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Abstract
The power of large language models (LLMs) has
been demonstrated through numerous data and
computing resources. However, the application
of language models on mobile devices is facing
huge challenge on the computation and memory
costs, that is, tiny language models with high per-
formance are urgently required. Limited by the
highly complex training process, there are many
details for optimizing language models that are
seldom studied carefully. In this study, based
on a tiny language model with 1B parameters,
we carefully design a series of empirical study
to analyze the effect of each component. Three
perspectives are mainly discussed, i.e., neural ar-
chitecture, parameter initialization, and optimiza-
tion strategy. Several design formulas are em-
pirically proved especially effective for tiny lan-
guage models, including tokenizer compression,
architecture tweaking, parameter inheritance and
multiple-round training. Then we train PanGu-π-
1B Pro and PanGu-π-1.5B Pro on 1.6T multilin-
gual corpora, following the established formulas.
Experimental results demonstrate the improved
optimization and architecture yield a notable av-
erage improvement of 8.87 on benchmark evalu-
ation sets for PanGu-π-1B Pro. Besides, PanGu-
π-1.5B Pro surpasses a range of SOTA models
with larger model sizes, validating its superior
performance. The code is available1.

1. Introduction
Large language models (LLMs), trained on extensive cor-
pora, have demonstrated impressive performance across di-
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Figure 1. PanGu-π Pro with improved architecture and optimiza-
tion methods. PanGu-π-1B (Wang et al., 2023) directly use the
developing strategies of LLMs while PanGu-π-1B Pro achieves an
average performance improvement of 8.87 with our methodology.
It is worth mentioning that PanGu-π-1.5B Pro outperforms Qwen-
1.8B (Bai et al., 2023) with 16.67% fewer parameters.

verse natural language tasks. The release of ChatGPT, with
its robust generalization capabilities, has captured global
attention and holds the potential to revolutionize the interac-
tion between humans and computers.

In addition to the GPT-series models (Radford et al., 2018;
Brown et al., 2020; Achiam et al., 2023), various large lan-
guage models have emerged. PaLM (Chowdhery et al.,
2023) trains a model with an impressive 540B parameters
across 6144 TPU v4 chips. LLaMA (Touvron et al., 2023)
releases a series of foundational language models, ranging
from 7B to 70B parameters. Both the model architecture
and trained weights are open-source, fostering collaboration
within the AI community. Most of the following large mod-
els leverage similar architectures and training methodolo-
gies. For instance, Baichuan teams (Yang et al., 2023) train
7B and 13B parameter models on a 2.6T token dataset en-
compassing both Chinese and English corpora. Qwen (Bai
et al., 2023), Yi (Yi, 2023), and Skywork (Wei et al., 2023)
pursue similar paths, training models with 2.4T, 3T, and
3.2T tokens, respectively. Primarily attributed to the increas-
ing accumulation of cleaned data, the performance of LLMs
improves rapidly.

While numerous studies have successfully trained various
high-performance language models (Ren et al., 2023; Zeng
et al., 2022), the methodologies employed in training such
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models remain insufficiently analyzed. On one hand, a sub-
stantial body of work concentrates on collecting and clean-
ing data, with less emphasis on researching effective training
strategies. On the other hand, the training of large models
demands an exceedingly high computational resource in-
vestment, making it impractical to explore a wide range of
optimization strategies. As a result, recent works often adopt
similar training recipes when constructing LLMs (Touvron
et al., 2023; Yi, 2023; Bai et al., 2023; Wei et al., 2023).

Moreover, the implementation of these large models de-
mands prohibitively high memory and computational re-
sources, constraining their practical applicability in various
scenarios. For example, the GPT-3 with 175B parameters
necessitates approximately 700GB of memory when stored
with FP32 datatype. Although the 7B parameter models are
relatively more efficient, their resource requirements still
render them impractical for deployment on edge devices,
such as mobile phones.

In this paper, we systematically rethink the methodology for
constructing a tiny language model, including neural archi-
tecture, parameter initialization, and optimization strategy:

• Neural architecture: Adopting the tokenizer directly
from larger models introduces redundant parameters,
resulting in increased computational overhead. Stream-
lining the tokenizer by removing low-frequency vo-
cabularies enhances the model’s representational effi-
ciency. Moreover, we observe that the configuration
of the model’s architecture (depth, width, and expand-
ing rate in FFN) has a significant impact on the final
performance. Depth is the primary factor for tiny lan-
guage models, and deeper models usually achieve high
performance at the expense of lower inference speed.

• Parameter initialization: Inheriting parameters from
the large model proves effective in boosting perfor-
mance and expediting convergence. The identification
of crucial parameters is imperative in this context. We
have observed that layers situated near the beginning
and end of the model often carry more significance
than the intermediate layers. Furthermore, within each
layer, the adoption of data-driven learnable criteria has
demonstrated greater efficacy compared to heuristic
methods.

• Model optimization: In comparison to larger models,
tiny models face more severe data forgetting issues, and
multiple-round training proves beneficial for memory
enhancement. We propose a straightforward sample se-
lection strategy to mitigate the training cost associated
with multiple-round training. Besides, we also delve
into the relationship between batch size and learning
rate specifically for tiny models.

Drawing from the aforementioned insights, we develop
PanGu-π-1B Pro and PanGu-π-1.5B Pro with enhanced ar-
chitecture and optimization methods. From the developing
strategies of LLMs, we gradually add four core components
to improve performance (see Figure 1). The models are
evaluated on various benchmarks including examination,
knowledge, reasoning, and understanding, where our mod-
els achieve SOTA performance when compared with models
of similar sizes. For instance, with 16.67% fewer parame-
ters, PanGu-π-1.5B Pro achieves an average score of 60.64,
outperforming Qwen-1.8B which achieves a score of 55.04.

2. Neural Architecture
In this section, we investigate the architecture design of tiny
language models. The experiments are conducted on 50B
tokens randomly sampled from the pre-trained dataset, with
equal proportions of Chinese and English corpus. The base-
line is a 1B parameter model with LLaMA-like architecture
unless specified. The models constructed with different
strategies are compared on ARC Easy (Clark et al., 2018),
HellaSwag (Zellers et al., 2019) and C3 (Sun et al., 2020).

2.1. Compact Tokenizer

The tokenizer serves to map original natural language into
tokens suitable for processing by large language models,
with each token representing a word, subword, character, or
symbol. A multilingual tokenizer typically has a large vo-
cabulary to cover various corpora. However, in the context
of a tiny language model, an overly large vocabulary can sig-
nificantly occupy a substantial portion of the model’s param-
eters. For instance, Qwen-7B (Bai et al., 2023), Baichuan2-
7B (Yang et al., 2023), and PanGu-π-7B (Wang et al., 2023)
have vocabulary sizes of 151936, 125696, 100883, respec-
tively. The parameters of their heads and embedding layers
account for 16.12% ,13.72%, 10.91% of the overall param-
eters. While the PanGu-π-1B model with 12 layers and
a width of 2048, using the same tokenizer, sees the head
and embedding layers’ parameters comprising a substantial
36.8% of the total (Figure 3). This distribution leads to a
significant allocation of parameters to vocabulary represen-
tation rather than the main body, potentially limiting the
model’s overall representation capacity. Therefore, com-
pressing the tokenizer becomes essential for a tiny language
model to reduce its parameter proportion.

Actually, we discover that substantial redundancy exists in
the tokenizer. By initializing the tokenizers with the 100k
vocabularies inherited from the PanGu-π model, we con-
ducted a frequency analysis across a vast corpus comprising
approximately 1.6T tokens. As depicted in Figure 2, it is
evident that tokens exhibit a long-tail effect, where the top
48k vocabularies accounting for 97.86% of all the training
corpus. We conduct experiments with six vocabulary sizes
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Figure 2. Accumulative frequency of the top-k vocabularies, where
97.86% data can be represented by a small 48k tokenizer.
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Figure 3. The parameter proportions of model’s main body and
tokenizer. (a) The large tokenizer inherited from large multilingual
models (Wang et al., 2023). (b) Compact tokenizer by removing
low-frequency vocabularies.

{8k, 16k, 32k, 48k, 72k, 100k}, which account for 78.68%,
87.24%, 94.49%, 97.86%, 99.84% and 100% accumulated
frequency respectively. Over 50% vocabularies may be
redundant as they cater to less than 3% of the corpus.

We advocate for the removal of low-frequency vocabularies
to reduce their parameters. Table 1 illustrates the perfor-
mance variations concerning tokenizer size2. The embed-
ding and head layers constitute 18.07% of the 1B model’s
parameters when using a vocabulary of 48k, showcasing
the best average performance followed by the model with a
vocabulary of 32k. It is noteworthy that employing an ex-
cessively small vocabulary can result in performance degra-
dation. For instance, with an 8k tokenizer covering less than
70% of the corpus, the model exhibits subpar performance
on C3 and ARC-E datasets. The tokenizer with a size of
48k also exhibits a similar compression rate to that of the
original 100k size tokenizer, which is evaluated across the
entire training corpus. Therefore, we recommend using a
compact tokenizer covering over 90% of the corpus, while
ensuring the parameter proportion of embedding and head
layers remains below 20%.

2All model’s sizes are controlled to 1B by adjusting depth.

Table 1. Performance varies w.r.t. tokenizer size. PEHF stands
for the proportion of embedding and head layers over the whole
model.

Tokenizer PEHL (%) ARC-E HellaSwag C3 Avg.

8k 2.97 31.39 40.19 42.25 37.94
16k 6.01 30.34 40.10 45.64 38.69
32k 11.79 34.45 40.23 46.77 40.48
48k 18.07 34.39 41.48 47.70 41.19
72k 26.88 34.39 39.21 46.58 40.06

100k 38.19 34.98 39.11 47.10 40.40

Table 2. Varying the depth and width of a 1B-size model with fixed
vocabulary size and expanding rate. The speed is measured by
tokens per second.

Depth Width Speed ARC-E HellaSwag C3 Avg.

40 1280 12.81 37.01 41.00 48.05 42.02
30 1536 17.71 36.16 40.32 47.84 41.44
20 1792 29.49 34.39 41.48 47.70 41.19
15 2048 36.79 32.45 40.22 40.05 37.57
9 2560 57.53 32.63 31.06 42.68 35.46

2.2. Architecture Tweak

In this part, we focus on the neural architecture design of
LLM for edge devices by exploring the impact of depth,
width and the expanding rate of Feed-Forward Networks
(FFN) on the performance of a 1B-size language model.
Besides accuracy on downstream tasks, decoding speed is
another important aspect for tiny language models. We test
the end-to-end inference speed (tokens per second) when
generating 510 new tokens under two prefix tokens using a
randomly initialized model. The speed is tested on a single
NVIDIA V100 GPU with batch size 20 using FP16. We fix
the vocabulary size to 48k as suggested in Section 2.1. By
constraining the model’s size to 1B parameters, we explore
the effects of varying the model’s depth, width, and expan-
sion rate individually. Firstly, we investigate the impact of
adjusting two among the three components, while maintain-
ing the third variable at a constant level, on the model’s
overall performance.

The impact of the depth and width. We thoroughly inves-
tigate representative configurations as outlined in Table 2,
where we can conclude that deeper tiny language models
exhibit better performance, however, at the cost of inference
speed. As the depth of the model increases, the performance
increases for almost all the three benchmarks. Meanwhile,
we observed that when the depth is already 20, the perfor-
mance improvement (41.19 → 42.02) by designing deeper
architectures is minimal compared to the decrease of the in-
ference speed (29.49 → 12.81). Therefore, we recommend
setting the number of layers to around 20 for 1B-parameter
model with a 48k tokenizer.
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(c) Expansion rate

Figure 4. Performance varies w.r.t. model’s width, depth and expansion rate. The experiments are conducted on a streamlined dataset
comprising 5B tokens. The accuracy is averaged among ARC Easy, HellaSwag and C3. Spearman coefficient is used to measure the
correlation between performance and model’s configure.

Table 3. Varying the expanding rate and width of a 1B-size model
with fixed vocabulary size and depth.

EP Rate Width Speed ARC-E HellaSwag C3 Avg.

1.00 2304 28.39 31.75 38.71 42.68 37.71
2.00 2048 28.68 33.33 41.34 48.55 41.07
2.77 1792 28.40 34.39 41.48 47.70 41.19
4.00 1536 28.53 35.27 39.36 47.18 40.60

Table 4. Performance under different random initialization strate-
gies, where the constant standard deviation method performs best.

Initialization Method ARC-E HellaSwag C3 Avg.

Constant 37.57 41.16 49.04 42.59
GPT2 (Radford et al., 2019) 38.62 39.34 48.44 42.13
InternLM (Team, 2023) 34.39 41.48 47.70 41.19

As shown in Table 3, we observe close inference speed
for different expanding rates when the depth is fixed. It’s
obviously that the 1:1 setting gets significantly worse per-
formance. To further investigate the interplay among depth,
width and expansion rate, we sample about 30 different pa-
rameter configurations while maintaining the model size at
1B parameters and conduct training on a further streamlined
dataset comprising 5B tokens. As illustrated in Figure 4,
the correlation between the depth (width) and the down-
stream task’s average performance is notably higher, with a
Spearmanr correlation coefficient reaching up to 0.528. In
contrast, there is no apparent linear relationship between the
expansion rate and the model’s ultimate performance.

Discussion. A compact tokenizer holds particular signif-
icance for a tiny language model, as it strikes a crucial
balance between representation ability and implementation
cost. The removal of low-frequency vocabularies enables
the efficient elimination of substantial redundancy without
significantly compromising representation capacity. Addi-
tionally, the architecture’s configurations, such as width,
depth, and expanding rate, exert a considerable influence on

the final performance of a tiny model. Among them, depth
is the primary factor for tiny language models, and deeper
models usually achieve high performance at the expense of
lower speed. Following the above observations, we design
the architecture of PanGu-π Pro as detailed in Table 9.

3. Parameter Initialization
In this section, we investigate how to initialize model’s pa-
rameters with a given neural architecture, including random
initialization and inheriting parameters from a large model.

3.1. Random Initialization

When training model from scratch, the parameters are usu-
ally initialized with random numbers obeying normal dis-
tribution N(0, σ2) with zero mean and standard deviation
σ. A series of well-known large language models carefully
design the value of σ, especially changing it w.r.t.layers.
For example, GPT2 (Radford et al., 2019) applies a scale of
1/
√
N to all linear layer parameters, where N is the number

of residual layers. InternLM (Team, 2023) only applies the
same scale to some special linear layer parameters, namely
the out projection in MHA layers and the gate projection
in MLP layers. We investigate these different initialization
strategies for training tiny language model, whose results
are shown in Table 4. We note that different strategies re-
sult in similar results. For simplicity and generalization,
we recommend using a constant value for all layers when
training tiny language models. More analyses are presented
in Appendix B.

3.2. Parameter Inheritance

Besides random initialization, the initial parameter of this
tiny language model can also inherit from a large language
model. The strong generalization ability of large model
is expected to transfer to the tiny model. Compared the
tiny model, the large model usually has more layers with
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Figure 5. Performance of large language models when skipping a few layers. “x Skip” denotes adjacent x layers are discarded. Redundan-
cies are observed within intermediate layers while the layers situated near the beginning and end are crucial for maintaining performance.
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Figure 6. Training loss with different pruning strategies. “Base”
denotes training from scratch without inheritance. Inheriting the
model parameters with pruning yields a lower loss.

more neurons. We firstly select important layers and then
recognize critical neurons in the selected layers.

Important layers selection. Considering that the tiny
model usually has fewer layers than the large language
model, the most important layers that contribute to the fi-
nal performance are required to recognize. Consequently,
we conduct ablation experiments to assess the impact of
individual layers on the overall performance.

To uncover general principles regarding layer impor-
tance, we conduct a variety of experiments on multiple
widely-used large language models, including LLaMA2-7B,
LLaMA2-13B, InternLM-7B and PanGu-π-7B. During the
inference phase, we skip specific layers and assess the re-
sulting performance drop. Three types of layer skipping
experiments are conducted for each model, involving skip-
ping one layer, two neighboring layers, and three contiguous
layers. The outcomes are depicted in Figure 5, where we
analyze the average performance of large language models
on three downstream tasks, i.e., ARC-E, HellaSwag, and
C3. The x-axis represents the skipped layer index, while

the y-axis signifies performance accuracy.

Some interesting common phenomenons are identified in
these models. The shallow layers, especially the initial two
to three layers, play a pivotal role in extracting features from
input sequences. Removing these layers will incur signif-
icant performance drop on downstream tasks. Similarly,
deep layers is also crucial, and removing them results in a
deterioration of performance. Conversely, when the interme-
diate layers are removed, the performance is less affected,
indicating that redundancy occurs within these layers. These
layers are tend to be removed when inheriting parameters.

Intra-layer parameters selection. Within a layer, impor-
tant parameters can be recognized by various metrics. How
to recognizing essential parameters has well been discov-
ered in the model pruning area (Frantar & Alistarh, 2023;
Ma et al., 2023). The importance of neurons can be mea-
sured by various criteria and the most significant neurons
are used as the initialization of tiny models. Weight norms,
such as ℓ1 and ℓ2-norm, are commonly employed to mea-
sure importance, indicating that larger weights encapsulate
more crucial information (Han et al., 2015; Guo et al., 2016;
Lee et al., 2021; Tang et al., 2024). The first-order Taylor
expansion (Lee et al., 2019; Tanaka et al., 2020), which
incorporates both weight values and gradients, is regarded
as a more accurate estimation of the output. In addition to
empirical criteria, essential weights can also be identified
through binary masks, which are automatically learned dur-
ing the training process (Xia et al., 2023; Tang et al., 2020).
In the subsequent sections, we adopt these methodologies to
select vital parameters from the PanGu-π-7B (Wang et al.,
2023) model as initial values for a 1B model with smaller
weight dimensions.

Training loss curves and evaluation results are presented in
Figure 6 and Table 5. In comparison to the baseline model
initialized randomly, each of the small models initialized
with the pruning strategy converges to a lower loss. Among
the empirical criteria, the Taylor expansion yields superior
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Table 5. Comparison between different parameter inheritance
strategies. “Base” denotes training without inheritance.

Inheritance Strategy ARC-E HellaSwag C3 Avg.

Base 36.68 40.34 49.15 42.06
L1 (Ma et al., 2023) 39.51 47.70 50.96 46.06
L2 (Ma et al., 2023) 41.98 48.33 50.68 47.00
Taylor (Ma et al., 2023) 43.21 48.43 52.05 47.90
Learned (Xia et al., 2023; Tang et al., 2020) 40.74 51.77 51.73 48.08
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Figure 7. Training losses under different batchsize & learning rate.

results, primarily attributed to its accurate estimation of neu-
ron importance. The model pruned using learnable masks
starts with a significantly lower initial loss than the other
models and ultimately converging to the lowest loss. Evalu-
ation results across the three datasets validate the effective-
ness of parameter inheritance. We recommend inheriting
model parameters with the learnable strategies.

Discussion. The aforementioned observation confirms
that the initial parameters of a model exert a substantial
influence on both the convergence rate and ultimate per-
formance of a tiny language model. Opting to inherit pa-
rameters from a larger model is generally a more favorable
choice, as it allows the smaller model to assimilate the ro-
bust representation abilities of its larger models. The process
of selecting significant parameters is a crucial step in this
regard. Through thorough empirical investigation, we have
observed that intermediate layers tend to exhibit more re-
dundancy, and data-driven learnable masks proves effective
in excavating these redundant parameters.

4. Model Optimization
In this section, we investigate the optimization strategies
with given neural architecture and initial parameters. Firstly,
the scaling rule between learning rate and batch size is
analyzed. Besides, we observe substantial performance
improvement from continuing multiple rounds of training.

4.1. Batchsize & Learning Rate

In practical language model training, the choice of batch
size is frequently tailored to the computational resources at
hand. When dealing with a limited number of GPUs, opting
for a smaller batch size becomes necessary. Conversely,
in scenarios where a substantial number of GPUs is at our
disposal, enlarging the batch size can effectively diminish
the number of iterations, thereby expediting the overall
training process.

However, adjusting the batch size typically has a notable
impact on the final performance of the model. When
increasing the batch size, it is common for the learning
rate to be adjusted proportionally. We explore their com-
bined effects in Figure 7 and Figure 8, using the formula
lr = (bs/bs0)

r × lr0, where the default batchsize bs0 and
learning rate lr0 are set to 1M and 1× 10−4, respectively.
r denotes the increment rate, which is usually set as 0.5
or 1.0 (Krizhevsky, 2014; Goyal et al., 2017). When the
batchsize is smaller than 4M, the convergence speeds with
different learning rates remain consistent. When the batch-
size further increases, a moderate increment rate (r = 0.5)
is preferable. With the same training tokens, employing an
excessively large batchsize (≥16M) adversely affects the
convergence speed. In the majority of cases, a batch size
smaller than 4M is considered the safe range for optimiz-
ing model performance. Otherwise, optimization strategies
need to be specifically tailored for large batch sizes (Keskar
et al., 2016; You et al., 2017; 2019).

4.2. Multiple-Round Training

The existing methods usually train the language model with
only one round, i.e., all the data are only used for one time
to update the model, leaving the model’s parameters uncon-
verged. Besides, learning on large corpora may suffer from
the catastrophic forgetting (Toneva et al., 2018; Winata et al.,
2023) issue, i.e., the model performance drops for data seen
before. For tiny models, the limited model capacity makes
the forgetting problem more serious. Continuing training
the model can further reduce the training loss.

We conduct a simple experiment to validate the forgetting
problem. As the training loss is calculated by the model
parameters at the corresponding timestamp and the model
parameters are updated as the training continues, the later
data tend to have low loss values. Therefore, We recompute
the batch-wise loss on the previous data using a PanGu-
π-1B model trained on 1.6T tokens. The training data is
evenly and randomly divided into eight parts before training.
Figure 9 shows how loss value varies w.r.t. data on each
part. The high loss indicate previous knowledge have been
seriously forgot. Therefore, it is necessary to train the model
for multiple rounds to fit the forgotten data.
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Figure 9. Loss value varies w.r.t. data on different iterations using
a pretrained PanGu-π-1B model. The loss is averaged among
batches in each part.

To reduce the training cost, we propose a simple data refin-
ing strategy for the multiple-round training. Considering
some examples are hard to fit, they should be used for further
training with a high probability. Denoting the loss values
in certain part as L = {l1, l2, · · · , lN}, where N is the total
batches in this part. Note that data are randomly shuffled in
the training process, and thus each batch contains various
type data. In each part, the loss values are normalized, denot-
ing the sampling probability, i.e., pi =

exp(li)∑N
j=1 exp(lj)

. In the

next round training we sample N0 batches out of N accord-
ing to the sampling probability p. The impact of sampling
rate (r = N0

N ) is shown in Table 6. It shows that a higher
sampling rate tends to achieve high performance. The per-
formance improvement is marginal when the sampling rate
r exceeds 50%. We plot how the evaluation metric on Hel-
laSwag evolves during training in Figure 10. As the second-
round training goes ahead, the accuracy on HellaSwag keeps
rising but get converged in the later phase. In Table 7, we
also try to train the models with more rounds. However, the
performance also saturate gradually. To achieve a balance
between performance and training efficiency, we recom-
mend to train the model with two rounds and set sampling
rate to 50%.

Discussion. In contrast to larger models, tiny language
models face a significant challenge of data forgetting due to
their limited capacity. As a result, adopting a multi-round

Table 6. Sampling rate for the next round training. The model is
training with two rounds. r = 0 denotes training with one round.

Sampling Rate r ARC-E HellaSwag C3 Average

0% 42.68 57.95 54.19 51.61
25% 43.95 59.55 56.01 53.17
50% 45.33 60.67 57.37 54.46
75% 45.52 60.34 58.16 54.67
100% 44.98 60.88 58.74 54.87

Table 7. The impact of number of training rounds. The sampling
rate r is set to 50%.

Training round ARC-E HellaSwag C3 Average

Single round 42.68 57.95 54.19 51.61
Two round 45.33 60.67 57.37 54.46

Three round 45.11 61.32 56.88 54.44

training approach becomes crucial to enhance performance.
Employing data sampling proves effective in improving
learning on challenging examples while simultaneously re-
ducing training costs. Additionally, the choice of batch
size and learning rate plays a pivotal role in model perfor-
mance. For optimal results, it is advisable to use a batch size
smaller than 4M, unless a specialized large batch optimizer
is employed for a tailored approach.

5. PanGu-π Pro
Based on the above extensive and rigorous set of experi-
ments, we make a significant improvement on our previous
PanGu-π-1B and meanwhile construct a larger and more
powerful PanGu-π-1.5B Pro. In this section, we make a
comparison with the existing open-source tiny language
models, where our result establishes a new SOTA. Specifi-
cally, PanGu-π-1.5B Pro outperforms the recent proposed
Qwen-1.8B (Bai et al., 2023) and Phi2-2.7B (Li et al.,
2023b), which is 1.8x larger, in average performance.

Implementation details. The pre-training data, which
consists of 1.6T tokens, is gathered from diverse sources
from the Internet, covering English and Chinese corpus
with around 1 : 1 scale. The used 48k tokenizer is built by
byte-pair encoding (BPE, Shibata et al. (1999)) from Sen-
tencePiece (Kudo & Richardson, 2018) upon our data. Our
models are trained using the AdamW optimizer (Loshchilov
& Hutter, 2017) with β1 = 0.9, β2 = 0.95 utilizing the co-
sine learning rate decay (Loshchilov & Hutter, 2016) with
an initial learning rate 2× 10−4. The total batch size for the
training process is 2M. We follow the PanGu-π (Wang et al.,
2023) architecture while making PanGu-π-1B much deeper.
The detailed configuration can be found in Table 9. We
set the expansion rate to 2.77 as suggested in Table 3. For
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Table 8. Comparison with SOTA open-source tiny language models. The best model is listed in bold and second-best is listed in underlined.
Examination Knowledge Reasoning Understanding

AverageModels C-Eval CMMLU MMLU AGI-Eval BoolQ AX-b PIQA EPRSTMT XSum C3

MobileLLaMA-1.4B 23.93 25.10 25.05 18.53 58.75 45.20 71.27 46.25 18.19 37.42 36.97
Sheared-LLaMA-1.3B 24.28 25.10 25.77 18.01 62.39 43.57 72.91 46.25 16.44 35.45 37.02
TinyLLaMA-1.1B 27.85 24.64 25.75 18.54 56.06 45.47 70.62 46.25 20.15 36.71 37.20
MobileLLaMA-2.7B 23.53 25.55 26.63 18.43 54.74 55.80 72.85 46.25 16.96 36.11 37.69
Chinese-LLaMA2-1.3B 28.70 24.78 24.55 19.40 56.79 47.46 56.91 72.50 8.90 43.12 38.31
RWKV-5-1.5B 25.92 25.14 25.66 19.01 62.29 54.05 71.22 46.25 20.67 49.15 39.94
Phi-1.3B 27.78 25.85 44.32 23.42 73.52 44.20 76.99 50.00 14.90 38.96 41.99
PanGu-π-1B 36.85 35.90 35.96 30.77 58.44 43.48 61.92 55.62 15.92 49.21 42.41
Open-LLaMA-3B 27.50 25.42 27.09 20.68 60.58 52.72 77.09 82.50 19.75 43.23 43.66
Phi2-2.7B 31.86 32.18 58.49 28.51 77.40 43.57 78.89 46.25 13.66 40.11 45.09
PanGu-π-1B Pro (Ours) 46.50 46.56 50.38 41.58 63.43 53.99 64.96 74.38 18.40 52.66 51.28
Qwen-1.8B 53.60 52.12 46.43 35.83 64.31 57.79 73.83 88.12 20.03 58.30 55.04
PanGu-π-1.5B Pro (Ours) 52.39 48.51 62.54 44.89 70.61 67.93 79.55 86.12 24.61 69.24 60.64
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Figure 10. Accuracies of PanGu-π-1B and PanGu-π-1B Pro on
HellaSwag during training.

the parameters initialization method, we inherit parameters
from PanGu-π-7B via learnable binary mask after removing
intermediate redundant layers. We use the Huawei Ascend
910 card to train and evaluate the proposed PanGu-π Pro.

Table 9. Model configuration.
Model Width Depth Vocabulary Initialization

PanGu-π-1B 2048 12 100883 Random
PanGu-π-1B Pro 1792 21 48000 PanGu-π-7B

PanGu-π-1.5B Pro 2048 22 48000 PanGu-π-7B

Benchmarks. We use OpenCompass (Contributors, 2023)
to evaluate on an extensive suite of downstream tasks, cov-
ering examination, knowledg, reasoning, and understanding
abilities for a comprehensive comparison. C-Eval (Huang
et al., 2023) is a Chinese benchmark to evaluate the knowl-
edge and reasoning abilities. CMMLU (Li et al., 2023a)
covers 67 topics including science, engineering, and hu-
manities. MMLU (Hendrycks et al., 2021) proposes an
English benchmark for measuring LLM’s multitask accu-
racy by covering 57 tasks including mathematics, history,

computer science, and law. AGI-Eval (Zhong et al., 2023)
is a benchmark specifically designed to evaluate the general
abilities in tasks pertinent to human cognition and problem-
solving. BoolQ (Clark et al., 2019) is a reading comprehen-
sion dataset to evaluate the difficult entailment-like infer-
ence ability of LLMs. AX-b (Wang et al., 2020) is a broad-
coverage diagnostic task and PIQA (Bisk et al., 2020) is a
physical interaction question-answering task. EPRSTM (Xu
et al., 2021) is a binary sentiment analysis dataset based on
product reviews. XSum (Narayan et al., 2018) is a summa-
rization task collected from the British Broadcasting Corpo-
ration and C3 (Sun et al., 2020) contains 13,369 documents
and their associated 19,577 multiple-choice questions.

Comparison with tiny language models. We collect mul-
tiple tiny language models with different sizes, ranging from
1B to 3B. These include TinyLLaMA-1.1B (Peiyuan Zhang
& Lu, 2023), Chinese-LLaMA2-1.3B (Cui et al., 2023),
Sheared-LLaMA-1.3B (Xia et al., 2023), and Open-LLaMA-
3B (Geng & Liu, 2023). Meituan (Chu et al., 2023) released
MobileLLaMA-1.4B and MobileLLaMA-2.7B that were
trained from scratch on the RedPajama dataset (Computer,
2023). Microsoft developed the series of Phi (Li et al.,
2023b) that focusing on using “textbook-quality” data with
small language models. RWKV-5-1.5B (Peng et al., 2023)
is a parallelizable RNN with Transformer-level LLM Per-
formance. Qwen-1.8B (Bai et al., 2023) is pretrained on 2.2
trillion tokens including web texts, books, codes, etc.

Extensive experiments in Table 8 show that PanGu-π-1.5B
Pro significantly outperforms existing LLMs of similar or
even larger sizes, e.g., Phi2-2.7B and Open-LLaMA-3B. We
observe a notable improvement of 8.77 on average perfor-
mance from PanGu-π-1B to PanGu-π-1B Pro. With 16.67%
fewer parameters, PanGu-π-1.5B Pro outperforms Qwen-
1.8B (Bai et al., 2023) and exhibits the best or second-best
performance in the vast majority of the benchmarks. Overall,
our model exhibits consistently better average performance
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compared to the current state-of-the-art models.

From PanGu-π-1B, we gradually add the core components
to validate the effectiveness of our methodology. As shown
in Figure 1, the removal of low-frequency vocabularies leads
to an improvement of average performance from 42.41 to
44.11 while the architecture tweak contributes another 2.42
improvement. Parameter inheritance, the most effective ap-
proach, pushes the average performance to 49.79. Multiple-
round training further enhances the average performance of
PanGu-π-1B Pro.

6. Conclusion and Discussion
In this paper, we systematically discuss how to construct
a tiny language model from three perspectives, i.e., neu-
ral architecture, parameter initialization, and optimization
strategies. By carefully designed empirical study, we rec-
ognized several effective design formulas to improve per-
formance with given parameter restriction and data size,
including compact tokenizer, architecture tweak, parame-
ter inheritance, multiple-round training etc. Then we train
PanGu-π Pro models with 1B and 1.5B parameters, which
significantly improve performance than the baseline models.

Based on the observations, we also note several intriguing
directions for further exploration. In terms of neural archi-
tecture, how to directly learn a compact tokenizer that seam-
lessly integrates both representation ability and parameter
efficiency. Additionally, exploring hardware-friendly archi-
tectures holds promise for mitigating computational and
storage costs. For example, GQA (Ainslie et al., 2023) is an
effective strategy to reduce RAM require of edge devices (re-
fer to Appendix A). Concerning model optimization, the
importance of effective parameter initialization cannot be
overstated, setting the model on a path toward high perfor-
mance from the outset. Nevertheless, the challenge remains
in identifying effective parameters, which is an open ques-
tion in the field. Besides, the training characteristics of
tiny models differ significantly from their larger counter-
parts. For instance, within the framework of multiple-round
training, there is an urgent demand for the development of
new parameter optimization techniques and data refining
methods. Numerous questions warrant in-depth exploration,
and we hope the findings presented in this paper can spark
inspiration for further research.

Impact Statement
This paper presents work whose goal is to advance the field
of Machine Learning. There are many potential societal
consequences of our work, none which we feel must be
specifically highlighted here.
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A. Multi-head Attention v.s. Group-query Attention
Current mainstream LLaMA architectures, such as Qwen (Bai et al., 2023) and InternLM (Team, 2023), commonly employ
multi-head attention (MHA) mechanisms (Vaswani et al., 2017). However, storing a large amount of KV (key and value)
cache in memory-constrained edge devices poses a significant challenge, especially in long text input scenarios. Group
query attention (Ainslie et al., 2023) is recently proposed to seek a balance between multi-head attention and multi-query
attention (Shazeer, 2019). By sharing the same key-value heads for all queries in each group, the RAM requirement for
the KV cache can be largely reduced in edge devices. We convert our pretrained PanGu-π-1.5B Pro to its GQA version
by mean-pooling (Ainslie et al., 2023) the KV heads in each group and then continually training on only 5% of the origin
dataset. The number of groups is set to 8. As shown in Table 10, the converted GQA version model exhibits comparable
performance to the MHA counterpart with fewer parameters.

Table 10. Comparison between MHA and GQA.

Attn. Size C-Eval CMMLU MMLU AGI-Eval

MHA 1.5B 52.91 49.51 53.76 44.42
GQA 1.4B 48.75 46.94 51.97 43.59

B. Improved Random Initialization
When training the model from scratch, we typically initialise the weight of linear layers using a normal distribution N(0, σ2)
with zero mean and standard deviation σ. Some methods (Radford et al., 2019; Team, 2023) use different standard deviations
for different layers. Figure 11 shows the standard deviations of different layers after pretraining, indicating that the parameter
distributions will be similar from different initialisation values. In particular, the variance of the four linear layers within the
MHA layer varies with the depth, while the variance of the linear layers within the MLP layers remains almost constant.

We introduce an improved initialization method that adapts the standard deviation of different linear weights to the depth of
the model. In the MHA, the initial standard deviation of the query and key projection parameters decreases from

√
2σ to σ,

while that of the value and out projection parameters increases from σ/
√
2 to σ, as the layer index increases. In the MLP,

we keep the initial standard deviation of the linear weights constant at σ for all layers. As demonstrated in Table 11, our
approach exhibits a marginal superiority over the constant initialization approach.

C. The Impact of Attention Head
Table 12 shows how performance varies w.r.t. the number of attention heads. The results show that it does not affect the
inference speed or the model performance significantly, as long as the hidden size is fixed. The head dimension is set to 128
in PanGu-π-1B Pro and PanGu-π-1.5B Pro.
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Figure 11. The standard deviations of different layers after pretraining.
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Table 11. Performance under different initialization strategies. Our method exhibits a slight edge over the constant standard deviation
approach.

Initialization Method ARC-E HellaSwag C3 Avg.

Constant 37.57 41.16 49.04 42.59
GPT2 (Radford et al., 2019) 38.62 39.34 48.44 42.13
InternLM (Team, 2023) 34.39 41.48 47.70 41.19
Ours 37.57 42.00 49.26 42.94

Table 12. Varying the number of attention heads.

Heads Head Dimension Speed ARC-E HellaSwag C3 Avg.

14 128 29.49 34.39 41.48 47.70 41.19
28 64 30.11 35.39 41.63 48.09 41.70
56 32 30.49 33.16 41.36 48.17 40.90

D. Weight Decay
Weight decay (Loshchilov & Hutter, 2017) is a commonly employed regularization method aimed at mitigating overfitting
on the training set. We delve into its impact in Table 13. Elevating the weight decay imparts more robust regularization,
albeit at the expense of constraining the model’s representation capacity. Through empirical experiments, we observe that
the model attains optimal performance when the weight decay is set at 0.1.

Table 13. Performance under different weight decay. The model achieved the best performance with a weight decay of 0.1.

Weight Decay ARC-E HellaSwag C3 Average

0.2 34.68 36.15 45.31 38.71
0.1 34.39 41.48 47.70 41.19
0.01 34.74 36.76 45.26 38.92

0.001 33.59 37.07 44.93 38.53
0.0001 31.22 37.76 44.11 37.70
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E. Additional Results of Layer Selection
The layer skipping results of single downstream tasks are released in Figure 12. The performance trend of single downstream
tasks are consistent to the average results shown Figure 5 of the main paper. Layers situated near the beginning and end of
the model often carry more significance than the intermediate layers.
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Figure 12. Layer-skipped performance of large language models on single downstream tasks. From top to bottom, the tasks are ARC-E,
HellaSwag, and C3, respectively.
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