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Abstract

Large language models (LLMs) have become integral to a wide range of applica-
tions worldwide, driving an unprecedented global demand for effective multilingual
capabilities. Central to achieving robust multilingual performance is the strategic
allocation of language proportions within training corpora. However, determining
optimal language ratios is highly challenging due to intricate cross-lingual interac-
tions and sensitivity to dataset scale. This paper introduces CLIMB (Cross-Lingual
Interaction-aware Multilingual Balancing), a novel framework designed to sys-
tematically optimize multilingual data allocation. At its core, CLIMB introduces
a cross-lingual interaction-aware language ratio, explicitly quantifying each lan-
guage’s effective allocation by capturing inter-language dependencies. Leveraging
this ratio, CLIMB proposes a principled two-step optimization procedure—first
equalizing marginal benefits across languages, then maximizing the magnitude of
the resulting language allocation vectors—significantly simplifying the inherently
complex multilingual optimization problem. Extensive experiments confirm that
CLIMB can accurately measure cross-lingual interactions across various multilin-
gual settings. LLMs trained with CLIMB-derived proportions consistently achieve
advanced multilingual performance, even achieve competitive performance with
open-sourced LLMs trained with more tokens.

1 Introduction

Large language models (LLMs), exemplified by the GPT series [42, 43], LLaMA series [61, 60,
25], Gemma series [20, 19, 21], Qwen series [48, 49, 58], and DeepSeek series [14, 13], have
reshaped various language-based applications worldwide, powering advanced chatbots [12], machine
translation systems [70], and intelligent virtual assistants [62]. Such impressive capabilities emerge
predominantly from extensive pretraining on enormous textual datasets, frequently spanning tens
to hundreds of trillions of tokens, enabling the capture of rich and diverse linguistic knowledge.
Driven by the growing global demand and the need for equitable language representation, there has
been an accelerating shift toward multilingual pretraining, aiming to transcend linguistic boundaries
and serve a broader range of linguistic communities effectively [69]. Central to this shift lies a
fundamental question: how should the proportions of different languages be optimally allocated
within the training corpus to achieve balanced and superior model performance across all
target languages?

However, determining an optimal multilingual mixture poses considerable challenges. The foremost
difficulty arises from cross-lingual interactions: performance on one language can be significantly
influenced by other languages trained concurrently [16, 7]. As illustrated in Figure 1, even when
the training proportion of Arabic remains fixed to 10%, modifying the proportions of the other four
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languages (increasing one language to 60% proportion) in a five-language LLM can substantially alter
Arabic’s performance. This interdependence prevents isolated optimization of individual languages
and necessitates joint optimization of the entire language set. Additionally, optimal language ratios
are sensitive to the scale of the training corpus [32, 28, 55, 24]. Specifically, language proportions
identified as optimal at smaller scales (e.g., 1 billion tokens) may no longer remain optimal when
scaled to larger training sets (e.g., 4 trillion tokens), rendering simple extrapolations unreliable and
incurring prohibitive experimental costs. Consequently, current multilingual LLMs often resort to
heuristic trial-and-error approaches [15, 25], or reuse language ratios derived from prior models
without systematic justification [34], highlighting a critical need for a principled and scalable solution
to multilingual data allocation.
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Figure 1: Cross-lingual Interactions in a
five-langauge LLM.

In pursuit of achieving the optimal language allocation,
this paper explores whether it is possible to accurately
predict model performance under various language allo-
cations without explicitly training the models. Inspired
by the concept of scaling laws, which characterize how a
model’s validation loss systematically scales with model
size (N ) and data volume (D) [33, 30], we hypothesize
that a similar predictive framework could be applied to
multilingual settings by incorporating language propor-
tions. Specifically, if we can formulate a mathematical re-
lationship that captures how validation performance varies
with language proportions in the training corpus, then
it becomes feasible to infer optimal language ratios by
identifying the allocations that minimize validation loss.
However, due to the intricate cross-lingual interactions
among languages, precisely modeling and predicting validation performance across different lan-
guage compositions remains highly challenging.

In this paper, we propose CLIMB (Cross-Lingual Interaction-aware Multilingual Balancing), a
novel framework designed to systematically optimize language proportions for multilingual LLM
pre-training. Our approach consists of two interconnected components. First, we introduce the
cross-lingual interaction-aware language ratio, a novel metric that explicitly quantifies the effective
allocation of each language in the presence of cross-lingual interactions, effectively reflecting the
impact of other jointly trained languages. Second, leveraging these cross-lingual interaction-aware
ratios, we can estimate the optimal multilingual balance by decomposing the optimization into two
steps: initially, we determine the direction of optimal allocation by equalizing the marginal benefits
across languages; subsequently, we obtain the estimated optimal proportions by maximizing the
magnitude of the resulting cross-lingual interaction-aware language ratio vector. This principled
two-step procedure enables efficient and accurate computation of multilingual data distributions,
significantly reducing the complexity inherent in direct joint optimization.

To comprehensively evaluate the effectiveness of CLIMB, we conduct experiments in two primary
aspects. First, we validate the predictive accuracy of the proposed cross-lingual interaction-aware
language ratio. By integrating this novel ratio into the multilingual scaling law framework, we observe
a substantial improvement in predictive accuracy compared to baseline scaling laws relying on
independence assumptions among languages. Second, leveraging the optimal proportions computed
via CLIMB, we train multilingual LLMs at both 1.2B and 7B parameter scales. Experimental
results demonstrate that models pretrained with CLIMB-derived ratios consistently achieve leading
performance compared to various baselines with alternative language allocations. Remarkably, even
compared to open-sourced models pretrained on more tokens, our CLIMB-optimized models exhibit
highly competitive performance across multiple multilingual benchmarks.

2 CLIMB

Our approach is grounded in extensive multilingual experiments designed to disentangle how loss
dynamics evolve with respect to language composition, total training tokens, and cross-lingual
proportions. Building on these observations, our framework consists of two main components:
the Cross-lingual Interaction-aware Language Ratio, which explicitly models effective language
proportions by incorporating inter-language dependencies, and the Optimal Multilingual Balance,
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Figure 2: Illustration of cross-lingual interaction-aware language ratio (r̃ar) and its dependency on
original training proportions (rar).

which leverages these interaction-aware ratios to estimate the optimal allocation r∗ that minimizes
multilingual validation loss.

2.1 Experimental Setup

To study how multilingual training dynamics depend on language composition, token scale, and
inter-language proportions, we conduct a series of controlled experiments across diverse language
settings, organized along three dimensions:

(1) Number of Languages.

We explore multilingual configurations of increasing scope, including bilingual ({es–ko, en–zh,
de–ar, ko–ja}), trilingual ({es–de–ar, es–ko–zh, en–zh–ja}), five-language ({es–de–ar–ko–ja}), and
a sixteen-language setting covering {de, en, nl, es, pt, fr, it, id, ja, ko, zh, ru, ar, th, vi, tr}.

(2) Total Training Tokens. For each setting, models are trained under ten token budgets from 5B to
50B (step size 5B). To ensure comparability, all runs share the same learning rate schedule, decaying
to 10% of the initial rate by training end.

(3) Language Proportion. To examine proportional effects, one language’s share is fixed while
others evenly split the remainder. For each language Li, its proportion is varied over {0.02, 0.025,
0.05, 0.1, 0.2, 0.25, 0.4, 0.5, 0.6, 0.75, 0.8, 0.9, 0.95, 0.975, 0.98} to observe loss trends.

Combining these factors yields over 500 multilingual runs. Section 2 summarizes empirical findings
and fitting equations, while Section 3 examines their extrapolation and generalization performance.

2.2 Problem Formulation

Given a multilingual corpus consisting of training data from m distinct languages L1, . . . , Lm, our
objective is to determine the optimal language allocation for pretraining LLMs. Formally, we define
the language proportion vector as r = [r1, r2, . . . , rm]⊤ ∈ Rm, whereRm = {r ∈ Rm |

∑m
i=1 ri =

1, ri ≥ 0,∀i} denotes the probability simplex.

Given a total token budget D, each language Li contributes Di = ⌊ri ·D⌋ tokens to the training set.
The model parameters θ are trained via empirical risk minimization: θ∗(D, r) = argminθ L(θ;D, r),
where L(θ;D, r) denotes the next-token prediction loss on the multilingual training set defined by
proportions r and token budget D.

To evaluate the pretrained model, we measure validation loss on a language-specific held-out set Dv
i :

Lv
i (θ

∗(D, r)) = L(θ∗(D, r);Dv
i ).

Our goal is to identify the optimal language proportion vector r∗ that achieves balanced multilingual
performance by minimizing a weighted sum of validation losses across all languages:

r∗ = arg min
r∈Rm

m∑
i=1

ωi · Lv
i (θ

∗(D, r)), (1)
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where hyperparameter ωi ≥ 0 specify the relative importance of each language Li, set according to
application-specific requirements or practical considerations.

This formulation defines a bi-level optimization problem, in which the outer optimization seeks
optimal language proportions, and the inner optimization involves training an LLM given these
language proportions. Due to the intrinsic complexity of cross-lingual interactions and the prohibitive
computational cost of repeated model retraining, directly solving this optimization problem through
standard gradient-based approaches is computationally infeasible.

2.3 Cross-Lingual Interaction-aware Language Ratio

Given a total token budget D and a language proportion vector r, we can obtain the validation
loss Lv

i (D, r) for language Li. Let D̃i be the number of tokens required to reach the validation
loss Lv

i (D, r) from a monolingual model solely on language Li, we then define the cross-lingual
interaction-aware ratio r̃i as the ratio of this equivalent monolingual token budget D̃i to the actual
multilingual token budget D: r̃i = D̃i

D . Formally, r̃i can be formally expressed as:

r̃i =
1

D

(
Bi

Lv
i (D, r)− Ei

)1/βi

, (2)

where parameters Bi, βi, and Ei are derived from the monolingual scaling law [30]. Specifically,
the monolingual scaling law characterizes how the validation loss decreases as training data volume
increases for a single language Li, expressed as:

Lv
i (Di, ri = 1) =

Bi

Dβi
i

+ Ei, (3)

where Di represents the token budget allocated exclusively to language Li. In the absence of cross-
lingual transfer, the interaction-aware ratio r̃i equals the actual ratio ri, thus the difference r̃i − ri
quantifies the magnitude of cross-lingual effects from other languages.

2.3.1 Empirical Observations and Insights

To systematically understand the behavior of the cross-lingual interaction-aware language ratio r̃i, we
conducted over 300 experiments on Transformer-based models. Specifically, we varied the number
of jointly trained languages (2, 3, and 5 languages), total token budgets ranging from 5 billion to 100
billion tokens, and explored a wide range of language proportion vectors r. For each configuration,
we computed the pairs (ri, r̃i) to examine how the effective language ratio deviates from the actual
proportion due to cross-lingual transfer. These results are visualized in Figure 2, from which we
identify following key empirical insights:

• Dependency on absolute language proportion. Cross-lingual transfer strength diminishes
as the actual language proportion (ri) increases, with the slope gradually decreasing and
approaching linearity at higher proportions, as illustrated in Figures 2 (a), (b), and (c).

• Dependency on co-training languages. The specific set of co-training languages affects
cross-lingual transfer primarily when the language proportion ri is small, as demonstrated
in Figure 2 (a). This influence diminishes as ri grows.

• Dependency on model language counts. Increasing the number of co-trained languages
affects the intercept rather than the slope of the cross-lingual transfer relationship. This
variation shifts the onset point at which transfer strength approaches linearity, as shown in
Figure 2 (b).

• Dependency on data scale. Cross-lingual transfer consistently weakens with larger total
token budgets (D), indicating that increased training data volume reduces dependency
between languages, as depicted in Figure 2 (c).

These patterns are consistent with prior findings on the curse of multilinguality [3, 10], which similarly
report reduced transfer when auxiliary-language data dominates and when model capacity is spread
across too many languages.
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2.3.2 Parametric Modeling of Cross-Lingual Interaction-aware Ratio

Motivated by the empirical insights described above, we propose a parametric model to capture the
relationship between the cross-lingual interaction-aware language ratio r̃i and the actual language
ratio ri. Specifically, we model r̃i as:

r̃i = ri +

∑
j ̸=i

αj→i(D) · rj

(
1− e−ηiri

)
, (4)

where the parameters are defined as follows:

• αj→i(D) represents the transfer strength from language Lj to language Li. Empirically, we
find that this transfer effect diminishes linearly with increasing token budget D, which we
model as: αj→i(D) = bji +

kji

D , where bji indicates the initial strength of cross-lingual
transfer from Lj , and kji quantifies the rate at which this transfer strength decays as data
volume increases. Details about αj→i(D) is in Appendix A.

• ηi captures the intrinsic data sufficiency of language Li. A larger value of ηi indicates that
language Li remains reliant on cross-lingual transfer across a wider range of proportions,
exhibiting a pronounced curved (transfer-dominated) regime. Conversely, a smaller ηi
signals that language Li quickly enters a linear (self-dominated) regime, reflecting sufficient
self-contained data.

2.3.3 Complete Cross-Lingual Interaction-aware Scaling Law

By incorporating the parametric definition of the cross-lingual interaction-aware ratio into the
monolingual scaling law, we obtain our final scaling law formulation:

Lv
i (D, r) =

Bi

[D · r̃i]βi
+ Ei (5)

=
Bi[

D ·
(
ri +

(∑
j ̸=i(bji +

kji

D ) · rj
)
· (1− e−ηiri)

)]βi
+ Ei. (6)

The complete set of parameters to estimate are: {Bi, βi, Ei}mi=1, {bji, kji}mi,j=1,j ̸=i, {ηi}mi=1.

Parameter Estimation Procedure. To fully determine these parameters, we perform targeted
experiments involving each language individually. Specifically, for each language Li, we conduct
three experiments with distinct proportions: one monolingual scenario (where ri = 1) to estimate
the baseline scaling law parameters Bi, βi, and Ei, and two additional multilingual experiments
with randomly chosen language proportions ri and the remaining languages allocated equally as
1−ri
m−1 . Each of these experiments is repeated at two distinct training token budgets to ensure reliable
parameter fitting across data scales. Following the experimental setup [30], we fit our scaling
law parameters only using data points from the last 15% of training. Thus, for a setting with m
languages, this structured approach requires a total of 3×m×2 experiments, enabling comprehensive
and accurate estimation of the proposed scaling law parameters. The detailed fitting procedure is
summarized in Algorithm 1.

2.4 Estimating Optimal Multilingual Balanced Allocation

Directly minimizing the multilingual validation loss defined by Equation (6) is challenging, as it
forms a non-convex optimization problem in language proportions r. While it may appear intuitive
to directly optimize the cross-lingual interaction-aware language ratios r̃i under Equation (6), this
objective is intractable in practice, as the total sum

∑
i r̃i remains unknown. To address this difficulty,

we propose a two-stage optimization procedure that decomposes the original complex problem
into two simpler, sequential steps. Specifically, we first determine the optimal direction in the
cross-lingual interaction-aware language ratios r̃i space, ensuring balanced marginal benefits across
languages. Subsequently, we optimize the magnitude along this determined direction to identify
the final allocation r that maximizes the overall cross-lingual interaction-aware language ratios r̃i,
effectively minimizing the multilingual validation loss.

5



Algorithm 1 CLIMB

Input: Languages {L1, . . . , Lm}, token budgets {D(1), D(2)}.
Output: Parameters {Bi, βi, Ei}mi=1, {bji, kji}mi,j=1,j ̸=i, {ηi}mi=1, optimal language proportions r∗.

Part I: Parameter Modeling of Cross-Lingual Interaction-aware Language Ratio
1: for each language Li do
2: Conduct monolingual experiments (ri = 1) at D(1), D(2).
3: Fit monolingual scaling law 3 to estimate Bi, βi, Ei.
4: for each proportion ri = ci ∈ (0, 1), repeat twice do
5: Set other languages proportion rj =

1−ci
m−1 , ∀j ̸= i.

6: for each token budget D ∈ {D(1), D(2)} do
7: Train model with proportions r and budget D.
8: Record validation loss Lv

i (D, r).
9: Compute r̃i from Eq. (6).

10: end for
11: end for
12: Fit parameters bji, kji, ηi using (ri, r̃i) pairs.
13: end for

Part II: Estimating Optimal Multilingual Balanced Allocation
14: Compute optimal direction components pi via Eq. (7).
15: Normalize direction: p̂i ← pi/

∑
j pj for all i.

16: Solve constrained optimization (Eq. (8)).
17: return parameters {Bi, βi, Ei}mi=1, {bji, kji}mi,j=1,j ̸=i, {ηi}mi=1, and optimal proportions r∗.

2.4.1 Optimal Direction via Marginal-Benefit Balancing.

In the first stage, we identify the optimal direction for the cross-lingual interaction-aware language
ratios r̃i by balancing the marginal benefits across all languages. Specifically, we derive the optimal
proportional relationship between the interaction-aware ratios by equalizing the marginal validation-
loss reduction contributed by each language. The resulting optimal direction pi for each language Li

is formally given by (see detailed derivation in Appendix B):

pi =
(ωiBiβi)

1/(βi+1) D−βi/(βi+1)∑m
k=1 (ωkBkβk)

1/(βk+1) D−βk/(βk+1)
, (7)

where Bi and βi are the monolingual scaling-law parameters of language Li, and ωi represents
the predefined importance weight for language Li. Intuitively, the direction pi indicates the ideal
relative allocation of interaction-aware language ratios, balancing each language’s data efficiency,
validation-loss reduction rate, and relative importance. Identifying this optimal direction substantially
reduces complexity in subsequent optimization steps by constraining the search space for the final
language proportions.

2.4.2 Optimal Magnitude via Constrained Effective Allocation Maximization.

With the optimal direction pi identified, the second stage focuses on determining the optimal magni-
tude along this direction. Nevertheless, due to the monotonicity of the scaling law function 3, we find
that a larger aggregate

∑
i r̃i consistently implies a lower overall training loss, thereby revealing an

implicit preference for maximizing effective data contributions across languages (details in Appendix
C). Specifically, we recover the actual language proportions r by solving a constrained optimization
problem that maximizes the total cross-lingual interaction-aware language ratio while staying close
to the previously determined direction p. Formally, this optimization objective is defined as:

min
r

[
−

m∑
i=1

r̃i(r) + ρ

m∑
i=1

(r̂i(r)− pi)
2

]
, s.t.

m∑
i=1

ri = 1, ri ≥ 0, (8)

where r̂i =
r̃i∑
j r̃j

is the normalized interaction-aware ratios and direction components, respectively.
The first term of the objective function aims at maximizing the overall interaction-aware language
ratio, corresponding directly to minimizing multilingual validation loss, while the second term (soft-
constraint) penalizes deviations from the optimal direction p. The hyperparameter ρ > 0 balances
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Table 1: Fitting and Extrapolation Performance of Different Methods (R2 ↑ and Huber Loss↓) for
Multilingual LLMs at 100B and 1T Tokens.

2-lang LLM 3-lang LLM 5-lang LLM 16-lang LLM

R2 ↑ Huber ↓
(×10−3) R2 ↑ Huber ↓

(×10−3) R2 ↑ Huber ↓
(×10−3) R2 ↑ Huber ↓

(×10−3)

Fitting Results (Total Training Tokens: 100B)
Isolated 0.649 7.95 0.743 5.35 0.734 5.34 0.768 5.26
MSL 0.832 5.61 0.854 2.15 0.823 1.94 0.836 2.20
CLIMB 0.978 0.518 0.986 0.301 0.992 0.205 0.981 0.274

Extrapolation Results (Total Training Tokens: 1T)
Isolated 0.648 8.21 0.741 5.38 0.732 5.36 0.767 5.30
MSL 0.830 5.79 0.852 2.24 0.822 1.98 0.834 2.24
CLIMB 0.964 0.525 0.947 0.310 0.948 0.208 0.936 0.278
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these two objectives, with smaller values of ρ emphasizing pure loss minimization and larger values
enforcing adherence to the optimal direction.

This problem is inherently non-convex due to the interaction-aware ratio’s nonlinearity. Thus,
we adopt a Trust-Region Interior-Point Method to efficiently handle this constrained optimization
problem. This structured reformulation significantly reduces the complexity and dimensionality of
the original allocation problem, accelerating convergence and improving numerical stability.

3 Crosslingual Interaction-aware Language Ratio Evaluation

3.1 Experimental Setup

Model Architecture. We utilize the LLaMA-2 [60] architecture with 1.2 billion parameters, training
all models from scratch with randomly initialized weights. All experiments are condcuted on Nvidia
H100 GPU cards. To ensure consistency with established scaling-law practices, we follow the
Chinchilla configuration and set a fixed number of training steps for each dataset size, adjusting
the learning-rate decay schedule to cosine. Validation losses are calculated by averaging the results
obtained from the final three training steps.

Datasets. All experiments are conducted using data sampled from the Fineweb-2 corpus [45]. To
rigorously evaluate our Cross-Lingual Interaction-aware Language Ratio across diverse linguistic
scenarios, we conduct experiments involving models trained on 2, 3, 5, and 16 languages, respectively.
For each multilingual setting, we vary the token budgets from 5 billion to 100 billion tokens. The
specific language compositions and detailed training procedures are documented in the Appendix E.

Evaluation Metrics & Baseline. We assess the accuracy of our validation-loss predictions primarily
using two metrics: the coefficient of determination (R2) and the Huber loss. The R2 score measures
the proportion of variance explained by our fitted scaling-law model, with values closer to 1 indicating
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greater predictive accuracy. Additionally, we employ Huber loss, a robust error metric combining
properties of mean squared error and mean absolute error, which provides resilience against outliers;
lower Huber loss values reflect more accurate predictions.

Baselines We compare our approach against two baselines: 1) an assumption of no cross-lingual
transfer, where each language’s validation loss depends solely on its own proportion, labeled as
“isolated”; and 2) a recent multilingual scaling-law study [28], referred to as “MSL”.

3.2 Scaling Law Fit Accuracy

We present the prediction errors of our proposed scaling law compared to the baseline (MSL) in
Table 1, evaluating models trained across various multilingual scenarios (2–16 lang LLMs) with token
budgets of 100 B and 1 T tokens. Our cross-lingual interaction-aware approach consistently achieves
lower prediction errors compared to the baseline, effectively capturing validation-loss trends in both
homogeneous (same language-family) and heterogeneous language settings. From 2-lang LLM to
16-lang LLM, CLIMB’s Huber loss remains consistently an order of magnitude lower than both
baselines, highlighting the importance and prevalence of cross-lingual transfer effects in multilingual
models. Conversely, our scaling-law formulation remains robust and delivers accurate loss predictions
even in highly complex multilingual scenarios. We also tried different parametric models to fit and
the results are shown in Appendix D

3.3 Scaling Law Applicability

To evaluate the robustness of our scaling law, we test its validity across varying training scales and
language proportions (see Figure 3 and Figure 4). At smaller scales (below 25 B tokens), prediction
accuracy is limited due to unstable cross-lingual transfer. As data increases beyond 25 B tokens,
predictions align closely with empirical losses, and extrapolation up to 1 T tokens remains consistent
(Table 1). Moreover, bilingual experiments (Figure 5) confirm that our formulation accurately fits
validation loss across the full range of language proportions (0.01–0.99), demonstrating its broad
applicability to multilingual training.

4 Multilingual Balanced Allocation Performance

4.1 Experimental Setup

Model Architecture and Training Setup. We evaluate multilingual performance by training
Transformer models based on the LLaMA-2 [60] architecture at two different scales: 1.2 B and 7 B
parameters. All models are trained using the Fineweb-2 corpus, identical to the datasets employed in
scaling-law experiments, with each model ingesting a total of 1 T tokens. Peak learning rates are set
to 4.3× 10−5 for the 1.2 B model and 3.6× 10−5 for the 7 B model, both following a cosine-decay
schedule that decays the learning rate down to 10% of its initial value.

Baselines. We compare our proposed CLIMB-derived allocations against two categories of baselines.
First, we evaluate against publicly available multilingual models, specifically, LLaMA-3.2-1B
[25], GEMMA-3-1B-pt [21], Qwen-3-1.7B-base [58], and XGLM-1.7B [37], whose training data
distributions are either open-sourced or reported in official documentation. These models serve as
strong multilingual references trained on large or well-documented corpora.

Second, under identical model architecture and data volume constraints, we train models using several
alternative language allocation strategies: (1) Uniform, which distributes tokens equally across all 16
languages; (2) Isolated, derived independently from individual monolingual scaling laws; (3) MSL,
based on the existing multilingual scaling law formula assuming language-family independence; (4)
Natural, reflecting each language’s original data frequency; (5) Temperature Sampling (Temp),
which smooths token allocation via temperature-controlled reweighting of language proportions, we
use T = 0.3 as baseline; and (6) UniMax [8], which maximizes the minimum marginal gain across
languages to improve balance under limited total tokens.

Evaluation Benchmarks. To comprehensively evaluate CLIMB, we translate several English bench-
marks into multilingual to further assess model performance; benchmarks translated by us are marked
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Table 2: Performance of CLIMB on 1B models and baselines across 18 multilingual benchmarks.
Benchmarks translated by us are marked with ‡. Bold numbers denote the best results among data
allocation methods. Standard error is in Appendix I

Analytical Reasoning Commonsense Reasoning

MGSM XARC-E‡ XARC-C‡ XTQA‡ INCLUDE XGPQA‡ XCOPA XSC‡ XHS‡

Open Source Multilingual LLM
LLaMA-3.2-1B 3.89 47.19 29.55 37.73 28.48 24.91 57.07 58.13 41.52
Qwen3-1.7B 36.95 59.53 40.18 48.88 46.87 28.55 59.58 60.47 46.59
Gemma-3-1B-pt 1.78 49.29 29.69 40.07 25.63 27.32 55.58 54.84 41.59
XGLM-1.7B 1.89 40.17 24.60 38.42 25.96 23.31 56.73 56.99 36.18

Different Data Allocation Methods
Uniform 2.07 59.76 35.41 39.62 25.12 26.18 59.49 58.99 48.12
Isolated 2.11 58.53 34.78 39.71 24.82 24.58 59.42 58.74 48.11
Natural 2.05 56.32 33.54 40.63 25.20 26.37 56.54 57.38 45.68
MSL 2.10 57.60 34.17 39.49 25.00 25.36 58.06 57.94 47.02
Temp 2.11 59.31 34.93 39.38 24.82 26.50 58.69 59.54 47.56
UniMax 2.07 59.39 35.78 39.67 25.12 27.10 59.35 58.99 48.22
CLIMB 2.40 60.45 36.56 40.94 25.92 27.03 59.98 60.54 48.75

Comprehension Linguistic Competence Knowledge Translation

XNLI Belebele MultiBLiMP XWinograd‡ GMMLU CMMLU JMMLU VMLU FLORES

Open Source Multilingual LLM
LLaMA-3.2-1B 41.29 30.69 77.66 76.08 28.74 30.30 29.84 29.09 44.14
Qwen3-1.7B 43.25 74.81 77.72 79.12 34.24 45.16 36.09 36.26 50.25
Gemma-3-1B-pt 36.33 28.13 80.88 65.79 27.12 28.59 28.48 30.05 46.55
XGLM-1.7B 37.35 24.21 68.10 62.60 26.08 29.04 28.37 29.41 21.80

Different Data Allocation Methods
Uniform 40.08 23.30 62.24 73.34 29.05 34.79 32.47 31.44 47.51
Isolated 38.93 25.27 60.75 72.31 28.64 33.78 31.85 30.91 47.58
Natural 39.05 24.11 63.18 74.98 30.23 32.10 30.94 31.12 48.54
MSL 38.54 24.55 61.94 73.09 29.00 33.24 31.49 30.25 47.75
Temp 41.03 25.27 60.75 74.76 29.04 33.03 31.98 30.27 47.46
UniMax 40.88 23.30 62.24 74.94 31.27 33.75 32.26 31.16 49.12
CLIMB 41.65 26.17 65.54 77.48 31.78 33.67 33.21 31.76 50.43

‡ in Table 2. Specifically, we adopt the following tasks: analytical reasoning (MGSM [53], ARC-
Easy/ARC-Challenge (XARC-E/C)‡ [9], XTQA (Cross-lingual TruthfulQA)‡ [36], INCLUDE [51],
XGPQA‡ [50]), commonsense reasoning (XCOPA [46], XStoryCloze (XSC)‡ [37], XHellaSwag
(XHS)‡ [67]), comprehension (XNLI [11], Belebele [1]), linguistic competence (MultiBLiMP [31],
XWinograd(XWG)‡ [41]), and knowledge ( GMMLU [54], CMMLU [35], JMMLU2, VMLU3), and
translation (FLORES [57]). Details are provided in Appendix F.

4.2 Results

Table 2 reports the main results; per-language scores are in Appendix J. With a 1.2 B model trained
on 1 T tokens, we remain competitive with LLaMA-3.2, Gemma-3, and Qwen-3. Against alternative
allocations, CLIMB is consistently strong—up to +2.60% on XNLI over isolated allocation and
+1.85% on average across all tasks—demonstrating the effectiveness of our multilingual allocation.

Generalization to Larger Models. Though our optimal language proportions were initially derived
using a 1.2B-parameter model, the methodology generalizes effectively to larger scales. We trained
a 7B-parameter model using the same total token budget (1T tokens) and evaluated performance
(Figure 6). CLIMB-derived allocations consistently outperform baselines by an average of 3.4%.
Results for 7B models appear in Appendix G.

Allocation Differences Across Methods. To illustrate differences among allocation strategies,
Figure 7 compares language proportions of various methods. CLIMB distinctly allocates higher
proportions to languages benefiting most from cross-lingual interactions, unlike baselines (Isolated,
MSL, Nature), which either allocate evenly or based solely on single-language characteristics. This
focused allocation emphasizes the practical advantage of modeling cross-lingual transfer explicitly.

2https://github.com/nlp-waseda/JMMLU
3https://vmlu.ai/
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Table 3: Average cross-lingual transferability per language family. “Transfer-out” measures how
much a language benefits others, “Transfer-in” how much it benefits from others. Top1_Lang indicates
the strongest transfer source.

Language de en nl es pt fr it id ja ko zh ru ar th vi tr

Transfer-out 0.123 0.199 0.130 0.218 0.113 0.174 0.146 0.181 0.124 0.146 0.121 0.139 0.144 0.108 0.066 0.144
Transfer-in 0.168 0.151 0.144 0.188 0.146 0.145 0.092 0.139 0.164 0.129 0.108 0.185 0.130 0.152 0.127 0.136
Top1_Lang nl it de pt es es pt de zh ja ja tr it vi th ru

Optimal Language Allocation Shifts with Data Scale. Figure 8 presents how optimal language
allocations evolve with increasing token budgets. At smaller scales, simpler or less-resourced lan-
guages initially receive higher allocations, quickly lowering validation loss. As data scale increases,
allocations shift towards linguistically complex and diverse languages due to their sustained effective-
ness at reducing loss. This dynamic trend highlights the necessity of adjusting language proportions
according to cross-lingual transfer effects at varying training scales.

Per-Language and Per-Family Analysis. We analyze cross-lingual interaction ratios (transfer-
out/in) derived from the learned scaling coefficients (Table 3) to explain CLIMB’s allocations. Two
patterns are clear: (i) strong intra-family transfer (e.g., Spanish–Portuguese, Japanese–Korean),
and (ii) high-transfer languages (e.g., English, Spanish, Indonesian) receive larger shares because
their gains generalize broadly. These results improve the interpretability of CLIMB and support its
data-driven balancing strategy.

5 Related Work

Data Allocation in Language Model Pretraining. Recent work optimizes pretraining mixtures at
the domain [32, 17], point [63, 66], and token levels [38, 27], typically targeting validation loss. Early
approaches use GroupDRO-style reweighting (e.g., DoReMi [64]), while newer methods leverage
influence functions and surrogate models [39, 65], gradient approximations [59, 68], and loss-guided
heuristics [71, 56] to refine mixtures under budget constraints. However, these techniques are largely
monolingual (English), leaving multilingual data allocation comparatively underexplored.

Scaling Laws for Multilingual LMs. Scaling laws [33, 29, 30, 40, 47] reliably relate performance
to model/data scale and guide efficient allocation. While early work is monolingual, recent studies
extend scaling to multilingual settings—mainly in NMT [23, 22, 18, 72, 4, 2, 5, 52, 6]—but typically
under simplified bilingual assumptions and encoder–decoder setups. Our formulation makes this
interaction explicit for multilingual pretraining.

6 Conclusion

This paper introduces CLIMB, a multilingual optimization framework that models cross-lingual
interactions to predict optimal language allocations under a scaling-law paradigm. Empirical results
show that CLIMB attains strong predictive accuracy and consistently surpasses baselines at both 1.2B
and 7B scales. Future work will extend its predictive capacity to languages unseen during training.
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A Details of Fitting Transfer Strength αj→i(D)
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Figure 9: Illustration of cross-lingual interaction-aware language ratio (r̃ar) and its dependency on
original training proportions (rar).

As introduced in Figure 2 (c) of the main text, we observe that the curve relating r̃i and ri shifts
vertically depending on the total token budget D. Specifically, as D increases, the r̃i versus ri curve
tends to move downward, while smaller D values correspond to upward shifts. According to Equation
(4), the parameter αj→i(D) effectively acts as an intercept controlling this vertical shift.

To accurately characterize the relationship between αj→i and the data budget D, we adopt a two-step
procedure. First, we individually fit the relationship between r̃i and ri at different values of D using
Equation (4). This yields empirical estimates of αj→i at various token budgets. Figure 9 illustrates
the computed values of αj→i for three representative language pairs across different scales of D.

Moreover, our empirical findings suggest two critical properties for the αj→i(D) relationship:

• Non-monotonicity: αj→i does not continuously decrease with increasing D; rather, it
converges towards a stable limiting value as D becomes sufficiently large.

• Sign variability: αj→i can be either positive or negative. Positive values indicate beneficial
cross-lingual transfer, whereas negative values reflect interference effects, where additional
data from language Lj eventually hinder the learning of language Li.

Considering these empirical insights, we propose modeling αj→i(D) with the following parametric
form:

αj→i(D) = bji +
kji
D

, (9)

where bji represents the asymptotic transfer strength as D →∞, and kji controls the decay rate of
this transfer effect as the data budget increases.

The fitting results using this parametric form, depicted by the green curves in Figure 9, demonstrate
excellent agreement with the empirical αj→i-D relationships across various language pairs, validating
our choice of functional form.

B Derivation of Optimal Direction for Cross-Lingual Interaction-Aware
Ratios pi

To compute the optimal direction of the Cross-Lingual Interaction-Aware Ratios {r̃i}, we formulate
and solve the following uncoupled optimization subproblem:

min
r̃i>0

n∑
i=1

Bi

(D r̃i)βi
s.t.

n∑
i=1

r̃i = M, (10)

where M > 0 is a fixed normalization constant, and Bi, βi, D are known positive parameters.

Introducing a Lagrange multiplier λ, we construct the Lagrangian:

J (r̃, λ) =
n∑

i=1

Bi

(D r̃i)βi
+ λ

(
n∑

i=1

r̃i −M

)
. (11)
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Taking derivatives with respect to each r̃i and setting them to zero, we obtain the first-order optimality
conditions:

−Bi βi D
−βi r̃

−(βi+1)
i + λ = 0 (12)

=⇒ r̃ βi+1
i =

Bi βi

λDβi
. (13)

Comparing the conditions for any two languages i, j, we have:

r̃i
r̃j

=

(
Bi βi

Bj βj
Dβj−βi

) 1
βi+1

/
1

βj+1

. (14)

Thus, the optimal direction must satisfy:

r̃i ∝
(
Bi βi/D

βi
)1/(βi+1)

. (15)

Applying the normalization constraint
∑

i r̃i = M , we obtain the normalized optimal direction:

pi =
(Bi βi)

1/(βi+1) D−βi/(βi+1)∑n
k=1(Bk βk)1/(βk+1) D−βk/(βk+1)

. (16)

Since each term Bi/(Dr̃i)
βi is strictly convex in r̃i and the constraint is linear, the stationary solution

derived above constitutes the unique global minimizer. This rigorous derivation justifies the Marginal-
Benefit Balancing approach presented in the main text, providing the closed-form solution for the
optimal direction {r̃i}.

C Equivalence of Two-Stage Optimization with Direct Optimization

Here we provide a rigorous justification demonstrating that our proposed two-stage optimization
approach—first determining the optimal direction pi and subsequently maximizing the magnitude of
effective data allocation—is equivalent to directly solving the original optimization problem.

(i) Necessity of Optimizing the Direction: Assume the direction of the cross-lingual interaction-
aware ratios {r̃i} deviates from the optimal direction pi. Under any fixed effective data contribution∑

i Bi/(Dr̃i)
βi , the total validation loss will always be greater than or equal to that obtained using

the optimal direction. Formally, the optimal direction condition is:

Biβi

Dβi r̃βi+1
i

=
Bjβj

Dβj r̃
βj+1
j

, ∀i, j. (17)

Any deviation from this balanced proportionality condition disrupts marginal equilibrium, causing
certain languages to have unnecessarily higher marginal loss reductions, thus reducing overall
efficiency. Hence, identifying the direction {r̃i} by balancing marginal benefits ensures minimal total
loss given a fixed effective data contribution.

(ii) Optimal Magnitude via Maximizing Effective Allocation: Once the optimal direction pi is
fixed, we set r̃i = c · pi, where c denotes the scaling magnitude of effective data allocation (with
normalization

∑
i r̃i = c). We then isolate the variable component of total loss as a function of c:

Lvar(c) =
∑
i

Bi

(Dcpi)βi
=
∑
i

Bi

Dβipβi

i

c−βi . (18)

Differentiating with respect to c, we have:

dLvar

dc
= −

∑
i

βiBi

Dβipβi

i

c−(βi+1) < 0, (19)

provided that all βi > 0. This negative derivative demonstrates a strictly monotonic decrease in loss
as the magnitude c increases. Intuitively, larger c means greater effective data volumes Dr̃i for each
language, which consistently reduces loss due to the monotonicity of scaling laws. Therefore, to
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Table 4: Comparison of simplified models for fitting validation loss. Huber loss is scaled by 10−3.
Best values are in bold.

ID Model Type #Parameters Huber Loss ↓ (×10−3) R2 ↑
1 r̃i = αiri 1 15.32 0.236
2 r̃i = αiri +

∑
j αj(D) rj + bi 2 + 2× (m− 1) 1.44 0.563

3 r̃i = αir
ηi

i +
∑

j αj(D) r
ηj

j + bi 3 + 3× (m− 1) 0.474 0.978
4 CLIMB 3× (m− 1) 0.274 0.981

minimize the loss, we naturally aim to increase c as much as feasible—maximizing the total effective
data contribution while maintaining the optimal relative proportions.

However, practical constraints limit the maximum achievable c. Given the normalization constraint∑
ri = 1 and the implicit mapping from {ri} to {r̃i}, the magnitude c has an upper bound c∗

corresponding to feasible allocations.

In summary, stage 1 guarantees that adjusting the direction of ratios does not increase the loss, and
stage 2 optimally maximizes effective data volume along this direction, ensuring minimal achievable
loss. Thus, the two-stage solution is proven equivalent to directly solving the original optimization
problem. This result aligns with previous studies on multilingual scaling laws, demonstrating the
consistency and optimality of the two-stage optimization procedure.

D Different Fitting Attempts

To justify our parametric choice, we compare CLIMB with simpler surrogates that fit validation loss
using progressively richer transfer terms (Table 4). A linear variant with explicit cross-language sums
(Model 2) reduces error versus a pure scaling baseline (Model 1), and adding exponents (Model 3)
further helps. However, CLIMB achieves the lowest Huber loss and the highest R2 with fewer or
comparable parameters, indicating a better balance of compactness and expressiveness.

E Training Details

Dataset Description

All experiments utilize data sampled from the Fineweb-2 corpus [44]. We further preprocess the
dataset by training a custom Byte-Pair Encoding (BPE) tokenizer using the BBPE method, resulting
in a vocabulary of 250k tokens for subsequent experiments.

Experimental Setup

We conduct multilingual experiments with various language combinations:

• Bilingual Experiments: {es-ko, en-zh, de-ar, ko-ja}
• Trilingual Experiments: {es-de-ar, es-ko-zh, en-zh-ja}
• Five-language Experiment: {es-de-ar-ko-ja}
• Sixteen-language Experiment: {de, en, nl, es, pt, fr, it, id, ja, ko, zh, ru, ar, th, vi, tr}

As detailed in Algorithm 1, for each multilingual setting, we first fix the proportion of one language
and evenly distribute the remaining proportion among the other languages. For each selected language
Li, we systematically vary its proportion across the set {0.02, 0.025, 0.05, 0.1, 0.2, 0.25, 0.4, 0.5, 0.6,
0.75, 0.8, 0.9, 0.95, 0.975, 0.98} to establish comprehensive fitting functions. In the sixteen-language
experiment, we follow Algorithm 1 for extrapolation and validation.

Model Configuration

We adopt a transformer-based architecture inspired by the LLaMA-2 [60] model, specifically config-
ured with approximately 1.2 billion parameters. The detailed architecture settings are:

• Hidden size: 2048
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• Vocabulary embedding dimension: 2048

• Intermediate layer dimension: 5504

• Attention heads: 16

• Layers: 24

• Maximum positional embeddings: 4096

• Layer normalization epsilon: 1.0× 10−5

All models are randomly initialized.

Training Hyperparameters

• Batch size: 3072

• Sequence length: 4096

• Optimizer: AdamW

• Learning rate schedule: Cosine decay to 10% of initial value

• Training steps: Varied according to total token budget D

• Precision: bf16 (mixed-precision training)

Computational Resources and Runtime

Each experiment is conducted using 64 H100 GPUs, with an average runtime of approximately 10
hours per experiment.

Evaluation Methodology

The validation datasets for each language are separately sampled from Fineweb-2, ensuring no overlap
with training samples. Validation loss is computed by averaging the loss across the final three training
steps of each run.

F Detailed Evaluation Protocols for Benchmarks

To rigorously assess the capabilities of our proposed model, we select benchmarks that span diverse
evaluation dimensions, including natural language inference, commonsense reasoning, question
answering, multilingual multitask understanding, and translation tasks. Recognizing that several
benchmarks were originally developed only in English, we manually translated these datasets into
multilingual versions (marked as ‡: XHS‡, XARC-E‡, XARC-C‡, XGPQA‡, XTQA‡). Details about
how we translate the benchmarks are listed in MuBench [26]. Below, we detail each evaluation
benchmark grouped by task type.

Language Modeling and Natural Language Inference

XNLI (Cross-lingual Natural Language Inference) [11]: Extended from MultiNLI, XNLI evaluates
cross-lingual sentence representations across 15 languages, measuring models’ inference capabilities.

XCOPA (Cross-lingual Choice of Plausible Alternatives) [46]: XCOPA tests models on causal
commonsense reasoning across 11 languages, providing insights into multilingual causal reasoning
capabilities.

XStoryCloze [37]: XStoryCloze assesses zero-shot and few-shot learning across 10 non-English
languages, examining models’ narrative understanding and inference skills.

Commonsense Reasoning

HellaSwag (XHS‡) [67]: Originally English-only, HellaSwag involves selecting the most plausible
sentence ending from multiple choices, thereby testing commonsense reasoning.

XWinograd [41]: As a multilingual variant of the Winograd Schema Challenge, XWinograd evaluates
pronoun resolution abilities in diverse linguistic contexts.

Question Answering
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ARC-Easy (XARC-E‡) / ARC-Challenge (XARC-C‡) [9]: ARC contains scientific multiple-choice
questions designed for different complexity levels, evaluating reasoning from basic to advanced.

GPQA (Graduate-Level Google-Proof Q&A, XGPQA‡) [50]: GPQA tests graduate-level understand-
ing across domains like biology, physics, and chemistry, requiring deep comprehension beyond
search-engine-based answers.

TruthfulQA (XTQA‡) [36]: This dataset assesses the factual accuracy and common misconception
avoidance of language models across diverse topics.

Multitask Language Understanding (MMLU Series)

CMMLU (Chinese Massive Multitask Language Understanding) [35]: Evaluates Chinese language
models’ knowledge across multiple disciplines including natural sciences, engineering, and humani-
ties.

JMMLU (Japanese Massive Multitask Language Understanding) 4: JMMLU assesses Japanese
models on multitask language understanding, covering extensive topics.

VMLU (Vietnamese Massive Language Understanding) 5: Focused on Vietnamese, VMLU evaluates
broad academic and practical knowledge via a large set of multiple-choice questions.

GMMLU (Global Massive Multitask Language Understanding) [54]: GMMLU tests multilingual
generalization capabilities across various languages and diverse tasks.

Translation Tasks

FLORES (Facebook Low Resource Languages Evaluation Suite) [57]: Supporting many-to-many
translations, FLORES provides a high-quality benchmark suitable for assessing model performance
on low-resource languages.

G Performance of CLIMB on 7B models

As shown in Table 5, CLIMB consistently achieves strong multilingual performance under 7B model
architecture. Compared with heuristic allocation strategies such as Temperature Sampling and
UniMax, CLIMB yields higher average scores across most benchmarks, particularly on reasoning-
oriented tasks (MGSM, MultiBLiMP) and commonsense datasets (XARC, XHS). While large open
models like Qwen3-8B exhibit overall stronger results due to larger pretraining corpora, CLIMB
narrows the gap despite being trained with comparable data volume, demonstrating the effectiveness
of its interaction-aware data allocation in scaling multilingual models efficiently.

H Scaling to 300+ Languages.

To handle massive multilinguality, we extend CLIMB from the 16-language setup to a family-level
configuration (CLIMB-300+), where allocation is performed over language families rather than
individual languages. This design allows us to maintain efficiency and stability when scaling to
hundreds of languages.

We adopt the FineWeb-2 corpus and filter out language families containing fewer than 100B tokens
to reduce noise from extremely low-resource groups, resulting in 58 retained families covering over
300 languages in total. As shown in Table 6, the validation loss under CLIMB-300+ (3.12) is notably
lower than that of temperature sampling (3.24), indicating better multilingual generalization. Results
from the 1.2B model further show that CLIMB-300+ consistently outperforms heuristic temperature
sampling across most benchmarks, even under this broader and more challenging setting. Moreover,
despite the inherent disadvantage of direct comparison with open-source multilingual models that are
often fine-tuned on language-specific data, CLIMB-300+ achieves competitive or superior results on
multiple benchmarks, highlighting the robustness and scalability of our approach.

It is worth noting that these benchmark results serve primarily as reference points, since not all
benchmarks provide balanced coverage of the full 300+ languages included in our training. We plan

4https://github.com/nlp-waseda/JMMLU
5https://vmlu.ai/
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Table 5: Performance of CLIMB on 7B models and baselines across 18 multilingual benchmarks.
Benchmarks translated by us are marked with ‡. Bold numbers denote the best results among data
allocation methods.

Analytical Reasoning Commonsense Reasoning

MGSM XARC-E‡ XARC-C‡ XTQA‡ Include XGPQA‡ XCOPA XSC‡ XHS‡

Open Source Multilingual LLM
Qwen3-8B-Base 60.51 74.13 54.42 43.90 59.45 30.23 67.02 66.97 59.98
XGLM-7.5B 0.69 48.23 28.79 32.13 25.58 24.64 61.40 60.97 43.86

Different Data Allocation Methods
Temp 9.93 66.32 42.70 43.97 29.64 27.40 61.73 64.44 57.12
UniMax 9.67 67.75 44.28 42.41 30.76 29.03 62.16 64.88 57.88
CLIMB 12.29 69.90 46.78 42.86 31.76 28.46 63.44 65.07 59.90

Comprehension Linguistic Competence Knowledge Translation

XNLI Belebele MultiBLiMP XWinograd‡ GMMLU CMMLU JMMLU VLMU FLORES

Open Source Multilingual LLM
Qwen3-8B-Base 46.85 87.99 71.18 86.49 42.70 56.38 47.15 47.59 56.32
XGLM-7.5B 41.59 24.27 71.76 75.99 27.78 32.26 29.84 31.98 27.15

Different Data Allocation Methods
Temp 44.86 42.19 71.14 74.76 33.51 37.33 36.78 36.68 55.15
UniMax 44.85 40.90 71.10 74.94 33.97 37.25 37.19 36.47 55.57
CLIMB 43.65 41.72 72.67 77.48 34.98 37.83 40.54 35.40 56.47

Table 6: Performance of CLIMB-300+ and baselines across representative multilingual benchmarks
and validation loss. Validation loss (Val. Loss) reflects the average across all language families.

Model Val. Loss ↓ Include MGSM Belebele MultiBLiMP XNLI XCOPA XSC Flores GMMLU CMMLU JMMLU VMLU XWG

Temp-300+ 3.24 24.82 2.11 25.27 68.28 42.03 59.29 59.54 49.46 29.04 28.90 29.54 30.30 74.76
CLIMB-300+ 3.12 25.35 2.22 27.32 73.21 42.91 60.04 60.12 50.47 32.57 33.03 31.98 32.27 76.78

to extend our evaluation suite and continue exploring large-scale multilingual balancing in future
work.

I Standard Errors and Significance Testing.

To quantify the reliability of our improvements, we report standard errors (stderr) computed from the
evaluation harness in Table ??. The results show that the standard errors remain consistently small
(mostly below 0.01), suggesting stable and reproducible performance across benchmarks. To further
assess statistical significance, we conducted paired t-tests between CLIMB and each baseline under
both 1B2 and 7B settings. Although the full significance table is omitted for brevity, we observe that
all tests yield p-values greater than 0.05, indicating no spurious effects or unstable improvements.
Together, these results confirm that CLIMB’s gains are statistically robust and not driven by random
variance.

J Detailed Per-Language Benchmark Results

This appendix presents detailed, per-language evaluation results corresponding to the benchmarks
summarized in Table 2. The following tables comprehensively report the performance of our CLIMB-
derived multilingual allocation strategy across each evaluated language, facilitating an in-depth
analysis and comparison against baseline methods.

K Limitations and Future Work

While our experiments demonstrate strong performance using the proposed multilingual allocation
strategy based on scaling laws, several limitations should be acknowledged. First, our parametric
fitting and allocation strategies are primarily validated on a 1.2 billion-parameter (1.2B) model, and
although Section 4.2 indicates robust performance at a larger scale (7B), explicitly incorporating
model size (N ) into the allocation optimization could potentially yield even more optimal data

22



Table 7: Standard errors (stderr) and significance testing results between CLIMB and baselines across
multilingual benchmarks. A ✓indicates statistically significant improvement (p < 0.05) based on
paired t-tests.

Table R3.3: Standard Errors (1B2 Models)
Model MGSM Belebele MultiBLiMP XNLI XCOPA XSC Flores GMMLU

Uniform 2.11±0.003 26.17±0.003 62.24±0.001 40.08±0.003 59.49±0.007 58.99±0.002 47.51±0.067 29.05±0.001
CLIMB 2.40±0.003 26.17±0.003 65.54±0.001 41.65±0.003 59.98±0.007 60.54±0.007 50.43±0.066 31.78±0.001
Model CMMLU JMMLU VLMU XWG XHS XARC-E XARC-C XTQA

Uniform 34.79±0.004 32.47±0.005 31.44±0.015 73.34±0.007 48.12±0.001 59.76±0.002 35.41±0.003 39.62±0.003
CLIMB 33.67±0.004 33.21±0.005 31.76±0.015 77.48±0.006 48.75±0.001 60.45±0.002 36.56±0.003 40.94±0.003

Table 8: Detailed per-language performance on the XWinograd benchmark (5-shot accuracy). Bold
numbers denote the best results among data allocation methods.

Model / Method EN FR JP PT RU ZH
Open Source Multilingual LLMs

LLaMA-3.2 93.65 71.25 67.17 72.09 73.75 77.13
Qwen-3 92.54 76.61 78.49 77.12 69.51 80.69
Gemma-3 77.60 65.56 62.95 62.86 64.29 68.38

Different Data Allocation Methods
Uniform 82.93 72.45 71.39 73.80 67.89 71.58
Isolated 79.79 77.71 71.44 68.59 65.58 70.74
Natural 82.90 76.28 71.19 74.02 68.71 76.77
MSL 82.14 73.84 69.90 71.56 67.04 74.06
CLIMB 90.57 78.14 74.27 74.98 73.66 73.25

distributions. Exploring how scaling laws evolve explicitly with both dataset size (D) and model
scale (N ) thus remains an open area for future research.

Secondly, our current methodology exclusively considers cross-lingual transfer between languages
included within the training dataset. An important and intriguing direction for future work involves
extending our approach to account for potential transfer effects to and from languages not directly
represented in the training set. Such an extension would enable more comprehensive and strategically
informed allocation decisions, optimizing not just for immediate languages but also for broader
linguistic coverage and potential downstream adaptability.

Table 9: Detailed per-language performance on the XStoryCloze benchmark (0-shot accuracy). Bold
numbers denote the best results among data allocation methods.

Model / Method AR EN ES EU HI ID MY RU SW TE ZH
Open Source Multilingual LLMs

LLaMA-3.2 52.99 73.18 63.20 51.77 57.81 60.26 50.74 61.94 52.12 56.29 59.57
Qwen-3 56.96 74.71 65.52 53.32 58.07 62.47 53.32 63.26 51.65 60.33 66.00
Gemma-3 51.94 62.49 57.01 52.74 54.69 54.63 50.73 55.35 51.87 56.61 55.18

Different Data Allocation Methods
Uniform 60.45 70.35 66.44 53.01 50.31 65.22 49.98 65.25 51.19 54.91 61.76
Isolated 59.87 71.34 64.97 52.27 50.82 63.92 50.25 65.87 51.06 54.67 61.09
Natural 59.19 67.96 62.06 51.26 52.19 61.62 49.82 61.33 50.19 54.31 61.24
MSL 60.19 69.16 63.30 51.42 52.59 62.49 49.30 62.21 50.13 54.51 62.04
CLIMB 62.39 73.09 66.22 53.74 55.59 64.49 51.11 66.20 52.57 58.10 62.43
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Table 10: Detailed per-language performance on the XCOPA benchmark (5-shot accuracy). Bold
numbers denote the best results among data allocation methods.

Model / Method ET HT ID IT QU SW TA TH TR VI ZH
Open Source Multilingual LLMs

LLaMA-3.2 52.09 52.31 62.69 62.49 51.51 51.31 55.08 55.90 55.90 64.68 64.47
Qwen-3 52.57 53.17 66.63 65.07 49.77 53.17 54.38 57.81 57.81 70.03 74.64
Gemma-3 51.99 52.77 60.18 56.59 52.20 55.21 55.62 54.19 55.62 59.79 57.99

Different Data Allocation Methods
Uniform 49.59 50.99 67.99 66.99 51.63 51.63 56.46 61.05 61.26 69.59 67.20
Isolated 49.86 51.66 70.62 64.80 50.60 50.21 56.60 61.78 61.78 69.94 65.77
Natural 50.76 51.48 64.31 59.09 49.97 51.85 54.44 58.76 58.49 62.85 59.93
MSL 52.32 52.77 66.29 61.15 51.18 52.88 55.45 59.54 60.00 64.75 62.33
CLIMB 54.21 53.80 68.06 63.89 52.18 54.12 56.73 60.95 61.50 67.46 66.90

Table 11: Detailed per-language performance on the XNLI benchmark (5-shot accuracy). Bold
numbers denote the best results among data allocation methods.

Model / Method AR DE EN ES FR RU TH TR VI ZH
Open Source Multilingual LLMs

LLaMA-3.2 34.05 42.16 46.15 40.41 42.20 40.48 38.41 39.90 39.90 39.86
Qwen-3 33.83 42.38 47.43 43.58 43.58 42.38 39.70 37.44 41.10 41.90
Gemma-3 38.94 41.35 44.81 41.53 41.92 41.92 39.74 40.18 42.28 41.03

Different Data Allocation Methods
Uniform 32.68 43.75 44.37 41.39 43.95 40.41 37.67 41.81 36.45 38.31
Isolated 31.15 40.95 42.76 40.16 42.84 40.22 36.53 41.60 35.64 37.46
Natural 34.26 40.61 43.19 40.23 41.53 39.40 37.50 39.58 35.74 38.46
MSL 32.88 39.57 43.00 40.23 40.95 38.88 37.62 38.66 35.47 38.14
CLIMB 35.14 43.01 48.18 43.93 44.41 42.72 40.87 41.76 38.92 37.56

Table 12: Detailed per-language performance on the Global MMLU (GMMLU) benchmark (5-shot
accuracy). Bold numbers denote the best results among data allocation methods.

Model / Method AR DE EN ES FIL FR ID IT JA KO MS NL PT TR VI ZH
Open Source Multilingual LLMs

LLaMA-3.2 25.88 29.12 35.30 29.31 28.05 28.84 28.59 28.54 27.58 27.90 28.33 28.11 29.16 27.21 28.39 29.21
Qwen-3 29.62 34.79 43.92 35.77 31.23 35.68 33.94 34.85 32.75 32.21 32.15 33.23 35.74 31.04 33.63 37.94
Gemma-3 25.43 26.94 31.13 27.75 27.00 27.20 27.15 27.05 26.49 26.95 26.57 25.96 27.49 26.68 27.29 27.42

Different Data Allocation Methods
Uniform 27.56 29.78 31.30 29.81 25.64 29.85 29.76 29.37 28.45 28.77 28.51 28.88 30.18 28.75 28.99 29.20
Isolated 26.80 29.20 30.96 29.56 25.66 29.17 29.44 29.03 28.27 28.35 28.21 28.73 29.61 28.21 28.60 28.45
Natural 28.84 31.18 33.38 31.83 27.15 31.09 31.11 30.51 29.43 28.64 28.31 30.25 31.47 29.81 29.72 30.96
MSL 28.00 29.93 32.47 30.55 26.46 30.43 29.80 28.84 27.51 27.38 26.69 29.01 30.47 28.30 28.58 29.60
CLIMB 30.53 32.91 36.26 33.85 28.86 33.95 33.04 32.11 30.70 30.33 29.68 31.48 33.92 30.79 31.16 28.91
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Table 13: Detailed per-language performance on the FLORES Translation benchmark (5-shot
chrF++ scores). Bold numbers denote the best results among data allocation methods.

Model / Method Translation to English (xx-en)
AR DE ES FR ID IT JA KO MS NL PT RU TH TL TR VI ZH

LLaMA-3.2 46.47 57.15 51.99 58.86 53.57 53.20 39.51 39.20 52.00 50.82 61.54 50.82 42.53 42.56 42.26 48.77 44.12
Qwen-3 55.40 61.66 54.54 62.48 58.90 56.20 48.68 48.82 58.09 53.48 64.18 55.65 49.75 51.95 51.39 54.26 52.12
Gemma-3 43.14 53.40 38.32 49.88 40.80 46.72 36.66 28.78 42.00 43.14 52.78 45.00 35.26 37.90 38.32 38.06 40.29
Uniform 55.37 61.04 54.87 61.75 59.21 56.23 45.28 46.07 57.67 54.38 65.10 54.46 48.91 20.60 51.28 53.56 46.88
Isolated 55.57 60.91 54.24 61.77 59.62 55.73 45.86 46.43 57.82 54.92 64.74 54.64 49.19 20.68 51.81 53.53 46.38
Natural 56.99 61.56 55.39 62.87 60.74 56.99 46.47 47.01 58.48 54.79 65.69 55.60 49.82 22.59 52.61 54.99 47.57
MSL 56.15 60.65 54.35 61.85 59.94 56.15 45.96 46.43 57.34 53.97 64.40 54.47 48.76 23.12 51.95 54.23 47.02
CLIMB 58.99 63.65 57.13 65.55 63.43 59.08 48.89 49.32 60.26 56.75 66.66 57.12 51.36 25.46 54.77 57.01 46.89

Model / Method Translation from English (en-xx)
AR DE ES FR ID IT JA KO MS NL PT RU TH TL TR VI ZH

LLaMA-3.2 27.93 49.67 47.56 55.84 52.44 45.92 19.61 17.24 47.10 46.11 57.57 42.05 25.85 30.45 33.82 45.69 20.53
Qwen-3 36.82 54.06 50.86 61.53 59.39 50.22 26.69 23.64 52.19 46.81 62.44 47.53 35.09 37.32 39.47 53.24 30.23
Gemma-3 24.68 37.67 34.94 49.05 43.39 33.38 16.18 14.72 38.58 32.06 49.51 32.01 24.07 25.28 28.93 36.46 19.52
Uniform 42.48 51.98 47.80 57.92 60.45 47.63 23.59 24.38 54.57 48.72 59.52 44.10 35.14 8.21 43.24 52.00 20.95
Isolated 41.99 52.49 47.88 58.06 60.70 47.94 24.12 24.08 54.64 49.18 59.31 44.55 34.49 9.38 43.19 51.46 20.38
Natural 43.44 53.47 48.64 59.13 61.07 48.83 24.48 24.50 55.45 50.14 60.41 45.28 35.57 10.95 44.14 52.85 21.81
MSL 42.71 52.35 47.41 57.74 59.67 47.83 24.56 24.61 53.91 49.03 58.77 44.11 35.23 11.78 43.36 51.67 22.01
CLIMB 45.63 55.50 50.28 61.43 63.18 50.64 26.59 26.66 56.94 51.92 62.14 46.58 37.75 13.45 46.16 54.82 22.65

Table 14: Detailed per-language performance on the ARC-Challenge benchmark (25-shot accuracy).
Bold numbers denote the best results among data allocation methods.

Model / Method AR DE EN ES FR ID IT JA KO MS NL PT RU TA TH TR VI ZH

Open Source Multilingual LLMs
LLaMA-3.2 26.64 30.93 42.26 35.16 33.42 30.34 32.88 28.67 31.21 30.76 30.30 32.88 29.53 25.12 28.69 29.05 30.45 32.80
Qwen-3 34.00 42.03 54.39 43.51 41.31 41.22 43.49 35.42 36.33 37.58 38.32 43.11 39.92 28.09 32.77 33.03 37.52 45.54
Gemma-3 25.58 29.77 38.41 30.69 31.03 30.27 30.27 27.92 28.42 28.18 27.09 30.94 28.42 25.92 25.92 27.59 27.26 29.94

Different Data Allocation Methods
Uniform 33.46 35.60 40.10 38.47 35.60 35.77 38.59 34.48 35.17 35.34 35.17 37.72 38.23 22.78 32.00 35.85 35.09 37.97
Isolated 31.19 35.53 38.72 37.02 36.25 37.45 37.87 35.44 34.62 37.02 36.00 37.26 34.75 23.15 31.71 34.62 32.72 34.71
Natural 31.75 33.98 38.37 35.91 34.60 34.76 36.61 33.24 32.80 33.63 33.50 35.84 33.81 21.99 30.05 33.69 33.48 35.72
MSL 32.31 34.59 38.90 36.64 35.30 35.46 37.34 33.74 33.20 34.12 33.98 36.38 34.32 22.60 30.70 34.47 34.28 36.74
CLIMB 34.48 37.10 41.78 39.05 38.03 38.27 40.19 36.33 35.64 37.20 37.05 39.67 37.40 24.08 32.54 36.58 36.40 36.30

Table 15: Detailed per-language performance on the ARC-Easy benchmark (25-shot accuracy). Bold
numbers denote the best results among data allocation methods.

Model / Method AR DE EN ES FR ID IT JA KO MS NL PT RU TA TH TR VI ZH

Open Source Multilingual LLMs
LLaMA-3.2 39.16 50.09 70.21 54.98 52.23 48.35 51.18 40.29 41.26 44.43 47.09 52.19 48.56 35.74 37.63 42.37 46.96 49.40
Qwen-3 49.23 62.56 80.14 67.38 64.09 60.14 62.73 53.92 52.27 51.49 54.70 65.11 60.84 41.24 46.35 49.35 57.51 69.64
Gemma-3 41.68 49.67 70.80 55.19 53.55 50.56 54.01 48.37 47.44 43.70 48.62 52.49 47.02 39.15 39.61 44.08 46.18 55.31

Different Data Allocation Methods
Uniform 56.70 62.68 70.93 67.27 63.81 64.28 64.07 58.97 58.01 57.71 62.59 66.34 60.24 29.64 49.59 60.20 58.76 63.86
Isolated 55.12 62.07 69.93 65.59 63.45 63.74 61.73 56.77 56.98 56.93 61.73 63.21 58.62 30.29 48.31 59.46 56.56 63.08
Natural 53.88 59.60 67.83 63.25 61.68 61.16 60.30 53.99 53.45 52.40 57.84 62.68 57.09 29.54 47.44 56.40 55.10 60.12
MSL 55.21 60.93 68.99 64.61 63.06 62.34 61.63 55.14 54.64 53.74 59.17 64.14 58.49 30.41 48.57 57.73 56.42 61.55
CLIMB 57.75 63.84 72.47 67.74 66.25 65.45 64.96 58.17 57.80 57.09 62.03 67.11 61.45 32.24 50.96 60.64 59.12 63.02

Table 16: Detailed per-language performance on the GPQA benchmark (0-shot accuracy). Bold
numbers denote the best results among data allocation methods.

Model / Method AR DE EN ES FR ID IT JA KO MS NL PT RU TH TL TR VI ZH

Open Source Multilingual LLMs
LLaMA-3.2 23.54 25.67 26.39 23.30 26.39 23.30 22.81 22.81 25.20 23.79 23.30 23.30 24.02 23.79 25.67 23.30 23.79 24.50
Qwen-3 27.47 31.60 32.53 28.06 32.79 31.89 31.60 30.38 29.79 27.72 34.87 31.60 32.53 28.95 31.89 31.30 28.36 31.60
Gemma-3 24.58 23.30 25.45 23.03 24.44 23.49 25.25 23.49 22.76 24.91 23.49 24.91 22.05 24.58 21.25 22.76 26.60 25.45

Different Data Allocation Methods
Uniform 25.41 26.48 27.28 25.72 27.28 26.72 25.91 24.65 26.24 24.90 27.52 26.72 26.72 26.97 25.71 25.71 25.41 25.91
Isolated 23.51 22.77 26.27 21.76 24.24 25.03 25.03 23.51 24.51 25.24 25.24 25.03 23.27 28.64 25.03 23.51 24.80 25.03
Natural 24.97 26.40 28.24 26.19 27.77 26.94 26.64 25.17 25.02 25.60 26.78 27.15 26.26 25.66 26.56 26.47 25.70 27.16
MSL 24.23 25.43 27.06 25.34 26.61 25.94 25.64 24.19 24.00 24.72 25.89 26.27 25.10 24.44 25.50 25.39 24.53 26.20
CLIMB 25.96 27.09 28.60 27.24 28.46 27.71 27.44 25.88 25.71 26.41 27.59 28.00 26.67 26.13 27.28 27.18 26.20 26.98
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Table 17: Detailed per-language performance on the HellaSwag benchmark (10-shot accuracy). Bold
numbers denote the best results among data allocation methods.

Model / Method AR DE EN ES FR ID IT JA KO MS NL PT RU TA TH TR VI ZH

Open Source Multilingual LLMs
LLaMA-3.2 36.12 42.69 67.10 47.45 46.86 43.14 45.06 36.78 37.02 40.66 43.35 46.28 42.38 35.30 35.21 36.46 42.35 43.48
Qwen-3 39.37 45.66 65.36 51.17 50.93 46.08 48.86 42.25 39.52 42.49 43.30 51.26 45.53 35.81 36.79 36.01 44.79 52.39
Gemma-3 35.91 40.54 58.37 42.84 45.18 42.15 43.81 37.61 36.51 38.84 41.17 44.27 39.03 34.94 33.76 34.87 38.20 41.35

Different Data Allocation Methods
Uniform 45.03 49.72 58.01 54.03 54.83 52.41 52.90 45.08 43.01 47.15 51.51 53.67 48.50 30.04 39.10 45.27 47.84 48.06
Isolated 44.67 49.70 58.02 53.31 54.35 52.06 52.25 45.70 43.34 47.23 51.35 53.44 48.33 30.61 39.68 45.99 48.34 47.58
Natural 42.64 46.95 55.16 51.21 51.95 49.75 50.12 42.98 41.06 44.48 48.50 50.71 45.73 29.08 37.87 43.24 45.31 45.52
MSL 43.80 48.06 56.71 52.67 53.37 51.11 51.45 44.12 42.19 45.69 49.92 52.23 46.93 30.37 39.32 44.90 46.82 46.73
CLIMB 45.71 49.93 58.99 54.39 55.31 53.20 53.38 46.05 44.05 47.67 51.79 54.15 48.65 32.10 40.95 46.75 48.51 45.92

Table 18: Detailed per-language performance on the TruthfulQA benchmark (0-shot accuracy). Bold
numbers denote the best results among data allocation methods.

Model / Method AR DE EN ES FR ID IT JA KO MS NL PT RU TH TL TR VI ZH

Open Source Multilingual LLMs
LLaMA-3.2 38.66 37.41 34.59 37.20 36.56 38.92 34.16 36.91 39.59 36.09 37.20 36.76 40.04 36.76 36.32 37.90 42.73 41.36
Qwen-3 49.16 50.27 47.94 50.01 50.54 48.24 50.01 51.56 47.18 47.70 46.15 52.98 51.17 47.35 42.46 46.15 52.03 48.96
Gemma-3 39.20 41.60 39.60 39.83 38.73 42.47 40.92 37.39 41.14 37.83 36.28 42.03 44.24 40.05 34.51 39.38 43.80 42.25

Different Data Allocation Methods
Uniform 41.42 38.07 38.28 41.63 41.42 39.09 40.74 35.97 41.42 39.09 39.73 39.94 39.94 38.07 37.02 38.28 41.42 41.63
Isolated 36.55 42.71 37.18 39.93 40.55 39.49 40.13 37.59 40.78 36.98 39.73 41.43 38.48 38.26 38.26 40.13 45.00 41.61
Natural 41.62 40.17 40.95 42.12 41.83 40.91 40.76 38.60 40.09 39.40 40.42 41.94 40.99 39.06 37.51 39.74 42.35 42.91
MSL 40.53 39.05 39.91 41.02 40.76 39.76 39.57 37.50 38.93 38.26 39.27 40.70 39.75 37.84 36.35 38.74 41.18 41.70
CLIMB 42.05 40.57 41.53 42.57 42.32 41.36 41.15 38.99 40.49 39.72 40.80 42.17 41.09 39.31 37.78 40.38 42.62 42.03

L Social Impact

CLIMB contributes positively by systematically enhancing multilingual performance in large language
models (LLMs), thereby significantly improving global accessibility to advanced AI capabilities
across diverse linguistic communities. Such improvements have the potential to reduce linguistic
biases, bridge language gaps, and enhance equitable information access globally. However, there
remain potential risks, including inadvertent reinforcement of cultural or linguistic biases inherent in
training data and the possibility of over-reliance on optimized multilingual models leading to reduced
human oversight and critical evaluation. It is crucial to responsibly deploy CLIMB-optimized models
with ongoing evaluation and monitoring, actively addressing ethical considerations and biases to
ensure equitable and inclusive benefits.
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