

ROBUST DECISION MAKING WITH PARTIALLY CALIBRATED FORECASTS

Anonymous authors

Paper under double-blind review

ABSTRACT

Calibration has emerged as a foundational goal in “trustworthy machine learning”, in part because of its strong decision theoretic semantics. Independent of the underlying distribution, and independent of the decision maker’s utility function, calibration promises that amongst all policies mapping predictions to actions, the uniformly best policy is the one that “trusts the predictions” and acts as if they were correct. But this is true only of *fully calibrated* forecasts, which are tractable to guarantee only for very low dimensional prediction problems. For higher dimensional prediction problems (e.g. when outcomes are multiclass), weaker forms of calibration have been studied that lack these decision theoretic properties. In this paper we study how a conservative decision maker should map predictions endowed with these weaker (“partial”) calibration guarantees to actions, in a way that is robust in a minimax sense: i.e. to maximize their expected utility in the worst case over distributions consistent with the calibration guarantees. We characterize their minimax optimal decision rule via a duality argument, and show that surprisingly, “trusting the predictions and acting accordingly” is recovered in this minimax sense by *decision calibration* (and any strictly stronger notion of calibration), a substantially weaker and more tractable condition than full calibration. For calibration guarantees that fall short of decision calibration, the minimax optimal decision rule is still efficiently computable, and we provide an empirical evaluation of a natural one that applies to any regression model solved to optimize squared error.

1 INTRODUCTION

Machine learning systems are increasingly deployed in high-stakes decision making domains such as healthcare, finance, and law. The predictive power of these models can be extraordinary, but scoring well on predictive error metrics does not directly guarantee that decisions downstream of those predictions will be correct. For predictions to be operationally useful, a decision-maker must be able to treat them as reliable inputs into a downstream decision making policy. This raises two fundamental questions:

On the Model Side: *What does it mean for machine learning predictions to be trustworthy in decision-making contexts?*

On the Decision Making Side: Given predictions that satisfy a particular type of “trustworthiness”, how should the decision maker adapt its actions to the promised guarantees?

On the Model Side: A natural answer is that trustworthy predictions should directly support good decisions as they are. In other words, the decision-maker should be able to reliably best respond to the forecaster’s predictions as if they were correct. Formally, let (X, Y) be a pair of random variables drawn from a joint distribution \mathcal{D} , where $X \in \mathcal{X}$ represents the observed features and $Y \in [0, 1]^d$ is the outcome of interest. Let \mathcal{A} denote the action set, and suppose the decision-maker follows a policy $a(\cdot) : [0, 1]^d \rightarrow \mathcal{A}$ mapping predictions to actions. Given a predictor f , the decision maker’s performance when using a policy a is measured by its expected utility on the underlying distribution:

$$\mathbb{E}_{(X,Y) \sim \mathcal{D}}[u(a(f(X)), Y)],$$

054 where $u(a, y) \in \mathbb{R}$ is a utility function. Given a forecaster $f : \mathcal{X} \rightarrow [0, 1]^d$, the *plug-in best response*
 055 to a forecast is defined as

$$056 \quad a_{\text{BR}}(f(x)) = \arg \max_{a \in \mathcal{A}} u(a, f(x)). \quad (1)$$

058 Thus, a forecaster f is trustworthy if the decision-maker’s best-response policy $a_{\text{BR}}(f(x))$ achieves
 059 higher utility than any other policy. When is this the case?

060 The classical answer lies in the notion of *calibration*. Intuitively, a forecaster is calibrated if, when-
 061 ever it predicts a vector $f(x) = v \in [0, 1]^d$, the empirical outcomes are consistent with that predic-
 062 tion. More formally, a forecaster f is said to be *fully calibrated* if for every $v \in [0, 1]^d$,

$$063 \quad \mathbb{E}[Y | f(X) = v] = v.$$

064 It is well known that best responding to calibrated forecasts is the optimal decision policy among all
 065 policies that map forecasts to actions (Foster & Vohra, 1997; Kleinberg et al., 2023; Noarov et al.,
 066 2023; Roth, 2022).

067 However, achieving full calibration is extremely difficult, both in theory—the sample complexity
 068 of calibrating an existing forecaster without harming its accuracy grows exponentially with the out-
 069 come dimension d (Gopalan et al., 2024a)—and in practice, where empirical evidence shows sys-
 070 tematic deviations from calibration, ranging from neural networks to large language models (Guo
 071 et al., 2017; Kull et al., 2019; Gupta & Ramdas, 2022; Plaut et al., 2024). Thus, despite the appealing
 072 link between calibration and trustworthy ML-powered decision-making, this connection quickly
 073 breaks down in real-world applications.

074 **On the Decision Making Side:** Decision making from predictions admits two canonical extremes.
 075 At one end, the decision maker *aggressively best responds* to the forecasts, acting as if they were
 076 fully correct. At the other end, the decision maker *conservatively plays a minimax-safety strat-
 077 egy*, $\arg \max_{a \in \mathcal{A}} \min_{y \in \mathcal{Y}} u(a, y)$, treating the forecasts as if they carried no information about the
 078 instance.

079 Departing from these extremes, we treat a model f and its forecast $f(x)$ as information that con-
 080 strains what the true, instance-conditional outcome distribution could be. In other words, after
 081 observing $f(x)$, the decision maker considers the set of *candidate realities*—outcome distributions
 082 consistent with the forecast and the available calibration guarantees. Intuitively, the “volume” of
 083 this set is governed by the strength of calibration: under full calibration, the set collapses to the
 084 forecast itself (the prediction can be treated as reality, at least in expectation), whereas as calibration
 085 weakens, the set enlarges. A principled decision rule should therefore *tune its conservatism to what*
 086 *the reality could be*, consistent with the provided guarantees. This idea, together with the fragility
 087 of full calibration in practice, leads to the central question of this paper: *can we derive optimal*
 088 *decision-making policies under weaker and more practical conditions than full calibration?*

089 We answer this question affirmatively. We introduce a framework based on *conservative* decision
 090 making that nevertheless fully exploits *partially* calibrated forecasts. This viewpoint echoes ideas in
 091 robust optimization and control, but it has not been systematically developed for post hoc decision
 092 making with partially calibrated machine-learning forecasts.

093 1.1 OUR RESULTS

094 We consider a parameterized family of weighted calibration guarantees that have recently become a
 095 popular object of study (Hébert-Johnson et al., 2018; Gopalan et al., 2022). Informally speaking, this
 096 family of guarantees constrains the residuals of a predictor f to be uncorrelated with a collection
 097 of “test functions” $h \in \mathcal{H}$ mapping the range of f to the reals. When \mathcal{H} consists of all such
 098 test functions, we recover full calibration, but many popular variants of calibration (e.g. top label
 099 calibration, decision calibration, etc) can be expressed as instances of \mathcal{H} -calibration under much
 100 smaller/more tractable sets \mathcal{H} . Our contributions are as follows:

101 1. In Section 2 we formalize the following question: given a set of test functions \mathcal{H} and a
 102 predictor $f(x)$ that is promised to satisfy \mathcal{H} -calibration, what decision rule $a : [0, 1]^d \rightarrow \mathcal{A}$,
 103 mapping predictions to actions, will maximize a decision maker’s expected utility in the
 104 worst case over all joint distributions over $X \times Y$ that are consistent with the promise that
 105 f is \mathcal{H} -calibrated?

108 2. In Section 3 we answer this question by giving a closed-form for the decision maker’s opti-
 109 mal decision rule, in terms of the dual variables of a convex program that can be efficiently
 110 computed for any finite \mathcal{H} .
 111

112 3. In Section 4 we instantiate this decision rule for various calibration guarantees of interest.
 113 Of particular note, we find that when \mathcal{H} corresponds to the tractable notion of *decision*
 114 *calibration* (Zhao et al., 2021; Noarov et al., 2023), then the optimal decision rule is the
 115 best response decision rule a_{BR} , just as it is for (the intractable notion of) full calibration.
 116 In fact, it suffices that \mathcal{H} *contains* the decision calibration constraints — any larger set *also*
 117 makes best response the optimal decision rule. Thus what could have been a very large
 118 hierarchy of minimax optimal decision rules “collapses” to best response at the level of
 119 decision calibration. An upshot of this is that a predictor can be simultaneously decision
 120 calibrated for many downstream decision makers, and for each of them, best response will
 121 be their optimal decision policy in this minimax sense. We also derive the minimax optimal
 122 decision rule for a simple “self-orthogonality” calibration condition that will hold for any
 123 regression model with a linear final layer trained to optimize squared loss, and hence will
 124 be commonly satisfied without any algorithmic intervention.
 125

126 4. In Section 5 we train a two-layer MLP to minimize squared loss on two regression datasets,
 127 and evaluate both the best-response decision rule and the robust decision rule that results
 128 from the self-orthogonality condition of squared error regression. We find that, as predicted
 129 by our theory, the robust decision rule outperforms the best-response decision rule under
 130 calibration-preserving distribution shift, and that the cost of this robustness is mild even
 131 under ideal conditions.
 132

133 1.2 RELATED WORK
 134

135 Rothblum & Yona (2023) consider a setting in which both the outcome and decision maker’s action
 136 set are binary, and study how a decision maker should act to minimize their worst case regret over
 137 distributions such that the predictor has maximum calibration error bounded by α : informally that
 138 $|\mathbb{E}[Y|f(x) = v] - v| \leq \alpha$ for all v . The models f they study are (approximately) fully calibrated,
 139 which is a reasonable assumption in their setting, since they limit their study to 1-dimensional out-
 140 comes. In contrast, our interest is not (just) in quantitative measures of full calibration error, but
 141 rather qualitatively weaker calibration guarantees, as even approximate full calibration becomes in-
 142 tractable in high dimensions.
 143

144 A line of recent work (Zhao et al., 2021; Kleinberg et al., 2023; Noarov et al., 2023; Roth & Shi,
 145 2024; Hu & Wu, 2024; Okoroafor et al., 2025) has studied the guarantees that can be given to
 146 downstream decision makers who best respond to predictions that have weaker guarantees than full
 147 calibration (and which in the cases of Zhao et al. (2021); Noarov et al. (2023); Roth & Shi (2024) can
 148 be tractably guaranteed in higher dimensional outcome settings). These guarantees take the form of
 149 (external and swap) *regret* bounds, which are qualitatively weaker than the kind of “trustworthiness”
 150 promised by full calibration. Informally, regret bounds promise that the decision maker could not
 151 have done better by consistently playing a fixed action (or a fixed function remapping their actions to
 152 other actions), not that they could not have done better by using a different policy from predictions
 153 to actions. We show that even in high dimensions, the tractable “decision calibration” condition
 154 given by Zhao et al. (2021) recovers the same “trustworthiness” semantics of full calibration when
 viewed through our minimax decision making lens.

155 Analyzing minimax optimal decision policies is a common way of analyzing *robust* or *risk-
 156 averse* decision making guarantees, with deep roots in economics (Gilboa & Schmeidler, 1989;
 157 Hansen & Sargent, 2001; Manski, 2000, 2004; Manski & Tetenov, 2007; Manski, 2011), statistics
 158 (Wald, 1950), and robust optimization (Ben-Tal & Nemirovski, 2002; Kuhn et al., 2019; Duchi &
 159 Namkoong, 2021). For example, Carroll (2015) adopts this lens this in the context of contract theory
 160 and Kiyani et al. (2025) and Andrews & Chen (2025) do so in the context of conformal prediction.
 161 To the best of our knowledge, we are the first to apply this “robust” minimax lens to the problem of
 partially calibrated high dimensional forecasts.

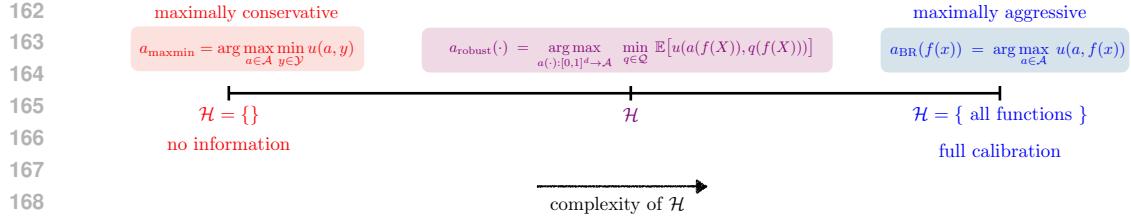


Figure 1: Schematic of the interpolating property

2 ROBUST DECISION MAKING AND \mathcal{H} -CALIBRATION

In this Section, we define \mathcal{H} -calibration as a flexible relaxation of full calibration and then introduce a framework to derive minimax optimal decision making policies that are designed to act on forecasters guaranteed to satisfy \mathcal{H} -calibration. This family of calibration guarantees has been studied extensively in the recent literature on multicalibration and its extensions (Hébert-Johnson et al., 2018; Dwork et al., 2021; Gopalan et al., 2022; Deng et al., 2023) — in particular, \mathcal{H} -calibration is a special case of what Gopalan et al. (2022) call weighted multicalibration.

\mathcal{H} -Calibration. Let \mathcal{H} be a set of functions $h : [0, 1]^d \rightarrow \mathbb{R}$. A forecaster f is said to be \mathcal{H} -calibrated if for every $h \in \mathcal{H}$,

$$\mathbb{E}[h(f(X)) \cdot (Y - f(X))] = 0. \quad (2)$$

Equivalently, writing $q(v) := \mathbb{E}[Y | f(X) = v]$ for the true conditional expectation, \mathcal{H} -calibration requires

$$\mathbb{E}[h(f(X)) \cdot (q(f(X)) - f(X))] = 0, \quad \forall h \in \mathcal{H}. \quad (3)$$

This definition captures a spectrum of guarantees. When \mathcal{H} contains all bounded measurable functions, \mathcal{H} -calibration reduces to full calibration — i.e. it requires that $f(v) = q(v) := \mathbb{E}[Y | f(X) = v]$ almost surely. For smaller classes \mathcal{H} , the requirement is weaker and can be seen as a relaxation of calibration, enforcing consistency only with respect to a restricted set of tests. In the main body of the paper we focus on the \mathcal{H} -calibration defined above, but in Appendix B we also discuss scenarios in which only approximate \mathcal{H} -calibration is available.

Robust Decision Making. Fix an \mathcal{H} -calibrated forecaster f . Define the set

$$\mathcal{Q} = \left\{ q : [0, 1]^d \rightarrow [0, 1]^d \mid \mathbb{E}[h(f(X)) \cdot (q(f(X)) - f(X))] = 0, \quad \forall h \in \mathcal{H} \right\}. \quad (4)$$

In words, \mathcal{Q} consists of all candidate conditional expectations consistent with f satisfying \mathcal{H} -calibration. Because the perfect predictor $f(X) = \mathbb{E}[Y|X]$ satisfies \mathcal{H} -calibration for every \mathcal{H} , the identity map $q(v) = v$ is always in \mathcal{Q} —but in general the set may contain many maps. From the perspective of the decision-maker who knows f and the promised calibration guarantee \mathcal{H} , but does not know the underlying distribution, given a forecast $f(x)$, the true expectation $\mathbb{E}[Y | f(x)]$ is uncertain but must lie within \mathcal{Q} . As \mathcal{H} grows richer, \mathcal{Q} shrinks, eventually reducing to $\{q(v) = v\}$ in the case of full calibration.

Faced with this uncertainty, a natural strategy is to adopt a robust policy that guards against the worst-case admissible reality. Formally, the robust decision rule is

$$a_{\text{robust}}(\cdot) = \arg \max_{a(\cdot):[0,1]^d \rightarrow \mathcal{A}} \min_{q \in \mathcal{Q}} \mathbb{E}[u(a(f(X)), q(f(X)))] \quad (5)$$

That is, the decision-maker chooses an action policy that maximizes utility under the worst-case conditional expectation consistent with calibration guarantees.

Interpolating Property. The robust policy in Equation 5 interpolates between two classical extremes (Figure 1). If \mathcal{H} contains all functions, then $\mathcal{Q} = \{q(v) = v\}$ and a_{robust} reduces to the best response $a_{\text{BR}}(\cdot)$ (Equation 1). If \mathcal{H} is empty, then \mathcal{Q} contains all functions and the policy collapses to the constant minimax strategy $a_{\text{Minimax}}(x) = \arg \max_{a \in \mathcal{A}} \min_{y \in [0,1]^d} u(a, y)$. Thus, Equation 5 provides a principled bridge between best-responding to calibrated forecasts and adopting fully conservative policies, with the level of conservatism controlled by the richness of \mathcal{H} .

The central theme of the remainder of this paper is to investigate the interaction between different levels of \mathcal{H} -calibration and the resulting optimal robust policies. Our focus is not on developing methods for achieving \mathcal{H} -calibration itself (for which we refer the reader to a rich line of recent work showing how to accomplish this in both the batch and online adversarial setting Hébert-Johnson et al., 2018; Gopalan et al., 2022; Deng et al., 2023; Noarov et al., 2023; Globus-Harris et al., 2023), but rather on understanding the decision-making consequences once such guarantees are in place. In the next section, we begin by analyzing the general problem of deriving optimal robust decision rules for arbitrary classes \mathcal{H} . We then specialize to the important case of decision calibration, showing that this weaker and more practical notion identifies large classes of partially calibrated forecasters for which best responding remains optimal. Beyond its theoretical appeal, this result is also practically useful: when a decision-maker can influence the design or post-processing of the forecaster, they can request a decision-calibrated forecaster, to which they can then simply, reliably, and optimally best respond.

Assumption 2.1. The utility $u(a, v)$ is linear in its second argument $v \in [0, 1]^d$ for each $a \in \mathcal{A}$.

This assumption naturally holds in multi-class settings where v is a probability vector over d outcomes and the decision maker has arbitrary utilities $U(a, k)$ for each action–outcome pair. In this case, $u(a, v) = \mathbb{E}[U(a, Y)] = \sum_{k=1}^d v_k U(a, k)$, which is linear in v . Such risk-neutral expected-utility models underlie much of the calibration and decision-making literature (e.g., (Foster & Vohra, 1997; Kleinberg et al., 2023; Roth & Shi, 2024)). Utilities that are nonlinear in v , for example, risk-averse utilities depending on outcome variance, fall outside our framework and represent an important direction for future work.

3 OPTIMAL DECISION POLICIES FOR FINITE DIMENSIONAL \mathcal{H} -CALIBRATION

In this section, we characterize the optimal robust decision making policies, i.e., solutions to Equation 5. Throughout this section, we assume the function class \mathcal{H} is a finite dimensional space, i.e. it can be described as span of finitely many functions. Formally, let $\mathcal{H} = \text{span}\{h_1, \dots, h_k\}$ be the linear class generated by measurable $h_i : [0, 1]^d \rightarrow \mathbb{R}$. Then the \mathcal{H} -calibration condition equation 3 is equivalent to the k linear moment equalities

$$\mathbb{E}[h_i(f(X)) \cdot (q(f(X)) - f(X))] = 0, \quad i = 1, \dots, k,$$

so that the ambiguity set in equation 4 may be written as

$$\mathcal{Q} = \left\{ q : [0, 1]^d \rightarrow [0, 1]^d \mid \mathbb{E}[h_i(f(X)) \cdot (q(f(X)) - f(X))] = 0 \text{ for } i = 1, \dots, k \right\}.$$

Intuitively, each equality enforces that, conditional on the forecast, the forecast error has zero correlation with the corresponding test h_i ; taken together, these constraints exhaust the information provided by \mathcal{H} -calibration criteria and hence precisely describe the admissible reality faced by the robust decision-maker in equation 5.

Theorem 3.1 (Characterization of the Optimal Robust Policy). *Suppose $\mathcal{H} = \text{span}\{h_1, \dots, h_k\}$ with each $h_i : [0, 1]^d \rightarrow \mathbb{R}$, and let \mathcal{Q} be defined as above. Then the minimax problem in Equation 5 admits a saddle point (a_{robust}, q^*) with the following structure:*

There exist multipliers $\lambda^ = (\lambda_1^*, \dots, \lambda_k^*)$ with each $\lambda_i^* \in \mathbb{R}^d$ such that for almost every forecast $v = f(x)$ the worst-case map $q^*(v)$ solves*

$$q^*(v) \in \arg \min_{p \in [0, 1]^d} \left\{ \text{val}(p) + p \cdot \sum_{i=1}^k h_i(v) \lambda_i^* \right\}, \quad \text{where } \text{val}(p) = \max_{a \in \mathcal{A}} u(a, p).$$

Given q^ , the optimal robust action at v is the best response to $q^*(v)$:*

$$a_{\text{robust}}(v) \in \arg \max_{a \in \mathcal{A}} u(a, q^*(v)).$$

Interpretation. Theorem 3.1 characterizes both the worst-case distribution consistent with \mathcal{H} -calibration and the corresponding optimal response. For any realized forecast $\nu = f(x)$, the theorem

270 yields a simple two-step procedure: compute the adversarial belief
 271

$$272 \quad q^*(\nu) \in \arg \min_{p \in [0,1]^d} \{ \text{val}(p) + p \cdot s^*(\nu) \}, \quad s^*(\nu) = \sum_{i=1}^k h_i(\nu) \lambda_i^*,$$

$$273$$

$$274$$

275 and then take the best response $a_{\text{robust}}(\nu) \in \arg \max_{a \in \mathcal{A}} u(a, q^*(\nu))$. Thus, the optimal policy
 276 is always a best response, not to the raw forecast $f(x)$, but to the adversarially tilted distribution
 277 $q^*(\nu)$ allowed by the calibration constraints. Additionally, a useful consequence is *pointwise com-*
 278 *putability*: evaluating a_{robust} at a given ν reduces to two low-dimensional optimizations, without
 279 constructing the full mapping $x \mapsto a_{\text{robust}}(x)$.

280 From an optimization perspective, the multipliers λ^* solve a finite-dimensional concave maxi-
 281 mization problem (see the proof of Theorem 3.1), and $q^*(\nu)$ is obtained by a pointwise con-
 282 vex minimization over $p \in [0,1]^d$. Both stages can be carried out by standard, fast methods
 283 with provable guarantees (e.g., projected subgradient ascent for the dual, or a simple primal–dual
 284 scheme), after which one evaluates $q^*(\nu)$ via the pointwise minimization and takes the best response
 285 $a_{\text{robust}}(\nu) = \arg \max_a u(a, q^*(\nu))$.

286 In the next section, we analyze the behavior of the resulting decision rules by specializing to concrete
 287 \mathcal{H} -classes. One might expect that Theorem 3.1 induces a vast hierarchy of policies whose form
 288 depends sensitively on \mathcal{H} . *Perhaps surprisingly, this is not the case.* In particular, we show a sharp
 289 transition: for each decision maker, there exists a specific test class, precisely the one associated with
 290 *decision calibration*, such that as soon as \mathcal{H} contains this class, the adversarial tilt collapses ($q^*(\nu) =$
 291 ν for a.e. ν) and the optimal robust rule reduces to the plug-in best response to the forecaster.

293 4 ROBUST POLICIES UNDER DECISION CALIBRATION AND BEYOND

295 In this section, we specialize the general characterization derived in Theorem 3.1 to concrete test
 296 classes \mathcal{H} . Our core result concerns *decision calibration*: a practically tractable guarantee under
 297 which the minimax-optimal robust policy collapses to the plug-in (best-response) rule. This identi-
 298 fies a simple path to decision-theoretic trustworthiness that does not require full calibration.

300 4.1 DECISION CALIBRATION AND PLUG-IN BEST RESPONSE OPTIMALITY

301 Here we define the variant of decision calibration given by Noarov et al. (2023), a slight strength-
 302 ening of the definition originally given by Zhao et al. (2021). Fix a single decision problem with
 303 action set \mathcal{A} and utility function $u(a, v)$. For each action $a \in \mathcal{A}$, let

$$305 \quad R_a = \{v \in [0,1]^d : u(a, v) \geq u(a', v) \text{ for all } a' \in \mathcal{A}\}$$

$$306$$

307 be the (closed, convex) decision region on which a is a plug-in best response. The *decision-*
 308 *calibration class* is $\mathcal{H}_{\text{dec}} = \{\mathbf{1}_{R_a} : a \in \mathcal{A}\}$. Here, we denote $\mathbf{1}_A(x) := \mathbf{1}\{x \in A\}$. A forecaster
 309 f is *decision calibrated* if it is \mathcal{H}_{dec} -calibrated, i.e.,

$$310 \quad \mathbb{E}[\mathbf{1}_{R_a}(f(X)) (Y - f(X))] = 0 \quad \text{for all } a \in \mathcal{A}.$$

$$311$$

312 Compared to full calibration, decision calibration is far more statistically tractable, since its test class
 313 has size $|\mathcal{H}_{\text{dec}}| = |\mathcal{A}|$, a potentially small and fixed number of actions, rather than the large families
 314 required for full calibration.

315 **Theorem 4.1** (Decision calibration \Rightarrow plug-in best response optimality). *If f is \mathcal{H}_{dec} -calibrated,
 316 then the minimax-optimal robust rule in equation 5 coincides with the plug-in best response:*

$$317 \quad a_{\text{robust}}(v) \in \arg \max_{a \in \mathcal{A}} u(a, v) \quad \text{for almost every } v = f(x).$$

$$318$$

319 *Equivalently, under decision calibration, best responding to the forecaster is minimax optimal
 320 among all forecast-based policies.*

321 Put differently, upon observing a forecast $v = f(x)$, the decision-maker need only best respond to
 322 v ; no adversarial “tilt” survives the decision-calibration constraints. Conceptually, this upgrades the
 323 previously known guarantees of decision calibration—that it implies no swap regret (Noarov et al.,

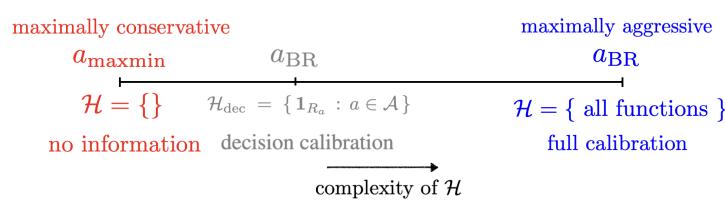


Figure 2: Schematic of the Sharp Transition

2023)—to *minimax optimality*. Swap regret guarantees do not preclude the existence of a policy $a : [0, 1]^d \rightarrow \mathcal{A}$ that dominates the plugin best response policy a_{BR} —only that no improved policy has the form $a(v) = \phi(a_{BR}(v))$ for some mapping $\phi : \mathcal{A} \rightarrow \mathcal{A}$, using “actions as a bottleneck”. In contrast, Theorem 4.1 directly establishes that no other policy $a : [0, 1]^d \rightarrow \mathcal{A}$ can improve on the plugin policy a_{BR} in our minimax sense.

The preceding result assumes that the information conveyed by the forecaster to the decision-maker is exhausted by the decision-calibration tests $\{1_{R_a}\}_{a \in \mathcal{A}}$. In practice, a forecaster might satisfy additional calibration equalities,

$$\mathbb{E}[h(f(X)) \cdot \{Y - f(X)\}] = 0,$$

for functions h beyond the indicators 1_{R_a} . The next theorem shows that the plug-in optimality conclusion is stable under such enrichments. This is intuitive: if a forecaster is trustworthy, then making it more calibrated (i.e., adding information) should not diminish that trustworthiness.

Theorem 4.2. *Let \mathcal{H} be any test class that contains the decision-calibration indicators, $\mathcal{H}_{dec} = \{1_{R_a} : a \in \mathcal{A}\}$. If f is perfectly \mathcal{H} -calibrated, then the minimax-optimal robust rule in equation 5 coincides (a.e.) with the plug-in best response:*

$$a_{robust}(v) \in \arg \max_{a \in \mathcal{A}} u(a, v) \quad \text{for a.e. } v = f(x).$$

As we make precise in the proof of Theorem 4.2, the “collapse” occurs because the decision-calibration constraints ensure that the expected utility of the plug-in best-response policy a_{BR} is *invariant* to the adversary’s choice of $q \in \mathcal{Q}$. For any q satisfying the \mathcal{H}_{dec} constraints,

$$\mathbb{E}[u(a_{BR}(f(X)), q(f(X)))] = \mathbb{E}[u(a_{BR}(f(X)), f(X))].$$

Thus, the adversary cannot reduce the utility of a_{BR} ; its worst-case utility equals its nominal utility. Since a_{BR} is the optimal policy under the nominal distribution, and its performance cannot degrade under any admissible q , it must also be the minimax-optimal policy.

Sharp transition. One might initially expect a *gradual* shift from fully conservative to plug-in best response as \mathcal{H} is enriched. Theorems 4.1–4.2 show a sharper phenomenon (Figure 2): once \mathcal{H} contains the $|\mathcal{A}|$ decision tests $\{1_{R_a}\}_{a \in \mathcal{A}}$, the adversarial tilt disappears ($q^*(v) = v$ a.e.) and the robust rule *collapses* to the plug-in best response equation 1. Enlarging \mathcal{H} further does not change the minimax-optimal policy.

Decision calibration is a tractable, task-specific threshold at which robust decision making and plug-in best-response coincide, providing a crisp target for forecaster design and a clear requirement for downstream decision makers.

As a byproduct, this leads to another practical advantage of decision calibration: a single forecaster can be made simultaneously reliable for a *collection* of downstream decision problems. Intuitively, if the forecast passes the decision calibration tests of each problem, then none of the decision makers needs additional robustness, the plug-in best-response is minimax-optimal for all of them.

Corollary 4.3 (Simultaneous plug-in optimality across multiple decisions). *Let u_1, \dots, u_m be m decision problems, with respective action sets \mathcal{A}_j and linear utilities $u_j(a, v)$ in $v \in [0, 1]^d$. For each j and $a \in \mathcal{A}_j$, let*

$$R_{a,j} = \{v \in [0, 1]^d : u_j(a, v) \geq u_j(a', v) \text{ for all } a' \in \mathcal{A}_j\}$$

378 be the plug-in decision region of action a in problem j , and define the combined test class
 379

$$380 \quad \mathcal{H}_{\text{dec}}^{\text{all}} = \bigcup_{j=1}^m \{ \mathbf{1}_{R_{a,j}} : a \in \mathcal{A}_j \}.$$

383 If f is \mathcal{H} -calibrated for some \mathcal{H} satisfying $\mathcal{H}_{\text{dec}}^{\text{all}} \subseteq \mathcal{H}$, then for every $j \in \{1, \dots, m\}$ the minimax-
 384 optimal robust policy for problem j coincides (a.e.) with the plug-in best response:

$$385 \quad a_{\text{robust},j}(v) \in \arg \max_{a \in \mathcal{A}_j} u_j(a, v) \quad \text{for a.e. } v = f(x).$$

388 *Proof.* For each problem j , the included indicators $\{\mathbf{1}_{R_{a,j}}\}_{a \in \mathcal{A}_j}$ ensure that \mathcal{H} contains the decision-
 389 calibration tests of problem j . Theorem 4.2 then applies verbatim to each j , yielding plug-in optimality problem by problem.
 390

391 4.2 BEYOND DECISION CALIBRATION: GENERIC \mathcal{H} -CLASSES FROM TRAINING PIPELINES

393 Thus far we have focused on *decision calibration*, which, when attainable, collapses a_{robust} to the
 394 plug-in best response. In practice, two regimes arise. (i) If one can influence the forecaster’s training
 395 pipeline, decision calibration is the natural target: it is practical, and our results guarantee plug-in
 396 minimax optimality. (ii) If one *cannot* control training, the forecaster might not be decision cali-
 397 brated for the downstream task. Identifying its partial-calibration profile may be difficult, yet certain
 398 moment conditions arise *structurally* from standard training procedures. We give two examples of
 399 how to leverage such “free” structure to specify usable \mathcal{H} ’s and derive the associated robust policies.
 400

401 **Self-orthogonality from squared-loss training.** A ubiquitous example is *self-orthogonality* (a form
 402 of self-calibration) that follows from first-order optimality when a model with a linear last layer is
 403 trained to minimize mean squared error. This includes the universally adopted cases of regression
 404 with either a linear model or a neural network with a linear head, trained by mean squared error. This
 405 and similar guarantees for other loss functions have previously been investigated as consequences
 406 of *low degree multicalibration* (Gopalan et al., 2022).

407 **Proposition 4.4** (Self-orthogonality under squared loss). *Let $X \mapsto z_\phi(X) \in \mathbb{R}^k$ be a representation
 408 and $f_\theta(X) = Wz_\phi(X) \in \mathbb{R}^d$ a linear last layer. Suppose $\theta = (\phi, W)$ is trained to a first-order
 409 stationary point of the expected squared loss*

$$410 \quad \mathcal{L}(\theta) = \frac{1}{2} \mathbb{E} \left[\|f_\theta(X) - Y\|_2^2 \right].$$

411 Then the following calibration moments hold:

$$413 \quad \mathbb{E}[z_\phi(X)(Y - f_\theta(X))^\top] = 0 \quad \text{and} \quad \mathbb{E}[f_\theta(X)(Y - f_\theta(X))^\top] = 0.$$

415 In particular, f_θ is \mathcal{H} -calibrated for the test class $\mathcal{H} = \{h_j(v) = e_j^\top v : j = 1, \dots, d\}$ (and for any
 416 linear combination thereof).

417 **Implications.** Proposition 4.4 provides a generic, pipeline-induced \mathcal{H} -calibration guarantee when-
 418 ever a linear head is trained to stationarity under squared loss. Specializing Theorem 3.1 to this
 419 setting yields a simple dual. For $d = 1$ (e.g., one-dimensional regression) with $\mathcal{H} = \{h(v) = v\}$,
 420 the multiplier is a scalar λ , and for each forecast $\nu = f(x)$ the worst-case distribution is
 421

$$422 \quad q^*(\nu) \in \arg \min_{p \in [0,1]} \{ \text{val}(p) + \lambda \nu p \}, \quad \text{val}(p) = \max_{a \in \mathcal{A}} u(a, p).$$

423 The robust action is then: $a_{\text{robust}}(\nu) \in \arg \max_{a \in \mathcal{A}} u(a, q^*(\nu))$. When $u(a, p)$ is linear in p and \mathcal{A}
 424 is finite, val is convex piecewise linear, so the inner minimization reduces to checking finitely many
 425 candidate points (endpoints and pairwise breakpoints). The dual objective
 426

$$427 \quad G(\lambda) = \mathbb{E} \left[\min_{p \in [0,1]} \{ \text{val}(p) + \lambda f(X)p \} \right] - \lambda \mathbb{E}[f(X)^2]$$

429 is concave in λ and can be maximized via standard one-dimensional methods (e.g., bisection on a
 430 monotone subgradient). In higher dimensions ($d > 1$), the correction term $\lambda \nu p$ becomes $\Lambda \nu p$ for a
 431 matrix of multipliers Λ , and the pointwise problem remains a small convex program over $p \in [0, 1]^d$;
 for finite \mathcal{A} and linear utilities, it is again efficiently solvable.

432 **Zero-bias and bin-wise calibration.** A widely available source of partial calibration comes from
 433 *post-hoc recalibration* that many practitioners already apply (mean correction, histogram binning,
 434 isotonic-style step fits on a held-out split). These procedures enforce generic (not task-specific)
 435 moment constraints that are directly usable in our framework. We focus on *bin-wise* calibration:
 436 take a partition of the forecast range into bins $\{B_1, \dots, B_J\}$ and enforce, for each bin,

$$437 \quad \mathbb{E}\left[\mathbf{1}_{\{f(X) \in B_j\}} (Y - f(X))\right] = 0, \quad j = 1, \dots, J.$$

439 This corresponds to the test class $\mathcal{H}_{\text{bin}} = \{\mathbf{1}_{B_j} : j = 1, \dots, J\}$, and reduces to zero-bias when
 440 $J=1$ with $B_1 = [0, 1]^d$.

441 **Proposition 4.5** (Robust policy under bin-wise calibration). *Let the utility be linear in the outcome
 442 and the action set \mathcal{A} be finite. If f is \mathcal{H}_{bin} -calibrated, then with*

$$443 \quad m_j := \mathbb{E}[f(X) | f(X) \in B_j] = \mathbb{E}[Y | f(X) \in B_j],$$

444 the worst-case belief is piecewise constant

$$445 \quad q^*(v) = m_j \quad \text{for } v \in B_j \text{ (a.e.)},$$

446 and the robust action best-responds to the bin mean:

$$447 \quad a_{\text{robust}}(v) \in \arg \max_{a \in \mathcal{A}} \{u(a, m_j)\} \quad \text{for } v \in B_j \text{ (a.e.)}.$$

450 **Implications.** Bin-wise calibration \mathcal{H}_{bin} can be obtained cheaply via standard post-hoc methods
 451 (histogram binning or isotonic regression), and Proposition 4.5 yields an especially simple, closed-
 452 form characterization of the robust policy. Computing a_{robust} reduces to: (i) estimating m_j on
 453 a calibration split, and (ii) at test time, mapping v to its bin B_j and best-responding to m_j . No
 454 additional optimization is needed to compute actions. As a special case, when $J = 1$ we recover the
 455 global-mean constraint $\mathbb{E}[Y - f(X)] = 0$. Then q^* is constant, $q^*(v) \equiv \bar{m}$, with $\bar{m} = \mathbb{E}[f(X)] =$
 456 $\mathbb{E}[Y]$, and the robust rule ignores v and plays $\arg \max_{a \in \mathcal{A}} u(a, \bar{m})$. As the partition is refined,
 457 the robust rule moves from a single global plug-in best response at \bar{m} to a piecewise plug-in best
 458 response at m_j , yielding a richer, finer-grained decision policy.

459 5 EXPERIMENTS

461 In this section, we evaluate the validity and practical consequences of our framework by implementing
 462 our methods on two real-world datasets. We compare the *plug-in best response* (a_{BR}) against
 463 the *robust policy* (a_{robust}), which enjoys minimax optimality guarantees under \mathcal{H} -calibration.

465 We focus on two classes of metrics. *Nominal performance* measures average utility when the test
 466 data are i.i.d. from the same distribution as the training and calibration splits; this reflects an optimis-
 467 tic regime that often degrades in practice. *Adversarial performance* probes the other extreme by
 468 altering the test-time outcome distribution in two ways: (i) a worst case tailored to the plug-in pol-
 469 icy, and (ii) a worst case induced by the robust dual, tailored to the robust policy. In both cases, the
 470 adversarial distributions respect the \mathcal{H} -calibration constraints and are therefore indistinguishable,
 471 from the decision-maker’s perspective, from i.i.d. test draws given an \mathcal{H} -calibrated forecaster.

472 Our theory predicts two patterns. First, by minimax optimality, the robust policy should dominate
 473 the plug-in rule when each is evaluated against its *own* worst-case distribution (and typically also
 474 under the adversary tuned to hurt the plug-in). Second, because (a_{robust}, q^*) forms a saddle point
 475 of equation 5, when both policies are evaluated under the robust-tuned adversary, the robust policy
 476 should not underperform the plug-in rule. Under nominal i.i.d. evaluation, the plug-in rule may
 477 achieve higher utility, reflecting the lack of need for conservatism in that regime.

478 5.1 CASE STUDIES: BIKE SHARING AND CALIFORNIA HOUSING

480 We evaluate our framework on two regression datasets with distinct decision-making interpretations.

482 **Bike Sharing (UCI).** The UCI *Bike Sharing* (daily) dataset Fanaee-T & Gama (2014) records daily
 483 rider counts alongside calendar and weather covariates (season, month, weekday, holiday, working
 484 day, weather state, temperature, humidity, wind). The outcome $Y \in [0, 1]$ is the rescaled total rider
 485 count, and the decision-maker chooses a staffing/capacity multiplier from $\mathcal{A} = \{0.8, 1.0, 1.2\}$,
 interpretable as conservative, nominal, and aggressive provisioning.

486 Table 1: Mean utility on the test set under natural i.i.d. evaluation and two adversarial evaluations.
 487 Adversaries respect \mathcal{H} -calibration ($\mathcal{H} = \{h(v) = v\}$).
 488

489 490 491 492 493 494 495 Dataset	i.i.d.		Worst-case for robust		Worst-case for plug-in	
	496 497 498 499 500 Plug-in	501 502 503 504 505 Robust	506 507 508 509 510 Plug-in	511 512 513 514 515 Robust	516 517 518 519 520 Plug-in	521 522 523 524 525 526 527 528 529 530 531 Robust
Bike Sharing (UCI)	0.474	0.463	0.402	0.410	0.393	0.412
California Housing	0.216	0.207	0.160	0.164	0.155	0.166

496 **California Housing.** The *California Housing* dataset Pace & Barry (1997) records median house
 497 values (rescaled to $[0, 1]$) with demographic and geographic covariates (median income, housing
 498 age, population, latitude/longitude, etc.). Here the decision-maker chooses an investment multiplier
 499 from $\mathcal{A} = \{0.6, 0.75, 0.90\}$, interpretable as conservative, nominal, and aggressive investment.
 500

501 **Utility specification.** In both settings we adopt the utility function $u(a, y) = \alpha a y - C(a)$, which
 502 is linear in y . The benefit term $\alpha a y$ captures service or return proportional to realized outcome y ,
 503 scaled by $\alpha > 0$. The cost term $C(a)$ grows in a , penalizing aggressive choices via over-provisioning
 504 costs or investment risk. This form tunes the under/over-trade-off without departing from linearity.
 505 For Bike Sharing we use $(\alpha, C(\cdot)) = (0.9, \{0.02, 0.05, 0.1\})$, while for California Housing we use
 506 $(\alpha, C(\cdot)) = (0.9, \{0.02, 0.05, 0.20\})$. The qualitative conclusions of this Section remain the same
 507 under other reasonable parameter choices.
 508

509 **Forecasting model.** In both datasets, the forecaster f is a two-layer MLP regressor trained to
 510 optimize mean squared error. By the self-orthogonality property of linear heads under squared loss
 511 (Proposition 4.4), the learned forecaster approximately satisfies \mathcal{H} -calibration with $\mathcal{H} = \{h(v) =$
 512 $v\}$, which is the calibration constraint used to derive the robust policy a_{robust} . All experiments use
 513 an i.i.d. train/calibration/test split (60/20/20). We use the calibration data to substitute any population
 514 level expectation that is needed to be computed to derive a_{robust} .
 515

516 **Results.** Table 1 reports the mean utilities. The results match theory: under adversaries tailored
 517 to the robust policy, the robust rule achieves at least the plug-in performance; under adversaries
 518 tuned to harm the plug-in rule, the robust policy secures noticeably higher utility, reflecting its
 519 minimax protection. Moreover, the robust policy outperforms the plug-in best response when each
 520 is evaluated against its own worst-case distribution.
 521

6 CONCLUSION AND LIMITATIONS

523 We developed a decision-theoretic framework for acting on partially calibrated forecasts via a
 524 minimax-optimal robust policy over \mathcal{H} -calibrated forecasters. We then identified a sharp transition
 525 in the behavior of these policies: for any decision problem with m actions, there exist m decision
 526 tests (the decision-calibration class) such that, once they are included in \mathcal{H} , the robust policy *collapses*
 527 to the plug-in best response. This spotlights decision calibration as a natural requirement
 528 whenever the decision-maker can influence the training pipeline. Moreover, even when decision
 529 calibration is unavailable, we showed that generic properties induced by standard training and post
 530 hoc procedures (e.g., self-orthogonality under squared loss and bin-wise calibration) yield usable
 531 test classes \mathcal{H} and tractable robust policies within our framework.
 532

533 Our model assumed that downstream decision makers were risk neutral — i.e., their utility functions
 534 $u(a, v)$ are linear in v and \mathcal{A} is finite; these are standard assumptions in the calibration literature, but
 535 broadening them would be interesting. We note that certain classes of non-linear utility functions can
 536 be linearized over an appropriate basis (Gopalan et al., 2024b; Lu et al., 2025), which would allow
 537 our results to apply — though these bases are not always low dimensional enough to be practical.
 538

REFERENCES

539 Isaiah Andrews and Jiafeng Chen. Certified decisions. *arXiv preprint arXiv:2502.17830*, 2025.

540 Aharon Ben-Tal and Arkadi Nemirovski. Robust optimization–methodology and applications.
 541 *Mathematical programming*, 92(3):453–480, 2002.
 542

543 Gabriel Carroll. Robustness and linear contracts. *American Economic Review*, 105(2):536–563,
 544 2015.

545 Zhun Deng, Cynthia Dwork, and Linjun Zhang. Happymap: A generalized multicalibration method.
 546 In *14th Innovations in Theoretical Computer Science Conference (ITCS 2023)*, pp. 41–1. Schloss
 547 Dagstuhl–Leibniz-Zentrum für Informatik, 2023.
 548

549 John C Duchi and Hongseok Namkoong. Learning models with uniform performance via distribu-
 550 tionally robust optimization. *The Annals of Statistics*, 49(3):1378–1406, 2021.
 551

552 Cynthia Dwork, Michael P Kim, Omer Reingold, Guy N Rothblum, and Gal Yona. Outcome in-
 553 distinguishability. In *Proceedings of the 53rd Annual ACM SIGACT Symposium on Theory of
 554 Computing*, pp. 1095–1108, 2021.

555 Hadi Fanaee-T and Joao Gama. Event labeling combining ensemble detectors and background
 556 knowledge. *Progress in Artificial Intelligence*, 2(2):113–127, 2014.
 557

558 Dean P Foster and Rakesh V Vohra. Calibrated learning and correlated equilibrium. *Games and
 559 Economic Behavior*, 21(1-2):40–55, 1997.

560 Itzhak Gilboa and David Schmeidler. Maxmin expected utility with non-unique prior. *Journal of
 561 mathematical economics*, 18(2):141–153, 1989.
 562

563 Ira Globus-Harris, Declan Harrison, Michael Kearns, Aaron Roth, and Jessica Sorrell. Multicalibra-
 564 tion as boosting for regression. In *International Conference on Machine Learning*, pp. 11459–
 565 11492. PMLR, 2023.
 566

567 Parikshit Gopalan, Michael P Kim, Mihir A Singhal, and Shengjia Zhao. Low-degree multicalibra-
 568 tion. In *Conference on Learning Theory*, pp. 3193–3234. PMLR, 2022.
 569

570 Parikshit Gopalan, Lunjia Hu, and Guy N Rothblum. On computationally efficient multi-class cal-
 571 ibration. In *The Thirty Seventh Annual Conference on Learning Theory*, pp. 1983–2026. PMLR,
 572 2024a.

573 Parikshit Gopalan, Princewill Okoroafor, Prasad Raghavendra, Abhishek Sherry, and Mihir Sing-
 574 hal. Omnipredictors for regression and the approximate rank of convex functions. In *The Thirty
 575 Seventh Annual Conference on Learning Theory*, pp. 2027–2070. PMLR, 2024b.
 576

577 Chuan Guo, Geoff Pleiss, Yu Sun, and Kilian Q Weinberger. On calibration of modern neural
 578 networks. In *International conference on machine learning*, pp. 1321–1330. PMLR, 2017.
 579

580 Chirag Gupta and Aaditya Ramdas. Top-label calibration and multiclass-to-binary reductions. In
 581 *International Conference on Learning Representations*. OpenReview, 2022.
 582

583 Lars Peter Hansen and Thomas J Sargent. Robust control and model uncertainty. *American Eco-
 584 nomic Review*, 91(2):60–66, 2001.
 585

586 Ursula Hébert-Johnson, Michael Kim, Omer Reingold, and Guy Rothblum. Multicalibration: Cal-
 587 ibration for the (computationally-identifiable) masses. In *International Conference on Machine
 588 Learning*, pp. 1939–1948. PMLR, 2018.
 589

590 Lunjia Hu and Yifan Wu. Predict to minimize swap regret for all payoff-bounded tasks. In *65th
 591 IEEE Annual Symposium on Foundations of Computer Science, FOCS 2024, Chicago, IL, USA,
 592 October 27-30, 2024*, pp. 244–263. IEEE, 2024.
 593

594 Shayan Kiyani, George Pappas, Aaron Roth, and Hamed Hassani. Decision theoretic foundations
 595 for conformal prediction: Optimal uncertainty quantification for risk-averse agents, 2025. URL
<https://arxiv.org/abs/2502.02561>.

594 Bobby Kleinberg, Renato Paes Leme, Jon Schneider, and Yifeng Teng. U-calibration: Forecasting
 595 for an unknown agent. In Gergely Neu and Lorenzo Rosasco (eds.), *The Thirty Sixth Annual*
 596 *Conference on Learning Theory, COLT 2023, 12-15 July 2023, Bangalore, India*, volume 195 of
 597 *Proceedings of Machine Learning Research*, pp. 5143–5145. PMLR, 2023.

598 Daniel Kuhn, Peyman Mohajerin Esfahani, Viet Anh Nguyen, and Soroosh Shafieezadeh-Abadeh.
 599 Wasserstein distributionally robust optimization: Theory and applications in machine learning. In
 600 *Operations research & management science in the age of analytics*, pp. 130–166. Informs, 2019.

601 Meelis Kull, Miquel Perello Nieto, Markus Kängsepp, Telmo Silva Filho, Hao Song, and Peter
 602 Flach. Beyond temperature scaling: Obtaining well-calibrated multi-class probabilities with
 603 dirichlet calibration. *Advances in neural information processing systems*, 32, 2019.

604 Jiuyao Lu, Aaron Roth, and Mirah Shi. Sample efficient omniprediction and downstream swap regret
 605 for non-linear losses. In Nika Haghtalab and Ankur Moitra (eds.), *The Thirty Eighth Annual*
 606 *Conference on Learning Theory, 30-4 July 2025, Lyon, France*, volume 291 of *Proceedings of*
 607 *Machine Learning Research*, pp. 3829–3878. PMLR, 2025. URL <https://proceedings.mlr.press/v291/lu25b.html>.

608 Charles F Manski. Identification problems and decisions under ambiguity. *Journal of Econometrics*,
 609 95(2):415–442, 2000.

610 Charles F Manski. Statistical treatment rules for heterogeneous populations. *Econometrica*, 72(4):
 611 1221–1246, 2004.

612 Charles F Manski. Choosing treatment policies under ambiguity. *Annual Review of Economics*, 3:
 613 25–49, 2011.

614 Charles F Manski and Aleksey Tetenov. Admissible treatment rules for a risk-averse planner. *Econo-*
 615 *metrica*, 75(3):715–752, 2007.

616 Georgy Noarov, Ramya Ramalingam, Aaron Roth, and Stephan Xie. High-dimensional prediction
 617 for sequential decision making. *arXiv preprint arXiv:2310.17651*, 2023.

618 Princewill Okoroafor, Robert Kleinberg, and Michael P Kim. Near-optimal algorithms for om-
 619 niprediction. *arXiv preprint arXiv:2501.17205*, 2025.

620 R Kelley Pace and Ronald Barry. Sparse spatial autoregressions. *Statistics & Probability Letters*, 33
 621 (3):291–297, 1997.

622 Benjamin Plaut, Nguyen X Khanh, and Tu Trinh. Probabilities of chat llms are miscalibrated but
 623 still predict correctness on multiple-choice q&a. *arXiv preprint arXiv:2402.13213*, 2024.

624 Aaron Roth. Uncertain: Modern topics in uncertainty estimation. *Lecture Notes*, 11:30–31, 2022.

625 Aaron Roth and Mirah Shi. Forecasting for swap regret for all downstream agents. In Dirk Berge-
 626 mann, Robert Kleinberg, and Daniela Sabán (eds.), *Proceedings of the 25th ACM Conference on*
 627 *Economics and Computation, EC 2024, New Haven, CT, USA, July 8-11, 2024*, pp. 466–488.
 628 ACM, 2024.

629 Guy N Rothblum and Gal Yona. Decision-making under miscalibration. In *14th Innovations in The-
 630 retical Computer Science Conference, ITCS 2023*, pp. 92. Schloss Dagstuhl-Leibniz-Zentrum
 631 fur Informatik GmbH, Dagstuhl Publishing, 2023.

632 Abraham Wald. Statistical decision functions. In *Breakthroughs in Statistics: Foundations and*
 633 *Basic Theory*, pp. 342–357. Springer, 1950.

634 Shengjia Zhao, Michael Kim, Roshni Sahoo, Tengyu Ma, and Stefano Ermon. Calibrating predic-
 635 tions to decisions: A novel approach to multi-class calibration. *Advances in Neural Information*
 636 *Processing Systems*, 34:22313–22324, 2021.

637

638

639

640

641

642

643

644

645

646

647

648 649 Appendix

650 651 A MISSING PROOFS FROM THE MAIN BODY

652 Proof of Theorem 3.1

653 We begin from the robust formulation

$$654 \max_{a(\cdot): \mathcal{X} \rightarrow \mathcal{A}} \min_{q \in \mathcal{Q}} \mathbb{E}[u(a(f(X)), q(f(X)))], \quad (6)$$

655 where $\mathcal{A} \subset \mathbb{R}^m$ is compact, $u(\cdot, \cdot)$ is linear in its second component, \mathcal{Q} is the nonempty, convex, and compact set of measurable maps $q : [0, 1]^d \rightarrow [0, 1]^d$ satisfying the linear moment equalities in equation 4, and $a(\cdot)$ ranges over measurable policies with values in \mathcal{A} . The mapping $(a, q) \mapsto \mathbb{E}[u(a(f(X)), q(f(X)))]$ is convex in q (since $u(a, \cdot)$ is linear, hence convex, in y and expectation preserves convexity), concave in a (as a pointwise maximum over linear functionals in a on the compact set \mathcal{A}). Hence, by Sion's minimax theorem,

$$656 \max_{a(\cdot)} \min_{q \in \mathcal{Q}} \mathbb{E}[u(a(f(X)), q(f(X)))] = \min_{q \in \mathcal{Q}} \max_{a(\cdot)} \mathbb{E}[u(a(f(X)), q(f(X)))].$$

657 Fix any $q \in \mathcal{Q}$. The inner maximization over policies separates pointwise in $v = f(x)$, yielding the value function

$$658 \text{val}(p) \triangleq \max_{a \in \mathcal{A}} u(a, p) \quad \text{and} \quad \max_{a(\cdot)} \mathbb{E}[u(a(f(X)), q(f(X)))] = \mathbb{E}[\text{val}(q(f(X)))].$$

659 Therefore the robust value equals the convex adversarial problem

$$660 \min_{q \in \mathcal{Q}} \mathbb{E}[\text{val}(q(f(X)))] , \quad (7)$$

661 which will be analyzed via Lagrangian duality below.

662 Introduce vector Lagrange multipliers $\lambda_i \in \mathbb{R}^d$ for the d -dimensional equalities in equation 4, and let $\lambda = (\lambda_1, \dots, \lambda_k)$. Define

$$663 s(v) \triangleq \sum_{i=1}^k h_i(v) \lambda_i \in \mathbb{R}^d, \quad v \in [0, 1]^d.$$

664 The Lagrangian of equation 7 is

$$665 L(q, \lambda) = \mathbb{E}[\text{val}(q(f(X)))] + \sum_{i=1}^k \lambda_i \cdot \mathbb{E}[h_i(f(X)) (q(f(X)) - f(X))].$$

666 By linearity of expectation,

$$667 L(q, \lambda) = \mathbb{E}[\text{val}(q(f(X))) + q(f(X)) \cdot s(f(X)) - f(X) \cdot s(f(X))].$$

668 The dual function is obtained by minimizing $L(q, \lambda)$ over measurable $q : [0, 1]^d \rightarrow [0, 1]^d$. Since the integrand depends on q only through $q(f(X))$, the infimum can be taken *pointwise* in the forecast value $v = f(X)$:

$$669 G(\lambda) = \inf_q L(q, \lambda) = \mathbb{E}\left[\inf_{p \in [0, 1]^d} \{\text{val}(p) + p \cdot s(f(X))\}\right] - \mathbb{E}[f(X) \cdot s(f(X))].$$

670 The primal problem equation 7 is convex (convex objective, affine constraints) and feasible (e.g., $q(v) = v$), thereby strong duality holds. Hence,

$$671 \min_{q \in \mathcal{Q}} \mathbb{E}[\text{val}(q(f(X)))] = \max_{\lambda \in (\mathbb{R}^d)^k} G(\lambda),$$

672 and there exists a maximizing multiplier λ^* . Define

$$673 s^*(v) \triangleq \sum_{i=1}^k h_i(v) \lambda_i^* \in \mathbb{R}^d.$$

702 By the definition of $G(\lambda)$ and strong duality, any primal optimizer $q^* \in \mathcal{Q}$ must minimize the
 703 Lagrangian at λ^* . Since the dependence on q is only through $q(f(X))$, this yields the pointwise
 704 characterization, for $v = f(x)$ almost surely,

$$706 \quad q^*(v) \in \arg \min_{p \in [0,1]^d} \left\{ \text{val}(p) + p \cdot s^*(v) \right\}.$$

708 With q^* fixed, define the policy
 709

$$710 \quad a_{\text{robust}}(v) \in \arg \max_{a \in \mathcal{A}} u(a, q^*(v)).$$

712 Then, by the definition of val and the construction of q^* ,

$$714 \quad \max_{a(\cdot)} \mathbb{E}[u(a(f(X)), q^*(f(X)))] = \mathbb{E}[\text{val}(q^*(f(X)))] = \min_{q \in \mathcal{Q}} \mathbb{E}[\text{val}(q(f(X)))] ,$$

716 which shows that (a_{robust}, q^*) is a saddle point of equation 6. In particular, a_{robust} is optimal for
 717 the outer maximization, and q^* is worst-case optimal for the inner minimization, with q^* character-
 718 ized pointwise by the minimization problem above and determined by the dual multiplier λ^* . This
 719 matches the statement of Theorem 3.1 and completes the proof. \square

720 Proof of Theorem 4.1:

723 *Proof.* We use the reduction

$$724 \quad \max_{a(\cdot)} \min_{q \in \mathcal{Q}} \mathbb{E}[u(a(f(X)), q(f(X)))] = \min_{q \in \mathcal{Q}} \mathbb{E}[\text{val}(q(f(X)))] ,$$

726 established in the proof of Theorem 3.1. Fix the decision regions

$$728 \quad R_a = \{v \in [0,1]^d : u(a, v) \geq u(a', v) \forall a' \in \mathcal{A}\} ,$$

730 each convex. Under $\mathcal{H}_{\text{dec}} = \{\mathbf{1}_{R_a} : a \in \mathcal{A}\}$, admissible q satisfy

$$732 \quad \mathbb{E}[\mathbf{1}_{R_a}(f(X))\{q(f(X)) - f(X)\}] = 0 \quad \forall a ,$$

733 equivalently (whenever $\mathbb{P}(f(X) \in R_a) > 0$),

$$735 \quad \mathbb{E}[q(f(X)) | f(X) \in R_a] = \mathbb{E}[f(X) | f(X) \in R_a] =: \mu_a \in R_a .$$

736 By Jensen's inequality (convexity of val), for any $q \in \mathcal{Q}$ and any a ,

$$738 \quad \mathbb{E}[\text{val}(q(f(X))) | f(X) \in R_a] \geq \text{val}(\mu_a) .$$

739 Define the piecewise-constant $\bar{q}(v) = \sum_a \mu_a \mathbf{1}_{R_a}(v)$. Then $\bar{q} \in \mathcal{Q}$ and, conditionally on $f(X) \in R_a$, we have $\bar{q}(f(X)) = \mu_a$ a.s., hence the bound is attained:

$$742 \quad \mathbb{E}[\text{val}(\bar{q}(f(X)))] = \sum_a \mathbb{P}(f(X) \in R_a) \text{val}(\mu_a) \leq \mathbb{E}[\text{val}(q(f(X)))] \quad \forall q \in \mathcal{Q} .$$

744 Thus a worst-case belief is $q^* = \bar{q}$, region-wise constant with $q^*(v) = \mu_a$ on R_a .

745 Finally, since $\mu_a \in R_a$, by definition of R_a we have $u(a, \mu_a) \geq u(a', \mu_a)$ for all a' , so a is a best
 746 response to μ_a . Therefore the robust action at $v \in R_a$ is

$$748 \quad a_{\text{robust}}(v) \in \arg \max_{a'} u(a', q^*(v)) = \arg \max_{a'} u(a', \mu_a) \ni a ,$$

750 which coincides (a.e.) with the plug-in best response to v . This proves Theorem 4.1. \square

752 Proof of Theorem 4.2:

753 Recall $\text{val}(p) = \max_{a \in \mathcal{A}} u(a, p)$ and the reduction

$$755 \quad \max_{a(\cdot)} \min_{q \in \mathcal{Q}_{\mathcal{H}}} \mathbb{E}[u(a(f(X)), q(f(X)))] = \min_{q \in \mathcal{Q}_{\mathcal{H}}} \mathbb{E}[\text{val}(q(f(X)))] ,$$

established earlier in the proof of Theorem 3.1. Moreover, the identity map $q_{\text{id}}(v) = v$ always lies in $\mathcal{Q}_{\mathcal{H}}$ (the perfect forecaster is consistent with every \mathcal{H} -calibration constraint), so for any policy $a(\cdot)$,

$$\min_{q \in \mathcal{Q}_{\mathcal{H}}} \mathbb{E}[u(a(f(X)), q(f(X)))] \leq \mathbb{E}[u(a(f(X)), f(X))]. \quad (8)$$

Let $a_{\text{BR}}(v) \in \arg \max_{a \in \mathcal{A}} u(a, v)$ be a plug-in best response.¹ We show that, assuming \mathcal{H} contains the decision-calibration tests $\{\mathbf{1}_{R_a}\}_{a \in \mathcal{A}}$,

$$\mathbb{E}[u(a_{\text{BR}}(f(X)), q(f(X)))] = \mathbb{E}[u(a_{\text{BR}}(f(X)), f(X))] \quad \forall q \in \mathcal{Q}_{\mathcal{H}}. \quad (9)$$

Write $\mu_a := \mathbb{E}[f(X) \mid f(X) \in R_a]$ whenever $\mathbb{P}(f(X) \in R_a) > 0$ (if $\mathbb{P}(f(X) \in R_a) = 0$, any choice of μ_a is harmless since the corresponding terms vanish). Then

$$\begin{aligned} \mathbb{E}[u(a_{\text{BR}}(f(X)), q(f(X)))] &= \sum_{a \in \mathcal{A}} \mathbb{E}[u(a, q(f(X))) \mathbf{1}_{\{f(X) \in R_a\}}] \\ &\stackrel{(i)}{=} \sum_{a \in \mathcal{A}} \mathbb{P}(f(X) \in R_a) u(a, \mathbb{E}[q(f(X)) \mid f(X) \in R_a]) \\ &\stackrel{(ii)}{=} \sum_{a \in \mathcal{A}} \mathbb{P}(f(X) \in R_a) u(a, \mathbb{E}[f(X) \mid f(X) \in R_a]) \\ &= \sum_{a \in \mathcal{A}} \mathbb{P}(f(X) \in R_a) u(a, \mu_a) \\ &\stackrel{(iii)}{=} \sum_{a \in \mathcal{A}} \mathbb{E}[u(a, f(X)) \mathbf{1}_{\{f(X) \in R_a\}}] \\ &= \mathbb{E}[u(a_{\text{BR}}(f(X)), f(X))]. \end{aligned}$$

Here: (i) uses that $u(a, \cdot)$ is linear in its second argument, so

$$\mathbb{E}[u(a, q(f(X))) \mid f(X) \in R_a] = u(a, \mathbb{E}[q(f(X)) \mid f(X) \in R_a]),$$

(ii) uses the decision-calibration equalities $\mathbb{E}[\mathbf{1}_{R_a}(f(X))\{q(f(X)) - f(X)\}] = 0$, equivalently $\mathbb{E}[q(f(X)) \mid f(X) \in R_a] = \mathbb{E}[f(X) \mid f(X) \in R_a] = \mu_a$ whenever $\mathbb{P}(f(X) \in R_a) > 0$; and (iii) again uses linearity: $u(a, \mu_a) = u(a, \mathbb{E}[f(X) \mid f(X) \in R_a]) = \mathbb{E}[u(a, f(X)) \mid f(X) \in R_a]$.

Combining equation 8, the optimality of best response on the *perceived* outcomes,

$$\mathbb{E}[u(a(f(X)), f(X))] \leq \mathbb{E}[u(a_{\text{BR}}(f(X)), f(X))] \quad \text{for all policies } a(\cdot),$$

and the invariance equation 9, we obtain the minimax dominance

$$\min_{q \in \mathcal{Q}_{\mathcal{H}}} \mathbb{E}[u(a_{\text{BR}}(f(X)), q(f(X)))] = \mathbb{E}[u(a_{\text{BR}}(f(X)), f(X))] \geq \min_{q \in \mathcal{Q}_{\mathcal{H}}} \mathbb{E}[u(a(f(X)), q(f(X)))] ,$$

for every forecast-based policy $a(\cdot)$. Hence the plug-in best response is minimax optimal under any \mathcal{H} that contains the decision-calibration tests, as claimed.

Proof of Proposition 4.4:

Proof. Assume $\mathbb{E}\|z_{\phi}(X)\|_2^2 < \infty$ and $\mathbb{E}\|Y\|_2^2 < \infty$ so that all derivatives and expectations below are well-defined and we may interchange expectation and differentiation by dominated convergence. Write $z := z_{\phi}(X) \in \mathbb{R}^k$ and $f := f_{\theta}(X) = Wz \in \mathbb{R}^d$. The squared-loss risk is

$$\mathcal{L}(\theta) = \frac{1}{2} \mathbb{E}[\|f - Y\|_2^2] = \frac{1}{2} \mathbb{E}[(Wz - Y)^{\top} (Wz - Y)].$$

For the linear head $W \in \mathbb{R}^{d \times k}$, the gradient with respect to W satisfies the standard identity

$$\nabla_W \left(\frac{1}{2} \|Wz - Y\|_2^2 \right) = (Wz - Y) z^{\top} \in \mathbb{R}^{d \times k}.$$

Taking expectation and interchanging ∇ with \mathbb{E} yields

$$\nabla_W \mathcal{L}(\theta) = \mathbb{E}[(f - Y) z^{\top}].$$

¹Fix any deterministic tie-breaking so that a_{BR} and the regions $R_a = \{v : a_{\text{BR}}(v) = a\}$ are measurable.

810 At a first-order stationary point (in particular, when the gradient with respect to W vanishes) we
 811 have

$$812 \mathbb{E}[(f - Y) z^\top] = 0_{d \times k}.$$

813 Transposing gives

$$814 \mathbb{E}[z(f - Y)^\top] = 0_{k \times d} \iff \mathbb{E}[z(Y - f)^\top] = 0_{k \times d},$$

815 which is the first claimed moment identity.

816 For the second identity, observe that $f = Wz$, hence

$$817 \mathbb{E}[f(Y - f)^\top] = \mathbb{E}[Wz(Y - f)^\top] = W \mathbb{E}[z(Y - f)^\top] = W 0_{k \times d} = 0_{d \times d}.$$

818 Therefore both $\mathbb{E}[z_\phi(X)(Y - f_\theta(X))^\top] = 0$ and $\mathbb{E}[f_\theta(X)(Y - f_\theta(X))^\top] = 0$ hold. In particular,
 819 for each coordinate $j = 1, \dots, d$, $\mathbb{E}[e_j^\top f_\theta(X)(Y - f_\theta(X))^\top] = 0$ and $\mathbb{E}[z_\phi(X)e_j^\top(Y - f_\theta(X))] =$
 820 0, so f_θ is \mathcal{H} -calibrated for $\mathcal{H} = \{h_j(v) = e_j^\top v : j = 1, \dots, d\}$ and for any linear combination
 821 thereof. This proves the proposition. \square

822 Proof of Proposition 4.5:

823 *Proof.* By the reduction established earlier (see the proof of Theorem 3.1), the robust problem

$$824 \max_{a(\cdot)} \min_{q \in \mathcal{Q}} \mathbb{E}[u(a(f(X)), q(f(X)))]$$

825 with linear utilities and finite \mathcal{A} is equivalent to the convex program

$$826 \min_{q \in \mathcal{Q}} \mathbb{E}[\text{val}(q(f(X)))] , \quad \text{val}(p) := \max_{a \in \mathcal{A}} u(a, p),$$

827 subject to the \mathcal{H}_{bin} -calibration constraints

$$828 \mathbb{E}[\mathbf{1}_{\{f(X) \in B_j\}} (q(f(X)) - f(X))] = 0, \quad j = 1, \dots, J.$$

829 Write $E_j := \{f(X) \in B_j\}$ and assume $\mathbb{P}(E_j) > 0$ (bins with zero probability are immaterial).
 830 Then the constraints are equivalent to

$$831 \mathbb{E}[q(f(X)) | E_j] = \mathbb{E}[f(X) | E_j] =: m_j, \quad j = 1, \dots, J.$$

832 Because $u(a, \cdot)$ is linear in the outcome, val is the pointwise maximum of linear maps and hence
 833 convex. Decomposing by bins and applying Jensen's inequality gives, for any feasible q ,

$$834 \begin{aligned} \mathbb{E}[\text{val}(q(f(X)))] &= \sum_{j=1}^J \mathbb{P}(E_j) \mathbb{E}[\text{val}(q(f(X)) | E_j)] \\ 835 &\geq \sum_{j=1}^J \mathbb{P}(E_j) \text{val}(\mathbb{E}[q(f(X)) | E_j]) \\ 836 &= \sum_{j=1}^J \mathbb{P}(E_j) \text{val}(m_j). \end{aligned}$$

837 Define the piecewise-constant candidate

$$838 \bar{q}(v) := \sum_{j=1}^J m_j \mathbf{1}_{B_j}(v).$$

839 Then \bar{q} is feasible, since for each j ,

$$840 \mathbb{E}[\mathbf{1}_{E_j} (\bar{q}(f(X)) - f(X))] = \mathbb{P}(E_j) (m_j - \mathbb{E}[f(X) | E_j]) = 0,$$

841 and it attains the Jensen lower bound because $\bar{q}(f(X)) = m_j$ almost surely on E_j :

$$842 \mathbb{E}[\text{val}(\bar{q}(f(X))) | E_j] = \text{val}(m_j).$$

843 Therefore \bar{q} is an optimizer, and any minimizer q^* can be chosen (a.e.) piecewise constant with
 844 $q^*(v) = m_j$ for $v \in B_j$.

845 Finally, fixing such a q^* , the robust action at forecast $v \in B_j$ solves

$$846 a_{\text{robust}}(v) \in \arg \max_{a \in \mathcal{A}} u(a, q^*(v)) = \arg \max_{a \in \mathcal{A}} u(a, m_j),$$

847 which depends only on the bin index, i.e., it is the best response to the bin mean. This proves the
 848 claim. \square

864 B APPROXIMATE \mathcal{H} -CALIBRATION: STABILITY UNDER ε -SLACK

866 This appendix extends the main results to the practically relevant regime in which \mathcal{H} -calibration
 867 holds only approximately. Concretely, we relax each linear calibration equality in equation 3 to an
 868 ℓ_2 -ball of radius ε . Throughout, we retain the standing assumptions of the main text: utilities are
 869 linear in the outcome, so there exist $\{r_a \in \mathbb{R}^d, c_a \in \mathbb{R}\}_{a \in \mathcal{A}}$ with

$$870 \quad u(a, p) = r_a \cdot p + c_a \implies \text{val}(p) := \max_{a \in \mathcal{A}} u(a, p) \text{ is convex and } L\text{-Lipschitz w.r.t. } \|\cdot\|_2,$$

872 where $L := \max_{a \in \mathcal{A}} \|r_a\|_2$. We write expectations over (X, Y) distributed as in the main body, and
 873 $f : \mathcal{X} \rightarrow [0, 1]^d$ denotes the given forecaster.

875 **Approximate calibration constraints.** Let $\mathcal{H} = \text{span}\{h_1, \dots, h_k\}$ with measurable $h_i : [0, 1]^d \rightarrow \mathbb{R}$ bounded by $|h_i(v)| \leq 1$. For a candidate conditional expectation $q : [0, 1]^d \rightarrow [0, 1]^d$,
 876 define the (vector) calibration moments
 877

$$878 \quad m_i(q) := \mathbb{E}[h_i(f(X)) \{q(f(X)) - f(X)\}] \in \mathbb{R}^d, \quad i = 1, \dots, k.$$

880 We say q is ε -approximately \mathcal{H} -calibrated if $\|m_i(q)\|_2 \leq \varepsilon$ for all i . The corresponding ambiguity
 881 set and robust value are

$$882 \quad \mathcal{Q}_\varepsilon := \left\{ q : [0, 1]^d \rightarrow [0, 1]^d : \|m_i(q)\|_2 \leq \varepsilon, i = 1, \dots, k \right\}, \quad V_\varepsilon := \min_{q \in \mathcal{Q}_\varepsilon} \mathbb{E}[\text{val}(q(f(X)))].$$

884 For reference, the exact-calibration value is $V_0 = \min_{q \in \mathcal{Q}} \mathbb{E}[\text{val}(q(f(X)))]$, where \mathcal{Q} is the
 885 equality-based set from equation 4.

887 **Roadmap.** We first show a *dual penalty* bound: moving from exact to ε -approximate constraints
 888 subtracts an explicit ℓ_2 -norm penalty from the exact dual objective, yielding two-sided value bounds
 889 and a linear-in- ε degradation guarantee. We then quantify the robustness of *decision calibration*:
 890 even under ε -slack, the plug-in best response is $O(mL\varepsilon)$ -minimax optimal (with $m := |\mathcal{A}|$). Finally,
 891 for *bin-wise* (histogram) calibration with ε -slack, we obtain piecewise-constant worst-case beliefs
 892 and tight value bounds, recovering the exact structural picture up to $O(JL\varepsilon)$ terms when there are
 893 J bins.

894 **Policy characterization under ε -slack.** The primal inner problem remains convex and pointwise
 895 in $v = f(x)$, while the dual acquires the norm penalty from Theorem B.1. Consequently, the
 896 optimal robust policy admits the same form as in the exact case, with the unique change that the
 897 dual multiplier solves a penalized maximization.

898 **Theorem B.1** (ε -robust policy via penalized dual). *Let $\mathcal{H} = \text{span}\{h_1, \dots, h_k\}$ and define $G(\lambda)$ as
 899 in the main text. Let*

$$900 \quad \lambda_\varepsilon^* \in \arg \max_{\lambda \in (\mathbb{R}^d)^k} \left\{ G(\lambda) - \varepsilon \sum_{i=1}^k \|\lambda_i\|_2 \right\}, \quad s_{\lambda_\varepsilon^*}(v) := \sum_{i=1}^k h_i(v) \lambda_{\varepsilon,i}^*.$$

903 *Then there exists a worst-case belief $q_\varepsilon^* : [0, 1]^d \rightarrow [0, 1]^d$ such that for almost every forecast
 904 $v = f(x)$,*

$$906 \quad q_\varepsilon^*(v) \in \arg \min_{p \in [0, 1]^d} \left\{ \text{val}(p) + p \cdot s_{\lambda_\varepsilon^*}(v) \right\}, \quad \text{val}(p) = \max_{a \in \mathcal{A}} u(a, p).$$

908 *The ε -robust action is the best response to $q_\varepsilon^*(v)$:*

$$909 \quad a_\varepsilon^*(v) \in \arg \max_{a \in \mathcal{A}} u(a, q_\varepsilon^*(v)).$$

912 *Proof of Theorem B.1.* Recall the robust formulation under linear utilities and forecast-based poli-
 913 cies reduces to the adversarial convex program

$$914 \quad \min_{q \in \mathcal{Q}_\varepsilon} \mathbb{E}[\text{val}(q(f(X)))] , \quad \text{val}(p) := \max_{a \in \mathcal{A}} u(a, p),$$

916 with the ε -approximate \mathcal{H} -calibration set

$$917 \quad \mathcal{Q}_\varepsilon = \left\{ q : [0, 1]^d \rightarrow [0, 1]^d : \left\| \mathbb{E}[h_i(f(X)) \{q(f(X)) - f(X)\}] \right\|_2 \leq \varepsilon, i = 1, \dots, k \right\}.$$

918 Introduce slack vectors $s_i \in \mathbb{R}^d$ (one per test) so that each constraint is rewritten as the *equality*
 919

$$920 \mathbb{E}[h_i(f(X))\{q(f(X)) - f(X)\}] = s_i \quad \text{with} \quad \|s_i\|_2 \leq \varepsilon \quad (i = 1, \dots, k).$$

921 Let $\lambda_i \in \mathbb{R}^d$ be the Lagrange multipliers for these equalities and set $s_\lambda(v) := \sum_{i=1}^k h_i(v)\lambda_i$. The
 922 Lagrangian reads
 923

$$924 L(q, s; \lambda) = \mathbb{E}[\text{val}(q(f(X)))] + \sum_{i=1}^k \lambda_i \cdot (\mathbb{E}[h_i(f(X))\{q(f(X)) - f(X)\}] - s_i).$$

927 Minimizing L over the slacks s_i subject to $\|s_i\|_2 \leq \varepsilon$ contributes the support function of the ℓ_2 -ball,
 928

$$929 \inf_{\|s_i\|_2 \leq \varepsilon} (-\lambda_i \cdot s_i) = -\sup_{\|s_i\|_2 \leq \varepsilon} (\lambda_i \cdot s_i) = -\varepsilon \|\lambda_i\|_2.$$

931 Minimizing the remaining part over q depends on q only through $q(f(X))$ and yields, pointwise in
 932 $v = f(X)$,
 933

$$934 \inf_q L(q, s; \lambda) = \mathbb{E}\left[\inf_{p \in [0,1]^d} \{\text{val}(p) + p \cdot s_\lambda(f(X))\}\right] - \mathbb{E}[f(X) \cdot s_\lambda(f(X))] - \varepsilon \sum_{i=1}^k \|\lambda_i\|_2.$$

937 Therefore the dual function is
 938

$$939 G_\varepsilon(\lambda) = \underbrace{\mathbb{E}\left[\min_{p \in [0,1]^d} \{\text{val}(p) + p \cdot s_\lambda(f(X))\}\right] - \mathbb{E}[f(X) \cdot s_\lambda(f(X))]}_{=:G(\lambda)} - \varepsilon \sum_{i=1}^k \|\lambda_i\|_2,$$

943 i.e., the exact-calibration dual $G(\lambda)$ penalized by $\varepsilon \sum_i \|\lambda_i\|_2$.

944 The primal problem is convex (convex objective, affine moment constraints) and feasible (e.g.,
 945 $q(v) \equiv v$ makes all moments 0, which is strictly feasible when $\varepsilon > 0$), so Slater's condition holds;
 946 hence strong duality holds and a maximizer λ^* of G_ε exists:
 947

$$948 \min_{q \in \mathcal{Q}_\varepsilon} \mathbb{E}[\text{val}(q(f(X)))] = \max_{\lambda \in (\mathbb{R}^d)^k} \left\{ G(\lambda) - \varepsilon \sum_{i=1}^k \|\lambda_i\|_2 \right\}.$$

950 Moreover, comparing with the exact case (which corresponds to $\varepsilon = 0$) gives the two-sided value
 951 bound
 952

$$953 \max_{\lambda} \left\{ G(\lambda) - \varepsilon \sum_i \|\lambda_i\|_2 \right\} \leq V_\varepsilon \leq V_0 := \max_{\lambda} G(\lambda),$$

955 and $0 \leq V_0 - V_\varepsilon \leq \varepsilon \min_{\lambda \in \arg \max} G \sum_i \|\lambda_i\|_2$.

956 By strong duality, any primal minimizer $q_\varepsilon^* \in \mathcal{Q}_\varepsilon$ together with λ^* forms a saddle point: $L(q_\varepsilon^*, \lambda) \leq$
 957 $L(q_\varepsilon^*, \lambda^*) \leq L(q, \lambda^*)$. The first inequality implies that q_ε^* minimizes the Lagrangian at λ^* , which
 958 (by the pointwise structure above) yields, for almost every forecast $v = f(x)$,
 959

$$960 q_\varepsilon^*(v) \in \arg \min_{p \in [0,1]^d} \left\{ \text{val}(p) + p \cdot s_{\lambda^*}(v) \right\}, \quad s_{\lambda^*}(v) = \sum_{i=1}^k h_i(v)\lambda_i^*.$$

963 With q_ε^* fixed, the optimal robust action at v solves
 964

$$965 a_{\text{robust}, \varepsilon}(v) \in \arg \max_{a \in \mathcal{A}} u(a, q_\varepsilon^*(v)),$$

966 i.e., it is the best response to the worst-case belief $q_\varepsilon^*(v)$. This is the same best-response structure
 967 as in the exact case, now using the penalized dual optimizer λ^* (cf. the exact characterization in the
 968 main text).
 969

970 Altogether, we have (i) the dual penalty representation with value bounds, (ii) existence of a dual
 971 maximizer λ^* , (iii) the pointwise form of the worst-case belief q_ε^* , and (iv) the robust policy as a
 972 pointwise best response to q_ε^* , completing the proof. \square

Computation. Algorithmically, the recipe mirrors the exact case: (i) maximize the concave objective $G(\lambda) - \varepsilon \sum_i \|\lambda_i\|_2$ (e.g., projected/subgradient or bisection in 1D; small-scale mirror descent otherwise); (ii) for each forecast v , compute $q_\varepsilon^*(v)$ by solving the convex problem in p ; (iii) play $a_\varepsilon^*(v)$ as the best response to $q_\varepsilon^*(v)$. For finite \mathcal{A} and utilities linear in p , step (ii) reduces to checking a small finite set of candidates (endpoints and pairwise breakpoints of val), exactly as in the main text.

Decision tests contained in \mathcal{H} under ε -slack: near-optimality of plug-in. Let $R_a := \{v : u(a, v) \geq u(a', v) \forall a' \in \mathcal{A}\}$ be the plug-in region for action a , and write $P_a := \mathbb{P}(f(X) \in R_a)$ (regions with $P_a = 0$ are ignorable). Assume \mathcal{H} is a test class that *contains the decision indicators* $\{\mathbf{1}_{R_a} : a \in \mathcal{A}\}$, with each test bounded by $\|\mathbf{1}_{R_a}\|_\infty \leq 1$. We impose ε -approximate \mathcal{H} -calibration in the componentwise sense of Section B, so in particular

$$\|\mathbb{E}[\mathbf{1}_{R_a}(f(X)) \{q(f(X)) - f(X)\}]\|_2 \leq \varepsilon, \quad \text{for all } a \in \mathcal{A} \text{ and all } q \in \mathcal{Q}_\varepsilon.$$

Theorem B.2 (Plug-in is $O(mL\varepsilon)$ -minimax optimal when decision tests lie in \mathcal{H}). *Let $m := |\mathcal{A}|$ and $L := \max_{a \in \mathcal{A}} \|r_a\|_2$ as above. If \mathcal{H} contains the decision indicators $\{\mathbf{1}_{R_a}\}$ and f is ε -approximately \mathcal{H} -calibrated, then the plug-in rule $a_{\text{BR}}(v) \in \arg \max_a u(a, v)$ satisfies, for any forecast-based policy $a(\cdot)$,*

$$\min_{q \in \mathcal{Q}_\varepsilon} \mathbb{E}[u(a_{\text{BR}}(f(X)), q(f(X)))] \geq \min_{q \in \mathcal{Q}_\varepsilon} \mathbb{E}[u(a(f(X)), q(f(X)))] - m L \varepsilon.$$

Proof. Fix any $q \in \mathcal{Q}_\varepsilon$. Decompose by plug-in regions:

$$\mathbb{E}[u(a_{\text{BR}}(f), q(f))] = \sum_{a \in \mathcal{A}} P_a \mathbb{E}[u(a, q(f)) \mid f \in R_a].$$

Since $u(a, \cdot)$ is linear,

$$\mathbb{E}[u(a, q(f)) \mid f \in R_a] = u\left(a, \mathbb{E}[q(f) \mid f \in R_a]\right).$$

Let $\mu_a := \mathbb{E}[f \mid f \in R_a]$. By L -Lipschitzness of $u(a, \cdot)$ and the ε -slack on the indicator test,

$$|u(a, \mathbb{E}[q(f) \mid R_a]) - u(a, \mu_a)| \leq L \|\mathbb{E}[q(f) - f \mid R_a]\|_2 = L \frac{\|\mathbb{E}[\mathbf{1}_{R_a}(q(f) - f)]\|_2}{P_a} \leq L \frac{\varepsilon}{P_a}.$$

Therefore,

$$\mathbb{E}[u(a_{\text{BR}}(f), q(f))] \geq \sum_a P_a u(a, \mu_a) - \sum_a P_a \cdot L \frac{\varepsilon}{P_a} = \mathbb{E}[u(a_{\text{BR}}(f), f)] - m L \varepsilon.$$

Let $\hat{q} \in \arg \min_{q \in \mathcal{Q}_\varepsilon} \mathbb{E}[u(a_{\text{BR}}(f), q(f))]$. Then

$$\min_{q \in \mathcal{Q}_\varepsilon} \mathbb{E}[u(a_{\text{BR}}(f), q(f))] = \mathbb{E}[u(a_{\text{BR}}(f), \hat{q}(f))] \geq \mathbb{E}[u(a_{\text{BR}}(f), f)] - m L \varepsilon.$$

For any forecast-based policy $a(\cdot)$, optimality of the plug-in action on f implies $\mathbb{E}[u(a_{\text{BR}}(f), f)] \geq \mathbb{E}[u(a(f), f)]$. Moreover, since $q_{\text{id}}(v) \equiv v$ is feasible for \mathcal{Q}_ε , we have $\min_{q \in \mathcal{Q}_\varepsilon} \mathbb{E}[u(a(f), q(f))] \leq \mathbb{E}[u(a(f), f)]$. Combining the last three displays yields the claimed inequality. \square

Remark. The proof uses only the ε -slack constraints for the decision indicators $\{\mathbf{1}_{R_a}\}$; any \mathcal{H} that contains these tests (with per-test slack bounded by ε) suffices. Thus Theorem B.2 generalizes both Theorem 4.1 and Theorem 4.2.

Bin-wise calibration under ε -slack: value stability and structure. Let $\{B_j\}_{j=1}^J$ be a measurable partition of $[0, 1]^d$. Assume ε -bin-wise calibration:

$$\|\mathbb{E}[\mathbf{1}_{\{f(X) \in B_j\}} \{q(f(X)) - f(X)\}]\|_2 \leq \varepsilon, \quad j = 1, \dots, J.$$

Write $E_j := \{f(X) \in B_j\}$, $P_j := \mathbb{P}(E_j)$, and $m_j := \mathbb{E}[f(X) \mid E_j]$ (bins with $P_j = 0$ are ignorable).

1026
 1027 **Proposition B.3** (Value stability and piecewise-constant worst-case beliefs). *Under ε -bin-wise cal-
 1028 ibration,*

1029
 1030
$$\sum_{j=1}^J P_j \text{val}(m_j) - J L \varepsilon \leq \min_{q \in \mathcal{Q}_\varepsilon} \mathbb{E}[\text{val}(q(f(X)))] \leq \sum_{j=1}^J P_j \text{val}(m_j).$$

 1031

1032 *Moreover, there exists a worst-case (or arbitrarily near-worst-case) belief that is piecewise constant:
 1033 for each j one can take*

1034
$$q_\varepsilon^*(v) = p_j^* \in \arg \min_{\|p - m_j\|_2 \leq \varepsilon/P_j} \text{val}(p), \quad v \in B_j \text{ (a.e.)},$$

 1035

1036 *and the robust action on B_j best-responds to p_j^* .*

1038 *Proof.* For any feasible q ,

1039
 1040
$$\mathbb{E}[\text{val}(q(f))] = \sum_{j=1}^J P_j \mathbb{E}[\text{val}(q(f)) | E_j] \geq \sum_{j=1}^J P_j \text{val}(\mathbb{E}[q(f) | E_j])$$

 1041

1042 by Jensen since val is convex. The slack constraint implies

1043
 1044
$$\|\mathbb{E}[q(f) - f | E_j]\|_2 = \frac{\|\mathbb{E}[\mathbf{1}_{E_j}(q(f) - f)]\|_2}{P_j} \leq \frac{\varepsilon}{P_j},$$

 1045

1046 so, using L -Lipschitzness of val ,

1047
 1048
$$\text{val}(\mathbb{E}[q(f) | E_j]) \geq \text{val}(m_j) - L \frac{\varepsilon}{P_j}.$$

 1049

1050 Summing over j yields the lower bound $\mathbb{E}[\text{val}(q(f))] \geq \sum_j P_j \text{val}(m_j) - J L \varepsilon$. The upper bound
 1051 holds because $\mathcal{Q} \subseteq \mathcal{Q}_\varepsilon$ and equality is achieved at $\varepsilon = 0$ by the exact bin-wise result.

1052 For structure, fix any feasible q . Replacing q by its conditional mean on each bin,

1053
 1054
$$\tilde{q}(v) := \sum_{j=1}^J \mathbb{E}[q(f) | E_j] \mathbf{1}_{B_j}(v),$$

 1055

1056 does not increase the objective (by Jensen within each bin) and preserves feasibility (the bin-wise
 1057 moments are unchanged). Hence the minimization reduces to choosing, for each bin, a point $p_j \in$
 1058 $[0, 1]^d$ subject to $\|p_j - m_j\|_2 \leq \varepsilon/P_j$ to minimize $\sum_j P_j \text{val}(p_j)$, which yields the stated piecewise-
 1059 constant form with $p_j^* \in \arg \min_{\|p - m_j\|_2 \leq \varepsilon/P_j} \text{val}(p)$. The best-response form of the robust action
 1060 on each bin is immediate from the definition of val . \square

1061
 1062
 1063
 1064
 1065
 1066
 1067
 1068
 1069
 1070
 1071
 1072
 1073
 1074
 1075
 1076
 1077
 1078
 1079