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ABSTRACT

Calibration has emerged as a foundational goal in “trustworthy machine learning”,
in part because of its strong decision theoretic semantics. Independent of the un-
derlying distribution, and independent of the decision maker’s utility function, cal-
ibration promises that amongst all policies mapping predictions to actions, the uni-
formly best policy is the one that “trusts the predictions” and acts as if they were
correct. But this is true only of fully calibrated forecasts, which are tractable to
guarantee only for very low dimensional prediction problems. For higher dimen-
sional prediction problems (e.g. when outcomes are multiclass), weaker forms
of calibration have been studied that lack these decision theoretic properties. In
this paper we study how a conservative decision maker should map predictions
endowed with these weaker (“partial”) calibration guarantees to actions, in a way
that is robust in a minimax sense: i.e. to maximize their expected utility in the
worst case over distributions consistent with the calibration guarantees. We char-
acterize their minimax optimal decision rule via a duality argument, and show
that surprisingly, “trusting the predictions and acting accordingly” is recovered in
this minimax sense by decision calibration (and any strictly stronger notion of
calibration), a substantially weaker and more tractable condition than full calibra-
tion. For calibration guarantees that fall short of decision calibration, the minimax
optimal decision rule is still efficiently computable, and we provide an empirical
evaluation of a natural one that applies to any regression model solved to optimize
squared error.

1 INTRODUCTION

Machine learning systems are increasingly deployed in high-stakes decision making domains such
as healthcare, finance, and law. The predictive power of these models can be extraordinary, but
scoring well on predictive error metrics does not directly guarantee that decisions downstream of
those predictions will be correct. For predictions to be operationally useful, a decision-maker must
be able to treat them as reliable inputs into a downstream decision making policy. This raises two
fundamental questions:

On the Model Side: What does it mean for machine learning predictions to be trustworthy in
decision-making contexts?

On the Decision Making Side: Given predictions that satisfy a particular type of
“trustworthiness”, how should the decision maker adapt its actions to the promised guarantees?

On the Model Side: A natural answer is that trustworthy predictions should directly support good
decisions as they are. In other words, the decision-maker should be able to reliably best respond
to the forecaster’s predictions as if they were correct. Formally, let (X,Y") be a pair of random
variables drawn from a joint distribution D, where X € X represents the observed features and
Y € [0,1]¢ is the outcome of interest. Let A denote the action set, and suppose the decision-maker
follows a policy a(-) : [0, 1]¢ — A mapping predictions to actions. Given a predictor f, the decision
maker’s performance when using a policy a is measured by its expected utility on the underlying

distribution:
E(x y)~plula(f(X)),Y)],
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where u(a, y) € R is a utility function. Given a forecaster f : X — [0, 1]%, the plug-in best response
to a forecast is defined as

apr(f(z)) = arg max u(a, f(x)). (1)

Thus, a forecaster f is trustworthy if the decision-maker’s best-response policy agg (f (z)) achieves
higher utility than any other policy. When is this the case?

The classical answer lies in the notion of calibration. Intuitively, a forecaster is calibrated if, when-
ever it predicts a vector f(x) = v € [0,1]%, the empirical outcomes are consistent with that predic-
tion. More formally, a forecaster f is said to be fully calibrated if for every v € [0, 1]¢,

E[Y | /(X) =] =

It is well known that best responding to calibrated forecasts is the optimal decision policy among all
policies that map forecasts to actions (Foster & Vohra, |1997; Kleinberg et al., [2023; [Noarov et al.,
2023}, [Roth} [2022).

However, achieving full calibration is extremely difficult, both in theory—the sample complexity
of calibrating an existing forecaster without harming its accuracy grows exponentially with the out-
come dimension d (Gopalan et al.| |2024a)—and in practice, where empirical evidence shows sys-
tematic deviations from calibration, ranging from neural networks to large language models (Guo
et al.,|2017; |Kull et al.l 2019; |Gupta & Ramdas| 2022; [Plaut et al., 2024). Thus, despite the appeal-
ing link between calibration and trustworthy ML-powered decision-making, this connection quickly
breaks down in real-world applications.

On the Decision Making Side: Decision making from predictions admits two canonical extremes.
At one end, the decision maker aggressively best responds to the forecasts, acting as if they were
fully correct. At the other end, the decision maker conservatively plays a minimax-safety strat-
egy, arg maxqe 4 minycy u(a, y), treating the forecasts as if they carried no information about the
instance.

Departing from these extremes, we treat a model f and its forecast f(x) as information that con-
strains what the true, instance-conditional outcome distribution could be. In other words, after
observing f(x), the decision maker considers the set of candidate realities—outcome distributions
consistent with the forecast and the available calibration guarantees. Intuitively, the “volume” of
this set is governed by the strength of calibration: under full calibration, the set collapses to the
forecast itself (the prediction can be treated as reality, at least in expectation), whereas as calibration
weakens, the set enlarges. A principled decision rule should therefore tune its conservatism to what
the reality could be, consistent with the provided guarantees. This idea, together with the fragility
of full calibration in practice, leads to the central question of this paper: can we derive optimal
decision-making policies under weaker and more practical conditions than full calibration?

We answer this question affirmatively. We introduce a framework based on conservative decision
making that nevertheless fully exploits partially calibrated forecasts. This viewpoint echoes ideas in
robust optimization and control, but it has not been systematically developed for post hoc decision
making with partially calibrated machine-learning forecasts.

1.1 OUR RESULTS

We consider a parameterized family of weighted calibration guarantees that have recently become a
popular object of study (Hébert-Johnson et al.,2018};|Gopalan et al.|2022). Informally speaking, this
family of guarantees constrains the residuals of a predictor f to be uncorrelated with a collection
of “test functions” h € H mapping the range of f to the reals. When H consists of all such
test functions, we recover full calibration, but many popular variants of calibration (e.g. top label
calibration, decision calibration, etc) can be expressed as instances of #-calibration under much
smaller/more tractable sets /. Our contributions are as follows:

1. In Section [2] we formalize the following question: given a set of test functions # and a
predictor f(z) that is promised to satisfy H-calibration, what decision rule a : [0,1]¢ — A,
mapping predictions to actions, will maximize a decision maker’s expected utility in the
worst case over all joint distributions over X x Y that are consistent with the promise that
f is H-calibrated?
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2. In Section3|we answer this question by giving a closed-form for the decision maker’s opti-
mal decision rule, in terms of the dual variables of a convex program that can be efficiently
computed for any finite H.

3. In Section [4 we instantiate this decision rule for various calibration guarantees of interest.
Of particular note, we find that when H corresponds to the tractable notion of decision
calibration (Zhao et al., 2021} [Noarov et al., 2023)), then the optimal decision rule is the
best response decision rule apg, just as it is for (the intractable notion of) full calibration.
In fact, it suffices that H contains the decision calibration constraints — any larger set also
makes best response the optimal decision rule. Thus what could have been a very large
hierarchy of minimax optimal decision rules “collapses” to best response at the level of
decision calibration. An upshot of this is that a predictor can be simultaneously decision
calibrated for many downstream decision makers, and for each of them, best response will
be their optimal decision policy in this minimax sense. We also derive the minimax optimal
decision rule for a simple “self-orthogonality” calibration condition that will hold for any
regression model with a linear final layer trained to optimize squared loss, and hence will
be commonly satisfied without any algorithmic intervention.

4. In Section[5|we train a two-layer MLP to minimize squared loss on two regression datasets,
and evaluate both the best-response decision rule and the robust decision rule that results
from the self-orthogonality condition of squared error regression. We find that, as predicted
by our theory, the robust decision rule outperforms the best-response decision rule under
calibration-preserving distribution shift, and that the cost of this robustness is mild even
under ideal conditions.

1.2 RELATED WORK

Rothblum & Yonal(2023) consider a setting in which both the outcome and decision maker’s action
set are binary, and study how a decision maker should act to minimize their worst case regret over
distributions such that the predictor has maximum calibration error bounded by «: informally that
[E[Y|f(x) = v] — v| < a for all v. The models f they study are (approximately) fully calibrated,
which is a reasonable assumption in their setting, since they limit their study to 1-dimensional out-
comes. In contrast, our interest is not (just) in quantitative measures of full calibration error, but
rather qualitatively weaker calibration guarantees, as even approximate full calibration becomes in-
tractable in high dimensions.

A line of recent work (Zhao et al [2021; Kleinberg et al., 2023} Noarov et al., [2023; Roth & Shi,
20245 Hu & Wu, 2024; |Okoroafor et al., 2025) has studied the guarantees that can be given to
downstream decision makers who best respond to predictions that have weaker guarantees than full
calibration (and which in the cases of|Zhao et al.|(2021));|Noarov et al.|(2023)); Roth & Shil (2024} can
be tractably guaranteed in higher dimensional outcome settings). These guarantees take the form of
(external and swap) regret bounds, which are qualitatively weaker than the kind of “trustworthiness”
promised by full calibration. Informally, regret bounds promise that the decision maker could not
have done better by consistently playing a fixed action (or a fixed function remapping their actions to
other actions), not that they could not have done better by using a different policy from predictions
to actions. We show that even in high dimensions, the tractable “decision calibration” condition
given by [Zhao et al.[(2021) recovers the same “trustworthiness” semantics of full calibration when
viewed through our minimax decision making lens.

Analyzing minimax optimal decision policies is a common way of analyzing robust or risk-
averse decision making guarantees, with deep roots in economics (Gilboa & Schmeidler, [1989;
Hansen & Sargent, |2001; Manski, [2000; [2004; Manski & Tetenov, 2007} Manskil, 2011)), statistics
(Wald, [1950), and robust optimization (Ben-Tal & Nemirovski, |2002; Kuhn et al.| 2019; Duchi &
Namkoongl [2021)). For example, |Carroll (2015) adopts this lens this in the context of contract theory
and [Kiyani et al.| (2025) and |Andrews & Chen|(2025) do so in the context of conformal prediction.
To the best of our knowledge, we are the first to apply this “robust” minimax lens to the problem of
partially calibrated high dimensional forecasts.
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Figure 1: Schematic of the interpolating property

2 ROBUST DECISION MAKING AND H-CALIBRATION

In this Section, we define H-calibration as a flexible relaxation of full calibration and then intro-
duce a framework to derive minimax optimal decision making policies that are designed to act on
forecasters guaranteed to satisfy H-calibration. This family of calibration guarantees has been stud-
ied extensively in the recent literature on multicalibration and its extensions (Hébert-Johnson et al.,
2018; Dwork et al., 2021; |Gopalan et al., 2022; Deng et al., |2023) — in particular, H-calibration is
a special case of what|Gopalan et al.| (2022)) call weighted multicalibration.

H-Calibration. Let  be a set of functions b : [0,1]9 — R. A forecaster f is said to be H-
calibrated if for every h € H,

E[A(f(X)) (Y - f(X))] =0. 2

Equivalently, writing ¢(v) := E[Y | f(X) = v] for the true conditional expectation, 7{-calibration
requires

E[A(f(X))- (a(f(X)) = f(X))] =0, VheH. 3)

This definition captures a spectrum of guarantees. When H contains all bounded measurable func-
tions, H-calibration reduces to full calibration — i.e. it requires that f(v) = ¢(v) ;== E[Y | f(X) =
v] almost surely. For smaller classes , the requirement is weaker and can be seen as a relaxation of
calibration, enforcing consistency only with respect to a restricted set of tests. In the main body of
the paper we focus on the #-calibration defined above, but in Appendix [B|we also discuss scenarios
in which only approximate #-calibration is available.

Robust Decision Making. Fix an #-calibrated forecaster f. Define the set

Q = {q:[0.1)" = [0, | E[A(f(X))- (a(f(X)~ f(X))] =0, VheH]|. @&

In words, Q consists of all candidate conditional expectations consistent with f satisfying H-
calibration. Because the perfect predictor f(X) = E[Y|X] satisfies H-calibration for every H,
the identity map g(v) = v is always in Q—but in general the set may contain many maps. From
the perspective of the decision-maker who knows f and the promised calibration guarantee H, but
does not know the underlying distribution, given a forecast f(x), the true expectation E[Y | f(z)] is
uncertain but must lie within Q. As H grows richer, Q shrinks, eventually reducing to {¢(v) = v}
in the case of full calibration.

Faced with this uncertainty, a natural strategy is to adopt a robust policy that guards against the
worst-case admissible reality. Formally, the robust decision rule is

arobust(') = argmax min E[U(a(f(X)),q(f(X)))} (5)
a(-):0,1]4 >4 9€Q

That is, the decision-maker chooses an action policy that maximizes utility under the worst-case
conditional expectation consistent with calibration guarantees.

Interpolating Property. The robust policy in Equation [5] interpolates between two classical ex-
tremes (Figure . If H contains all functions, then @ = {q(v) = v} and a,opust reduces to the
best response agr(-) (Equation equation . If ‘H is empty, then Q contains all functions and the
policy collapses to the constant minimax strategy anfinimax(Z) = argmaxge.4 ming o 14 u(a,y).
Thus, Equation [5] provides a principled bridge between best-responding to calibrated forecasts and
adopting fully conservative policies, with the level of conservatism controlled by the richness of .
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The central theme of the remainder of this paper is to investigate the interaction between different
levels of H-calibration and the resulting optimal robust policies. Our focus is not on developing
methods for achieving H-calibration itself (for which we refer the reader to a rich line of recent work
showing how to accomplish this in both the batch and online adversarial setting [Hébert-Johnson
et al.} 2018;|Gopalan et al., 2022; Deng et al., 2023 Noarov et al., 2023} |Globus-Harris et al.,|2023)),
but rather on understanding the decision-making consequences once such guarantees are in place. In
the next section, we begin by analyzing the general problem of deriving optimal robust decision rules
for arbitrary classes . We then specialize to the important case of decision calibration, showing that
this weaker and more practical notion identifies large classes of partially calibrated forecasters for
which best responding remains optimal. Beyond its theoretical appeal, this result is also practically
useful: when a decision-maker can influence the design or post-processing of the forecaster, they
can request a decision-calibrated forecaster, to which they can then simply, reliably, and optimally
best respond.

Assumption 2.1. The utility u(a, v) is linear in its second argument v € [0, 1] for each a € A.

This assumption naturally holds in multi-class settings where v is a probability vector over d out-
comes and the decision maker has arbitrary utilities U (a, k) for each action—outcome pair. In this
case, u(a,v) = E[U(a,Y)] = EZ:1 vg U(a, k), which is linear in v. Such risk-neutral expected-
utility models underlie much of the calibration and decision-making literature (e.g., (Foster & Vohra,
1997; Kleinberg et al., [2023; Roth & Shil [2024)). Utilities that are nonlinear in v, for example,
risk-averse utilities depending on outcome variance, fall outside our framework and represent an
important direction for future work.

3  OPTIMAL DECISION POLICIES FOR FINITE DIMENSIONAL
H-CALIBRATION

In this section, we characterize the optimal robust decision making policies, i.e., solutions to Equa-
tion[5] Throughout this section, we assume the function class # is a finite dimensional space, i.e.
it can be described as span of finitely many functions. Formally, let # = span{h;, ..., hs} be the
linear class generated by measurable h; : [0,1]% — R. Then the H-calibration condition equation [3
is equivalent to the % linear moment equalities

E[h:i(f(X)) - (q(f(X)) = F(X))] =0, i=1,... .k

so that the ambiguity set in equation f] may be written as

0= {q; [0,1]%— [0, 1] ‘ E[hi(£(X)) - (q(f(X)) — F(X))] =0 fori = lk}

Intuitively, each equality enforces that, conditional on the forecast, the forecast error has zero cor-
relation with the corresponding test h;; taken together, these constraints exhaust the information
provided by H-calibration criteria and hence precisely describe the admissible reality faced by the
robust decision-maker in equation [5}

Theorem 3.1 (Characterization of the Optimal Robust Policy). Suppose H = span{hi, ..., hy}
with each h; : [0,1]¢ — R, and let Q be defined as above. Then the minimax problem in Equation
E]admits a saddle point (arobust, ¢*) with the following structure:

There exist multipliers \* = (Xf,..., \;) with each \f € R? such that for almost every forecast
v = f(x) the worst-case map q*(v) solves

k
q*(v) € arg m { val(p) +p- ; hi(0)A] } where val(p) = max u(a, p).

Given q*, the optimal robust action at v is the best response to ¢*(v):

Qrobust (U) € arg I[flﬂeaj( U(a, q*(v)) .

Interpretation. Theorem characterizes both the worst-case distribution consistent with H-
calibration and the corresponding optimal response. For any realized forecast v = f(x), the theorem
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yields a simple two-step procedure: compute the adversarial belief

k

¢'(v) €arg min {vallp) +p-s")},  s°(v) = ; hi(V)A7,

and then take the best response ayobust (V) € arg max,ea u(a,g*(v)). Thus, the optimal policy
is always a best response, not to the raw forecast f(x), but to the adversarially tilted distribution
q*(v) allowed by the calibration constraints. Additionally, a useful consequence is pointwise com-
putability: evaluating a,.pyst at a given v reduces to two low-dimensional optimizations, without
constructing the full mapping = — arobust ().

From an optimization perspective, the multipliers \* solve a finite-dimensional concave maxi-
mization problem (see the proof of Theorem [3.1), and ¢*(v) is obtained by a pointwise con-
vex minimization over p € [0,1]%. Both stages can be carried out by standard, fast methods
with provable guarantees (e.g., projected subgradient ascent for the dual, or a simple primal-dual
scheme), after which one evaluates ¢* (/) via the pointwise minimization and takes the best response
Arobust (V) = arg max, u(a, ¢*(v)).

In the next section, we analyze the behavior of the resulting decision rules by specializing to concrete
‘H-classes. One might expect that Theorem induces a vast hierarchy of policies whose form
depends sensitively on ‘H. Perhaps surprisingly, this is not the case. In particular, we show a sharp
transition: for each decision maker, there exists a specific test class, precisely the one associated with
decision calibration, such that as soon as H contains this class, the adversarial tilt collapses (¢* (v) =
v for a.e. v) and the optimal robust rule reduces to the plug-in best response to the forecaster.

4 ROBUST POLICIES UNDER DECISION CALIBRATION AND BEYOND

In this section, we specialize the general characterization derived in Theorem [3.1] to concrete test
classes H. Our core result concerns decision calibration: a practically tractable guarantee under
which the minimax-optimal robust policy collapses to the plug-in (best-response) rule. This identi-
fies a simple path to decision-theoretic trustworthiness that does not require full calibration.

4.1 DECISION CALIBRATION AND PLUG-IN BEST RESPONSE OPTIMALITY

Here we define the variant of decision calibration given by |[Noarov et al.| (2023)), a slight strength-
ening of the definition originally given by [Zhao et al.| (2021). Fix a single decision problem with
action set .4 and utility function u(a,v). For each action a € A, let

R, = {ve0,1]* : u(a,v) > u(a',v) foralla’ € A}

be the (closed, convex) decision region on which a is a plug-in best response. The decision-
calibration class is Haee = {1r, : a € A}. Here, we denote 14(x) := 1{x € A}. A forecaster
f is decision calibrated if it is Hgec-calibrated, i.e.,

E[1g,(f(X)) (Y = f(X))] = 0 forallac A

Compared to full calibration, decision calibration is far more statistically tractable, since its test class
has size |Hgec| = |A|, a potentially small and fixed number of actions, rather than the large families
required for full calibration.

Theorem 4.1 (Decision calibration = plug-in best response optimality). If f is Hqec-calibrated,
then the minimax-optimal robust rule in equation 5| coincides with the plug-in best response:

Grobust (V) € arg max u(a,v) for almost every v = f(x).
ae

Equivalently, under decision calibration, best responding to the forecaster is minimax optimal
among all forecast-based policies.

Put differently, upon observing a forecast v = f(x), the decision-maker need only best respond to
v; no adversarial “tilt” survives the decision-calibration constraints. Conceptually, this upgrades the
previously known guarantees of decision calibration—that it implies no swap regret (Noarov et al.|
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Figure 2: Schematic of the Sharp Transition

2023)—to minimax optimality. Swap regret guarantees do not preclude the existence of a policy
a: [0,1]? — A that dominates the plugin best response policy agr — only that no improved policy
has the form a(v) = ¢(apr(v)) for some mapping ¢ : A — A, using “actions as a bottleneck”. In
contrast, Theorem directly establishes that no other policy a : [0,1]? — A can improve on the
plugin policy apg in our minimax sense.

The preceding result assumes that the information conveyed by the forecaster to the decision-maker
is exhausted by the decision-calibration tests {1g, }4c4. In practice, a forecaster might satisfy
additional calibration equalities,

E[A(f(X)) {Y = f(X)}] =0,

for functions i beyond the indicators 1r,. The next theorem shows that the plug-in optimality
conclusion is stable under such enrichments. This is intuitive: if a forecaster is trustworthy, then
making it more calibrated (i.e., adding information) should not diminish that trustworthiness.

Theorem 4.2. Let H be any test class that contains the decision-calibration indicators, Haec =
{1g, : a € A}. If f is perfectly H-calibrated, then the minimax-optimal robust rule in equation@
coincides (a.e.) with the plug-in best response:

Grobust (V) € arg max u(a,v) fora.e v= f(x).
a

As we make precise in the proof of Theorem 2] the “collapse” occurs because the decision-
calibration constraints ensure that the expected utility of the plug-in best-response policy app is
invariant to the adversary’s choice of ¢ € Q. For any ¢ satisfying the Hge. constraints,

Elu(apr(f(X)), q(f(X))] = E[u(apr(f(X)), F(X))].

Thus, the adversary cannot reduce the utility of agr; its worst-case utility equals its nominal utility.
Since apr is the optimal policy under the nominal distribution, and its performance cannot degrade
under any admissible g, it must also be the minimax-optimal policy.

Sharp transition. One might initially expect a gradual shift from fully conservative to plug-in
best response as H is enriched. Theorems . TH4.2] show a sharper phenomenon (Figure [2): once H
contains the |.A| decision tests {1, }qc4, the adversarial tilt disappears (¢*(v) = v a.e.) and the
robust rule collapses to the plug-in best response equation [I] Enlarging # further does not change
the minimax-optimal policy.

Decision calibration is a tractable, task-specific threshold at which robust decision making
and plug-in best-response coincide, providing a crisp target for forecaster design and a clear
requirement for downstream decision makers.

As a byproduct, this leads to another practical advantage of decision calibration: a single forecaster
can be made simultaneously reliable for a collection of downstream decision problems. Intuitively,
if the forecast passes the decision calibration tests of each problem, then none of the decision makers
needs additional robustness, the plug-in best-response is minimax-optimal for all of them.

Corollary 4.3 (Simultaneous plug-in optimality across multiple decisions). Let u1, ..., Uy, be m
decision problems, with respective action sets A; and linear utilities u;j(a,v) in v € [0,1]%. For
each j and a € Aj, let

Ro; = {ve0,1]%: uj(a,v) >uj(a’,v) foralla’ € A;}
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be the plug-in decision region of action a in problem j, and define the combined test class

m

'Hzlelc = U {1Ra1j: aGAj}.
=1

If f is H-calibrated for some H satisfying H3. C H, then for every j € {1,...,m} the minimax-

dec
optimal robust policy for problem j coincides (a.e.) with the plug-in best response:

Arobust,j (V) € arg max uj(a,v)  forae v= f(x).
€A

Proof. For each problem j, the included indicators {1, ; }ac 4, ensure that H contains the decision-
calibration tests of problem j. Theorem {.2]then applies verbatim to each j, yielding plug-in opti-
mality problem by problem.

4.2 BEYOND DECISION CALIBRATION: GENERIC H-CLASSES FROM TRAINING PIPELINES

Thus far we have focused on decision calibration, which, when attainable, collapses a;opust to the
plug-in best response. In practice, two regimes arise. (i) If one can influence the forecaster’s training
pipeline, decision calibration is the natural target: it is practical, and our results guarantee plug-in
minimax optimality. (ii) If one cannot control training, the forecaster might not be decision cali-
brated for the downstream task. Identifying its partial-calibration profile may be difficult, yet certain
moment conditions arise structurally from standard training procedures. We give two examples of
how to leverage such “free” structure to specify usable H’s and derive the associated robust policies.

Self-orthogonality from squared-loss training. A ubiquitous example is self-orthogonality (a form
of self-calibration) that follows from first-order optimality when a model with a linear last layer is
trained to minimize mean squared error. This includes the universally adopted cases of regression
with either a linear model or a neural network with a linear head, trained by mean squared error. This
and similar guarantees for other loss functions have previously been investigated as consequences
of low degree multicalibration (Gopalan et al., [2022)).

Proposition 4.4 (Self-orthogonality under squared loss). Let X — z4(X) € R* be a representation
and fo(X) = Wz4(X) € R? a linear last layer. Suppose 0 = (¢, W) is trained to a first-order
stationary point of the expected squared loss

(o) = SE[|fo(x) - Y[3] -
Then the following calibration moments hold:
E[z4(X) (Y — fo(X))"] =0 and E[fo(X) (Y — fo(X))"] = 0.

In particular, fg is H-calibrated for the test class H = {h;(v) = eij 2 j=1,...,d} (and for any
linear combination thereof).

Implications. Proposition provides a generic, pipeline-induced #-calibration guarantee when-
ever a linear head is trained to stationarity under squared loss. Specializing Theorem to this
setting yields a simple dual. For d = 1 (e.g., one-dimensional regression) with H = {h(v) = v},
the multiplier is a scalar \, and for each forecast v = f(x) the worst-case distribution is

¢*(v) € arg min {val(p) + Avp}, val(p) = maxu(a,p).
p€[0,1] acA

The robust action is then: ayobust (¥) € argmax,c 4 u(a, ¢*(v)). When u(a, p) is linear in p and A
is finite, val is convex piecewise linear, so the inner minimization reduces to checking finitely many
candidate points (endpoints and pairwise breakpoints). The dual objective

G(Y) = B min {wal(p) + A (X)p}] — AE[(X)?

is concave in A and can be maximized via standard one-dimensional methods (e.g., bisection on a
monotone subgradient). In higher dimensions (d > 1), the correction term Avp becomes Avp for a
matrix of multipliers A, and the pointwise problem remains a small convex program over p € [0, 1]%;
for finite A and linear utilities, it is again efficiently solvable.
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Zero-bias and bin-wise calibration. A widely available source of partial calibration comes from
post-hoc recalibration that many practitioners already apply (mean correction, histogram binning,
isotonic-style step fits on a held-out split). These procedures enforce generic (not task-specific)
moment constraints that are directly usable in our framework. We focus on bin-wise calibration:

take a partition of the forecast range into bins {Bj, ..., B;} and enforce, for each bin,
El{f(x)ij}(Y*f(X))} =0, J=1,...,J
This corresponds to the test class Hpi, = {1 B, j=1...,J }, and reduces to zero-bias when

J=1 with B; = [0,1]%.
Proposition 4.5 (Robust policy under bin-wise calibration). Let the utility be linear in the outcome
and the action set A be finite. If f is Hyin-calibrated, then with

m; = E[f(X)[f(X) € Bj] = E[Y[f(X) € Bj],
the worst-case belief is piecewise constant
g*(v) =m; forv e Bj(ae.),
and the robust action best-responds to the bin mean:

Grobust (V) € arg max {u(a, mj)} forv € Bj (ae.).

Implications. Bin-wise calibration #y,;, can be obtained cheaply via standard post-hoc methods
(histogram binning or isotonic regression), and Proposition [4.5] yields an especially simple, closed-
form characterization of the robust policy. Computing a,obust Teduces to: (i) estimating m; on
a calibration split, and (ii) at test time, mapping v to its bin B; and best-responding to m;. No
additional optimization is needed to compute actions. As a special case, when J = 1 we recover the
global-mean constraint E[Y — f(X)] = 0. Then ¢* is constant, ¢*(v) = m, with m = E[f(X)] =
E[Y], and the robust rule ignores v and plays arg max,e.4 u(a,m). As the partition is refined,
the robust rule moves from a single global plug-in best response at m to a piecewise plug-in best
response at m;, yielding a richer, finer-grained decision policy.

5 EXPERIMENTS

In this section, we evaluate the validity and practical consequences of our framework by implement-
ing our methods on two real-world datasets. We compare the plug-in best response (apr) against
the robust policy (a,obust), Which enjoys minimax optimality guarantees under 7{-calibration.

We focus on two classes of metrics. Nominal performance measures average utility when the test
data are i.i.d. from the same distribution as the training and calibration splits; this reflects an opti-
mistic regime that often degrades in practice. Adversarial performance probes the other extreme by
altering the test-time outcome distribution in two ways: (i) a worst case tailored to the plug-in pol-
icy, and (ii) a worst case induced by the robust dual, tailored to the robust policy. In both cases, the
adversarial distributions respect the H-calibration constraints and are therefore indistinguishable,
from the decision-maker’s perspective, from i.i.d. test draws given an #-calibrated forecaster.

Our theory predicts two patterns. First, by minimax optimality, the robust policy should dominate
the plug-in rule when each is evaluated against its own worst-case distribution (and typically also
under the adversary tuned to hurt the plug-in). Second, because (a,obust, ¢*) forms a saddle point
of equation [5] when both policies are evaluated under the robust-tuned adversary, the robust policy
should not underperform the plug-in rule. Under nominal i.i.d. evaluation, the plug-in rule may
achieve higher utility, reflecting the lack of need for conservatism in that regime.

5.1 CASE STUDIES: BIKE SHARING AND CALIFORNIA HOUSING

We evaluate our framework on two regression datasets with distinct decision-making interpretations.

Bike Sharing (UCI). The UCI Bike Sharing (daily) dataset/Fanaee-T & Gama|(2014)) records daily
rider counts alongside calendar and weather covariates (season, month, weekday, holiday, working
day, weather state, temperature, humidity, wind). The outcome Y € [0, 1] is the rescaled total rider
count, and the decision-maker chooses a staffing/capacity multiplier from A = {0.8, 1.0, 1.2},
interpretable as conservative, nominal, and aggressive provisioning.
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Table 1: Mean utility on the test set under natural i.i.d. evaluation and two adversarial evaluations.
Adversaries respect H-calibration (H = {h(v) = v}).

Dataset iid. Worst-case for robust ~ Worst-case for plug-in
Plug-in Robust Plug-in Robust Plug-in Robust

Bike Sharing (UCI) 0474  0.463  0.402 0.410 0.393 0.412

California Housing ~ 0.216 ~ 0.207  0.160 0.164 0.155 0.166

California Housing. The California Housing dataset Pace & Barry| (1997) records median house
values (rescaled to [0, 1]) with demographic and geographic covariates (median income, housing
age, population, latitude/longitude, etc.). Here the decision-maker chooses an investment multiplier
from A = {0.6, 0.75, 0.90}, interpretable as conservative, nominal, and aggressive investment.

Utility specification. In both settings we adopt the utility function u(a,y) = cay — C(a), which
is linear in y. The benefit term «a y captures service or return proportional to realized outcome v,
scaled by @ > 0. The cost term C'(a) grows in a, penalizing aggressive choices via over-provisioning
costs or investment risk. This form tunes the under/over-trade-off without departing from linearity.
For Bike Sharing we use («, C'(+)) = (0.9, {0.02,0.05,0.1}), while for California Housing we use
(o, C(+)) = (0.9,{0.02,0.05,0.20}). The qualitative conclusions of this Section remain the same
under other reasonable parameter choices.

Forecasting model. In both datasets, the forecaster f is a two-layer MLP regressor trained to
optimize mean squared error. By the self-orthogonality property of linear heads under squared loss
(Proposition , the learned forecaster approximately satisfies H-calibration with H = {h(v) =
v}, which is the calibration constraint used to derive the robust policy a,opust- All experiments use
an i.i.d. train/calibration/test split (60/20/20). We use the calibration data to substitute any population
level expectation that is needed to be computed to derive aobust-

Results. Table |l| reports the mean utilities. The results match theory: under adversaries tailored
to the robust policy, the robust rule achieves at least the plug-in performance; under adversaries
tuned to harm the plug-in rule, the robust policy secures noticeably higher utility, reflecting its
minimax protection. Moreover, the robust policy outperforms the plug-in best response when each
is evaluated against its own worst-case distribution.

6 CONCLUSION AND LIMITATIONS

We developed a decision-theoretic framework for acting on partially calibrated forecasts via a
minimax-optimal robust policy over #{-calibrated forecasters. We then identified a sharp transition
in the behavior of these policies: for any decision problem with m actions, there exist m decision
tests (the decision-calibration class) such that, once they are included in H, the robust policy col-
lapses to the plug-in best response. This spotlights decision calibration as a natural requirement
whenever the decision-maker can influence the training pipeline. Moreover, even when decision
calibration is unavailable, we showed that generic properties induced by standard training and post
hoc procedures (e.g., self-orthogonality under squared loss and bin-wise calibration) yield usable
test classes H and tractable robust policies within our framework.

Our model assumed that downstream decision makers were risk neutral — i.e., their utility functions
u(a, v) are linear in v and A is finite; these are standard assumptions in the calibration literature, but
broadening them would be interesting. We note that certain classes of non-linear utility functions can
be linearized over an appropriate basis (Gopalan et al., 2024b; [Lu et al., 2025)), which would allow
our results to apply — though these bases are not always low dimensional enough to be practical.
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Appendix

A MISSING PROOFS FROM THE MAIN BODY
Proof of Theorem 3.1]

Proof. We begin from the robust formulation

max min Eu(a(f(X)), ¢(f(X)))], (6)

a(-):X—A qeQ

where A C R™ is compact, u(-,-) is linear in its second component, Q is the nonempty, convex,
and compact set of measurable maps ¢ : [0,1]¢ — [0, 1]? satisfying the linear moment equalities
in equation E], and a(-) ranges over measurable policies with values in 4. The mapping (a, q)
Elu(a(f(X)), ¢(f(X)))] is convex in g (since u(a, -) is linear, hence convex, in y and expectation
preserves convexity), concave in a (as a pointwise maximum over linear functionals in a on the
compact set A4). Hence, by Sion’s minimax theorem,

max min Elu(a(f(X)), q¢(f(X)))] = mig r}llng[u(a(f(X)),Q(f(X)))]

Fix any ¢ € Q. The inner maximization over policies separates pointwise in v = f(x), yielding the
value function

val(p) £ maxu(a,p) and  max Elu(a(f(X)), ¢(f(X)))] = E[val(a(/(X)))] -
Therefore the robust value equals the convex adversarial problem

gréig E[val(q(f(X)))], (7

which will be analyzed via Lagrangian duality below.

Introduce vector Lagrange multipliers \; € R? for the d-dimensional equalities in equation 4, and
let A= (\1,..., Ax). Define

k
s(v) = Zhi(v) i € RY, v e [0,1]%
i=1
The Lagrangian of equation[/|is
k

L(g,A) = E[val(q(f(X)))] + >_Xi-E[h(f(X)) (a(f(X)) = f(X))] .

i=1

By linearity of expectation,
Lig.A) = E[vallg(f(X)) + a(f(X)) /(X)) — (X)-(f(X))]-

The dual function is obtained by minimizing L (g, \) over measurable q : [0, 1]¢ — [0, 1]¢. Since the
integrand depends on ¢ only through ¢(f(X)), the infimum can be taken pointwise in the forecast
value v = f(X):

GO = infL(g,)) = E| int {val(p) +p-s(£(X) } | = E[F(X) - o(£(X))].

p€el0,1

The primal problem equation [/|is convex (convex objective, affine constraints) and feasible (e.g.,
q(v) = v), thereby strong duality holds. Hence,

min E[val(¢(f(X)))] = Jax, G(3),

and there exists a maximizing multiplier A*. Define

k
s*(v) £ > hi(v) Af € RY
i=1

13
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By the definition of G(\) and strong duality, any primal optimizer ¢* € Q must minimize the
Lagrangian at A*. Since the dependence on q is only through ¢(f(X)), this yields the pointwise
characterization, for v = f(z) almost surely,

q*(v) € argpér[&rll]d {Val(p) +p-s (v)}

With ¢* fixed, define the policy
Arobust (V) € arg max u(a7 q* (v))
ac

Then, by the definition of val and the construction of ¢*,
max E[u(a(£(X)). " (F(X)))] = Bval(q" (f(X)))] = minE [val (g(/(X)))]

which shows that (ayobust, ¢*) is a saddle point of equation@ In particular, a,opbyst i optimal for
the outer maximization, and ¢* is worst—case optimal for the inner minimization, with ¢* character-
ized pointwise by the minimization problem above and determined by the dual multiplier A*. This
matches the statement of Theorem [3.T]and completes the proof. O

Proof of Theorem (4.1}

Proof. We use the reduction

max minE[u(a(f(X)),q(f(X)))] = minE[val(g(f(X)))],

established in the proof of Theorem [3.1] Fix the decision regions
R, ={ve[0,1)¢: u(a,v) >u(d,v)Va € A},

each convex. Under Haee = {1r, : a € A}, admissible ¢ satisfy

E[1r, (fX){e(f(X)) = f(X)}] =0 Va,
equivalently (whenever P(f(X) € R,) > 0),

Elqg(f(X)) [ f(X) € Ra] = E[f(X) | f(X) € Ra] = pta € Ra-

By Jensen’s inequality (convexity of val), for any ¢ € Q and any a,

Elval(q(f(X))) | f(X) € Ra] > val(ua).

Define the piecewise-constant G(v) = > ita 1r, (v). Then ¢ € Q and, conditionally on f(X) €
R,, we have G(f(X)) = pq a.s., hence the bound is attained:

E[val(g(f(X)))] = S P(f(X) € Ra) val(uia) < E[val(q(f(X)))] Vg e Q.

Thus a worst-case belief is ¢* = ¢, region-wise constant with ¢*(v) = p, on R,,.

Finally, since i, € Ry, by definition of R, we have u(a, 1q) > u(a’, i) for all @, so a is a best
response to 1. Therefore the robust action at v € R, is

Arobust (V) € argmaxu(a’, ¢*(v)) = argmaxu(a’, j1q) 3 a,
a’ a’

which coincides (a.e.) with the plug-in best response to v. This proves Theorem .1} O

Proof of Theorem 4.2}

Recall val(p) = maxge 4 u(a, p) and the reduction

mex min Efu(a(f(X)),q(f(X)))] = min E[val(¢(f(X)))],

14
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established earlier in the proof of Theorem Moreover, the identity map giq(v) = v always lies
in Qg (the perfect forecaster is consistent with every H-calibration constraint), so for any policy

a(-),
min Efu(a(f(X)),q(f(X)))] < Efu(a(f(X)), f(X))]. ®)

q€EQn

Let apr (v) € argmax,e 4 u(a, v) be a plug-in best responseﬂ We show that, assuming H contains
the decision-calibration tests {1g, }oc 4,

Elu(ar(f(X)),q(f(X)))] = Elu(asr(f(X)), f(X))] Vqge Oy )
Write o := E[f(X) | f(X) € R,] whenever P(f(X) € R,) > 0 (f P(f(X) € R,) = 0, any
choice of p, is harmless since the corresponding terms vanish). Then

E[u(apr(f(X)),a(f(X)))] = D E[u(a, q(f(X)) Lyx)er.)]

acA

9 S"P(f(X) € Ra) ula, Elg(f(X)) | £(X) € Ra])

acA

ST P(f(X) € Ra) ula, E[f(X) | f(X) € RJ))

acA

=Y P(f(X) € Ra) u(a, o)

acA

WS Elu(a, (X)) Liyxoer)]

acA
= E[u(asr(f(X)), f(X))] .
Here: (7) uses that u(a, -) is linear in its second argument, so
Elu(a, q(f(X))) | £(X) € Ra] = u(a, E[q(f(X)) | F(X) € Rdl),

(49) uses the decision-calibration equalities E[1x, (f(X)){q¢(f(X)) — f(X)}] = 0, equivalently
Elg(f(X)) | f(X) € R, =E[f(X) | f(X) € Ry] = g whenever P(f(X) € R,) > 0; and (4it)
again uses linearity: u(a, 11a) = u(a, E[f(X) | f(X) € Ry]) = E[u(a, f(X)) | f(X) € Ra].

Combining equation [8] the optimality of best response on the perceived outcomes,

E[u(a(f(X)),f(X))] < ]E[u(aBR(f(X)),f(X))] for all policies a(-),

and the invariance equation[9] we obtain the minimax dominance
i Efu(anr(f(X)),a(/(X))] = Efu(apr(F(X)), FX0)] > min Efu(a(f(X)),a(£(X)].

for every forecast-based policy a(-). Hence the plug-in best response is minimax optimal under any
‘H that contains the decision-calibration tests, as claimed.

Proof of Proposition [4.4;

Proof. Assume E||z4(X)[|3 < oo and E[|Y |3 < oo so that all derivatives and expectations below
are well-defined and we may interchange expectation and differentiation by dominated convergence.
Write 2 := 24(X) € RF and f := fp(X) = Wz € R% The squared-loss risk is

L) = FE[If-YIE] = E[(Wz-Y)"(Wz-Y)].
For the linear head W € R9*¥, the gradient with respect to W satisfies the standard identity
VW(%HWZ - Y||§) = (Wz-Y)z" € RF,
Taking expectation and interchanging V with E yields
VwL®) = E[(f-Y)z"].

'Fix any deterministic tie-breaking so that agr and the regions R, = {v : apr(v) = a} are measurable.
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At a first-order stationary point (in particular, when the gradient with respect to W vanishes) we

have
E[(f-Y)z"] = Ogxs-
Transposing gives
E[z(f—Y)T} = Ogxa <~ E[Z (Y—f)T] = Orxd,
which is the first claimed moment identity.

For the second identity, observe that f = Wz, hence

Ef Y =)'] =EWz(Y —f)T] = WE[z(Y = f)"] = WO0kxa = Oaxa-
Therefore both E[ 24(X) (Y — fo(X)) "] = 0and E[ fp(X) (Y — fo(X)) "] = 0 hold. In particular,
for each coordinate j = 1,...,d, E[e] fo(X) (Y — fo(X)) "] = 0and E[ z4(X) e] (Y — fo(X))] =
0, so fo is H-calibrated for # = {h;(v) = e/v: j = 1,...,d} and for any linear combination

thereof. This proves the proposition. ! O

Proof of Proposition

Proof. By the reduction established earlier (see the proof of Theorem 3.1)), the robust problem

max min E[u(a(f(X)), q(f(X)))]

with linear utilities and finite A is equivalent to the convex program
in E|val X 1(p) ==
min Eval(¢(f(X)))],  val(p) := maxu(a,p),

subject to the H i, -calibration constraints
E[lipeny (@(f(X) = f(X)] =0, G=1,....J
Write E; := {f(X) € B;} and assume P(E;) > 0 (bins with zero probability are immaterial).
Then the constraints are equivalent to
Elg(f(X) [ Ej] = E[f(X)|E] = my,  G=1,....J.
Because u(a, -) is linear in the outcome, val is the pointwise maximum of linear maps and hence
convex. Decomposing by bins and applying Jensen’s inequality gives, for any feasible g,

|
'M“

E[val(q(f(X)))] P(E;) E[val(q(f(X))) | E;]

<
I
—

P(E;) val(E[q(f(X)) | E;])

<
Il
—

[ \Y
= 10~

P(E;) val(m;).

<.
Il

Define the piecewise-constant candidate

J
= > m;lp(v)
j=1

Then ¢ is feasible, since for each j,
E[1g, (a(f(X)) = f(X))] = P(E;) (m; — E[f(X) | E;]) =0,
and it attains the Jensen lower bound because §(f(X)) = m; almost surely on E;:
E[val(q(f(X))) | E;] = val(m;).
Therefore ¢ is an optimizer, and any minimizer ¢* can be chosen (a.e.) piecewise constant with
¢*(v) =m; forv € B;.

Finally, fixing such a ¢*, the robust action at forecast v € B; solves
* _
ot (¢) € argmacu(a, g*(v) = argmaxu(a, m),

which depends only on the bin index, i.e., it is the best response to the bin mean. This proves the
claim. ]
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B APPROXIMATE H-CALIBRATION: STABILITY UNDER £-SLACK

This appendix extends the main results to the practically relevant regime in which #{-calibration
holds only approximately. Concretely, we relax each linear calibration equality in equation [3]to an
{o-ball of radius €. Throughout, we retain the standing assumptions of the main text: utilities are
linear in the outcome, so there exist {r, € RY, ¢, € R}qeq with

u(a,p) = re'p + ca = val(p) = max u(a, p) is convex and L-Lipschitz w.r.t. || - |2,
ac

where L := max,c 4 ||rq]|2. We write expectations over (X, Y") distributed as in the main body, and

f: X — [0,1]% denotes the given forecaster.

Approximate calibration constraints. Let %7 = span{hi,...,hr} with measurable h;
[0,1]¢ — R bounded by |h;(v)| < 1. For a candidate conditional expectation ¢ : [0, 1]¢ — [0, 1]¢,
define the (vector) calibration moments

mi(q) = E[hi(f(X){a(f(X)) = f(X)}] €RY,  i=1,... .k
We say q is e—approximately H-calibrated if ||m;(q)||2 < ¢ for all 5. The corresponding ambiguity
set and robust value are
0 = {g: (0.0 0.1 ¢ milg)lle e i=1o.kf. Ve = min Efval(g(/(X)))].
For reference, the exact-calibration value is Vo = mingeg E[val(¢(f(X)))], where Q is the
equality-based set from equation 4]

Roadmap. We first show a dual penalty bound: moving from exact to e—approximate constraints
subtracts an explicit fo—norm penalty from the exact dual objective, yielding two-sided value bounds
and a linear-in-¢ degradation guarantee. We then quantify the robustness of decision calibration:
even under e-slack, the plug-in best response is O(m Le)-minimax optimal (with m:=|.A|). Finally,
for bin-wise (histogram) calibration with e—slack, we obtain piecewise-constant worst-case beliefs
and tight value bounds, recovering the exact structural picture up to O(J Le) terms when there are
J bins.

Policy characterization under e—slack. The primal inner problem remains convex and pointwise
in v = f(x), while the dual acquires the norm penalty from Theorem Consequently, the
optimal robust policy admits the same form as in the exact case, with the unique change that the
dual multiplier solves a penalized maximization.

Theorem B.1 (s—robust policy via penalized dual). Let H = span{hq, ..., hy} and define G(\) as
in the main text. Let
k

k
A\l € arg max {G(A) — €ZH)\¢H2}, sa:(v) = Zhi(”))‘;r
i=1

AS(RD* i=1
Then there exists a worst-case belief q* : [0,1]¢ — [0,1]% such that for almost every forecast

v =f(x),

@) € arg min {val(p) + psx:(v)},  val(p) = maxu(a,p).

The e—robust action is the best response to ¢ (v):

*

aZ(v) € argmaxu(a, ¢! (v)).

Proof of Theorem|[B.1] Recall the robust formulation under linear utilities and forecast-based poli-
cies reduces to the adversarial convex program

min E|val X val(p) := maxu
qelgg [Va (Q(f( )))] ) al(p) aea (a,p),
with the e—approximate H—calibration set

Q. = {a: 0,117 [0,1)% + |[B{hi(F()MalF(X)) = FEN][l, <2 i =1, k).
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Introduce slack vectors s; € R (one per test) so that each constraint is rewritten as the equality

Eh (f(X){a(f(X)) = f(X)} =i with [sil2<e (i=1,....k).

Let \; € R be the Lagrange multipliers for these equalities and set s (v) := Zle h;(v)A;. The

Lagrangian reads

k
Lig, ;) = Elval(a(£(X))) | + 3 Ao (Blh:(F(X)Ha(F (X)) = F(X)}] = 5:).
i=1

Minimizing L over the slacks s; subject to ||s;||2 < e contributes the support function of the ¢5—ball,

inf (=Xi-s;)=— sup (Ni-s;) = —¢|\i|a.

lIsill2<e lIssll2<e

Minimizing the remaining part over ¢ depends on ¢ only through ¢(f(X)) and yields, pointwise in

v = f(X).
k
inf L(g,5:0) =B int {val(p) + p-x(F(X)} ]| = ELS O sx(FOO)] = € D il

Therefore the dual function is

k
G=(\) = E| min {val(p) +p- sx(f(X))}] ~ E[f(X)- sx(F0)] =D Ml

pe[0,1]4

=:G(\)
i.e., the exact-calibration dual G(\) penalized by € ) _, || Ai[2.

The primal problem is convex (convex objective, affine moment constraints) and feasible (e.g.,
q(v) = v makes all moments 0, which is strictly feasible when £ > 0), so Slater’s condition holds;
hence strong duality holds and a maximizer A* of G, exists:

k
min E[val(¢(f(X)))] = max {G(A)—&ZHx\ng}.

qE€Q. Ae(RI)k

Moreover, comparing with the exact case (which corresponds to € = 0) gives the two-sided value
bound

m}.’fmx{G(/\)—sZH/\ng} < Ve £ Vo= maxGOA),

and 0 S VO - ‘/s S 5min)\6argmaxG Zz ||)\2H2

By strong duality, any primal minimizer ¢* € Q. together with \* forms a saddle point: L(g*, A) <
L(q:, ) < L(g, \*). The first inequality implies that ¢* minimizes the Lagrangian at \*, which
(by the pointwise structure above) yields, for almost every forecast v = f(z),
k

¢ (v) € arg min {"al(p) +p- SA*(U)}’ sx(v) = D hi(0)X].

114
p€[0,1] =1

With g7 fixed, the optimal robust action at v solves

Arobust,e ('U) € arg Igleajf u (a7 q; (U)) 5

i.e., it is the best response to the worst-case belief ¢ (v). This is the same best-response structure
as in the exact case, now using the penalized dual optimizer A* (cf. the exact characterization in the
main text).

Altogether, we have (i) the dual penalty representation with value bounds, (ii) existence of a dual
maximizer A\*, (iii) the pointwise form of the worst-case belief ¢, and (iv) the robust policy as a
pointwise best response to ¢, completing the proof. [

18



Under review as a conference paper at ICLR 2026

Computation. Algorithmically, the recipe mirrors the exact case: (i) maximize the concave objec-
tive G(A) — €Y, || Ail|2 (e.g., projected/subgradient or bisection in 1D; small-scale mirror descent
otherwise); (ii) for each forecast v, compute ¢*(v) by solving the convex problem in p; (iii) play
a’(v) as the best response to ¢* (v). For finite .4 and utilities linear in p, step (ii) reduces to checking
a small finite set of candidates (endpoints and pairwise breakpoints of val), exactly as in the main
text.

Decision tests contained in  under e-slack: near-optimality of plug-in. Let R, := {v :
u(a,v) > u(a’,v) Va' € A} be the plug-in region for action a, and write P, := P(f(X) € R,)
(regions with P, = 0 are ignorable). Assume H is a test class that contains the decision indicators
{1g, : a € A}, with each test bounded by || 1, ||cc < 1. We impose e—approximate H—calibration
in the componentwise sense of Section [B] so in particular

|E[1R,(f(X)) {a(f(X) = f(X)}]||, < e  forallac Aandallq € Q..

Theorem B.2 (Plug-in is O(mLe)-minimax optimal when decision tests lie in 7). Let m := |A|
and L = maxgea ||ro|2 as above. If H contains the decision indicators {1g,} and f is
e—approximately H—calibrated, then the plug-in rule agr (v) € arg max, u(a, v) satisfies, for any
Sorecast-based policy a(-),

min E[u(anr(f(X),a(fF(0))] > min E[u(alf(X)).q(F(X)))] — mLe.

Proof. Fix any ¢ € Q.. Decompose by plug-in regions:
E[u(asr(f),a(f)] =D PaElu(a,q(f)) | f € Ra].

acA

Since u(a, -) is linear,
Elu(a,q(f)) | f € Ro] = u(a, Ela(f) | f € Rd)).
Let po := E[f | f € R,]. By L-Lipschitzness of u(a, -) and the e—slack on the indicator test,

Bk, ) = P, c
2 L P, < LFG'

(Bl (7) | Rul) ~u(a o)

< L|[Elg(f)—f | Ral

Therefore,

Elu(asr(f),a(f)] = > Paula,pa) — ZPa~L,% = Efu(apr(f), f)] — mLe.

Let ¢ € argmingeco, E[u(asr(f),¢(f))]. Then
min Efu(agr(f), ¢(f)] = Elu(apr(f), 4(f))] = Elu(asr(f), f)] —mLe.
For any forecast-based policy a(-), optimality of the plug-in action on f implies E[u(agr(f), )]

Elu(a(f), f)]- Moreover, since giq(v) = v is feasible for Q., we have min,c o, E[u(a(f), ¢(f))]
E[u(a(f), f)]. Combining the last three displays yields the claimed inequality.

OINIV

Remark. The proof uses only the e—slack constraints for the decision indicators {1, }; any H
that contains these tests (with per-test slack bounded by ¢) suffices. Thus Theorem [B.2] generalizes
both Theorem[4.T]and Theorem 4.2

Bin-wise calibration under e-slack: value stability and structure. Let {B;} 3]:1 be a measur-
able partition of [0, 1]¢. Assume e—bin-wise calibration:

|E[1rx)en,y {a(f(X) = FXOY|, <& d=1,...,J

Write E] = {f(X) S BJ}, Pj = ]P)(EJ), and mj 1= E[f(X) | E]] (bins with P] = 0 are
ignorable).
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Proposition B.3 (Value stability and piecewise-constant worst-case beliefs). Under e-bin-wise cal-
ibration,

J
jzlp val(m;) — JLe < min E[val(q(f(X)))] < ZPj val(m;).

Moreover, there exists a worst-case (or arbitrarily near-worst-case) belief that is piecewise constant:
for each j one can take

* * .
q;(v) =p; € arg min val(p), v € Bj (a.e.),
6( ) J lp—m;ll2<e/P; ( ) J

and the robust action on B; best-responds to pj.

Proof. For any feasible ¢,

J
E[val(q Z E[val(q Z P;val(E[g(f) | E}])

by Jensen since val is convex. The slack constraint implies

Pj

IEla(f) - £ | Ejlll, =

IA
8o

80, using L-Lipschitzness of val,
£
P’

J

val(Elg(f) | E;]) > val(m;) — L
Summing over j yields the lower bound E[val(¢(f))] > >_; P; val(m;) — J Le. The upper bound
holds because Q C Q. and equality is achieved at € = 0 by the exact bin-wise result.

For structure, fix any feasible g. Replacing g by its conditional mean on each bin,

J
i(v) ==Y _Ela(f) | Ej) 15, (v),
j=1

does not increase the objective (by Jensen within each bin) and preserves feasibility (the bin-wise
moments are unchanged). Hence the minimization reduces to choosing, for each bin, a point p; €
[0, 1] subject to [|p; —m;||2 < £/ P; to minimize >_; Pjval(p;), which yields the stated piecewise-
constant form with p]* € arg min|, o, ||<e/P; val(p). The best-response form of the robust action
on each bin is immediate from the definition of val. O
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