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ABSTRACT

Calibration has emerged as a foundational goal in “trustworthy machine learning”, in part be-
cause of its strong decision theoretic semantics. Independent of the underlying distribution,
and independent of the decision maker’s utility function, calibration promises that amongst all
policies mapping predictions to actions, the uniformly best policy is the one that “trusts the
predictions” and acts as if they were correct. But this is true only of fully calibrated forecasts,
which are tractable to guarantee only for very low dimensional prediction problems. For higher
dimensional prediction problems (e.g. when outcomes are multiclass), weaker forms of calibra-
tion have been studied that lack these decision theoretic properties. In this paper we study how
a conservative decision maker should map predictions endowed with these weaker (“partial”)
calibration guarantees to actions, in a way that is robust in a minimax sense: i.e. to maximize
their expected utility in the worst case over distributions consistent with the calibration guar-
antees. We characterize their minimax optimal decision rule via a duality argument, and show
that surprisingly, “trusting the predictions and acting accordingly” is recovered in this minimax
sense by decision calibration (and any strictly stronger notion of calibration), a substantially
weaker and more tractable condition than full calibration. For calibration guarantees that fall
short of decision calibration, the minimax optimal decision rule is still efficiently computable,
and we provide an empirical evaluation of a natural one that applies to any regression model
solved to optimize squared error.

1 INTRODUCTION

Machine learning systems are increasingly deployed in high-stakes decision making domains such as healthcare,
finance, and law. The predictive power of these models can be extraordinary, but scoring well on predictive error
metrics does not directly guarantee that decisions downstream of those predictions will be correct. For predictions
to be operationally useful, a decision-maker must be able to treat them as reliable inputs into a downstream
decision making policy. This raises two fundamental questions:

On the Model Side: What does it mean for machine learning predictions to be trustworthy in decision-making
contexts?

On the Decision Making Side: Given predictions that satisfy a particular type of “trustworthiness”, how should
the decision maker adapt its actions to the promised guarantees?

On the Model Side: A natural answer is that trustworthy predictions should directly support good decisions as
they are. In other words, the decision-maker should be able to reliably best respond to the forecaster’s predictions
as if they were correct. Formally, let (X,Y ) be a pair of random variables drawn from a joint distribution D,
where X ∈ X represents the observed features and Y ∈ [0, 1]d is the outcome of interest. Let A denote the action
set, and suppose the decision-maker follows a policy a(·) : [0, 1]d → A mapping predictions to actions. Given
a predictor f , the decision maker’s performance when using a policy a is measured by its expected utility on the
underlying distribution:

E(X,Y )∼D[u(a(f(X)), Y )],

where u(a, y) ∈ R is a utility function. Given a forecaster f : X → [0, 1]d, the plug-in best response to a forecast
is defined as

aBR(f(x)) = argmax
a∈A

u(a, f(x)). (1)

Thus, a forecaster f is trustworthy if the decision-maker’s best-response policy aBR(f(x)) achieves higher utility
than any other policy. When is this the case?

The classical answer lies in the notion of calibration. Intuitively, a forecaster is calibrated if, whenever it predicts a
vector f(x) = v ∈ [0, 1]d, the empirical outcomes are consistent with that prediction. More formally, a forecaster
f is said to be fully calibrated if for every v ∈ [0, 1]d,

E[Y | f(X) = v] = v.
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It is well known that best responding to calibrated forecasts is the optimal decision policy among all policies that
map forecasts to actions (Foster & Vohra, 1997; Kleinberg et al., 2023; Noarov et al., 2023; Roth, 2022).

However, achieving full calibration is extremely difficult, both in theory—the sample complexity of calibrating
an existing forecaster without harming its accuracy grows exponentially with the outcome dimension d (Gopalan
et al., 2024)—and in practice, where empirical evidence shows systematic deviations from calibration, ranging
from neural networks to large language models (Guo et al., 2017; Kull et al., 2019; Gupta & Ramdas, 2022; Plaut
et al., 2024). Thus, despite the appealing link between calibration and trustworthy ML-powered decision-making,
this connection quickly breaks down in real-world applications.

On the Decision Making Side: Decision making from predictions admits two canonical extremes. At one end,
the decision maker aggressively best responds to the forecasts, acting as if they were fully correct. At the other
end, the decision maker conservatively plays a minimax-safety strategy, argmaxa∈A miny∈Y u(a, y), treating the
forecasts as if they carried no information about the instance.

Departing from these extremes, we treat a model f and it’s forecast f(x) as information that constrains what
the true, instance-conditional outcome distribution could be. In other words, after observing f(x), the decision
maker considers the set of candidate realities—outcome distributions consistent with the forecast and the available
calibration guarantees. Intuitively, the “volume” of this set is governed by the strength of calibration: under full
calibration, the set collapses to the forecast itself (the prediction can be treated as reality, at least in expectation),
whereas as calibration weakens, the set enlarges. A principled decision rule should therefore tune its conservatism
to what the reality could be, consistent with the provided guarantees. This idea, together with the fragility of full
calibration in practice, leads to the central question of this paper: can we derive optimal decision-making policies
under weaker and more practical conditions than full calibration?

We answer this question affirmatively. We introduce a framework based on conservative decision making that
nevertheless fully exploits partially calibrated forecasts. This viewpoint echoes ideas in robust optimization
and control, but it has not been systematically developed for post hoc decision making with partially calibrated
machine-learning forecasts.

1.1 OUR RESULTS

We consider a parameterized family of weighted calibration guarantees that have recently become a popular ob-
ject of study (Hébert-Johnson et al., 2018; Gopalan et al., 2022). Informally speaking this family of guarantees
constrains the residuals of a predictor f to be uncorrelated with a collection of “test functions” h ∈ H mapping
the range of f to the reals. When H consists of all such test functions, we recover full calibration, but many
popular variants of calibration (e.g. top label calibration, decision calibration, etc) can be expressed as instances
of H-calibration under much smaller/more tractable sets H. Our contributions are as follows:

1. In Section 2 we formalize the following question: given a set of test functions H and a predictor f(x)
that is promised to satisfy H-calibration, what decision rule a : [0, 1]d → A, mapping predictions to
actions, will maximize a decision maker’s expected utility in the worst case over all joint distributions
over X × Y that are consistent with the promise that f is H-calibrated?

2. In Section 3 we answer this question by giving a closed-form for the decision maker’s optimal decision
rule, in terms of the dual variables of a convex program that can be efficiently computed for any finite H.

3. In Section 4 we instantiate this decision rule for various calibration guarantees of interest. Of particular
note, we find that when H corresponds to the tractable notion of decision calibration (Zhao et al., 2021;
Noarov et al., 2023), then the optimal decision rule is the best response decision rule aBR, just as it is for
(the intractable notion of) full calibration. In fact, it suffices that H contains the decision calibration con-
straints — any larger set also makes best response the optimal decision rule. Thus what could have been
a very large hierarchy of minimax optimal decision rules “collapses” to best response at the level of deci-
sion calibration. An upshot of this is that a predictor can be simultaneously decision calibrated for many
downstream decision makers, and for each of them, best response will be their optimal decision policy in
this minimax sense. We also derive the minimax optimal decision rule for a simple “self-orthogonality”
calibration condition that will hold for any regression model with a linear final layer trained to optimize
squared loss, and hence will be commonly satisfied without any algorithmic intervention.

4. In Section 5 we train a two-layer MLP to minimize squared loss on two regression datasets, and evaluate
both the best-response decision rule and the robust decision rule that results from the self-orthogonality
condition of squared error regression. We find that, as predicted by our theory, the robust decision rule
outperforms the best-response decision rule under calibration-preserving distribution shift, and that the
cost of this robustness is mild even under ideal conditions.
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1.2 RELATED WORK

Rothblum & Yona (2023) consider a setting in which both the outcome and decision maker’s action set are binary,
and study how a decision maker should act to minimize their worst case regret over distributions such that the
predictor has maximum calibration error bounded by α: informally that |E[Y |f(x) = v] − v| ≤ α for all v. The
models f they study are (approximately) fully calibrated, which is a reasonable assumption in their setting, since
they limit their study to 1-dimensional outcomes. In contrast, our interest is not (just) in quantitative measures of
full calibration error, but rather qualitatively weaker calibration guarantees, as even approximate full calibration
becomes intractable in high dimensions.

A line of recent work (Zhao et al., 2021; Kleinberg et al., 2023; Noarov et al., 2023; Roth & Shi, 2024; Hu &
Wu, 2024; Okoroafor et al., 2025) has studied the guarantees that can be given to downstream decision makers
who best respond to predictions that have weaker guarantees than full calibration (and which in the cases of Zhao
et al. (2021); Noarov et al. (2023); Roth & Shi (2024) can be tractably guaranteed in higher dimensional outcome
settings). These guarantees take the form of (external and swap) regret bounds, which are qualitatively weaker
than the kind of “trustworthiness” promised by full calibration. Informally, regret bounds promise that the decision
maker could not have done better by consistently playing a fixed action (or a fixed function remapping their actions
to other actions), not that they could not have done better by using a different policy from predictions to actions.
A notable exception is Hu & Wu (2024) who do give a weaker notion than full calibration that can recover this
trustworthiness guarantee for binary outcome spaces — but their construction takes advantage of the structure of
1-dimensional proper scoring rules, and so does not extend beyond 1-dimensional outcomes. We show that even
in high dimensions, the tractable “decision calibration” condition given by Zhao et al. (2021) recovers the same
“trustworthiness” semantics of full calibration when viewed through our minimax decision making lens.

Analyzing minimax optimal decision policies is a common way of analyzing robust or risk-averse decision mak-
ing guarantees, with deep roots in economics (Gilboa & Schmeidler, 1989; Hansen & Sargent, 2001; Manski,
2000; 2004; Manski & Tetenov, 2007; Manski, 2011), statistics (Wald, 1950), and robust optimization (Ben-Tal
& Nemirovski, 2002; Kuhn et al., 2019; Duchi & Namkoong, 2021). For example, Carroll (2015) adopts this lens
this in the context of contract theory and Kiyani et al. (2025) and Andrews & Chen (2025) do so in the context
of conformal prediction. To the best of our knowledge, we are the first to apply this “robust” minimax lens to the
problem of partially calibrated high dimensional forecasts.

2 ROBUST DECISION MAKING AND H-CALIBRATION

In this Section, we define H-calibration as a flexible relaxation of full calibration and then introduce a framework
to derive minimax optimal decision making policies that are designed to act on forecasters guaranteed to satisfy
H-calibration. This family of calibration guarantees has been studied extensively in the recent literature on multi-
calibration and its extensions (Hébert-Johnson et al., 2018; Dwork et al., 2021; Gopalan et al., 2022; Deng et al.,
2023) — in particular, H-calibration is a special case of what Gopalan et al. (2022) call weighted multicalibration.

H-Calibration. Let H be a set of functions h : [0, 1]d → R. A forecaster f is said to be H-calibrated if for every
h ∈ H,

E
[
h(f(X)) · (Y − f(X))

]
= 0. (2)

Equivalently, writing q(v) := E[Y | f(X) = v] for the true conditional expectation, H-calibration requires
E
[
h(f(X)) · (q(f(X))− f(X))

]
= 0, ∀h ∈ H. (3)

This definition captures a spectrum of guarantees. When H contains all bounded measurable functions, H-
calibration reduces to full calibration — i.e. it requires that f(v) = q(v) := E[Y | f(X) = v] almost surely. For
smaller classes H, the requirement is weaker and can be seen as a relaxation of calibration, enforcing consistency
only with respect to a restricted set of tests.

Robust Decision Making. Fix an H-calibrated forecaster f . Define the set

Q =
{
q : [0, 1]d → [0, 1]d

∣∣ E
[
h(f(X)) · (q(f(X))− f(X))

]
= 0, ∀h ∈ H

}
. (4)

In words, Q consists of all candidate conditional expectations consistent with f satisfying H-calibration. Because
the perfect predictor f(X) = E[Y |X] satisfies H-calibration for every H, the identity map q(v) = v is always
in Q—but in general the set may contain many maps. From the perspective of the decision-maker who knows f
and the promised calibration guarantee H, but does not know the underlying distribution, given a forecast f(x),
the true expectation E[Y | f(x)] is uncertain but must lie within Q. As H grows richer, Q shrinks, eventually
reducing to {q(v) = v} in the case of full calibration.

Faced with this uncertainty, a natural strategy is to adopt a robust policy that guards against the worst-case admis-
sible reality. Formally, the robust decision rule is

arobust(·) = argmax
a(·):[0,1]d→A

min
q∈Q

E
[
u(a(f(X)), q(f(X)))

]
. (5)
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no information

Figure 1: Schematic of interpolating property

That is, the decision-maker chooses an action policy that maximizes utility under the worst-case conditional
expectation consistent with calibration guarantees.

Interpolating Property. The robust policy defined in Equation 5 interpolates between two classical extremes
(look at Figure 1). When H contains all functions, the set Q reduces to the singleton {q(v) = v}, and arobust
coincides with the best-response policy aBR(·) (look at equation 1), aggressively using the prediction as if it were
correct. At the opposite extreme, when H is empty, the set Q consists of all functions and the robust policy
collapses to the constant minimax safety strategy, conservatively optimizing for the worst case, assuming that the
predictor f has no relationship to the outcome.

aMinimax(x) = argmax
a∈A

min
y∈[0,1]d

u(a, y), ∀x ∈ X ,

Thus, the policy defined by Equation 5 provides a principled bridge between best-responding to calibrated fore-
casts and adopting fully conservative strategies. More broadly, H-calibration offers a flexible language to describe
varying levels of conservatism in decision-making, determined by the richness of the calibration guarantees avail-
able to the decision-maker.

The central theme of the remainder of this paper is to investigate the interaction between different levels of H-
calibration and the resulting optimal robust policies. Our focus is not on developing methods for achieving H-
calibration itself (for which we refer the reader to a rich line of recent work showing how to accomplish this in
both the batch and online adversarial setting (Hébert-Johnson et al., 2018; Gopalan et al., 2022; Deng et al., 2023;
Noarov et al., 2023; Globus-Harris et al., 2023)), but rather on understanding the decision-making consequences
once such guarantees are in place. In the next section, we begin by analyzing the general problem of deriving opti-
mal robust decision rules for arbitrary classes H. We then specialize to the important case of decision calibration,
showing that this weaker and more practical notion identifies large classes of partially calibrated forecasters for
which best responding remains optimal. Beyond its theoretical appeal, this result is also practically useful: when a
decision-maker can influence the design or post-processing of the forecaster, they can request a decision-calibrated
forecaster, to which they can then simply, reliably, and optimally best respond.
Remark 2.1. Throughout this Paper, we assume the utility function u(a, v) for each a ∈ A, u(a, v) is linear in
its second argument v ∈ [0, 1]d. This captures, for example, settings in which v represents a distribution over d
outcomes, and the decision maker has arbitrary utilities for each action/outcome pair, and wishes to maximize
their expected utility given uncertainty (here, the linearity in v follows from the linearity of expectation).

3 OPTIMAL DECISION POLICIES FOR FINITE DIMENSIONAL H-CALIBRATION

In this Section, we characterize the optimal robust decision making policies, i.e., solutions to Equation 5. Through-
out this Section, we assume the function class H is a finite dimensional space, i.e. it can be described as span
of finitely many functions. Formally, let H = span{h1, . . . , hk} be the linear class generated by measurable
hi : [0, 1]

d → R. Then the H-calibration condition equation 3 is equivalent to the k linear moment equalities

E
[
hi(f(X)) · ( q(f(X))− f(X) )

]
= 0, i = 1, . . . , k,

so that the ambiguity set in equation 4 may be written as

Q =
{
q : [0, 1]d→ [0, 1]d

∣∣∣ E
[
hi(f(X)) · ( q(f(X))− f(X) )

]
= 0 for i = 1, . . . , k

}
.

Intuitively, each equality enforces that, conditional on the forecast, the forecast error has zero correlation with the
corresponding test hi; taken together, these constraints exhaust the information provided by H-calibration criteria
and hence precisely describe the admissible reality faced by the robust decision-maker in equation 5.

Theorem 3.1 (Characterization of the Optimal Robust Policy). Suppose H = span{h1, . . . , hk} with each hi :
[0, 1]d → R, and let Q be defined as above. Then the minimax problem in Equation 5 admits a saddle point
(arobust, q

⋆) with the following structure:

4
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There exist multipliers λ⋆ = (λ⋆
1, . . . , λ

⋆
k) with each λ⋆

i ∈ Rd such that for almost every forecast v = f(x) the
worst-case map q⋆(v) solves

q⋆(v) ∈ arg min
p∈[0,1]d

{
val(p) + p ·

k∑

i=1

hi(v)λ
⋆
i

}
, where val(p) = max

a∈A
u(a, p).

Given q⋆, the optimal robust action at v is the best response to q⋆(v):

arobust(v) ∈ argmax
a∈A

u
(
a, q⋆(v)

)
.

Interpretation. Theorem 3.1 provides a transparent description of both the worst-case distribution the decision-
maker may face (up to the information encoded by H-calibration) and the corresponding optimal response. Op-
erationally, for any realized forecast ν = f(x) the theorem prescribes a two-step procedure: first compute the
adversarial belief

q⋆(ν) ∈ arg min
p∈[0,1]d

{
val(p) + p · s⋆(ν)

}
, s⋆(ν) :=

k∑

i=1

hi(ν)λ
⋆
i ,

and then best respond to q⋆(ν), i.e. take arobust(ν) ∈ argmaxa∈A u(a, q⋆(ν)). Thus, the optimal policy is always
a best response, but, in general, not to the raw forecast f(x); rather, it best responds to the adversarially tilted
distribution q⋆(ν) that is chosen to be most challenging under the calibration constraints. A useful byproduct of
the theorem is pointwise computability: although arobust is a a-priori a policy on X , the characterization reduces
its evaluation at a given ν = f(x) to solving two low-dimensional problems, without constructing the entire
mapping x 7→ arobust(x).

From an optimization perspective, the multipliers λ⋆ solve a finite-dimensional concave maximization problem
(look at the proof of Theorem 3.1), and q⋆(ν) is obtained by a pointwise convex minimization in p ∈ [0, 1]d. Both
stages can be carried out by standard, fast methods with provable guarantees (e.g., projected subgradient for the
dual, or a simple primal–dual scheme), after which one evaluates q⋆(ν) via the pointwise minimization and takes
the best response arobust(ν) = argmaxa u(a, q

⋆(ν)).

In the next section, we analyze the behavior of the resulting decision rules by specializing to concrete H-classes.
One might expect that Theorem 3.1 induces a vast and intricate hierarchy of policies whose form depends sensi-
tively on H. Perhaps surprisingly, this is not the case. In particular, we show a sharp transition: for each decision
maker, there exists a specific test class, precisely the one associated with decision calibration, such that as soon
as H contains this class, the adversarial tilt collapses (q⋆(ν) = ν for a.e. ν) and the optimal robust rule reduces
to the plug-in best response to the forecaster. This places the spotlight on decision-calibrated forecasters as a
practical, strictly weaker alternative to full calibration that nonetheless confers decision-theoretic trustworthiness:
the decision-maker can simply, reliably, and optimally best respond to the forecast.

4 INSTANTIATIONS OF THE ROBUST POLICY: DECISION CALIBRATION AND BEYOND

In this section, we specialize the general characterization derived in Theorem 3.1 to concrete test classes H and
derive the associated action policies. Our core result concerns decision calibration: a practically tractable guaran-
tee under which the minimax-optimal robust policy collapses to the plug-in (best-response) rule. This identifies a
simple and operational path to decision-theoretic trustworthiness that does not require full calibration.

4.1 DECISION CALIBRATION AND PLUG-IN BEST RESPONSE OPTIMALITY

Here we define the variant of decision calibration given by Noarov et al. (2023), a slight strengthening of the
definition originally given by Zhao et al. (2021). Fix a single decision problem with action set A and utility
function u(a, v). For each action a ∈ A, let

Ra =
{
v ∈ [0, 1]d : u(a, v) ≥ u(a′, v) for all a′ ∈ A

}

be the (closed, convex) decision region on which a is a plug-in best response. The decision-calibration class is
Hdec = {1Ra

: a ∈ A}.
Here, we denote 1A(x) := 1{x ∈ A}. A forecaster f is decision calibrated if it is Hdec-calibrated, i.e.,

E
[
1Ra

(
f(X)

) (
Y − f(X)

)]
= 0 for all a ∈ A.

Theorem 4.1 (Decision calibration ⇒ plug-in best response optimality). If f is Hdec-calibrated, then the
minimax-optimal robust rule in equation 5 coincides with the plug-in best response:

arobust(v) ∈ argmax
a∈A

u(a, v) for almost every v = f(x).

Equivalently, under decision calibration, best responding to the forecaster is minimax optimal among all forecast-
based policies.

5
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Figure 2: Schematic of sharp transition

Put differently, upon observing a forecast v = f(x), the decision-maker need only best respond to v; no adversarial
“tilt” survives the decision-calibration constraints. Conceptually, this upgrades the perviously known guarantees
of decision calibration, phrased in terms of swap-regret (see Section 1.2 for discussion and references), to minimax
optimality.

The preceding result assumes that the information conveyed by the forecaster to the decision-maker is exhausted
by the decision-calibration tests {1Ra}a∈A. In practice, a forecaster might satisfy additional calibration equalities,

E
[
h(f(X)) · {Y − f(X)}

]
= 0,

for functions h beyond the indicators 1Ra . The next theorem shows that the plug-in optimality conclusion is stable
under such enrichments. This is intuitive: if a forecaster is trustworthy, then making it more calibrated (i.e., adding
information) should not diminish that trustworthiness.
Theorem 4.2 (Decision calibration is sufficient, and remains sufficient under richer tests). Let H be any test class
that contains the decision-calibration indicators, Hdec = {1Ra : a ∈ A}. If f is perfectly H-calibrated, then the
minimax-optimal robust rule in equation 5 coincides (a.e.) with the plug-in best response:

arobust(v) ∈ argmax
a∈A

u(a, v) for a.e. v = f(x).

Sharp transition. At first glance, one might expect a gradual deconservatization: as H is enriched with more
tests, the robust policy equation 5 should steadily move from fully conservative toward plug-in best-response.
Theorems 4.1–4.2 reveal a sharper picture (look at Figure 2). Once H contains the |A| decision tests {1Ra

}a∈A,
the adversarial tilt vanishes (q⋆(ν) = ν a.e.) and the robust rule collapses to the plug-in best response (given in
equation 1). Enlarging H beyond these indicators does not add conservatism: the minimax-optimal policy remains
“trust the forecast and best respond.”

Decision calibration is a minimal, task-specific threshold at which robust decision making and plug-in
best-response coincide, providing a crisp target for forecaster design and a clear requirement for

downstream decision makers.

Note that this result is a qualitatively stronger guarantee than the kinds of regret guarantees that have already
been shown to be satisfied by decision calibration Zhao et al. (2021); Noarov et al. (2023) — those bound the
performance of best responding to decision calibrated forecasts with respect to various benchmarks, but do not
establish that best responding to decision calibrated forecasts are the optimal decision rule. Their optimality
depends on the minimax view that we introduce in this work.

As a byproduct, this leads to another practical advantage of decision calibration: a single forecaster can be made
simultaneously reliable for a collection of downstream decision problems. Intuitively, if the forecast passes the
decision calibration tests of each problem, then none of the decision makers needs additional robustness, the
plug-in best-response is minimax-optimal for all of them.
Corollary 4.3 (Simultaneous plug-in optimality across multiple decisions). Let u1, . . . , um be m decision prob-
lems, with respective action sets Aj and linear utilities uj(a, v) in v ∈ [0, 1]d. For each j and a ∈ Aj , let

Ra,j = { v ∈ [0, 1]d : uj(a, v) ≥ uj(a
′, v) for all a′ ∈ Aj }

be the plug-in decision region of action a in problem j, and define the combined test class

Hall
dec =

m⋃

j=1

{
1Ra,j

: a ∈ Aj

}
.

If f is H-calibrated for some H satisfying Hall
dec ⊆ H, then for every j ∈ {1, . . . ,m} the minimax-optimal robust

policy for problem j coincides (a.e.) with the plug-in best response:

arobust,j(v) ∈ arg max
a∈Aj

uj(a, v) for a.e. v = f(x).

6
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Proof. For each problem j, the included indicators {1Ra,j
}a∈Aj

ensure that H contains the decision-calibration
tests of problem j. Theorem 4.2 then applies verbatim to each j, yielding plug-in optimality problem by problem.

4.2 BEYOND DECISION CALIBRATION: GENERIC H-SPECIFICATIONS FROM TRAINING PIPELINES

Thus far we have focused on decision calibration, which, when attainable, collapses arobust to the plug-in best
response. In practice, two regimes arise. (i) If one can influence the forecaster’s training pipeline, decision
calibration is the natural target: it is minimal and task-specific, and our sharp-transition results guarantee plug-in
minimax optimality. (ii) If one cannot control training, the forecaster might not be decision calibrated for the
downstream task. Identifying its precise partial-calibration profile may be difficult, yet certain moment conditions
arise structurally from standard training procedures. Here we give two examples of how to leverage such “free”
structure to specify usable H’s and derive the associated robust policies.

Self-orthogonality from squared-loss training. A ubiquitous example is self-orthogonality (a form of self-
calibration) that follows from first-order optimality when a model with a linear last layer is trained to minimize
mean squared error. This includes the universally adopted cases of regression with either a linear model or a neural
network with a linear head, trained by mean squared error.

Proposition 4.4 (Self-orthogonality under squared loss). Let X 7→ zϕ(X) ∈ Rk be a representation and fθ(X) =
Wzϕ(X) ∈ Rd a linear last layer. Suppose θ = (ϕ,W ) is trained to a first-order stationary point of the expected
squared loss

L(θ) = 1
2 E

[∥∥fθ(X)− Y
∥∥2
2

]
.

Then the following calibration moments hold:

E
[
zϕ(X) (Y − fθ(X))⊤

]
= 0 and E

[
fθ(X) (Y − fθ(X))⊤

]
= 0.

In particular, fθ is H-calibrated for the test class H = {hj(v) = e⊤j v : j = 1, . . . , d} (and for any linear
combination thereof).

Implications. Proposition 4.4 supplies a generic, pipeline-induced H-calibration guarantee whenever a linear
head is trained to stationarity under squared loss. Specializing Theorem 3.1 to this case yields a particularly
simple dual. For d = 1 (for example the case of 1-dimensional regression) and H = {h(v) = v}, the multiplier is
a scalar λ, and for each forecast ν = f(x) the worst-case distribution becomes

q⋆(ν) ∈ arg min
p∈[0,1]

{
val(p) + λ ν p

}
, val(p) = max

a∈A
{u(a, p) }.

The robust action is the best response to q⋆(ν):

arobust(ν) ∈ argmax
a∈A

u
(
a, q⋆(ν)

)
.

When u(a, p) is linear in p and A is finite, val is convex piecewise linear in p, so the inner minimization reduces
to evaluating a finite set of candidate points (the endpoints and pairwise breakpoints of val). The dual objective

G(λ) = E
[
min

p∈[0,1]
{val(p) + λ f(X) p}

]
− λE

[
f(X)2

]

is concave in λ and can be maximized by standard one-dimensional methods with provable guarantees (e.g.,
bisection on a monotone subgradient). In higher dimensions (d > 1) the correction term, λ ν p becomes Λ ν p for
a matrix of multipliers Λ, and the pointwise inner problem remains a small convex program over p ∈ [0, 1]d; for
finite A and linear utilities, it is again efficiently solvable.

Zero-bias and bin-wise calibration. A widely available source of partial calibration comes from post-hoc recal-
ibration that many practitioners already apply (mean correction, histogram binning, isotonic-style step fits on a
held-out split). These procedures enforce generic (not task-specific) moment constraints that are directly usable
in our framework. We focus on bin-wise calibration: take a partition of the forecast range into bins {B1, . . . , BJ}
and enforce, for each bin,

E
[
1{f(X)∈Bj} (Y − f(X))

]
= 0, j = 1, . . . , J.

This corresponds to the test class Hbin = {1Bj : j = 1, . . . , J}, and reduces to zero-bias when J=1 with
B1 = [0, 1]d.

Proposition 4.5 (Robust policy under bin-wise calibration). Let the utility be linear in the outcome and the action
set A be finite. If f is Hbin-calibrated, then with

mj := E[f(X) | f(X) ∈ Bj ] = E[Y | f(X) ∈ Bj ] ,

7
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the worst-case belief is piecewise constant

q⋆(v) = mj for v ∈ Bj (a.e.),

and the robust action best-responds to the bin mean:

arobust(v) ∈ argmax
a∈A

{
u(a,mj)

}
for v ∈ Bj (a.e.).

Implications. Bin-wise calibration Hbin can be obtained cheaply via standard post-hoc methods (histogram
binning or isotonic regression), and Proposition 4.5 yields an especially simple, closed-form characterization of
the robust policy. Computing arobust reduces to: (i) estimating mj on a calibration split, and (ii) at test time,
mapping v to its bin Bj and best-responding to mj . No additional optimization is needed to compute actions.
As a special case, when J = 1 we recover the global-mean constraint E[Y − f(X)] = 0. Then q⋆ is constant,
q⋆(v) ≡ m̄, with m̄ = E[f(X)] = E[Y ], and the robust rule ignores v and plays argmaxa∈A u(a, m̄). As the
partition is refined, the robust rule moves from a single global plug-in best response at m̄ to a piecewise plug-in
best response at mj , yielding a richer, finer-grained decision policy.

5 EXPERIMENTS

In this section, we empirically evaluate the validity and practical consequences of our framework by implementing
our methods on two real-world datasets. We compare the plug-in best response (aBR), a standard and widely used
baseline, against the robust policy (arobust), which enjoys minimax optimality guarantees under H-calibration.

We focus on two classes of metrics. Nominal performance measures average utility when the test data are i.i.d.
from the same distribution as the training and calibration splits; this reflects an optimistic regime that often de-
grades in practice. Adversarial performance probes the other extreme by altering the test-time outcome distribu-
tion in two ways: (i) a worst case tailored to the plug-in policy, and (ii) a worst case induced by the robust dual,
tailored to the robust policy. In both cases, the adversarial distributions respect the H-calibration constraints and
are therefore indistinguishable, from the decision-maker’s perspective, from i.i.d. test draws given an H-calibrated
forecaster.

Our theory predicts that two patterns should emerge. First, by minimax optimality, the robust policy should
dominate the plug-in rule when each is evaluated against its own worst-case distribution (and typically dominate
the plug-in rule under the adversary tuned to hurt the plug-in). Second, because (arobust, q

⋆) forms a saddle
point of equation 5, when both policies are evaluated under the robust-tuned adversary, the robust policy should
not underperform the plug-in rule. Under nominal i.i.d. evaluation, the plug-in rule may achieve higher utility,
reflecting the lack of need for conservatism in that regime.

5.1 CASE STUDIES: BIKE SHARING AND CALIFORNIA HOUSING

We evaluate our framework on two real-world regression datasets with distinct decision-making interpretations.

Bike Sharing (UCI). The UCI Bike Sharing (daily) dataset Fanaee-T & Gama (2014) records daily rider counts
alongside calendar and weather covariates (season, month, weekday, holiday, working day, weather state, temper-
ature, humidity, wind). The outcome Y ∈ [0, 1] is the rescaled total rider count, and the decision-maker chooses
a staffing/capacity multiplier from A = {0.8, 1.0, 1.2}, interpretable as conservative, nominal, and aggressive
provisioning.

California Housing. The California Housing dataset Pace & Barry (1997) records median house values
(rescaled to [0, 1]) with demographic and geographic covariates (median income, housing age, population, lat-
itude/longitude, etc.). Here the decision-maker chooses an investment multiplier from A = {0.6, 0.75, 0.90},
interpretable as conservative, nominal, and aggressive investment.

Utility specification. In both settings we adopt the utility

u(a, y) = αa y − C(a),

which is linear in y. The benefit term αa y captures service or return proportional to realized outcome y, scaled
by α > 0. The cost term C(a) grows in a, penalizing aggressive choices via over-provisioning costs or investment
risk. This form tunes the under/over-trade-off without departing from linearity. For Bike Sharing we use (α,C) =
(0.9, {0.02, 0.05, 0.1}), while for California Housing we use (α,C) = (0.9, {0.02, 0.05, 0.20}). The qualitative
conclusions of this Section remain the same under other reasonable parameter choices.
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Table 1: Mean utility on the test set under natural i.i.d. evaluation and two adversarial evaluations. Adversaries
respect H-calibration (H = {h(v) = v}).

Dataset i.i.d. Worst-case for robust Worst-case for plug-in

Plug-in Robust Plug-in Robust Plug-in Robust

Bike Sharing (UCI) 0.474 0.463 0.402 0.410 0.393 0.412

California Housing 0.216 0.207 0.160 0.164 0.155 0.166

Forecasting model. In both datasets, the forecaster f is a two-layer MLP trained by MSE. By the self-
orthogonality property of linear heads under squared loss (see Section §??), the learned forecaster approximately
satisfies H-calibration with H = {h(v) = v}, which is the calibration constraint used to derive the robust policy
arobust. All experiments use an i.i.d. train/calibration/test split (60/20/20). We use the calibration data to substitute
any population level expectation that is needed to be computed to derive arobust.

Results. Table 1 reports the mean utilities. The results match theory: under adversaries tailored to the robust
policy, the robust rule achieves at least the plug-in performance; under adversaries tuned to harm the plug-in rule,
the robust policy secures noticeably higher utility, reflecting its minimax protection. Moreover, the robust policy
outperforms the plug-in best response when each is evaluated against its own worst-case distribution.

6 CONCLUSION AND LIMITATIONS

We developed a decision-theoretic framework for acting on partially calibrated forecasts via a minimax-optimal
robust policy over H-calibrated forecasters. We then identified a sharp transition in the behavior of these policies:
for any decision problem with m actions, there exist m decision tests (the decision-calibration class) such that,
once they are included in H, the robust policy collapses to the plug-in best response. This spotlights decision
calibration as a natural requirement whenever the decision-maker can influence the training pipeline. Moreover,
even when decision calibration is unavailable, we showed that generic properties induced by standard training and
post hoc procedures (e.g., self-orthogonality under squared loss and bin-wise calibration) yield usable test classes
H and tractable robust policies within our framework.

Our guarantees and saddle-point characterizations are stated at the population level, assuming exact H-calibration.
In practice, H-constraints are estimated from finite calibration/validation splits, introducing finite-sample error.
Quantifying the resulting finite-sample degradation is an important direction for future work. We also assumed
u(a, v) is linear in v and that A is finite; these cover many expected-utility settings. However, extending to
nonlinear (e.g., risk-averse) utilities could broaden the scope of our results.
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Appendix
A PROOFS

Proof of Theorem 3.1

Proof. We begin from the robust formulation

max
a(·):X→A

min
q∈Q

E
[
u
(
a(f(X)), q(f(X))

)]
, (6)

where A ⊂ Rm is compact, u(·, ·) is linear in its second component, Q is the nonempty, convex, and compact set
of measurable maps q : [0, 1]d → [0, 1]d satisfying the linear moment equalities in equation 4, and a(·) ranges
over measurable policies with values in A. The mapping (a, q) 7→ E[u(a(f(X)), q(f(X)))] is convex in q (since
u(a, ·) is linear, hence convex, in y and expectation preserves convexity), concave in a (as a pointwise maximum
over linear functionals in a on the compact set A). Hence, by Sion’s minimax theorem,

max
a(·)

min
q∈Q

E
[
u(a(f(X)), q(f(X)))

]
= min

q∈Q
max
a(·)

E
[
u(a(f(X)), q(f(X)))

]
.

Fix any q ∈ Q. The inner maximization over policies separates pointwise in v = f(x), yielding the value function

val(p) ≜ max
a∈A

u(a, p) and max
a(·)

E
[
u
(
a(f(X)), q(f(X))

)]
= E

[
val

(
q(f(X))

)]
.

Therefore the robust value equals the convex adversarial problem

min
q∈Q

E
[
val

(
q(f(X))

)]
, (7)

which will be analyzed via Lagrangian duality below.

Introduce vector Lagrange multipliers λi ∈ Rd for the d-dimensional equalities in equation 4, and let λ =
(λ1, . . . , λk). Define

s(v) ≜
k∑

i=1

hi(v)λi ∈ Rd, v ∈ [0, 1]d.

The Lagrangian of equation 7 is

L(q, λ) = E
[
val

(
q(f(X))

)]
+

k∑

i=1

λi · E
[
hi

(
f(X)

) (
q(f(X))− f(X)

)]
.

By linearity of expectation,

L(q, λ) = E
[
val

(
q(f(X))

)
+ q(f(X)) · s

(
f(X)

)
− f(X) · s

(
f(X)

)]
.

The dual function is obtained by minimizing L(q, λ) over measurable q : [0, 1]d → [0, 1]d. Since the integrand
depends on q only through q(f(X)), the infimum can be taken pointwise in the forecast value v = f(X):

G(λ) = inf
q
L(q, λ) = E

[
inf

p∈[0,1]d

{
val(p) + p · s

(
f(X)

)} ]
− E

[
f(X) · s

(
f(X)

)]
.

The primal problem equation 7 is convex (convex objective, affine constraints) and feasible (e.g., q(v) = v),
thereby strong duality holds. Hence,

min
q∈Q

E
[
val

(
q(f(X))

)]
= max

λ∈(Rd)k
G(λ),

and there exists a maximizing multiplier λ⋆. Define

s⋆(v) ≜
k∑

i=1

hi(v)λ
⋆
i ∈ Rd.

By the definition of G(λ) and strong duality, any primal optimizer q⋆ ∈ Q must minimize the Lagrangian at λ⋆.
Since the dependence on q is only through q(f(X)), this yields the pointwise characterization, for v = f(x)
almost surely,

q⋆(v) ∈ arg min
p∈[0,1]d

{
val(p) + p · s⋆(v)

}
.
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With q⋆ fixed, define the policy
arobust(v) ∈ argmax

a∈A
u
(
a, q⋆(v)

)
.

Then, by the definition of val and the construction of q⋆,

max
a(·)

E
[
u
(
a(f(X)), q⋆(f(X))

)]
= E

[
val

(
q⋆(f(X))

)]
= min

q∈Q
E
[
val

(
q(f(X))

)]
,

which shows that (arobust, q⋆) is a saddle point of equation 6. In particular, arobust is optimal for the outer
maximization, and q⋆ is worst–case optimal for the inner minimization, with q⋆ characterized pointwise by the
minimization problem above and determined by the dual multiplier λ⋆. This matches the statement of Theorem 3.1
and completes the proof.

Proof of Theorem 4.1:

Proof. We use the reduction

max
a(·)

min
q∈Q

E
[
u(a(f(X)), q(f(X)))

]
= min

q∈Q
E
[
val(q(f(X)))

]
,

established in the proof of Theorem 3.1. Fix the decision regions

Ra = { v ∈ [0, 1]d : u(a, v) ≥ u(a′, v) ∀ a′ ∈ A},
each convex. Under Hdec = {1Ra

: a ∈ A}, admissible q satisfy

E
[
1Ra

(f(X)){q(f(X))− f(X)}
]
= 0 ∀a,

equivalently (whenever P(f(X) ∈ Ra) > 0),

E[q(f(X)) | f(X) ∈ Ra] = E[f(X) | f(X) ∈ Ra] =: µa ∈ Ra.

By Jensen’s inequality (convexity of val), for any q ∈ Q and any a,

E
[
val

(
q(f(X))

) ∣∣ f(X) ∈ Ra

]
≥ val(µa).

Define the piecewise-constant q̄(v) =
∑

a µa 1Ra
(v). Then q̄ ∈ Q and, conditionally on f(X) ∈ Ra, we have

q̄(f(X)) = µa a.s., hence the bound is attained:

E
[
val

(
q̄(f(X))

)]
=

∑

a

P(f(X) ∈ Ra) val(µa) ≤ E
[
val

(
q(f(X))

)]
∀q ∈ Q.

Thus a worst-case belief is q⋆ = q̄, region-wise constant with q⋆(v) = µa on Ra.

Finally, since µa ∈ Ra, by definition of Ra we have u(a, µa) ≥ u(a′, µa) for all a′, so a is a best response to µa.
Therefore the robust action at v ∈ Ra is

arobust(v) ∈ argmax
a′

u(a′, q⋆(v)) = argmax
a′

u(a′, µa) ∋ a,

which coincides (a.e.) with the plug-in best response to v. This proves Theorem 4.1.

Proof of Theorem 4.2:

Recall val(p) = maxa∈A u(a, p) and the reduction

max
a(·)

min
q∈QH

E
[
u
(
a(f(X)), q(f(X))

)]
= min

q∈QH
E
[
val

(
q(f(X))

)]
,

established earlier in the proof of Theorem 3.1. Moreover, the identity map qid(v) = v always lies in QH (the
perfect forecaster is consistent with every H-calibration constraint), so for any policy a(·),

min
q∈QH

E
[
u
(
a(f(X)), q(f(X))

)]
≤ E

[
u
(
a(f(X)), f(X)

)]
. (8)

Let aBR(v) ∈ argmaxa∈A u(a, v) be a plug-in best response.1 We show that, assuming H contains the decision-
calibration tests {1Ra}a∈A,

E
[
u
(
aBR(f(X)), q(f(X))

)]
= E

[
u
(
aBR(f(X)), f(X)

)]
∀ q ∈ QH. (9)

1Fix any deterministic tie-breaking so that aBR and the regions Ra = {v : aBR(v) = a} are measurable.
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Write µa := E[ f(X) | f(X) ∈ Ra ] whenever P(f(X) ∈ Ra) > 0 (if P(f(X) ∈ Ra) = 0, any choice of µa is
harmless since the corresponding terms vanish). Then

E
[
u
(
aBR(f(X)), q(f(X))

)]
=

∑

a∈A
E
[
u
(
a, q(f(X))

)
1{f(X)∈Ra}

]

(i)
=

∑

a∈A
P(f(X) ∈ Ra) u(a, E[q(f(X)) | f(X) ∈ Ra])

(ii)
=

∑

a∈A
P(f(X) ∈ Ra) u(a, E[f(X) | f(X) ∈ Ra])

=
∑

a∈A
P(f(X) ∈ Ra) u(a, µa)

(iii)
=

∑

a∈A
E
[
u
(
a, f(X)

)
1{f(X)∈Ra}

]

= E
[
u
(
aBR(f(X)), f(X)

)]
.

Here: (i) uses that u(a, ·) is linear in its second argument, so E[u(a, q(f(X))) | f(X) ∈ Ra] =
u(a,E[q(f(X)) | f(X) ∈ Ra]); (ii) uses the decision-calibration equalities E[1Ra

(f(X)){q(f(X))−f(X)}] =
0, equivalently E[q(f(X)) | f(X) ∈ Ra] = E[f(X) | f(X) ∈ Ra] = µa whenever P(f(X) ∈ Ra) > 0; and
(iii) again uses linearity: u(a, µa) = u

(
a,E[f(X) | f(X) ∈ Ra]

)
= E[u(a, f(X)) | f(X) ∈ Ra].

Combining equation 8, the optimality of best response on the perceived outcomes,

E
[
u
(
a(f(X)), f(X)

)]
≤ E

[
u
(
aBR(f(X)), f(X)

)]
for all policies a(·),

and the invariance equation 9, we obtain the minimax dominance

min
q∈QH

E
[
u
(
aBR(f(X)), q(f(X))

)]
= E

[
u
(
aBR(f(X)), f(X)

)]
≥ min

q∈QH
E
[
u
(
a(f(X)), q(f(X))

)]
,

for every forecast-based policy a(·). Hence the plug-in best response is minimax optimal under any H that contains
the decision-calibration tests, as claimed.

Proof of Proposition 4.4:

Proof. Assume E∥zϕ(X)∥22 < ∞ and E∥Y ∥22 < ∞ so that all derivatives and expectations below are well-defined
and we may interchange expectation and differentiation by dominated convergence. Write z := zϕ(X) ∈ Rk and
f := fθ(X) = Wz ∈ Rd. The squared-loss risk is

L(θ) = 1
2 E

[
∥f − Y ∥22

]
= 1

2 E
[
(Wz − Y )⊤(Wz − Y )

]
.

For the linear head W ∈ Rd×k, the gradient with respect to W satisfies the standard identity

∇W

(
1
2∥Wz − Y ∥22

)
= (Wz − Y ) z⊤ ∈ Rd×k.

Taking expectation and interchanging ∇ with E yields

∇WL(θ) = E
[
(f − Y ) z⊤

]
.

At a first-order stationary point (in particular, when the gradient with respect to W vanishes) we have

E
[
(f − Y ) z⊤

]
= 0d×k.

Transposing gives

E
[
z (f − Y )⊤

]
= 0k×d ⇐⇒ E

[
z (Y − f)⊤

]
= 0k×d,

which is the first claimed moment identity.

For the second identity, observe that f = Wz, hence

E
[
f (Y − f)⊤

]
= E

[
Wz (Y − f)⊤

]
= W E

[
z (Y − f)⊤

]
= W 0k×d = 0d×d.

Therefore both E[ zϕ(X) (Y − fθ(X))⊤] = 0 and E[ fθ(X) (Y − fθ(X))⊤] = 0 hold. In particular, for each
coordinate j = 1, . . . , d, E[ e⊤j fθ(X) (Y − fθ(X))⊤] = 0 and E[ zϕ(X) e⊤j (Y − fθ(X))] = 0, so fθ is H-
calibrated for H = {hj(v) = e⊤j v : j = 1, . . . , d} and for any linear combination thereof. This proves the
proposition.
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Proof of Proposition 4.5:

Proof. By the reduction established earlier (see the proof of Theorem 3.1), the robust problem

max
a(·)

min
q∈Q

E
[
u(a(f(X)), q(f(X)))

]

with linear utilities and finite A is equivalent to the convex program

min
q∈Q

E
[
val

(
q(f(X))

)]
, val(p) := max

a∈A
u(a, p),

subject to the Hbin-calibration constraints

E
[
1{f(X)∈Bj} (q(f(X))− f(X))

]
= 0, j = 1, . . . , J.

Write Ej := {f(X) ∈ Bj} and assume P(Ej) > 0 (bins with zero probability are immaterial). Then the
constraints are equivalent to

E[q(f(X)) |Ej ] = E[f(X) |Ej ] =: mj , j = 1, . . . , J.

Because u(a, ·) is linear in the outcome, val is the pointwise maximum of linear maps and hence convex. Decom-
posing by bins and applying Jensen’s inequality gives, for any feasible q,

E
[
val

(
q(f(X))

)]
=

J∑

j=1

P(Ej)E
[
val

(
q(f(X))

) ∣∣Ej

]

≥
J∑

j=1

P(Ej) val(E[q(f(X)) |Ej ])

=

J∑

j=1

P(Ej) val(mj).

Define the piecewise-constant candidate

q̄(v) :=

J∑

j=1

mj 1Bj
(v).

Then q̄ is feasible, since for each j,

E
[
1Ej (q̄(f(X))− f(X))

]
= P(Ej)

(
mj − E[f(X) | Ej ]

)
= 0,

and it attains the Jensen lower bound because q̄(f(X)) = mj almost surely on Ej :

E
[
val

(
q̄(f(X))

) ∣∣Ej

]
= val(mj).

Therefore q̄ is an optimizer, and any minimizer q⋆ can be chosen (a.e.) piecewise constant with q⋆(v) = mj for v ∈
Bj .

Finally, fixing such a q⋆, the robust action at forecast v ∈ Bj solves

arobust(v) ∈ argmax
a∈A

u
(
a, q⋆(v)

)
= argmax

a∈A
u
(
a,mj

)
,

which depends only on the bin index, i.e., it is the best response to the bin mean. This proves the claim.
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