions with insufficient perception by performing feed-forward densifica-
tion conditioned on the current prediction. Furthermore, we propose an anisotropy-aware sampling
method that selects sample points according to each Gaussian’s anisotropy and projects them onto
feature planes with varying receptive fields, enabling more effective spatio-temporal feature fusion.

Specifically, we introduce:

• A Progressive Gaussian Transformer framework for open-vocabulary 3D occupancy prediction,
which iteratively enhances scene details through online progressive densification guided by per-
ception errors from previous layers, significantly improving perception accuracy.

• An anisotropy-aware sampling method that adaptively adjusts the receptive fields of Gaussians
according to their spatial distribution, enabling more effective integration of explicit Gaussian
representations with spatio-temporal features.

• Comprehensive experimental validations demonstrating that PG-Occ achieves state-of-the-
art performance on the challenging Occ3D-nuScenes dataset, with a remarkable relative
14.3% mIoU improvement over the previous best results.

2 RELATED WORK

Close-set 3D Occupancy Perception. Using strong close-set 3D labels to supervise 3D occu-
pancy networks is a straightforward idea, and most existing work (Wei et al., 2023; Huang et al.,
2023; Zhang et al., 2023b; Ma et al., 2024; Hou et al., 2024) is based on this training approach (Xu
et al., 2025). Some improvements focus on efficient spatial representation. SurroundOcc (Wei et al.,
2023) extends the BEV with height dimension through spatial cross-attention. TPVFormer (Huang
et al., 2023) divides the space into three perspective views, reducing the parameters and computa-
tional costs. FastOcc (Hou et al., 2024) accelerates processing by replacing 3D convolutional net-
works with lightweight 2D BEV convolutions, while GaussianFormer (Huang et al., 2024b) reduces
computation in empty spaces by utilizing sparse Gaussian representations. Another line of research
focuses on label efficiency (Pan et al., 2024; Zhang et al., 2023a; Gan et al., 2024; Huang et al.,
2024a; Jiang et al., 2024), drawing inspiration from NeRF and 3D Gaussian splatting techniques.
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These approaches distill 3D occupancy information from Gaussians extracted by 2D foundation
models, significantly reducing the need for extensive 3D annotations.
Open-vocabulary 3D Occupancy Perception. Current 3D occupancy benchmarks feature cat-
egories with varying semantic clarity - some, like ”car”, ”pedestrian”, and ”truck”, have explicit
definitions, while others such as ”manmade” and ”vegetation”, remain vague. These broader cat-
egories contain numerous undefined semantics that would benefit from finer-grained subdivision
to better characterize driving environments. Novel objects are typically classified merely as gen-
eral obstacles, lacking the flexibility to expand perception based on human prompts (Cao et al.,
2023). To address this challenge, OVO (Tan et al., 2023) pioneered a framework that enables open-
vocabulary 3D occupancy perception by distilling knowledge from a frozen 2D open-vocabulary
segmenter and CLIP text encoder into the 3D model. Similarly, POP-3D (Vobecky et al., 2024)
designed a semi-supervised framework incorporating three modalities to improve zero-shot open-
vocabulary capabilities. VEON (Zheng et al., 2024a) further advanced the performance by assem-
bling and adapting two complementary 2D foundation models. To reduce dependence on LiDAR
sensors, LangOcc (Boeder et al., 2024) integrated Neural Radiance Fields (NeRF), enabling purely
vision-based perception approaches. To address the computational overhead of high-dimensional
text-vision features, GaussTR (Jiang et al., 2024) models scenes as sparse unstructured Gaussian
blobs, achieving reconstruction through a camera-wise feed-forward approach.
Generalizable 3D Gaussian Splatting with Feed-forward Networks. A significant limitation
of vanilla 3D Gaussian splatting (Kerbl et al., 2023) is its requirement for offline scene-specific
optimization rather than efficient feed-forward inference Wang et al. (2025). The success of feed-
forward approaches comes from the learning of powerful priors from large datasets. Recent works
such as Splatter Image (Szymanowicz et al., 2024) and pixelSplat (Charatan et al., 2024) have pro-
posed novel approaches that enable direct prediction of 3D Gaussian Spaltting parameters from one
or two input views, respectively. GPS-Gaussian (Zheng et al., 2024b) utilizes feed-forward net-
works for human reconstruction. DrivingForward (Tian et al., 2025) introduces this paradigm in
sparse-view 3D reconstruction for autonomous driving scenarios. GaussTR (Jiang et al., 2024) con-
ceptualizes the perception of the autonomous driving scene as a task to predict 3D Gaussians from
six surround view cameras, while GaussianFlowOcc (Boeder et al., 2025) captures dynamic scenes
through Gaussian flow estimation. Unlike existing approaches, our work focuses on progressive
Gaussian modeling, employing a coarse-to-fine approach to enhance scene perception capabilities.

3 METHODOLOGY

As illustrated in Fig. 2, PG-Occ introduces a novel open-vocabulary 3D occupancy prediction frame-
work. Our approach represents scenes as a set of text-aligned feature Gaussian blobs in a progres-
sive feed-forward manner. In Section 3.1, we first present 3D feature Gaussians as an effective
scene representation for open-vocabulary occupancy prediction. Subsequently, in Section 3.2, we
describe how spatio-temporal image features are progressively transformed into Gaussian represen-
tations through an iterative architecture, consisting of a base layer followed by B progressive layers.
Additionally, we propose an anisotropy-aware sampling mechanism for spatio-temporal feature fu-
sion, enabling more precise and robust scene understanding. The loss functions used to train our
model are detailed in Section 3.3. Finally, as detailed in Section 3.4, we convert the final Gaussian
representations into a dense 3D occupancy field.

3.1 3D FEATURE GAUSSIAN SPLATTING

Open-vocabulary 3D occupancy prediction aims to identify and localize occupancy regions around
a vehicle that correspond to arbitrary text prompts ctext, given L spatio-temporal camera views
I = {I1, ..., IL} at the current time step. Directly predicting 3D text-aligned voxel features is
computationally and memory-intensive due to the high dimensionality of text features. Inspired
by 3D Gaussian Splatting (Kerbl et al., 2023; Zhou et al., 2024), we model the driving scene as a
set of sparse feature Gaussian blobs G. Vanilla 3D Gaussians typically encode color features; in
contrast, we replace them with high-dimensional text-aligned features to better capture semantic
information for open-vocabulary occupancy prediction. Formally, each feature Gaussian blob Gi

(hereafter simply called ”Gaussian”) is defined by its spatial position µi ∈ R3, scale si ∈ R3,
rotation quaternion ri ∈ R4, opacity σi ∈ R, and a text-aligned feature fi ∈ R512:

G = {Gi : (µi, si, ri, σi, fi) | i = 1, ..., N}, (1)
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Figure 2: Architecture of the proposed PG-Occ framework. The scene is represented as feature
Gaussian blobs, starting from a base layer and progressively refined and densified through B layers.
Multi-camera inputs are processed to extract spatio-temporal features, which guide the update and
refinement of the Gaussians, which are then voxelized to produce an any-resolution 3D occupancy
field, enabling both geometric reconstruction and open-vocabulary semantic understanding.

where N denotes the number of Gaussian blobs in the scene.

Gaussian representations, in addition to their inherent sparsity, enable efficient rendering and fa-
cilitate training via 2D label supervision. Given the camera pose Tl and intrinsic matrix Kl, the
Gaussians G can be efficiently rasterized onto the 2D camera plane, producing per-pixel expected
depth D̂ and feature map F̂ . For each pixel, these values are computed as:

D̂ =

∑
i∈N diαi

∏i−1
j=1 (1− αj)∑

i∈N αi

∏i−1
j=1 (1− αj)

, F̂ =
∑
i∈N

fiαi

i−1∏
j=1

(1− αj) , (2)

where di represents the depth value of the i-th 3D Gaussian center point µi projected along the
z-axis in the camera coordinate system, and αi denotes the blending weight of the i-th Gaussian.

3.2 PROGRESSIVE 3D GAUSSIAN MODELING

The core of PG-Occ is a set of learnable and adaptively expandable Gaussian queries G ∈ RN×D

with spatial positions µ, where the latent feature dimension D encodes Gaussian blob attributes, in-
cluding scale s, rotation r, opacity o, and feature vector f . These Gaussian queries are processed by
the Progressive Gaussian Transformer, which consists of a base Gaussian layer that captures coarse
scene geometry, followed by B progressive layers that iteratively refine the Gaussian representa-
tions. An illustrative example of this online progressive refinement is shown in Fig. 1.

Each progressive layer b further incorporates three core components: Progressive Online Densifi-
cation (POD), Asymmetric Self-Attention (ASA), and Anisotropy-aware Feature Sampling (AFS).
Prior Gaussian-based occupancy estimation methods (Jiang et al., 2024; Boeder et al., 2025) use a
fixed number of N queries, limiting their ability to model complex scenes. In contrast, our approach
adaptively expands the queries in each layer by adding N b queries via a feed-forward module con-
ditioned on the output of the preceding layer Gb−1. This progressive expansion allows adaptive,
fine-grained modeling of intricate scene structures while maintaining computational efficiency.

3.2.1 PROGRESSIVE ONLINE DENSIFICATION (POD)

In contrast to vanilla 3D Gaussian Splatting (Kerbl et al., 2023), which initializes Gaussians from
structure-from-motion point clouds and relies on gradient-based densification, we propose an ef-
ficient feed-forward strategy for real-time Gaussian densification. Our approach comprises two
stages: base initialization, which establishes initial Gaussian positions, and feed-forward densi-
fication, which adaptively augments the Gaussian set in regions where the scene remains under-
represented. This design enables online refinement of scene geometry without the computational
overhead of gradient backpropagation.

Base Initialization. To capture coarse scene geometry, we utilize pseudo depth maps from Metric3D
V2 (Hu et al., 2024). The downsampled depth map D is back-projected into the ego-vehicle frame
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Figure 3: Illustration of the Progressive Online Densification (POD) and Anisotropy-aware Feature
Sampling (AFS) modules. POD leverages depth-aware densification to progressively add and refine
3D Gaussians. AFS exploits the anisotropic properties of Gaussians, sampling feature points within
anisotropy-aware receptive fields to enable more effective spatio-temporal feature extraction.

using the camera-to-ego transformation T and camera intrinsics K, yielding pseudo point clouds P :

P =

L⋃
l=1

Tl · (K−1
l ·Dl) (3)

Farthest Point Sampling (FPS) (Eldar et al., 1997) is applied to select N representative points as
initial Gaussian positions µ0

i . Each selected point is paired with a trainable query feature, while the
Gaussian scale s0i is fixed and the rotation r0i is initialized as a unit quaternion.

Feed-forward Densification. After obtaining the intermediate Gaussian representation Gb−1 from
the (b− 1)-th layer (details in Section 3.2.3), we render an expected depth map D̂ using Eq. (2). By
comparing D̂ with the reference depth D, we identify under-represented regions:

Uselect = {(u, v) ∈ Ω | D̂(u, v)−D(u, v) > γ}, (4)
where γ is set to half the final occupancy grid resolution. This module relies solely on Gaussian
rendering, avoiding gradient computation and maintaining efficiency. For each under-represented
region, we generate a point set P b and sample nb new points via FPS. The new Gaussians µb

add and
their query features qbadd are concatenated with the previous layer’s optimized positions µb−1 and
queries qb−1 to form the input for the b-th transformer layer:

µb = µb−1 ⊕ µb
add, qb = qb−1 ⊕ qbadd (5)

3.2.2 ASYMMETRIC SELF-ATTENTION (ASA)
In progressive Gaussian modeling, newly added Gaussians from online densification are initially
under-optimized. Self-attention (Vaswani et al., 2017) is widely employed to model relationships be-
tween Gaussians, enhancing overall scene representation. However, applying standard self-attention
in this setting risks allowing these under-optimized Gaussians to interfere with the well-trained ones
from earlier stages, potentially causing training instability.

To address this, we introduce an Asymmetric Self-Attention (ASA) mechanism that enforces asym-
metric interactions: newly added Gaussians cannot influence the existing, well-optimized Gaussians,
while they can attend to and leverage the features of the existing ones to refine their own under-
optimized representations. This design ensures that previously learned Gaussians remain stable,
while the newly extended Gaussians progressively improve by utilizing existing information.

Formally, let xb denote the number of Gaussian queries in layer b, with the first xb−1 inherited from
the previous layer and the remaining xb − xb−1 newly added. Given Gaussian queries qb and their
positional encodings PE(µb), the ASA operation is defined as:

qbasa = ASA(qb + PE(µb), qb + PE(µb), qb, M), (6)
where PE denotes the positional encoding. The attention mask M ∈ Rxb×xb is constructed as:

Mi,j =

{
−∞, if i < xb−1 and j ≥ xb−1

0, otherwise
(7)

By restricting the influence of new Gaussians, ASA stabilizes progressive Gaussian modeling while
enabling effective inter-Gaussian feature propagation.
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3.2.3 ANISOTROPY-AWARE FEATURE SAMPLING (AFS)

Treating each Gaussian Gi solely as a point at its center µi oversimplifies feature sampling and ig-
nores the anisotropic properties encoded by its scale s and rotation quaternion r, which significantly
affect the Gaussian’s effective receptive field in 2D feature space. This simplification reduces sam-
pling accuracy, as the anisotropic geometry strongly influences the effective receptive field of each
Gaussian in the 2D feature space, as illustrated in Fig. 3. To exploit anisotropy, the query feature
qasa is passed through an MLP to generate n unit offsets µδ (with n = 16 in practice), which are
scaled and rotated to lie within the Gaussian ellipsoid:

µi,j
sample = µi +R(ri) · (si ⊙ µi,j

δ ), j = 1, . . . , n (8)

where R(r) is the rotation matrix derived from the quaternion r, s is the Gaussian scale vector, and
⊙ denotes element-wise multiplication.

The resulting 3D sampling points µi,j
sample are projected onto 2D feature planes using known camera

intrinsics and extrinsics. To aggregate the corresponding features across views and timestamps, we
adopt a simple yet effective feature aggregation module from prior work (Liu et al., 2023):

f i
a = Aggregation

(
{Interp(µi,j

sample, F )}nj=1

)
, (9)

where Interp(·) denotes bilinear interpolation at the projected 2D locations, and {·}nj=1 indicates
the collection of n sampled features corresponding to the i-th Gaussian, which are subsequently
aggregated to form a single representative feature.

Finally, the aggregated feature fa is fed into two lightweight MLPs to decode geometric properties
and text-aligned features separately:

fi = MLPfeat(f
i
a), (∆µi, si, ri, σi) = MLPgeo(f

i
a), µi = µi−1 +∆µi, (10)

where ∆µi represents a learned displacement, allowing the model to refine Gaussian positions in-
crementally rather than predicting absolute coordinates directly.

3.3 EFFICIENT TRAINING VIA RASTERIZATION

Due to the lack of labeled open-vocabulary 3D occupancy data, our model is trained using only 2D
supervision. Specifically, we leverage text-aligned features F and pseudo depth maps D, both of
which are extracted directly from images. This approach eliminates the need for LiDAR scans or
any explicit 3D point cloud data. To ensure stable training, we rasterize the 3D Gaussians Gb from
each layer onto the 2D image plane and supervise the model using the losses described below.
Depth Rendering Loss. The depth rendering loss combines SILog, L1, and temporal photometric
consistency losses (Godard et al., 2019; Yao et al., 2024) for geometric consistency:

Ldepth = LL1(D, D̂) + λSILogLSILog(D, D̂) + λtempLtemp(D, D̂), (11)

where λSILog , and λtemp are weighting coefficients to balance different depth loss terms.
Feature Rendering Loss. The feature rendering loss combines mean squared error (MSE) loss and
cosine similarity loss to achieve the feature alignment:

Lfeat = Lcos(F, F̂ ) + λmseLmse(F, F̂ ), (12)

where λmse represents a weighting coefficient to balance the cosine similarity and MSE losses.
Final Objective. The final loss combines the depth and feature rendering losses as follows:

Ltotal = λdepthLdepth + λfeatLfeat, (13)

where λdepth and λfeat are weighting coefficients to balance the two losses.

3.4 TEST-TIME INFERENCE VIA VOXELIZATION

After obtaining the progressive 3D Gaussian representation of the scene based on the current cam-
era input, we use the decoded text-aligned feature Gaussian blobs of the final transformer layer for
evaluation. We convert feature Gaussians into semantic occupancy via a two-step process. First,
arbitrary text prompts ctext are encoded using the CLIP text encoder to obtain feature embeddings
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Figure 4: Illustration of PG-Occ predictions. Given camera inputs and text prompts, the method
predicts depth (column 2), produces open-vocabulary semantic labels (column 3), and generates the
final semantic occupancy map (column 4). Additional visualizations are provided in appendix C.1.

ftext, which are then matched against the Gaussian features to assign semantic labels to 3D Gaus-
sians. Second, a Gaussian-to-voxel post-processing step transforms the labeled 3D Gaussians into a
dense occupancy representation. In particular, since our method does not require dense occupancy
labels during training, this conversion is applied only at inference. Further technical details on the
text prompt and the Gaussian-to-voxel module are provided in appendix D.1.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP

Datasets and Metrics. We conduct comprehensive experiments on two benchmarks: Occ3D-
nuScenes and nuScenes retrieval. Open-vocabulary occupancy prediction is evaluated on the
Occ3D-nuScenes dataset (Tian et al., 2024), which contains 1,000 scenes captured by surround-
view cameras and LiDAR sensors. Semantic labels are assigned to each voxel based on predefined
text queries (see appendix D.2). Performance is measured using IoU, mean IoU (mIoU), and ray-IoU
metrics. Open-vocabulary occupancy retrieval is conducted on the nuScenes retrieval benchmark
proposed by POP-3D (Vobecky et al., 2024), which contains 105 samples. Each LiDAR point cloud
is paired with a text query, and retrieval performance is evaluated using mean average precision
(mAP) over all LiDAR points, as well as mAP (v), which considers only points visible in at least
one camera. Depth estimation follows the GaussianOcc (Gan et al., 2024) setting, where the ground
truth depth maps are obtained by projecting LiDAR point clouds. Standard error metrics are used
for evaluation, including absolute relative error (Abs Rel), square relative error (Sq Rel), root mean
square error (RMSE), and RMSE log.
Implementation Details. We adopt ResNet-50 (He et al., 2016) as our image feature extraction
backbone, utilizing the previous seven frames to capture spatio-temporal information. Our Progres-
sive Gaussian Transformer comprises one base layer and two progressive layers. All experiments
are run on 8 × A800 GPUs, with 8 epochs of training (approximately 9 hours). To improve compu-
tational efficiency, we use a resolution of 180 × 320 for depth and feature rasterization, as well as
Gaussian point initialization. More implementation details can be found in appendix D.

4.2 MAIN EXPERIMENT RESULTS

Semantic Occupancy Prediction Results. We report open-vocabulary occupancy prediction re-
sults on the Occ3D-nuScenes dataset (Tian et al., 2024) in Table 1 and group methods based on
the sensor modalities employed during training (Camera, LiDAR, and Text). To ensure a fair com-
parison and emphasize the benefits of our approach, LangOcc, GaussTR, and our PG-Occ all use
MaskCLIP (Zhou et al., 2022) for text supervision. Our method achieves SOTA performance with
an mIoU of 15.15, corresponding to a 14.3% relative improvement over previous best methods.
Remarkably, despite not using LiDAR data during training, PG-Occ outperforms VEON and other
competitors. As shown in the LiDAR chart in Fig. 1, our approach excels at detecting medium-
sized objects. The slightly lower performance on small objects can be attributed to the coarse voxel
resolution, with a voxel size of 0.4 m, which limits the contribution of finely optimized Gaussians.
nuScenes Retrieval Dataset Results. As shown in Fig. 5, our method achieves a visible mean
Average Precision (mAP(v)) of 21.2 on the nuScenes retrieval dataset. This outperforms the ex-
isting vision-based method, LangOcc, which achieves 18.2. This improvement demonstrates the
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Table 1: Quantitative performance of 3D occupancy methods on Occ3D-nuScenes dataset. The
Mod. column specifies the sensor/modalities used for training: C for Camera, L for LiDAR, and
T for Text. IoU scores for ”others” and ”other flat” classes are consistently zero and thus omitted.
”Cons veh.” means construction vehicles, and ”drive. surf.” means drivable surfaces. The best and
second-best results are denoted in bolded and underlined, respectively.
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SelfOcc (Huang et al., 2024a) C 10.54 0.15 0.66 5.46 12.54 0.00 0.80 2.10 0.00 0.00 8.25 55.49 26.30 26.54 14.22 5.60
OccNeRF (Zhang et al., 2023a) C 10.81 0.83 0.82 5.13 12.49 3.50 0.23 3.10 1.84 0.52 3.90 52.62 20.81 24.75 18.45 13.19
GaussianOcc (Gan et al., 2024) C 11.26 1.79 5.82 14.58 13.55 1.30 2.82 7.95 9.76 0.56 9.61 44.59 20.10 17.58 8.61 10.29
GaussianFlowOcc (Boeder et al., 2025) C 14.07 6.27 8.54 13.36 12.38 4.92 10.05 6.84 8.75 1.12 10.43 54.40 26.44 28.89 10.39 9.33

VEON (Zheng et al., 2024a) C+L+T 13.95 4.80 2.70 14.70 10.90 11.00 3.80 4.70 4.00 5.30 9.60 46.50 21.10 22.10 24.80 23.70
DistillNeRF (Wang et al., 2024) C+L+T 10.05 1.35 2.08 10.21 10.09 2.56 1.98 5.54 4.62 1.43 7.90 43.02 16.86 15.02 14.06 15.06

LangOcc (Boeder et al., 2024) C+T 12.04 2.70 7.20 5.80 13.90 0.50 10.8 6.40 8.70 3.20 11.00 42.10 12.50 27.20 14.10 14.50
GaussTR (Jiang et al., 2024) C+T 13.25 2.09 5.22 14.07 20.43 5.70 7.08 5.12 3.93 0.92 13.36 39.44 15.68 22.89 21.17 21.87
PG-Occ (Ours) C+T 15.15 4.33 7.31 23.63 26.42 11.38 6.33 2.74 5.79 3.07 17.29 37.81 19.29 20.85 19.02 21.92

Table 2: Depth estimation error metrics on the nuScenes
validation set. The best results denoted in bold. Abs Rel is
used as the primary evaluation metric.

Method Abs Rel ↓ Sq Rel ↓ RMSE ↓ RMSE log ↓

SelfOcc (Huang et al., 2024a) 0.215 2.743 6.706 0.316
OccNeRF (Zhang et al., 2023a) 0.202 2.883 6.697 0.319
GaussianOcc (Gan et al., 2024) 0.197 1.846 6.733 0.312
GaussianFlowOcc (Boeder et al., 2025) 0.278 2.522 5.232 0.389

Metric3D V2 (Hu et al., 2024) 0.170 4.016 6.453 0.291
PG-Occ (Ours) 0.139 1.159 5.466 0.269
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“Locate the mailbox.”

Figure 5: SOTA comparison on the
nuScenes retrieval dataset.

effectiveness of progressive Gaussian modeling in enhancing both accuracy and robustness for 3D
open-vocabulary retrieval tasks. Note that GaussTR does not report results on the nuScenes retrieval
dataset and cannot be evaluated using LiDAR points. Qualitative results in Fig. 1 further illustrate
our system’s language-based retrieval capabilities. Queries such as ”Locate the cars” and ”Locate
the garbage bin” are precisely grounded within the predicted 3D occupancy grid.
Depth Estimation Results. We evaluate the geometric accuracy of our Gaussian scene represen-
tation via quantitative depth estimation, presented in Table 2, accompanied by depth visualizations
in Fig. 9. Remarkably, although supervision is derived from depth maps of Metric3D V2 (Hu et al.,
2024), our model produces depth estimates that exceed the original labels, achieving an error of
0.139, corresponding to an +18.2% boost. This improvement results from geometric constraints
imposed by multi-view depth consistency and feature coherence, which help maintain smooth and
accurate scene geometry even in challenging regions.
Additional Corner-case Examples. As shown in Fig. 8, we present additional examples of open-
vocabulary retrieval results for uncommon categories, such as mailboxes and warning signs. Al-
though these categories rarely appear in the dataset, our method is still able to detect them reliably.
These examples further demonstrate PG-Occ’s ability to generalize to open-vocabulary scenarios,
accurately capturing semantic occupancy even for rarely seen or atypical objects.

Table 3: Effects of the proposed key model com-
ponents (i.e., POD, AFS, ASA).

Method mIoU RayIoU mAP (v)

w/o POD 14.84 12.58 19.21
w/o AFS 15.03 13.56 20.12
w/o SA 11.14 10.44 15.60
w/o ASA 14.85 12.76 19.41
Full model 15.15 13.92 21.20

Efficiency Comparison. We compare mIoU,
training time, and inference speed (frames per
second) to provide a comprehensive assessment
of the efficiency of our method. As shown
in Table 4, our approach achieves significant
relative improvements on the Occ3D-nuScenes
dataset (Tian et al., 2024), with a +14.3% in-
crease in mIoU, a +41.1% boost in FPS, and a
25% reduction in training time.
Zero-shot Generalization to Unseen Domains. As shown in Fig. 13, to further validate the gen-
eralization capability of our method, we include additional qualitative results on the Lyft Level-5
dataset (Christy et al., 2019). Importantly, we do not retrain or fine-tune our model on the Lyft Level-
5 dataset. Instead, we directly perform inference using the model trained solely on nuScenes. This
setting represents a challenging domain shift: image resolution, camera positions, camera intrinsics,
and the overall environmental domain all differ significantly from those in nuScenes. Despite these
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Figure 6: Qualitative comparison of 3D occupancy prediction using PG-Occ and prior methods.
This figure presents a visual comparison between PG-Occ (ours), GaussTR, and Ground Truth data
in reconstructing urban scenes. PG-Occ achieves more accurate and perceptually coherent 3D oc-
cupancy predictions, capturing finer structural details and producing thicker, more realistic surfaces.
The red and blue bounding boxes highlight regions where PG-Occ notably outperforms previous
SOTA fixed-query methods, demonstrating improved fidelity and spatial consistency.

Im
ag

e
In

pu
t

PG-Occ (w/o AFS)

Front Left Front Front Right

3D
 O

cc
up

an
cy

PG-Occ

Back Left Back Back Right

PG-Occ (w/o AFS)PG-Occ
Figure 7: Qualitative comparison illustrating the effect of Anisotropy-aware Feature Sampling
(AFS). The red boxes in the left-side example show that AFS captures finer, semantically-aware
details, leading to clearer and more accurate occupancy predictions. The right-side examples further
demonstrate that treating anisotropic Gaussian features as identical points (w/o AFS) may result in
oversized Gaussians near the camera, which destabilize the overall occupancy estimation. In con-
trast, our AFS-enhanced model maintains stable and detailed geometric structures.

differences, our method consistently produces reliable open-vocabulary occupancy predictions, and
notably, it is still able to detect and recover small or rare objects in these unseen scenes.
Robustness Evaluation with Different Pretrained Depth Models. To further evaluate the robust-
ness of our approach under different depth estimators, we train and test PG-Occ using UniDepth
V2 (Piccinelli et al., 2025). Table 13 reports both the depth estimation errors and the open-
vocabulary semantic occupancy performance on the nuScenes validation set. The results of ad-
ditional analyses can be found in appendix B.4.

4.3 MAIN ABLATION STUDY

Effect of Progressive Online Densification (POD). As visualized in Fig. 1, the Progressive Online
Densification module iteratively expands Gaussian queries during inference, allowing the model to
refine complex scene geometries progressively. This adaptive densification mechanism dynamically
allocates computational resources to regions with insufficient reconstruction, thereby improving the
fidelity of recovered details. Compared to prior methods like GaussTR (Jiang et al., 2024), which
rely on a fixed number of queries, our approach more effectively captures thick scene surfaces and
reconstructs objects with greater precision, as further demonstrated in Fig. 7. The impact of POD
is quantitatively validated in the ablation study reported in Table 3, where removing POD leads
to substantial performance degradation across all key metrics. These results highlight the crucial
role of POD in achieving high-accuracy 3D perception by adaptively focusing model capacity on
challenging regions of the scene.
Effect of Anisotropy-aware Feature Sampling (AFS). To evaluate the impact of the AFS design,
we disable Gaussian anisotropy and treat Gaussians as simple point clouds during sampling. As
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Table 4: Efficiency comparison of methods on
mIoU, training time, and inference FPS.

Method mIoU Training FPS

LangOcc (Boeder et al., 2024) 12.04 >48 hours 1.70
GaussTR (Jiang et al., 2024) 13.25 12 hours 1.04
PG-Occ (6000 Queries) 15.15 9 hours 2.40

Table 5: Ablation study on the number of
extended queries in the progressive layer.

Queries mIoU RayIoU mAP (v)
0 14.84 12.58 19.21

500 14.95 13.27 20.42
1000 15.15 13.92 21.20
2000 14.79 13.21 21.29

Query: “warning sign”Query: “mailbox”

Figure 8: Additional corner-case examples illustrating the capability of PG-Occ for open-vocabulary
occupancy retrieval.
shown in Table 3, this results in a 0.12% drop in mIoU. The performance difference stems from
the anisotropy strategy, which enables more effective multi-view feature capture, improving both
semantic occupancy prediction (mIoU, RayIoU) and open-vocabulary retrieval (mAP(v)).
Effect of Asymmetric Self-attention Module (ASA). As shown in Table 3, removing all self-
attention (“w/o SA”) leads to a substantial performance collapse (mIoU drops from 15.15 to 11.14),
indicating that attention-based interactions are essential for maintaining coherent Gaussian features.
Reintroducing standard symmetric self-attention (“w/o ASA”) significantly alleviates this issue, yet
our asymmetric design still delivers the best results, further improving mIoU from 14.85 to 15.15.
This improvement suggests that ASA not only enables cross-Gaussian communication but also more
effectively preserves historical features while reducing interference from newly added Gaussians
during densification, ultimately leading to more stable and accurate feature aggregation.
Effect of the Number of Extended Gaussian Queries. We evaluate the impact of varying the
number of extended Gaussian queries, keeping the base queries fixed at 4000. As shown in Table 5,
increasing extended queries gradually improves the mIoU from 14.84 to 15.15, although a slight
drop occurs at 2000 queries. We attribute this to the fact that both the mIoU and RayIoU metrics are
evaluated at a voxel size of 0.4, where further Gaussian refinement provides limited gains for scene
representation. However, the mAP(v) metric evaluated on LiDAR data, not constrained by voxel
resolution, continues to improve at 2000 queries, achieving an increase of 21.29, indicating that a
larger number of extended Gaussian queries still benefits scene optimization.

Additional Ablation Studies. We provide further analyses in appendix B.1, covering model design
(base Gaussian queries, densification threshold, and number of sampling points), training supervi-
sion (loss terms and photometric cues), and efficiency/robustness (layer-wise time and pose noise).

5 CONCLUSION AND LIMITATIONS

In this paper, we propose a progressive Gaussian transformer framework for the open-vocabulary
occupancy prediction task. Our method models driving scenes as extendable feature Gaussian
blobs in a purely feed-forward manner, achieving state-of-the-art results with high efficiency. The
anisotropy-aware sampling also further improves detail capture. However, due to sparse viewpoints
in driving scenarios, constraining the Gaussian scale in depth is challenging, which can cause pop-
ping artifacts. Additionally, as Gaussians increase during modeling, memory and computation costs
grow, potentially affecting real-time performance. For future work, we will explore 4D Gaussian
approaches and multi-view constraints to address these issues.
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PROGRESSIVE GAUSSIAN TRANSFORMER WITH
ANISOTROPY-AWARE SAMPLING FOR OPEN
VOCABULARY OCCUPANCY PREDICTION

SUPPLEMENTARY MATERIAL

This supplementary material offers more detailed descriptions to ensure reproducibility, along with
extensive evaluations and diverse qualitative results, which collectively highlight the effectiveness,
robustness, and efficiency of our proposed method, PG-Occ.
▷ appendix A: Video demonstrations comparing the open-vocabulary occupancy inference results
of PG-Occ, the previous state-of-the-art method, and the Ground Truth on the Occ3D-nuScenes
validation and test sets.
▷ appendix B: Additional experimental results, including extended quantitative comparisons and
additional ablation studies.
▷ appendix C: More qualitative visualization results of our PG-Occ.
▷ appendix D: Additional details on implementation.

A VIDEO DEMONSTRATION

We provide video demonstrations of our open-vocabulary occupancy inference results on the
Occ3D-nuScenes (Tian et al., 2024) validation and test sets. For better visualization quality, please
refer to our local project page (./project page.html), or directly access the representative video sam-
ples provided below.

All videos are available in the ./videos/ folder. The following samples are grouped into ego-
centric view, third-person view, and previous state-of-the-art method comparison for clarity.

Ego View. We provide ego-centric view comparisons of PG-Occ and Ground Truth for scene-0107,
scene-0345, scene-0557, and scene-0565.

Third View. We provide third perspective view comparisons of PG-Occ and Ground Truth for
scene-0099, scene-0557, and scene-0770.

Previous state-of-the-art Method Comparison. We provide a baseline comparison for scene-0103
among GaussTR (Jiang et al., 2024), PG-Occ, and Ground Truth (scene-0103-compare.mp4).

B ADDITIONAL EXPERIMENT RESULTS

B.1 ADDITIONAL ABLATION STUDY

Table 6: Ablation study on the number of ini-
tial queries in the base layer. The best and the
second-best performances of each metric are
highlighted with bold and underlined in the
table.

Queries mIoU RayIoU mAP (v)

1000 13.17 10.33 17.25
2000 14.54 12.84 18.98
4000 15.15 13.92 21.20
8000 14.99 13.52 21.07

Impact of the Number of Base Gaussian Queries.
We evaluate the effect of varying the number of base
Gaussian queries while keeping the number of ex-
tended Gaussian queries fixed at 1000. As shown
in Table 6, increasing the number of base layer
queries from 1000 to 4000 consistently improves the
mIoU from 13.17 to 15.15, indicating enhanced per-
ception accuracy. However, further increasing the
queries to 8000 results in a slight drop in mIoU. This
decline is due to the excessive number of Gaussian
queries overwhelming the self-attention mechanism,
thereby weakening the model’s ability to capture the
critical spatial interactions between queries, similar
to the observations reported in Jiang et al. (2024).

Ablation Study of Feed-forward Densification Module Threshold. We investigate the impact
of the threshold in the feed-forward densification module, which determines the minimum distance
from points outside to the center of an occupancy cell, on both computational cost and prediction
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Table 9: Ablation on the loss function L. The best performances of each metric are highlighted with
bold in the table.

LL1 LSILog Ltemp Lmse Lcos mIoU RayIoU mAP (v)

✓ ✓ ✓ ✓ 13.51 12.30 18.13
✓ ✓ ✓ ✓ 15.12 13.81 20.52
✓ ✓ ✓ ✓ 14.47 13.01 19.14
✓ ✓ ✓ ✓ 15.10 13.89 20.41

✓ ✓ ✓ ✓ 14.69 13.23 19.95
✓ ✓ ✓ ✓ ✓ 15.15 13.92 21.20

accuracy. Gaussian points are selected according to different thresholds, and the subsequent farthest
point sampling (FPS) time, mIoU are measured. The results are summarized in Table 7. As shown
in the table, decreasing the threshold selects more points, increasing the subsequent FPS time from
30 ms to 50 ms, which results in higher computational overhead. Meanwhile, a threshold of 0.2
achieves the highest mIoU of 15.15, slightly outperforming thresholds 0.0 and 0.4 (15.11 and 15.13,
respectively). This indicates that the chosen threshold of 0.2 effectively balances point selection for
Gaussian densification, maintaining high prediction accuracy while controlling computational cost.

Table 7: Impact of the feed-forward densifi-
cation on farthest point sampling (FPS) time
and occupancy prediction.

Threshold Total FPS Time (ms) mIoU

0.0 50 15.11
0.2 34 15.15
0.4 30 15.13

Ablation Study of the Number of Sampling Off-
sets. We evaluate the impact of the number of sam-
pling offsets per Gaussian on occupancy prediction.
As shown in Table 8, increasing the number of off-
sets from 8 to 32 consistently improves performance,
with mIoU rising from 15.05 to 15.46. This demon-
strates that a larger number of sampling points al-
lows the network to capture more fine-grained scene
details, enhancing occupancy prediction accuracy.
However, the increase in offsets also leads to longer training times, growing from 8 hours for 8
offsets to 11.2 hours for 32 offsets on an 8×A800 GPU setup. These results highlight a trade-
off between accuracy and computational cost, indicating that 16 offsets provide a balanced choice,
achieving strong performance with moderate training time.

Table 8: Impact of the number of sam-
pling offsets per Gaussian on performance
and training time.

Sampling Points mIoU Training Time

8 15.05 8 hours
16 15.15 9 hours
32 15.46 11.2 hours

Ablation Study of Loss. We systematically evaluate
the impact of different loss function combinations,
including LL1, LSILog , Ltemp, Lmse, and Lcos. The
results are summarized in Table 9. We observe that
using all five loss functions consistently yields the
best performance, achieving a mIoU of 15.15%, a
RayIoU of 13.92%, and an mAP of 21.20%. Omit-
ting any individual loss results in a slight drop across
these metrics, indicating that each component con-
tributes to both geometric accuracy and feature alignment. These findings confirm that the combina-
tion of complementary losses enables PG-Occ to more effectively capture fine-grained scene details
and improve overall 3D occupancy prediction.

Table 10: Ablation study on photometric su-
pervision. The best performances of each
metric are highlighted with bold.

Color Supervision mIoU RayIoU

w/o color supervision 15.15 13.92
w/ color supervision 14.96 13.89

Ablation Study of Photometric Supervision. Our
occupancy prediction aims to recover both geomet-
ric and semantic components. Due to the challenges
of large-scale outdoor scenes and limited view su-
pervision, photometric information often fails to
provide effective geometric supervision. Moreover,
color features do not reliably correspond to semantic
categories in such scenes, so we exclude them dur-
ing training. We performed an ablation study by adding a photometric prediction head to regress 3D
color values for supervision. The quantitative results are summarized in Table 10.

Table 11: Impact of Gaussian pose noise on
occupancy prediction.

Standard Deviation 0 0.01 0.1 0.5

mIoU 15.15 15.19 15.12 15.12

Ablation Study of Pose Noise. We investigate the
robustness of PG-Occ to pose noise during temporal-
spatial feature fusion by adding Gaussian perturba-
tions with different standard deviations to the histor-
ical ego poses during inference, as summarized in
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Table 11. The results show that a slight amount of pose noise leads to a minor improvement in
mIoU, while larger noise levels cause a small decrease followed by stabilization, demonstrating that
PG-Occ is robust to pose errors. We attribute this robustness to two factors: first, the nuScenes
dataset poses are not perfectly accurate and contain small misalignments, which naturally provide
tolerance to minor noise; second, significant pose inaccuracies result in feature sampling failures on
the camera plane, preventing unreliable features from degrading system performance and thereby
maintaining relatively high perception accuracy.

B.2 LAYER-WISE TIME CONSUMPTION

Table 12: Inference time of different layers.

Component Time (ms)

Base Layer 27.4
First Progressive Layer 58.3
Second Progressive Layer 60.6

The Table 12 reports the inference time of each
Gaussian transformer layer in milliseconds. The
base layer, using the fewest Gaussians, achieves the
fastest speed at 27.4 ms. As more Gaussians are
added in the First and Second Progressive Layers,
the inference time correspondingly increases to 58.3
ms and 60.6 ms, reflecting the higher computational
cost of processing denser representations.

B.3 ROBUSTNESS EVALUATION WITH DIFFERENT PRETRAINED DEPTH MODELS

In the main paper, we adopt Metric3D V2 (Hu et al., 2024) as our default depth estimator. To further
examine the robustness of PG-Occ under different sources of depth supervision, we additionally
train and evaluate our model using UniDepth V2 (Piccinelli et al., 2025) pseudo-depth. The Table 13
reports both the depth estimation errors and open-vocabulary semantic occupancy performance on
the nuScenes validation set.

Similar to the setting with Metric3D V2 pseudo-depth, using UniDepth V2 also enables PG-Occ
to recover depth estimates that outperform the pseudo-labels. For example, while UniDepth V2
provides an Abs Rel of 0.158, PG-Occ improves it to 0.137, showing that PG-Occ can consistently
refine imperfect depth supervision regardless of the depth model used.

In terms of the open-vocabulary occupancy prediction task, the performance remains stable across
depth models. When switching from Metric3D V2 to UniDepth V2 pseudo-depth, the mIoU only
changes slightly from 15.15 to 15.08, confirming that PG-Occ is largely insensitive to the specific
choice of depth estimator.

These findings highlight two key properties of PG-Occ. (i) PG-Occ does not depend on any specific
depth architecture; it only requires coarse geometric cues for initialization and supervision, making
it naturally compatible with diverse metric depth models. (ii) PG-Occ consistently refines these cues
and maintains robust occupancy performance even as the upstream depth model changes.

Table 13: Robustness evaluation across different depth models. The best performances of each
metric are highlighted with bold.

Method Abs Rel Sq Rel RMSE RMSE log mIoU

Metric3D V2 (Hu et al., 2024) 0.170 4.016 6.453 0.291 —
UniDepth V2 (Piccinelli et al., 2025) 0.158 2.232 5.491 0.259 —

PG-Occ (Metric3D V2) 0.139 1.159 5.466 0.269 15.15
PG-Occ (UniDepth V2) 0.131 1.129 5.049 0.248 15.08

B.4 EFFECTIVENESS IN MULTIMODAL SETTINGS WITH LIDAR AND CAMERAS

While our approach targets image-based occupancy prediction, which is an important direction in
the field, it is also effective in multimodal settings combining LiDAR and cameras. To validate
this capability, we performed additional experiments on the nuScenes dataset, substituting pseudo-
depth inputs with ground-truth sparse LiDAR point clouds. The results demonstrate that PG-Occ
effectively leverages multimodal inputs, maintaining robust semantic occupancy prediction even for
challenging scenes.
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Table 14: 3D occupancy performance with
pseudo-depth vs. LiDAR inputs.

Method mIoU RayIoU mAP (v)

PG-Occ (Depth) 15.15 13.92 21.20
PG-Occ (LiDAR) 18.98 15.22 29.53

As summarized in 14, even a direct, naive
replacement—without any tailored optimiza-
tion—significantly boosts 3D occupancy metrics:
mIoU rises from 15.15 (Depth) to 18.98 (Sparse
LiDAR), RayIoU from 13.92 to 15.22, and mAP(v)
from 21.20 to 29.53. This validates the pipeline’s
capability to generalize beyond pseudo-depth and
effectively absorb multimodal spatial cues. Notably, our approach yields robust improvements with
basic point cloud substitution, indicating that further gains remain achievable via more sophisticated
fusion techniques.

C ADDITIONAL VISUALIZATION RESULTS

C.1 PG-OCC CAPABILITIES

We present more qualitative results in Fig. 9 demonstrating that, using single-frame multi-view
inputs and feed-forward inference, PG-Occ accurately estimates scene depth and generates open-
vocabulary feature renderings capturing semantics beyond fixed categories. It supports zero-shot
semantic 3D occupancy prediction and enables flexible open-vocabulary text queries for object re-
trieval and localization.

C.2 BEV VISUALIZATION

In this subsection, we present BEV (bird’s-eye view) occupancy visualizations produced by PG-Occ.
This perspective provides a comprehensive overview of the scene layout, allowing clear observation
of spatial relationships among various objects. As illustrated in Fig. 10, our method accurately
reconstructs both large and small scene elements, including vehicles, pedestrians, and barriers, while
maintaining sharp and consistent occupancy boundaries. We select a variety of diverse scenes to
demonstrate the robustness and generalization capability of our approach, highlighting its ability to
handle complex environments effectively.

C.3 EGO-CENTRIC PERSPECTIVE OCCUPANCY VISUALIZATION WITH PREVIOUS SOTA
METHOD

In this subsection, we visualize occupancy from the vehicle’s perspective and compare our results
with the previous state-of-the-art method, GaussTR (Jiang et al., 2024). This comparison aims
to highlight the strengths and improvements of our approach in estimating occupancy within the
scene. As illustrated in Fig. 11, our method demonstrates superior detection results for small objects
compared to GaussTR (Jiang et al., 2024), particularly for car, bicycle, bus, truck, and barrier.
Interestingly, our approach is capable of detecting elements that are not well annotated in the Ground
Truth, such as the pedestrians and bicycles shown in the second visualization of the figure.

C.4 THIRD PERSPECTIVE OCCUPANCY VISUALIZATION

In this subsection, we present the visualization of our method from two different third-person per-
spectives. As illustrated in Fig. 12, we compare the zero-shot semantic occupancy estimations gen-
erated by our approach with the Ground Truth. The visualizations illustrate the effectiveness of our
method in accurately capturing the spatial occupancy of various objects within the scene. The re-
sults underscore our model’s ability to perform zero-shot semantic occupancy estimation, enabling
it to infer the occupancy of objects it has not encountered during training. However, it is important
to note that due to occlusion issues present in the scene, our self-supervised method may face chal-
lenges in making accurate predictions in areas lacking visual observations. Nevertheless, it can still
yield reasonable inferences to a certain extent.
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D ADDITIONAL IMPLEMENTATION DETAILS

D.1 VOXELIZATION

As described in section 3.4, after obtaining the progressive 3D Gaussian representation that models
the scene based on the current camera input. We convert the 3D feature Gaussian blobs output
to a semantic occupancy field. To begin with, we take n arbitrary text prompts ctext and encode
them using the CLIP text encoder to obtain their corresponding feature embeddings ftext. And then
compute the similarity between these text embeddings and the text-aligned features fi of Gaussian i,
subsequently. The text probability for each 3D feature Gaussian blob G under ctext can be calculated
as follow equation:

pi = σ(fi · fT
text) (14)

where pi represents the text probability of the i-th Gaussian blob under ctext, and σ denotes the
softmax operation.

After that, we define a voxel grid within the region of interest (ROI) occupancy range and then
calculate the influence of each Gaussian on each voxel, accumulating the results. This process
is affected by the anisotropy parameter s, r of the Gaussians, their opacity o, and assigned text
probability p. The formulation for this voxelization can be written as:

Vo =

N∑
i=1

Gi(x;µi, si, ri, oi) =

N∑
i=1

exp(−1

2
(x− µi)

TΣ−1
i (x− µi))oi, (15)

Vp =

N∑
i=1

Gi(x;µi, si, ri, oi) =

N∑
i=1

exp(−1

2
(x− µi)

TΣ−1
i (x− µi))pi, (16)

where Vo, Vp denote the final occupancy probability and semantic 3D occupancy field, x denotes
the voxel grid position of occupancy, Σ is the Gaussian covariance matrix of each Gaussian, revived
from its scale si and rotation quaternion ri.

In the evaluation of the nuScenes retrieval dataset experiment in Section 4.2, since the ground truth
consists of text annotations for sparse LiDAR points P , we treat each LiDAR point p as the center x
of a voxel. This allows us to obtain the corresponding final occupancy probability and text feature,
as shown in the following formula.

Po =

N∑
i=1

Gi(p;µi, si, ri, oi) =

N∑
i=1

exp(−1

2
(p− µi)

TΣ−1
i (p− µi))oi, (17)

Pf =

N∑
i=1

Gi(p;µi, si, ri, oi) =

N∑
i=1

exp(−1

2
(p− µi)

TΣ−1
i (p− µi))fi, (18)

where Po, Pf denote the final occupancy probability and the corresponding text feature of the Li-
DAR point cloud P .

D.2 TEXT PROMPT

Due to the imprecise semantics in the Occ3D-nuScenes (Tian et al., 2024) dataset, we made some
minor adjustments to the prompts used in PG-Occ, as shown in Table 15. Specifically, we do not
detect the categories ’others’ or ’other flat,’ as they can lead to ambiguities. Note that further fine-
tuning of these ambiguous prompts could enhance performance.

For the retrieval task in Section 4.2, we directly use the prompt provided by the dataset.

D.3 ADDITIONAL MODEL AND TRAINING DETAILS

D.3.1 SUPERVISION STRATEGY

Metric3D V2 (Hu et al., 2024) and MaskCLIP (Zhou et al., 2022) are utilized for depth and feature
supervision. The loss weight parameters are set as follows: λSILog = 0.15, λtemp = 10, and
λmse = 10. The learning rate is initialized at 2e-4 with a weight decay of 0.01, using the AdamW
optimizer.
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Table 15: Text prompts used for zero-shot semantic occupancy estimation on the Occ3D-nuScenes
dataset (Tian et al., 2024). ’-’ indicates that no prompts were made for this class.

nuScenes Class Prompts

others -
barrier barrier
bicycle bicycle
bus bus
car car
construction vehicle construction vehicle
motorcycle motorcycle
pedestrian person
traffic cone cone
trailer trailer
truck truck
driv. surface road
other flat -
sidewalk sidewalk
terrain terrain, grass
manmade building, wall, fence, pole, sign
vegetation vegetation
empty sky

D.3.2 MODEL ARCHITECTURE AND TRAINING SETUP

We adopt ResNet-50 (He et al., 2016) as the image feature backbone, utilizing the previous seven
frames to capture spatio-temporal information. PG-Occ is initialized with 4,000 Gaussian queries
in the base layer and progressively adds 1,000 queries per layer, resulting in one base and two
progressive layers with an embedding dimension of 256. All training experiments are conducted
on 8 A800 GPUs for 8 epochs, while inference is performed on a single A800 GPU. To improve
computational efficiency, we use a resolution of 180 × 320 for depth and feature rasterization, as
well as for Gaussian point initialization.
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Figure 9: PG-Occ capabilities. Given only single-frame multi-view inputs and using only feed-
forward passes, PG-Occ can: (1) estimate depth (row 2); (2) render open-vocabulary model features
(row 3); (3) predict 3D occupancy in a zero-shot manner (rows 4); (4) predict semantic 3D occu-
pancy in a zero-shot manner (rows 5); (5) support open-vocabulary text queries (rows 6).
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Figure 10: BEV visualization of open-vocabulary scene perception by PG-Occ. The figure illustrates
predicted occupancy and semantic structures from a bird’s-eye perspective, emphasizing the model’s
ability to capture spatial relationships and overall scene layout.
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Figure 11: Qualitative comparisons of zero-shot semantic occupancy estimation from an ego-centric
multi-camera perspective. Each row shows input images from multiple viewpoints (top), corre-
sponding occupancy predictions by GaussTR (left bottom), the ground truth occupancy (middle
bottom), and our PG-Occ method (right bottom). Dashed boxes and lines highlight specific ob-
jects—such as pedestrians, cars, bicycles, and traffic lights—that have been successfully detected
and reconstructed. Our approach demonstrates superior detection and reconstruction of small or
distant objects, better preserves spatial relationships, and provides more accurate object shapes
compared with GaussTR. Colors indicate semantic categories as defined in the legend. For best
inspection of fine details, we recommend viewing the color version and zooming in.
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Figure 12: Qualitative zero-shot semantic occupancy results on the third perspective for two views.
For each view (View 1 and View 2), we show the predictions of our method (PG-Occ) alongside
the Ground Truth. The results demonstrate that PG-Occ accurately captures semantic occupancy
patterns across different perspectives.
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Figure 13: Zero-shot generalization on the Lyft Level-5 dataset (Christy et al., 2019). Our model is
not retrained or fine-tuned on the Lyft Level-5 dataset but used directly after training on nuScenes.
This scenario involves a substantial domain shift, including differences in image resolution, camera
intrinsics, viewpoints, and overall scene distribution. Despite these challenges, our method main-
tains strong zero-shot generalization, accurately predicting occupancy and successfully recovering
small or rarely seen objects in completely unseen scenes.

23


	Introduction
	Related Work
	Methodology
	3D Feature Gaussian Splatting
	Progressive 3D Gaussian Modeling
	Progressive Online Densification (POD)
	Asymmetric Self-Attention (ASA)
	Anisotropy-aware Feature Sampling (AFS)

	Efficient Training via Rasterization
	Test-time Inference via Voxelization

	Experiments
	Experimental Setup
	Main Experiment Results
	Main Ablation Study

	Conclusion and Limitations
	Video Demonstration
	Additional Experiment Results
	Additional ablation study
	Layer-wise Time Consumption
	Robustness Evaluation with Different Pretrained Depth Models
	Effectiveness in Multimodal Settings with LiDAR and Cameras

	Additional Visualization Results
	PG-Occ Capabilities
	BEV Visualization
	Ego-centric perspective occupancy visualization with previous SOTA method
	Third perspective occupancy visualization

	Additional Implementation Details
	Voxelization
	Text prompt
	Additional Model and Training Details
	Supervision Strategy
	Model Architecture and Training Setup



