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ABSTRACT

Micro-expression (ME) is a kind of facial expression that is short-lived and diffi-
cult for ordinary people to detect. Micro-expression can reflect the real emotion
that people try to hide. It is difficult to identify micro-expression due to the fact
that the duration is short and it only involves partial muscle motions, which brings
great challenges to the accurate identification of micro-expression. To address
these issues, we propose a novel neural network for micro-expression recognition
(MER), focusing on subtle changes in facial movements using a CVA (Continu-
ously Vertical Attention) block, which models the local muscle changes with min-
imal identity information. Additionally, we propose a facial position localization
module called FPF (Facial Position Focalizer) based on Swin Transformer, which
incorporates spatial information into the facial muscle movement pattern features
used for MER. We also proved that including AU (Action Units) can further en-
hance accuracy, and therefore we have incorporated AU information to assist in
micro-expression recognition. The experimental results indicate that the model
achieved an average recognition accuracy of 94.35% and 86.76% on the popular
CASME II and SAMM micro-expression datasets, improved by 6% and 1.98%
compared to state-of-the-art models, respectively.

1 INTRODUCTION

Micro-expressions are the imperceptible facial expressions that people show when they are deliber-
ately hiding or suppressing their true emotions after being stimulated by the outside world. Micro-
expressions mostly come from the subconscious mind and cannot be concealed or suppressed, re-
flecting a person’s real thoughts and attitudes at a certain moment(Davison et al., 2016). A micro-
expression contains three stages: onset, apex and offset, as the muscle intensity begins to increase,
reaches the peak, and finally goes back to the neutral state. It is widely used in fields such as psy-
chotherapy (Zhu et al., 2017), criminal investigation and national defence and security(See et al.,
2019). Therefore, the use of computer technology to assist in capturing facial information has be-
come an inevitable trend. Automatic recognition of micro-expressions is not only a challenge in
computer technology, but also involves a number of fields such as physiology and psychology.

According to the different ways of feature extraction, the current micro-expression recognition meth-
ods can be mainly divided into two categories: traditional manual features and deep learning. The
early recognition methods are micro-expression recognition methods based on manual features,
mainly local binary patterns (LBP)(Wang et al., 2015) and optical flow(Liu et al., 2015) methods.
These manual feature extraction methods require large inputs from experts might be subjective at
some point, and are not able to extract the deeper spatial and temporal information of the image se-
quence, resulting in the unsatisfying accuracy of MER. In recent years, as deep learning has shown
powerful advantages in image processing, more and more researchers have made great progress in
micro-expression recognition based on neural networks (Takalkar et al., 2018). Gan et al. (2019)
introduced a feature extractor, which combined the features of optical flow and convolutional neural
network .Zhao et al. (2021)proposed a 3D CNN-based learning method for spontaneous micro-
expression recognition, which outperformed traditional methods and other deep learning methods,
and provided new insights on how to use scarce data for MER recognition.

However, the above algorithms do not pay attention to the identification problem, that is the model
might learn identity information instead of the feature itself during training. To address this issue,
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Figure 1: Diagram of our proposed model. It consists of three stages and two main feature extraction
part. MLP stands for multi-layer perceptron and ME label refers to micro-expression label

Li et al. (2022) constructed MMNet to extract the motion and location information of the mus-
cles in the relevant region using the difference between the onset and apex frame, which reduces
the influence of identity information on recognition and further improves the accuracy of micro-
expression recognition. While MMNet innovatively employs motion-based input and incorporates a
continuous attention mechanism to capture facial muscle movement features, it is constrained by the
fundamental characteristics of ViT, which only captures local relationships, thereby failing to model
the essential distant dependencies required for MER. Additionally, the use of single-frame images
as position information embeddings inevitably results in information loss.

To this end, inspired by MMNet, we propose a MER model based on continuous spatio-temporal
attention blocks, focusing on subtle facial changes. Our framework consists of three parts: prepro-
cessing, feature extraction, and classification. The model consists of two streams, the main stream
and the auxiliary stream. In the stage of motion feature extraction, before the results are input into
the continuous vertical attention (CVA) block, we subtract the starting frame from the apex frame
to perform the subtraction operation. This subtraction operation focuses on modeling the difference
between the two frames, which mainly reflects the muscle movement of the face. The main stream
CVA takes the motion difference information obtained by the above method as input and leverages
the continuous spatio-temporal attention model to extract the spatio-temporal information of muscle
motion. The sub-stream takes the starting frame as input information, and through the FPF module,
it locates the facial position information in space, pays attention to the local facial feature changes,
and finally inputs the fusion information into the classifier to classify the micro-expressions.

To sum up, the main contributions of this paper are:

• We identified the significant contribution of facial muscles in the vertical direction to micro-
expression recognition. Leveraging this insight, we designed the Continuous Vertical At-
tention module (CVA) to enhance long-range dependency modeling capabilities for the
extraction of facial muscle movement features.

• We introduced the Facial Position Focalizer (FPF) module to incorporate facial position
information using Swin Transformer, effectively suppressing individual variations in back-
ground activations. Inspired by the nature of micro-expression muscle movements, we
added AU embeddings to assist the network in focusing on active facial regions.

• We integrated the proposed modules into a dual-stream network and evaluated it on the pop-
ular CASME II and SAMM datasets. Our method exhibited significantly higher accuracy
and F1-scores compared to state-of-the-art methods.

2 RELATED WORK

Most of the existing micro-expression recognition methods directly extract features from image se-
quences that only contains appearance information, including optical flow-based methods, texture
description-based methods and deep learning-based methods, but these methods ignore the muscle
motion encoded in Action Unit (AU), resulting in the redundant information like identity in the
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features. Xie et al. (Xie et al., 2020) modeled different AUs based on relational information, and
integrated the AUs recognition task with MER. Although their primary network employs a Graph At-
tention Convolutional Neural Network, which is not ideally suited for small dataset MER tasks and
results in lower recognition accuracy, the integration of AUs information still successful improved
their model’s performance. Inspired by their work, we also incorporate AUs in our model input,
providing necessary information about muscle movement. Liong et al. (2018) propose a model with
the onset and apex frames as the input instead of the image sequence. By only using two frames
to represent the expression, it avoids introducing complex time series algorithms while keeping the
accuracy compared to using image sequences. Based on the aforementioned reasons, our model has
three inputs: onset frame, apex frame, and AUs.

In MMNet Li et al. (2022), adaptive attention mechanism inspired by CBAM (Convolutional Block
Attention Module) is adopted to extract muscle movement information. However, due to the global
focus of CBAM, the model may inadvertently notice identity-related information unrelated to MER.
Considering that vertical facial muscle movement plays a more important role in micro-expression
recognition (MER), we developed a continuous vertical attention block, which focuses on capturing
vertical movement information, and generates an attention map for each layer by merging informa-
tion from the previous layer. According to the follow-up experimental results, it can be found that
applying the attention mechanism only in the vertical direction can help the model focus on muscle
movement, thus enhancing the performance of the model.

Facial positioning is a technology used to identify and locate facial features. By determining key
positions such as eyes, nose and corners of the mouth, we can analyze and capture the information of
muscle changes more accurately. By using the embedded information of these facial areas, we can
better understand the dynamic characteristics of the face, thus improving our perception of facial
expressions and actions. In previous work, some methods used Graph Convolution Network (GCN)
(Kipf & Welling, 2016) as the resolution to represent key points, but GCN assumed that each node’s
representation was only related to its neighbors, ignoring distant nodes or global information, which
limited GCN’s ability to deal with the structural characteristics of global graphs. ViT(Dosovitskiy
et al., 2020) is used for position embedding in MMNet, where the self-attention mechanism is usu-
ally used to capture the local and global relations in the input sequence or image. However, it may
have difficulties in capturing long-distance dependencies and global consistency. Considering that
positional information from distinct facial components holds varying degrees of significance, and
micro-expressions are typically constituted by subtle movements distributed across diverse facial
regions, the process of assigning weight to features from various locations places a substantial de-
mand on the model’s capacity to efficiently model long-range dependencies. In this respect, Swin
Transformer Liu et al. (2021) is more suitable for this task than ViT. The shift window mechanism
in Swin Transformer combines spatial position shuffling when calculating self-attention, so it can
effectively capture long-distance dependencies. Therefore, we use Swin Transformer to extract fa-
cial features and focus on some important areas, and we also apply feature maps of different scales
at different depths of the network, which can better adapt to micro-expressions of different durations
and patterns.

3 METHOD

Our architecture is shown in Figure 1. It takes the onset frame, apex frame, and corresponding
Action Unit (AU) information of a micro-expression sequence as input and outputs predicted micro-
expression labels. The structure consists of three main stages: Preprocessing, Feature Extraction,
and Classification. In the Feature Extraction section, it has two streams: Facial Feature Extrac-
tion and Temporal Motion Feature Extraction. In Facial Feature Extraction, we extract information
from the onset frame and the apex frame separately by a Swin Transformer encoder and then add
them together. Temporal Motion Feature Extraction focuses on extracting information regarding the
subject’s facial muscle motion. We subtract the onset frame from the apex frame before inputting
the result into the continuous vertical attention (CVA) block. This subtraction operation focuses on
modeling the difference between the two frames, which primarily reflects the muscle motion on the
face. Finally, we fuse facial and motion features by performing a summation operation and then
combine the AU information by concatenation. A multi-layer perceptron (MLP) receives all the
information and outputs the most likely emotion label. We will provide a detailed explanation of
these steps in the following sections.
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(a)

(b)

Figure 2: the spatial attention module of CA module(a) is compared with our CVA module(b)

3.1 CONTINUOUS VERTICAL ATTENTION BLOCK

In MMNet, an adapted attention mechanism that is inspired by CBAM was employed to extract
muscle motion information. However, due to CBAM’s characteristic of computing attention glob-
ally, the model may inadvertently pay attention to identity-related information that is irrelevant to
MER. Given the fact that vertical facial muscle movement plays a more significant role in MER
than horizontal movement, we develop a Continuous Vertical Attention Block which concentrates
on capturing vertical movement information and generates the attention map for each layer by in-
corporating information from the previous layer. Inspired by the coordinate attention module (CA)
depicted in Figure 2(a), we utilize a separate attention mechanism along the y-axis to compute the
necessary vertical weights. As shown in Figure 2(b), we introduce the attention maps of previous
layers to reweight the current attention and use max pooling to obtain the most prominent feature.
The CVA module is defined as follows:

AttnY i = FM
i(F i

conv, AttnY
i−1)

= σ(f i
2(Fact(BN(f i

1(PAY (F
i
conv))))))

⊗
f i
1×1(PM (Attni−1)),

(1)

with

F i
conv = f i

1×1

(
f i
3×3

(
F i

))
+ f i

1×1

(
F i

)
, (2)

Fact(x) = x ·ReLU(x+ 3)/6, (3)

where F i
M is the CVA module of the ith CVA block and AttnY i represents the attention map

computed by the ith layer of the CVA module. F iconv serves as the input to the CVA module,
representing feature maps extracted through two layers of convolutional networks and a residual
structure. Letter σ is the sigmoid function. PAY and PM denote adaptive average pooling operations
along the height dimension and max pooling operations along both the height and width dimensions,
respectively. Both f i

1 and f i
2 are convolution operations with a kernel size of 1 at the i-th layer. f i

1 is
employed for dimensionality reduction of the feature maps, while f i

2 is utilized for dimensionality
restoration. Specifically, the dimensionality reduction factor is determined as max{8, C/32}, where
C represents the channel dimension of the feature maps. f i

1×1 and f i
3×3 represent a convolution

operation at the i-th layer with the kernel size of 1 and 3, respectively. BN stands for the batch
normalization and ACT means the non-linear activation function.

⊗
is the product on the element-

wise which can reweight the attention map of current layer by introducing the attention map of last
layer while F i represents the input of the i-th CVA block.

In the CAV block, we consecutively stack four CAV modules as illustrated in Figure 3. Due to the
continuous attention mechanism embedded within these modules, the network gradually shifts its
focus towards the facial muscle motion that are more beneficial for MER. Ultimately, the CAV block
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Figure 3: Schematic diagram of continuous vertical attention block

yields a feature map FM with dimensions of 512 ∗ 14 ∗ 14. The CAV block is formally formulated
as,

FB(F
i, AttnY i−1) = F i

conv ⊙ FM
i(F i

conv, AttnY i−1), (4)

where FB means the continuous vertical attention block and ⊙ represents the broadcast element-
wise multiplication, which makes every column of the motion-pattern feature maps reweighted by
the vertical attention maps.

3.2 FACIAL POSITION FOCALIZER

Inspired by the concept of positional information embedding in MMNet, we introduced the FPF
(Facial Position Focalizer) module based on Swin Transformer. Considering that within MER, posi-
tional information from distinct facial components holds varying degrees of significance, and micro-
expressions are typically constituted by subtle movements distributed across diverse facial regions,
the process of assigning weight to features from various locations places a substantial demand on
the model’s capacity to efficiently model long-range dependencies. The shifted window mechanism
in Swin Transformer incorporates spatial position shuffling when computing self-attention, enabling
the effective capture of relationships between long-distance dependencies. Unlike the single-stage
downsampling used in ViT, the Swin Transformer achieves downsampling through a patch merging
layer in every stage. This approach effectively handles higher-resolution images while preserving
more information. Therefore we introduce the FPF module based on Swin Transformer. As shown
in Figure 1, we utilize the difference between the apex frame and onset frame to learn facial motion
features. Considering that the apex frame and onset frame may not be strictly aligned, we input
each frame separately into the FPF module to learn facial position information. Since our goal is
to focus on learning facial position information rather than fine-grained features, we employed a
Swin Transformer model with three layers and a depth configuration of [2, 2, 6]. Subsequently, we
reshape the onset frame and apex frame into a series of 128 flattened 2D patches. After passing
through three downsampling layers, their channel dimensions match those of the FM . After that,
the Swin Transformer encoder will receive these patches and learn the relationship between them.
Then, the Swin Transformer will yield two feature maps with dimensions of 512 ∗ 196, which are
then reshaped to 196 ∗ 14 ∗ 14 to match the dimensions of the FM . Finally, the two feature maps
generated separately from the onset frame and apex frame are integrated by element-wise addition
to consolidate.

3.3 AU EMBEDDING

In MER tasks, AUs provide more useful information about facial movements compared to image
sequences. They serve as valuable cues and supplements for MER. Additionally, AUs also represent
the activity range of muscles, forcing the model to better focus on these specific facial regions.
Hence, we introduce a binary 2D vector of length 21, representing the activity states of twenty-one
AUs (0 indicating inactive, and 1 indicating active) as an activation area embedding which guides
the model’s attention to a more critical facial region. As depicted in Figure 1, after adding FPOS and
FM together, the resulting feature map is flattened and then concatenated with the AU information.
Finally, these features are processed through an MLP network to output the probability of emotion
labels.
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4 EXPERIMENTAL RESULTS

In this section, we will illustrate the promising effect of our model through experiments. First,we
introduce the datasets and setup. Second, we will provide the details of the experiment implemen-
tation. Then, the influence of each part of the model will be explored with extensive ablation study.
Further, we compare our result with state-of-the-art in MER.

4.1 DATASETS

We validate our method on two popular classic datasets to prove its impact.

CASME II(Chinese Academy of Sciences Micro-Expression II)(Yan et al., 2014)is a dataset of
spontaneous micro-expressions collected from 26 participants. It contains 255 videos, recorded
using a high-speed camera with a frame rate of 200 fps. The videos are labeled with 5 emotion
categories: happiness, disgust, repression, surprise, and others.

SAMM (Spontaneous Micro-Facial Movement)(Davison et al., 2016) is another dataset of spon-
taneous micro-expressions collected from 32 participants,containing 159 micro-expression videos
at 200 fps. Consistent with most other MER methods, we conducted experiments using the typical
five emotion labels (happiness, anger, contempt, surprise, and others).

It’s worth noting that in both the CASME II dataset and the SAMM dataset, more detailed annota-
tions for Action Units (AUs) have been provided1. However, in our experiments, we utilized only
the binary 01 information representing whether AUs were active or not2. Similar to most other ap-
proaches, we employed the widely accepted leave-one-subject-out (LOSO) cross-validation method.
This method involves using each subject in turn as the test set while utilizing the remaining subjects
as the training data which effectively mitigates subject bias and allows for the evaluation of the
generalization performance of various algorithms.

4.2 EVALUATION METRIC

In our experiments, we utilize accuracy and F1-score as the evaluation metrics to assess the perfor-
mance of our model. Although accuracy is the primary metric for assessing performance in most
classification tasks, it can be influenced by data imbalance when present. Indeed, the F1-score, by
taking into account the total True Positives (TP), False Positives (FP), and False Negatives (FN), is
less influenced by imbalanced classes and provides insight into the true performance of a classifica-
tion system. We calculate the average F1-score across the 5 emotional labels:

F1− score = 2× P ×R

P +R
(5)

with

P =
TP

TP + FP
,R =

TP

TP + FN
. (6)

4.3 IMPLEMENTATION DETAILS

We use Dlib version 19.7.0 and OpenCV version 3.4.9.33 for face alignment and image cropping.
The images are resized to 224 ∗ 224 followed by three data argumentation techniques: horizontal
flipping (probability 0.5), random cropping (padding 15), and random rotation(0° to 3°).

The number of Swin Transformer encoder blocks is set to 3, with the depths and number of heads
per stage being 2, 2, 6 and 4, 8, 16 respectively. We employe gradient accumulation method to
reduce the GPU memory footprint of the model. Each mini-batch had a size of 16, and the gradient
update was performed every two mini-batches.

For the training parameters, the learning rate was initialized to 0.0008 and exponentially decayed
during the first 50 epochs out of 75 epochs in total. We use AdamW to optimize the network with a
weight decay of 0.6. All the experiments were carried out on RTX 3080 graphics card with version
2.0.0 of Pytorch toolbox.

1e.g. R20+ representing the right corner of the mouth being pulled upward
2e.g. 01001 indicating AU2 and AU5 being active
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Method Accuracy(%) F1-score

DSSN (2019) 71.19 0.7297
TSCNN (2019) 80.97 0.8070
Dynamic (2020) 72.61 0.6700

Graph-TCN (2020) 73.98 0.7246
SMA-STN(2020) 82.59 0.7946
AU-GCN (2020) 74.27 0.7047

GEME (2021) 75.20 0.7354
MERSiamC3D (2021) 81.89 0.8300

MMNet (2022) 88.35 0.8676
AMAN (2022) 75.40 0.7100

MiMaNet (2021) 79.90 0.7590
µ-BERT (2023) 83.48 0.8553

Ours 94.35 0.9402

Table 1: Comparison between several SOTA methods and our model on CASME II(5 classes)

Method CASME II(5 classes) SAMM

Accuracy(%) F1-score Accuracy(%) F1-score

Baseline(ResNet) 81.12 0.7582 73.53 0.6345
CVA block 84.68 0.8284 76.69 0.6633
FPF block 89.52 0.8543 81.20 0.7067

AU Embedding 89.92 0.8639 81.95 0.7428
CVA block+FPF block + AU Embeddir 94.35 0.9402 86.73 0.8171

Table 2: Evaluate the contribution of AU embedding, CVA block and FPF block to the enhancement
of network performance of basic network ResNet-18(He et al., 2016)

4.4 RESULTS

The comparison between several SOTA methods and our model demonstrate the superiority of our
method. The experiments on every evaluation standard indicate our method achieve great advance-
ment in micro-expression recognition. From Table 1, we can see that the model we devised has
outperformed all previous methods in terms of both accuracy and F1-score. After introducing the
CA and FPF modules, which possess stronger long-range dependency modeling capabilities com-
pared to the PC module and CA module, our model’s performance significantly surpasses that of
MMNet. To specify further, in the five-expression category task, our accuracy and F1-score out-
performed MMNet by 6% and 7.26% in the CASME II dataset. In the latest µ-BERT, a Diagonal
Micro-Attention (DMA) is employed to detect tiny differences between two frames with the intro-
duction of a new Patch of Interest (PoI) module to localize and high-light micro-expression interest
regions.However, thanks to our vertical attention mechanism, our model excels in focusing on facial
expression information that contributes more significantly to Micro-Expression Recognition (MER)
compared to µ-BERT. This enables us to achieve higher accuracy rates than µ-BERT on SAMM and
CASME II with 1.98% and 10.87% respectively.

4.5 ABLATION STUDY

To validate the effectiveness of the individual components of our model, we conducted a series of
ablation experiments.

4.5.1 EFFECTIVENESS OF DIFFERENT BLOCKS IN THE MODEL

To ensure a more objective comparison, we employed the ResNet-18 network as a baseline and
individually incorporated AU embedding, CVA block, and FPF block to assess their respective con-
tributions to enhancing the network’s performance. As depicted in Table 2, it is evident that all three
components significantly enhance the performance. When we combine all three modules together,
in the five-expression category task, our accuracy and F1-score surpass the baseline by 13.23% and
18.2% in the CASME2 dataset and by 13.2% and 18.26% in the SAMM dataset, respectively.
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Method CASME II(5 classes) SAMM

Accuracy(%) F1-score Accuracy(%) F1-score

Vertical attention(Y) 94.35 0.9402 86.73 0.8171
Horizontal attention(X) 84.68 0.8234 78.20 0.6927

Both direction attention(X+Y) 92.74 0.9276 85.71 0.7845

Table 3: Performance comparison of vertical attention with horizontal attention and Both direction
attention

Method CASME II(5 classes) SAMM

Accuracy(%) F1-score Accuracy(%) F1-score

Independent attention 91.94 0.921 82.71 0.7892
Continuous attention 94.35 0.9402 86.73 0.8171

Table 4: Comparison between independent attention and continuous attention

4.5.2 EFFECTIVENESS OF OUR CONTINUOUSLY VERTICAL ATTENTION MODULE

To illustrate the superiority of our proposed CVA module, we conducted experiments using only
the vertical attention mechanism, the horizontal attention mechanism, and both directional attention
mechanisms separately. It’s worth noting that in all three of these configurations, we included the
FPF block and AU embedding to ensure the objectivity of the comparison. As seen in Table 3, the
use of only the vertical attention mechanism results in the model generating more precise attention
maps, demonstrating superior performance compared to the other two configurations.

Additionally, through experimentation, we have demonstrated that introducing the attention map
from the previous layer as prior knowledge can effectively enhance the model’s performance, as
illustrated in Table 4.

4.5.3 COMPARISON BETWEEN SINGLE & DUAL SUBBRANCH

To verify that Swin Transformer is better at capturing long-term dependencies in MER tasks com-
pared to ViT, we conducted a series of experiments in which AU embedding, and the CVA block
were incorporated. As shown in Table5, the FPF module based on Swin Transformer outperformed
ViT significantly on both datasets.

In the third section, we propose that by inputting image information from both the onset and apex
frame, we can reduce the impact of imperfect facial alignment and enable the model to extract more
comprehensive facial position information. As depicted in Table6, through a comparison between
single-frame input and dual-frame input, our hypothesis is empirically validated.

4.5.4 IMPROVEMENTS FROM AU EMBEDDING

We compared the impact of adding AU embedding to the model, as shown in Table7. The significant
effect on classification performance confirms our belief that AU information can assist the model in
focusing on crucial facial regions required for MER.

Method CASME II(5 classes) SAMM

Accuracy(%) F1-score Accuracy(%) F1-score

FPF block based on ViT 91.12 0.9014 83.46 0.8025
FPF block based on Swin Transfomer 94.35 0.9402 86.73 0.8171

Table 5: Performance comparison between FPF block based on ViT and FPF block based on Swin
Transformer
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Method CASME II(5 classes) SAMM

Accuracy(%) F1-score Accuracy(%) F1-score

Apex input 90.73 0.9113 84.96 0.7845
Onset input 91.13 0.9112 85.71 0.7932

Dual-frame input 94.35 0.9402 86.73 0.8171

Table 6: Performance comparison between single-frame input and double-frame input

Method CASME II(5 classes) SAMM

Accuracy(%) F1-score Accuracy(%) F1-score

Wihout AU embedding 89.52 0.9014 81.20 0.7519
With AU embedding 94.35 0.9112 86.73 0.8171

Table 7: Performance comparison of AU embedding

5 CONCLUSION

In this paper, we design a new dual-stream MER network, the main branch based on the proposed
CVA module focuses on learning the motion pattern characteristics from the onset frame to the
apex frame, while the sub-branch based on the FPF module focuses on generating facial position
embedding for position calibration, and we add AU to improve the accuracy. Experiments show that
the performance of our model on CASME II and SAMM data sets is far superior to the existing
technology.
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