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ABSTRACT
In auction theory, a core is a stable outcome where no subgroup

of participants can achieve better results for themselves. Core-

competitive auctions aim to generate revenue that is achievable in

a core. They are particularly important because they not only gen-

erate optimized revenue for the seller, but also provide an efficient

and stable environment for participants.

We generalize the design of core-competitive auctions to en-

compass partially observable networked markets (PONM). Unlike

traditional auctions, which often deal with scenarios of limited trad-

ing activity, our approach to core-competitive auctions for PONM

captures the nature of real-world transaction markets, which is a

large linking world for the economic entities and commodities circu-

late among the entities in the market. Our generalizing the auction

market to PONM can much improve the liquidity of the auction,

and is especially meaningful for the web economics. Specifically,

we quantify the upper and lower bounds of the minimum core

revenue in PONM, and further prove that there does not exist any

truthful auction for PONM which is efficient and core-competitive.

Governed by this impossible result, we identify the criteria that

the allocation rule for PONM should meet. Based on these criteria,

we propose a new class of auction mechanisms for PONM that is

individually rational, incentive-compatible, and core-competitive.

CCS CONCEPTS
• Networks→ Network economics; • Theory of computation
→ Social networks; Algorithmic mechanism design.

KEYWORDS
Web Economics, Market design, Auction design, Core competitive-

ness, Incentive compatibility
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1 INTRODUCTION
In various markets, especially in larger ones, there exists an in-

formation discrepancy among economic entities. This discrepancy

arises from two key factors. Firstly, economic entities often hold

exclusive market-related information, such as private valuations
of commodities or individual connections to others. Secondly, the
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vast size of the market makes it impossible for economic entities to

gain comprehensive knowledge of all market participants and their

connections.

Despite having a limited view of the overall market, economic en-

tities in these markets can still exert influence over market transac-

tions by strategically disclosing their private information, including

their values and economic connections. For instance, in multi-level

marketing or viral marketing [9, 19], each participant possesses

a constrained market perception, but they hold the capability to

enhance or diminish the effectiveness of marketing efforts by selec-

tively disseminating information to others. In intermediated mar-

kets [3, 6, 24], intermediaries can exploit asymmetric information

between buyers and sellers to facilitate trades that benefit them-

selves. Similar scenarios are also observed in social-network-driven

auction markets [18, 22, 33], P2P systems [11, 23] and crowdsourc-

ing markets [16, 27, 28], etc.

In this work, we formally define the aforementioned market as

a Partially Observable Networked Market (PONM). In PONM, each

economic entity “has access to” and “possesses” a segment of the

market information. We study auction design for PONM, where all

agents, including the seller and potential buyers, can be represented

by network nodes, while their connections are edges with weights

reflecting the transaction costs between agents. An allocation is

represented by a simple path, with the terminal node on the path

being the winning buyer and the cumulative weights of the path

corresponding to transmission costs.

We design auction mechanisms for PONM which generate op-

timized revenue, specifically aiming for revenue that is no worse

than the core revenue. The core revenue denotes the seller’s rev-
enue when the auction achieves its core outcome. This outcome

guarantees that no subset of losing buyers can deviate to alterna-

tive outcomes that would result in higher revenue for the seller.

Furthermore, in addition to optimizing the seller’s revenue, core

outcomes also resolve the problem of envy among bidders [12]. We

extend the existing core-competitive revenue-optimizing auction to

the intricate setting of PONM. Essentially, crafting core-competitive

auctions in PONM requires striking a balance between allocation

efficiency and maximizing the seller’s revenue. To tackle this chal-

lenging objective, we begin by proving that there is no auction

mechanism in PONM whose outcome falls within the core. Given

this negative result, our focus shifts to designing truthful auctions

in PONM while still preserving core-competitive properties. We

affirmatively answer this question by identifying a class of truthful

auction rules that exhibit core-competitiveness for PONM.

2 RELATEDWORKS
2.1 Core-Based Auction Optimization
The core in the context of auctions was initially introduced in [2],

where the authors proposed core-selection as a standalone auction

design goal. Auctions that select core allocations generate compet-

itive levels of sales revenues and limit buyer incentives in many
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aspects, which has gained popularity both in theory and in practice

[1, 4, 7, 8, 13]. Within the field of auction research, studies on the

core can be broadly classified into two groups. The first category

investigates core-selecting auctions [7, 8, 13], which focuses on de-

signing practical auctions that generate outcomes within the core.

Goeree and Lien [13] proved that any equilibrium outcome in the

core is equivalent to the Vickrey outcome. In other words, if the

Vickrey outcome is not in the core, then no core-selecting auction

exists. This reveals a severe incompatibility between truth-telling

and core-selection. Therefore, previous research on core-selecting

auctions has mainly concentrated on investigating non-truthful

auctions that lead to core outcomes within the reported preferences.

In contrast, the second category of core in auctions emphasizes

the importance of truthfulness and explores truthful auction mecha-

nisms whose revenue is competitive against a core outcome [12, 25].

This field of research is commonly referred to as core-competitive
auction design, where the minimum core revenue acts as the bench-

mark for revenue. The notion of core-competitiveness was first

introduced by Goel et al. [12], in which the authors suggested the

use of the minimum core revenue as a competitive benchmark for

truthful auctions. They focused on the Text-and-Image advertising

setting, where there is an ad slot which can be filled with either a

single image ad or 𝑘 text ads, and designed truthful auctions that

are core-competitive. Markakis and Tsikiridis [25] further studied

mechanisms for binary single-parameter domains where each bid-

der’s request for some type of service is either accepted or rejected,

and designed the first deterministic core-competitive mechanism

within the domain. Our work differs from the above work in the

sense that we focus on PONM, an emerging distributed market

model in which designing auction mechanisms with revenue guar-

antees poses new challenges, even in the scenario of a single item.

2.2 Networked Markets
Regarding the complexity of PONM, its scenarios can exhibit a

wide range of diversity. In an extreme scenario, not only are buy-

ers’ valuations of the commodity and their connections kept as

private information, but also the weights (costs) associated with

the edges may remain unobservable. This particular setting is the

most complex one, which is far beyond the existing research norms.

Therefore, we explore a common setting where the edge weights are

fixed and known once the edge is established. Numerous real-world

scenarios align with this market model. For instance, in distribution

markets like flower markets, the business relationships between

suppliers and dealers often remain confidential, while transporta-

tion costs for moving commodities between locations are typically

well-defined, especially when dealing with established carriers. An-

other example is inter-domain routing [10], where self-interested

routers can strategically select paths for traffic routing and the costs

of delivering the traffic along the selected path are also known. In

addition, our model choice also encompasses the recently emerging

diffusion auction model [15, 22, 32], in which the seller aims to sell

items to a set of buyers who are distributed in social networks.

The closest line of research is diffusion auction design, which

is initiated by Li et al. [22]. Diffusion auction is a special instance

of PONM whose objective is to incentivize buyers already joining

in the auction to further diffuse the auction information to other
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Figure 1: An example of partially observable networked mar-
kets. The left-most circle denotes the seller and all other
circles are potential buyers. The number on each directed
link represents the transaction costs of using that link.

buyers via social networks, so as to improve auction outcomes.

After [22], many efforts have devoted to diffusion auction design

from different angles over the past few years [17, 18, 21, 30, 31,

33]. For recent advances in diffusion auction design, see [15, 32].

Unlike the previous work, we investigate core-competitive auction

mechanisms within a more general and realistic model. In our

model, the buyers’ valuations are mingled with the transaction

costs such that any buyer in the market could be critical, which is

different from the social network settings where only cut nodes

matter. Given the properties highlighted in the previous section,

we believe that the core revenue can be taken as a suitable revenue

benchmark for diffusion auctions and beyond.

The remainder of the paper is organized as follows. The PONM

under investigation, along with the associated auction model and

the notion of core-competitiveness, are formally defined in Section

3. Section 4 presents lower and upper bounds for the minimum

core revenue. Utilizing these bounds, Section 5 characterizes a class

of deterministic auction mechanisms, called deferred allocation

auctions, that are proved truthful and core-competitive.

3 PRELIMINARIES
In this section, we first introduce the partially observable networked

market and the associated auction model, then present the concept

of core outcome and core-revenue benchmark.

3.1 Partially Observable Networked Market
Consider a seller selling a product/service in a partially observable

networked market (PONM), where all agents are connected in a

weighted network and can only communicate with her neighbors

in the network. Besides the seller, represented by agent 0, the net-

worked market consists of a set of potential buyers, denoted by 𝑁 .

Each buyer 𝑖 ∈ 𝑁 has a private type 𝑡𝑖 = (𝑣𝑖 , 𝑟𝑖 ), where 𝑣𝑖 represents
her valuation on the product/service and 𝑟𝑖 denotes the neighbors

she can communicate with in the market. For each communication

link (𝑖, 𝑗) with 𝑗 ∈ 𝑟𝑖 , we use 𝑐𝑖, 𝑗 to denote the transmission cost of
delivering the product/service from 𝑖 to 𝑗 , which is fixed and known

once the communication link is established. A transaction in themar-

ket is defined by an agent sequence {𝑎𝑖 }𝑘𝑖=1 with 𝑎𝑖 ∈ 𝑟𝑎𝑖−1 , where
𝑎0 and 𝑎𝑘 denote the seller and the winning buyer respectively,

and {𝑎𝑖 }𝑘−1𝑖=1
represents the selected path to transmit the commod-

ity. For convenience’s sake, we use G = (𝑁0, {𝑡𝑖 }, {𝑐𝑖, 𝑗 }) to define

2 Submission ID: 1425. 2023-10-13 07:38. Page 2 of 1–11.
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a partially observable networked market, where 𝑁0 = 𝑁 ∪ {0},
{𝑡𝑖 } = {𝑡𝑖 }𝑖∈𝑁0

and {𝑐𝑖, 𝑗 } = {𝑐𝑖, 𝑗 }𝑖∈𝑁0, 𝑗∈𝑟𝑖 . Figure 1 demonstrates

an example of PONM, where the left-most circle denotes the seller

and all other circles are potential buyers. The number in each circle,

except the seller, is the buyer’s private valuation. The transmission

cost is labeled on each edge, and there is an edge (𝑖, 𝑘) whenever
𝑘 ∈ 𝑟𝑖 . Given a PONM G, the objective of the seller is to sell the

product/service in the whole market G, even though she can only

access to a small part of entities in the networked market.

3.2 Auction Design in PONM
We model the seller’s problem as an auction mechanism design.

Formally, denote by 𝑡𝑖 buyer 𝑖’s true type and t = (𝑡𝑖 )𝑖∈𝑁 the type

profile of all buyers. For convenience, let t−𝑖 = t \ {𝑡𝑖 } be the type
profile of all other buyers except 𝑖 . Let𝑇𝑖 = R+ × P(𝑁0) be the type
space of 𝑖 where P(𝑁0) is the power set of 𝑁0, and 𝑇 = ×𝑇𝑖∈𝑁 be

the type profile space of all buyers. Since 𝑡𝑖 is private information,

buyer 𝑖 can game the mechanism to benefit herself via strategic

actions. Accordingly, let 𝑡 ′
𝑖
= (𝑣 ′

𝑖
, 𝑟 ′
𝑖
) be 𝑖’s reported type, where 𝑣 ′

𝑖
represents her bid and 𝑟 ′

𝑖
is the reported neighbors. As buyer 𝑖 can

only communicate with her neighbors 𝑟𝑖 , the misreport space of 𝑟 ′
𝑖

is limited to P(𝑟𝑖 ). Similarly, let t′ be the reported type profile of all
buyers and t′−𝑖 be the reported type profile of all buyers except 𝑖 .

Note that the seller only has access to her neighbors in G, namely

𝑟0, at the beginning of the sale, and thus a buyer can participate in

the sale only if her neighbors have joined in the sale and further

introduced her to the sale. For example, if buyer 𝐸 does not share

the sale information to buyers 𝐻 and 𝐼 in Figure 1, then buyers

{𝐹,𝐺, 𝐻, 𝐼, 𝐽 } cannot participate in the sale.

Definition 1. Given a reported type profile t′, we say 𝑖 is a valid
buyer if there exists a set of agents {𝑎 𝑗 }𝑘𝑗=1 with 𝑎 𝑗 ∈ 𝑟 ′𝑎 𝑗−1 for
1 < 𝑗 ≤ 𝑘 and 𝑖 ∈ 𝑟 ′𝑎𝑘 .

That is, buyer 𝑖 is valid if there is a “transaction path” from the

seller to 𝑖 in the reported type profile, and 𝑖 is invalid if such a

“transaction path” does not exist. Given a reported type profile t′,
let𝑉 (t′) denote all valid buyers. In addition, let Π denote the space

of all possible transactions with respect to 𝑁0 and Π(t′) denote
the space of transactions given by all valid buyers 𝑉 (t′). We now

formally define the auction mechanisms in PONM.

Definition 2. An auction mechanism in PONM consists of an
allocation policy 𝜋 : 𝑇 → P(Π) and a payment policy 𝑥 = {𝑥𝑖 :

𝑇 → R}𝑖∈𝑁 , and for all reported type profile t′, 𝜋 and 𝑥 satisfy the
following constraints:

1) 𝜋 (t′) and 𝑥 (t′) are independent of 𝑁 \𝑉 (t′);
2) 𝜋 (t′) ⊆ Π(t′) and |𝜋 (t′) | ≤ 1;
3) 𝑥𝑖 (t′) = 0,∀𝑖 ∉ 𝑉 (t′).

Given a reported type profile t′ and an auction mechanismM,

𝜋 (t′) includes the winning buyer and a transmission path to deliver

the item, and 𝑥𝑖 (t′) denotes the amount each buyer 𝑖 should pay.

We emphasize that although the set of actual bidders would change

with the reported type profile, the scenario can be transformed into

a direct mechanism design setting: each buyer directly submits her

report to the seller; after receiving all reports, the seller executes

the mechanism based on all valid buyers’ reports. The correctness

of such transformation is from the facts that 1) an invalid buyer

cannot become a valid buyer bymisreporting, and 2) the mechanism

is defined on all valid buyers’ reports. Therefore, even all buyers

reported in the model, but only the buyers who actually participate

in the sale will be valid/used.

The transmission costs of transaction 𝜋 (t′) is defined as𝐶 (𝜋, t′) =∑
(𝑖,𝑖+1) ∈𝜋 (t′ ) 𝑐𝑖,𝑖+1, where 𝑖, 𝑖 + 1 are two adjacent buyers in the

𝜋 (t′). To accomplish a transaction 𝜋 (t′), the transmission costs

should be covered either by the seller or the buyers. As the seller’s

revenue comes from the buyers’ payments, we can simply ask the

seller to immune the transmission costs w.l.o.g. Thus, the seller’s

revenue (or utility) can be expressed as 𝑅(M, t′) = ∑
𝑖∈𝑁 𝑥𝑖 (t′) −

𝐶 (𝜋, t′). For each buyer 𝑖 ∈ 𝑁 , her utility function is quasi-linear

and is defined as follows:

𝑢𝑖
(
𝑡𝑖 , t′,M

)
= 𝑧𝑖 (t′)𝑣𝑖 − 𝑥𝑖 (t′). (1)

where 𝑧𝑖 (t′) is 1 for the winning buyer and 0 otherwise.

We next present two basic properties that an auction mechanism

should satisfy. The first property is incentive compatibility. It re-

quires that acting according to their true types forms a dominated

strategy for all buyers.

Definition 3. An auction mechanismM is incentive-compatible

(IC) if for all 𝑖 ∈ 𝑁 , all 𝑡𝑖 , and all t′,

𝑢𝑖
(
𝑡𝑖 , (𝑡𝑖 , t′−𝑖 ),M

)
≥ 𝑢𝑖

(
𝑡𝑖 , (𝑡 ′𝑖 , t

′
−𝑖 ),M

)
. (2)

In any IC auction mechanism, each buyer’s utility is maximized

by acting truthfully, no matter what the others do. Note that an

invalid buyer cannot become a valid buyer by misreporting. As

a result, IC constraints are satisfied automatically for all invalid

buyers. Another important property is individual rationality, which

guarantees that all buyers will receive a non-negative payoff when

revealing their true types.

Definition 4. An auction mechanismM is individually rational

(IR) if for all 𝑖 ∈ 𝑁 , all 𝑡𝑖 , and all t′−𝑖 ,

𝑢𝑖
(
𝑡𝑖 , (𝑡𝑖 , t′−𝑖 ),M

)
≥ 0. (3)

The IR property, aka the participation constraint, ensures that

all buyers are willing to stay in the auction.

Given a reported type profile t′, let SW(𝜋, t′) = 𝑣 ′𝑤 − 𝐶 (𝜋, t′)
denote the social welfare obtained in 𝜋 (t′), where𝑤 represents the

winner. Particularly, we use 𝜋∗ (t′) to denote the transaction with

the maximum social welfare, and 𝜋∗
𝑖
(t′) to denote the transaction

to buyer 𝑖 with the least transmission costs. It is clear that 𝜋∗ (t′) ∈
argmax𝜋∗

𝑖
(t′ ) SW(𝜋∗𝑖 , t

′). For technique convenience, we treat the
seller as a dummy buyer with zero valuation so that SW(𝜋∗, t′) ≥
0 for all t′. For ease of notation, let SW∗ (t′) = SW(𝜋∗, t′) and
SW∗

𝑖
(t′) = SW(𝜋∗

𝑖
, t′). Accordingly, let 𝐶∗ (t′) = 𝐶 (𝜋∗, t′) and

𝐶∗
𝑖
(t′) = 𝐶 (𝜋∗

𝑖
, t′) hereafter. We next introduce two properties

related to the allocation efficiency of 𝜋 .

The first property is called non-wastefulness, which requires the

mechanism to allocate the commodity whenever possible.

Definition 5. An auction mechanismM is non-wasteful (NW)
if SW∗ (t′) > 0 then |𝜋 (t′) | = 1 for all t′.

The second property is efficiency, which asks the auction mecha-

nism to allocate the commodity to maximize the social welfare.

Submission ID: 1425. 2023-10-13 07:38. Page 3 of 1–11. 3
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Definition 6. An auctionmechanismM is efficient (EF) if𝜋 (t′) =
𝜋∗ (t′) for all t′.

Clearly, if an auction mechanism is efficient, it is also non-

wasteful, but the reverse is not true. Suppose all buyers in Figure 1

report their types truthfully, then the agent path {𝐵, 𝐸, 𝐻, 𝐽 } forms

the efficient allocation. Besides the allocation efficiency, another

desiderata of the seller is revenue. Perhaps the least requirement

for revenue is non-deficitwhich asks that 𝑅(M, t′) ≥ 0 for all t′. An
auction mechanism that is non-deficit does not require an injection

of funds from the seller. In this work, we consider a more stringer

revenue benchmark, which requires the revenue to be competitive

against the core outcomes.

3.3 Core and Core-Revenue Benchmark
The core is commonly employed as a measure of stability and fair-

ness in coalitional games, which represents a way of distributing

the utility generated by a group of agents such that no subgroup of

agents would want to deviate. In an auction setting, an outcome is

said to be in the core if no subgroup of losing buyers can propose an

alternative higher revenue outcome to the seller. Core outcomes not

only ensures a revenue guarantee for the seller but also encapsulates

some notion of envy−the envy of a set of losing buyers for a set of

winning buyers that they can replace [12]. Before introducing the

core definition, we first define the coalitional value function or the

characteristic function in PONM, which specifies the utilities gener-

ated by any group of agents. Given a PONM G = (𝑁0, {𝑡𝑖 }, {𝑐𝑖, 𝑗 })
and a set 𝑆 ⊆ 𝑁0, we define the coalitional value function as

𝑊 (𝑆) =
{
SW
∗ (t𝑆 ) 0 ∈ 𝑆,

0 0 ∉ 𝑆,
(4)

where t𝑆 = {𝑡𝑖 }𝑖∈𝑆 denotes the types reported by 𝑆 .

The pair (𝑁0,𝑊 ) defines a coalitional game with transferable

utility. The coalition value of a set corresponds to the total utility

that can be obtained by the set. Clearly, a coalition that does not

contain the seller cannot gain any value. A coalition containing

the seller can obtain the maximum utility equal to SW
∗ (t𝑆 )−the

maximum social welfare achieved in 𝑉 (t𝑆 ). For any utility profile

𝑢 = (𝑢𝑖 )𝑖∈𝑁0
, we say 𝑢 is blocked by 𝑆 if there exists a set 𝑆 ⊆

𝑁0 whose members can be better off by defecting the proposed

outcome and redistributing the coalition value among themselves,

i.e,

∑
𝑖∈𝑆 𝑢𝑖 < 𝑊 (𝑆), ∃𝑆 ⊆ 𝑁0. The core is defined as the set of

utility profiles that not blocked by any coalition.

Definition 7. Given a PONM G and the induced coalitional game
(𝑁0,𝑊 ), the core, denoted by Core(𝑁0,𝑊 ), is defined as the following
set of utility profiles:{

𝑢 ∈ R |𝑁0 |
+ :

∑︁
𝑖∈𝑁0

𝑢𝑖 =𝑊 (𝑁0),
∑︁
𝑖∈𝑆

𝑢𝑖 ≥𝑊 (𝑆) ∀𝑆 ⊆ 𝑁0

}
. (5)

By definition, any core outcome is efficient, otherwise the grand

coalition 𝑁0 blocks the outcome. If an outcome 𝑢 is not in the core,

then the seller can potentially raise her revenue by negotiating with

the losing coalitions. This suggests that the core revenue can be

taken as a suitable revenue benchmark against which to compare.

Definition 8. An auction mechanismM is core-competitive

(CC) if for all type profiles t and the induced coalitional game (𝑁0,𝑊 ),
𝑅(M, t) ≥ CoreRev(𝑁0,𝑊 ), (6)

where CoreRev(𝑁0,𝑊 ) = min{𝑢0 |𝑢 ∈ Core(𝑁0,𝑊 )} denotes the
minimum core revenue.

In other words, core-competitive auctions ensure the seller a

revenue that is at least the minimum core revenue. In the following

contents, we investigate auction mechanisms with core-competitive

revenues in PONM.

4 UPPER/LOWER BOUNDS OF CoreRev(𝑁0,𝑊 )
This section analyzes the value of the minimum core revenue

CoreRev(𝑁0,𝑊 ). In particular, we identify both lower and upper

bounds of CoreRev(𝑁0,𝑊 ). Based on these bounds, in the next

section we characterize a set of IC and IR auctions for PONM that

are core-competitive.

Lemma 4.1. Given any type profile t and any utility profile 𝑢 ∈
Core(𝑁0,𝑊 ), we have that for all buyers 𝑖 ∈ 𝑁 ,

0 ≤ 𝑢𝑖 ≤ SW∗ (t) − SW∗ (t−𝑖 ) . (7)

Proof. If 𝑢𝑖 < 0, then 𝑖 herself forms a blocking coalition. In

addition, if𝑢𝑖 > SW
∗ (t) −SW∗ (t−𝑖 ), then 𝑁0 \ {𝑖} forms a blocking

coalition as𝑊 (𝑁0 \ {𝑖}) = SW
∗ (t−𝑖 ) > SW

∗ (t) − 𝑢𝑖 =
∑

𝑁0\{𝑖 } 𝑢𝑖 .
□

Note that the RHS of (7) is exactly the buyer’s utility given in

the VCG mechanism [5, 14, 29]. Therefore, Lemma 4.1 suggests that

each buyer’s utility in the core is no more than her utility given

by the VCG mechanism. Based on Lemma 4.1, we next provide a

lower bound for the minimum core revenue.

Proposition 1. Given any type profile t and the induced coali-
tional game (𝑁0,𝑊 ), we have that

SW∗ (t−𝜋∗ ) ≤ CoreRev(𝑁0,𝑊 ), (8)

where t−𝜋∗ = t \ {𝑡𝑖 }𝑖∈𝜋∗ (t) denotes the type profile given by all
buyers in 𝑁 \ 𝜋∗ (t).

Proof. Note that for any buyer 𝑖 ∉ 𝜋∗ (t), the equation SW∗ (t) =
SW
∗ (t−𝑖 ) holds. Thus, based on Lemma 4.1, we know that𝑢𝑖 = 0 for

any utility profile𝑢 ∈ Core(𝑁0,𝑊 ) and any buyer 𝑖 ∉ 𝜋∗ (t). As a re-
sult, the seller’s utility 𝑢0 can be reformulated as

∑
𝑖∈𝑁0\𝜋∗ (t) 𝑢𝑖 for

any𝑢 ∈ Core(𝑁0,𝑊 ). According to the definition of CoreRev(𝑁0,𝑊 ),
we have that

∑
𝑖∈𝑁0\𝜋∗ (t) 𝑢𝑖 ≥ 𝑊 (𝑁0 \ 𝜋∗ (t)) = SW

∗ (t−𝜋∗ ). In
other words, the seller’s utility in the core is at least SW

∗ (t−𝜋∗ ),
which implies that SW

∗ (t−𝜋∗ ) ≤ CoreRev(𝑁0,𝑊 ).
□

Proposition 1 shows that the minimum core revenue is at least

the maximum social welfare obtainable after the transaction with

the largest social welfare is excluded. Note that SW
∗ (t−𝜋∗ ) is es-

sentially the revenue benchmark introduced by Micali and Valiant

[26], and therefore Proposition 1 also implies that the core revenue

benchmark dominates the Micali-Valiant benchmark for PONM.

Next, we analyze the upper bound of the core revenue bench-

mark. According to the definition of the core, we know that

∑
𝑖∈𝑁0

𝑢𝑖 =

𝑊 (𝑁0) for any 𝑢 ∈ Core(𝑁0,𝑊 ), then it is straightforward that

4 Submission ID: 1425. 2023-10-13 07:38. Page 4 of 1–11.
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Algorithm 1: Critical Buyer Verification

1 Input: type profile t, buyer 𝑖 and efficient transaction 𝜋∗ (t)
2 Output: Yes or No
3 identify the winner of 𝜋∗ (t) and denote her as𝑚;

4 while 𝑟𝑖 ≠ ∅ do
5 if 𝑖 ∉ 𝜋∗ (t) then return No;

6 update t by ((𝑣𝑖 , 𝑟𝑖 \ {𝑖 + 1}), t−𝑖 ) ; /* 𝑖 + 1 is the

next buyer after 𝑖 in 𝜋∗ (t) */

7 identify the winner in the new efficient transaction

𝜋∗ (t) and denote her as 𝑚̃;

8 if 𝑚̃ ≠𝑚 then return Yes;

9 return No;

𝑊 (𝑁0) is a trivial upper bound of CoreRev(𝑁0,𝑊 ). To obtain a

tighter upper bound, we next characterize a set of sufficient condi-

tions for the core based on the concept of critical buyer.

Definition 9. Given a type profile t, we say 𝑖 is a critical buyer
if there exists 𝑟𝑖 ⊆ 𝑟𝑖 such that the winners in 𝜋∗ ((𝑣𝑖 , 𝑟𝑖 ), t−𝑖 ) and
𝜋∗ ((𝑣𝑖 , 𝑟𝑖 \ 𝑟𝑖 ), t−𝑖 ) are different.

That is, a critical buyer is able to change the winner of the

efficient allocation by cutting off some of her communication links.

For convenience, let CS
∗
𝑖
(t) denote the set of such 𝑟𝑖 for a critical

buyer 𝑖 . Note that the efficient transaction 𝜋∗ (t) is not affected by

the communication links of buyers in 𝑁 \ 𝜋∗ (t), so only buyers in

𝜋∗ (t) could become the critical buyers. For example, the efficient

transaction in Figure 1 is {𝐵, 𝐸, 𝐻, 𝐽 }. If buyer 𝐵 does not inform 𝐸

of the auction information, then the new efficient transaction will

be changed to {𝐵, 𝐷}, therefore 𝐵 is a critical buyer. We can further

verify that buyer 𝐸 is also a critical buyer. However, buyer 𝐻 is

not a critical buyer as no matter how 𝐻 reports, the winner of the

efficient allocation is still buyer 𝐽 . Algorithm 1 presents a simple

iterative algorithm to verify whether or not a buyer is critical.

Given any type profile t, for convenience sake we relabel all

buyers such that 𝜋∗ (t) = {1, 2, · · · ,𝑚 − 1,𝑚} where 𝑚 denotes

the winner of 𝜋∗ (t). In addition, we use 𝑁 ∗ (t) = {1∗, 2∗, · · · , (𝑝 −
1)∗, 𝑝∗ =𝑚} ⊆ 𝜋∗ (t) to denote the ordered set of all critical buyers

{𝑖∗}𝑝−1
𝑖=1

and the buyer𝑚, where the label is given by each buyer’s

position in 𝜋∗ (t). Before characterizing our core conditions, we

next present an important property related to 𝑁 ∗ (t).

Lemma 4.2. For any type profile t, all 𝑖∗ ∈ 𝑁 ∗ (t) \ {𝑚}, and all
𝑟𝑖∗ ∈ CS∗𝑖∗ (t), the following inequality always holds:

SW∗ (t−𝑖∗ ) ≤ SW∗ (t−𝑟𝑖∗ ) ≤ SW∗ (t−𝑖∗+1), (9)

where t−𝑟𝑖∗ = ((𝑣𝑖∗ , 𝑟𝑖∗ \ 𝑟𝑖∗ ), t−𝑖∗ ).

Proof. Given any type profile t, we know that for any buyer

𝑖∗ ∈ 𝑁 ∗ (t) there is some 𝑟𝑖∗ ⊆ 𝑟𝑖∗ such that 𝑖
∗
can change thewinner

of 𝜋∗ (t), namely𝑚, to another buyer, say 𝑚̃, by cutting off 𝑟𝑖∗ . Let

t−𝑟𝑖∗ = ((𝑣𝑖∗ , 𝑟𝑖∗ \ 𝑟𝑖∗ ), t−𝑖∗ ) be the updated type profile. According

to the definition of 𝜋∗
𝑖∗ (t) and𝑁

∗ (t), for any 𝑖∗ ∈ 𝑁 ∗ (t) we have that
𝜋∗
𝑚̃
(t−𝑟𝑖∗ ) ∩ {𝑘

∗}𝑝
𝑘=𝑖+1 = ∅, i.e., 𝜋∗

𝑚̃
(t−𝑟𝑖∗ ) ⊆ 𝑉 (t− 𝑗∗ ) for any 𝑗∗ ∈

{𝑘∗}𝑝
𝑘=𝑖+1. Since 𝑉 (t−𝑖∗ ) ⊆ 𝑉 (t−𝑟𝑖∗ ) and 𝜋∗

𝑚̃
(t−𝑟𝑖∗ ) ⊆ 𝑉 (t−(𝑖∗+1) ),

the inequality SW
∗ (t−𝑖∗+1) ≥ SW

∗ (t−𝑟𝑖∗ ) ≥ SW
∗ (t−𝑖∗ ) holds. □

Based on Lemma 4.2, we are ready to characterize a set of utility

profiles in the core.

Proposition 2. Given any type profile t and the induced coali-
tional game (𝑁0,𝑊 ), the utility profile 𝑢 is in the core if:

1) ∑
𝑖∈𝑁0

𝑢𝑖 = SW∗ (t);
2) 0 ≤ 𝑢𝑖∗ ≤ SW∗ (t−𝑖∗+1) − SW∗ (t−𝑖∗ ),∀𝑖∗ ∈ 𝑁 ∗ (t);
3) 𝑢𝑖 = 0,∀𝑖 ∈ 𝑁 \ 𝑁 ∗ (t),

where SW∗ (t−𝑖∗+1) is defined as SW∗ (t) for 𝑖∗ =𝑚.

Proof Sketch. To prove this proposition, it is sufficient to show

that the inequity

∑
𝑖∈𝑆 𝑢𝑖 ≥ 𝑊 (𝑆) holds for all 𝑆 ⊆ 𝑁0. To do so,

we first classify all 𝑆 into several classes based on critical buyers

𝑁 ∗ (t). Then, we prove that in each class no group of agents forms

a blocking coalition by mathematical induction. The full proof of

Proposition 2 is given in the appendix. □

Based on Proposition 2, the following result is straightforward.

Corollary 4.3. Given any type profile t and any 𝑢 characterized
in Proposition 2, the following inequality always holds:

𝑢0 ≥ SW∗ (t−1∗ ) . (10)

In particular, the equality holds by setting 𝑢𝑖∗ = SW∗ (t−𝑖∗+1) −
SW∗ (t−𝑖∗ ) for all 𝑖∗ ∈ 𝑁 ∗ (t).

Combining the results of Proposition 1 and Corollary 4.3, the

following bounds for CoreRev(𝑁0,𝑊 ) are identified.

Corollary 4.4. Given any type profile t and the induced coali-
tional game (𝑁0,𝑊 ), we have that

SW∗ (t−𝜋∗ ) ≤ CoreRev(𝑁0,𝑊 ) ≤ SW∗ (t−1∗ ) . (11)

In the example market given in Figure 1, we know that 𝜋∗ (t) =
{𝐵, 𝐸, 𝐻, 𝐽 } and 𝑁 ∗ (t) = {𝐵, 𝐸, 𝐽 }. By simple calculation, we have

that SW
∗ (t−𝜋∗ ) = SW

∗ (t−𝐵) = 4. Therefore, the minimum core

revenue CoreRev(𝑁0,𝑊 ) is exactly 4 according to Corollary 4.4,

which is the maximum revenue the seller can obtain by selling the

commodity among her direct neighbors 𝐴, 𝐵 and 𝐶 .

Given the concept of core-competitiveness and the bounds of

CoreRev(𝑁0,𝑊 ) characterized in Corollary 4.4, a natural question

is whether it is possible to design auctions that generate outcomes

within the core. If so, these auctions are clearly core-competitive.

Unfortunately, we next show that there is no auction mechanism

in PONM whose outcome is always in the core.

Theorem 4.5. No auction mechanism in PONM always generates
core outcomes.

Proof. It is showed that the revelation principle can be extended

to networked auction market [17]. Therefore, we can restrict our at-

tention on auctions where all buyers are truth-telling. By definition,

any core outcome is efficient, and hence we only need to consider

truthful and efficient auctions. Consider a reduced form of PONM,

in which all connection weights are zero. For the reduced PONM,

Li et al. [20] proved that all truthful and efficient auctions are not

weakly budget balanced. That is, the seller can have a lager deficit

by implementing the efficient allocation policy in PONM. Since the

revenue in the core is non-negative, we conclude that there is no

auction in PONM whose outcome is always in the core. □
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Theorem 4.5 reveals a severe incompatibility between allocation

efficiency and core-competitiveness in PONM, which motivates the

following question: Is it possible to design truthful auctions that

are core-competitive by sacrificing the allocation efficiency? We

provide a positive answer for this question in the next section by

characterizing a set of non-wasteful auctions that is individually

rational, incentive-compatible and core-competitive.

5 DEFERRED ALLOCATION AUCTION
According to Theorem 4.5, we know that designing truthful auctions

with revenue guarantee in PONM requires giving up on exact social

welfare maximization. To overcome the low revenue issue, this

section introduces a family of allocation policies which can provide

a flexible tradeoff between allocation efficiency and revenue. Based

on the allocation policies, we characterize a set of novel auctions

in PONM that are NW, IC, IR and CC. Moreover, we show that this

kind of auction produces a core outcome whenever it generates

an efficient allocation. Before presenting our main results, we first

introduce two important concepts.

Definition 10. Given buyer 𝑖 ∈ 𝑁 , let 𝛿𝑖 : 𝑇 → P(𝑁 ) be a link
function for 𝑖 , such that given any reported type profile t′, 𝛿𝑖 (t′) ⊆ 𝑟 ′

𝑖
outputs a subset of the reported communication links of buyer 𝑖 .

Link functions generate a set of communication links tailored

for each buyer, which will be used to define the allocation policy.

Roughly speaking, given a link function 𝛿𝑖 of buyer 𝑖 , we will re-

move a set of links 𝛿𝑖 (t′) from the market, and then determine

whether or not buyer 𝑖 is qualified to win the commodity by re-

computing the efficient allocation. The final winner is pinned by

applying the above procedure on a set of ordered buyers. For conve-

nience, let 𝛿 = (𝛿𝑖 )𝑖∈𝑁 denote the link function profile of all buyers.

In addition, let t′−𝛿𝑖 = ((𝑣
′
𝑖
, 𝑟 ′
𝑖
\𝛿𝑖 (t′)), t′−𝑖 ) denote the updated type

profile after removing the selected links {(𝑖, 𝑗)} 𝑗∈𝛿𝑖 (t′ ) from t′. Be-
fore introducing the allocation policy and the auction mechanism,

we next present another concept called critical opponent.

Definition 11. Given a link function profile 𝛿 and t′, buyer
𝑗 ∈ 𝜋∗

𝑖
(t′) is called a critical opponent of 𝑖 if 𝜋∗

𝑖
(t′−𝛿 𝑗

) is the trans-
action with the highest social welfare under t′−𝛿 𝑗

and is the unique

transaction whose social welfare is no less than that given in 𝜋∗
𝑗
(t′−𝛿 𝑗

).

For convenience, let CO
∗
𝑖
(t′, 𝛿) denote all 𝑖’s critical opponents

under t′ and 𝛿 . Intuitively, if buyer 𝑗 is a critical opponent of buyer 𝑖 ,
then 𝑗 will be the winner in 𝜋∗ (t′−𝛿 𝑗

) as long as buyer 𝑖 does not bid.
If buyer 𝑖 eventually wins the item, then she should beat buyer 𝑗 in

t′−𝛿 𝑗
, otherwise buyer 𝑗 is more qualified to win. Therefore, buyer

𝑖’s critical opponents represent her true competitors for winning

the commodity, which essentially pin the minimum winning bid of

buyer 𝑖 . For example, if buyer 𝐽 of Figure 1 wins the commodity and

𝛿𝐸 (t′) = {𝐻 }, then buyer 𝐸 is a critical opponent of 𝐽 . To see this,

note that the transactions with the highest and second highest social

welfare in t′−𝛿𝐸 are 𝜋∗
𝐽
(t′−𝛿𝐸 ) = {𝐵, 𝐸, 𝐼 , 𝐽 } and 𝜋∗

𝐸
(t′−𝛿𝐸 ) = {𝐵, 𝐸},

respectively. If buyer 𝐽 does not bid, then 𝐸 will be the winner of

𝜋∗ (t′−𝛿𝐸 ). To beat 𝐸 in t′−𝛿𝐸 , buyer 𝐽 should submit a bid of at least

SW
∗
𝐸
(t′−𝛿𝐸 ) + 𝐶∗𝐽 (t

′
−𝛿𝐸 ) = 6 + 3 = 9. Based on the concepts of

link function and critical opponent, we now characterize a set of

auction mechanisms for PONM in Algorithm 2.

Algorithm 2: Deferred Allocation Auction (DAA)

1 Input: link function profile 𝛿 , reported type profile t′

2 Output: (𝜋 (t′), 𝑥 (t′))
3 initialize 𝜋 (t′) = ∅, and 𝑥𝑖 (t′) = 0 for all 𝑖 ∈ 𝑁 ;

4 identify the efficient transaction 𝜋∗ (t′) = {1, 2, · · · ,𝑚} and
compute the associated social welfare SW

∗ (t′);
5 return (𝜋 (t′), 𝑥 (t′)) if SW∗ (t′) ≤ 0;

6 for 𝑖 ← 1 to𝑚 do
7 compute 𝛿𝑖 (t′);
8 if 𝑖 wins in 𝜋∗ (t′−𝛿𝑖 ) then
9 update 𝜋 (t′) by 𝜋∗

𝑖
(t′−𝛿𝑖 ) and 𝑥𝑖 (t

′) by
SW
∗ (t′−𝑖 ) +𝐶∗𝑖 (t

′
−𝛿𝑖 );

10 identify all 𝑖’s critical opponents CO∗
𝑖
(𝛿, t′);

11 for 𝑗 ∈ CO∗
𝑖
(𝛿, t′) do

12 update 𝑥𝑖 (t′) by
max{𝑥𝑖 (t′), SW∗𝑗 (t

′
−𝛿 𝑗
) +𝐶∗

𝑖
(t′−𝛿 𝑗

)};
13 return (𝜋 (t′), 𝑥 (t′));
14 update 𝑥𝑖 (t′) by SW

∗ (t′−𝑖 ) − SW
∗ (t′−𝛿𝑖 );

15 return (𝜋 (t′), 𝑥 (t′));

Intuitively, DAA adopts a “deferred” allocation policy: It first

selects the efficient allocation 𝜋∗ (t′) as the tentative allocation,

then determines the qualified winning buyer along 𝜋∗ (t′) based
on 𝛿 (lines 6-13). In particular, it allocates the commodity to the

first buyer 𝑖 in 𝜋∗ (t′) who wins in 𝜋∗ (t′−𝛿𝑖 ), and selects 𝜋∗
𝑖
(t′−𝛿𝑖 )

as the transaction path (lines 8-9). According to the definition of 𝛿𝑖
and the optimality of the shortest path, it is clear that for any

𝑖 ∈ 𝜋∗ (t′), we have that 𝜋∗
𝑖
(t′−𝛿𝑖 ) = 𝜋∗

𝑖
(t′) = {1, 2, · · · , 𝑖} ⊆

𝜋∗ (t′) = {1, 2, · · · , 𝑖, 𝑖 + 1, · · · ,𝑚}. Therefore, the final transaction
of Algorithm 2 is actually a sub-path of the efficient transaction.

Suppose𝑤 is the winner of Algorithm 2, then according to the

payment policy, only buyers in 𝜋∗𝑤 (t′−𝛿𝑤 ) have non-zero payments.

Specifically, for the winner𝑤 , her payment is pined by her critical

opponents, which is defined as

max

{
SW
∗ (t′−𝑤 ) +𝐶∗𝑤 (t′−𝛿𝑤 ), max

𝑗 ∈CO∗𝑤 (𝛿,t′ )
{SW∗𝑗 (t′−𝛿 𝑗

) +𝐶∗𝑤 (t′−𝛿 𝑗
) }
}
.

(12)

For each buyer 𝑖 ∈ 𝜋∗𝑤 (t′−𝛿𝑤 ) \ {𝑤}, her payment is defined as

SW
∗ (t′−𝑖 ) − SW

∗ (t′−𝛿𝑖 ), (13)

which is the difference between the maximum social welfare ob-

tained in t′−𝑖 and that obtained in t′−𝛿𝑖 . Recall that 𝛿𝑖 (t
′) ⊆ 𝑟 ′

𝑖
, and

therefore SW
∗ (t′−𝑖 ) − SW

∗ (t′−𝛿𝑖 ) ≤ 0 which means that the seller

shall pay |SW∗ (t′−𝑖 ) −SW
∗ (t′−𝛿𝑖 ) | to 𝑖 . This value can be considered

as compensation for 𝑖 for revealing her communication links.

We next present two basic properties that DAA possesses. The

first property indicates that DAA is non-wasteful. That is, the com-

modity can always be allocated whenever SW
∗ (t′) > 0. The second

property demonstrates that the critical opponents of the winner

exist only when Algorithm 2 produces the efficient transaction.

Proposition 3. DAA is non-wasteful.
6 Submission ID: 1425. 2023-10-13 07:38. Page 6 of 1–11.
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Proof. Given any reported type profile t′ and the winner of

𝜋∗ (t′), namely𝑚, we know that 𝜋∗𝑚 (t′) = 𝜋∗𝑚 (t′−𝛿𝑚 ). That is,𝑚
always wins in 𝜋∗ (t′−𝛿𝑚 ). According to lines 6-8 of Algorithm 2,

the commodity can always be allocated as long as SW
∗ (t′) > 0. □

Proposition 4. If there exist critical opponents for the winner of
DAA, then the winner must be𝑚, i.e, CO∗𝑤 (t′) ≠ ∅ ⇒ 𝑤 =𝑚.

Proof. Given any reported type profile t′, suppose CO∗𝑤 (t′) ≠ ∅
and 𝑤 ≠ 𝑚. According to Definition 11, we know that for any

𝑖 ∈ CO∗𝑤 (t′), SW∗𝑖 (t
′
−𝛿𝑖 ) is only beaten by SW∗𝑤 (t′−𝛿𝑖 ) under t′−𝛿𝑖 .

Note, however, that if𝑤 ∈ 𝑉 (t′−𝛿𝑖 ), then clearly {𝑤 + 1, · · · ,𝑚} ⊆
𝑉 (t′−𝛿𝑖 ). Based on the optimality of shortest path and the fact

that SW
∗
𝑚 (t′) ≥ SW

∗
𝑤 (t′), we know that 𝑣 ′𝑚 −

∑𝑚−1
𝑗=𝑤 𝑐 𝑗, 𝑗+1 ≥ 𝑣 ′𝑤 .

This leads to the conclusion that SW
∗
𝑚 (t′−𝛿𝑖 ) ≥ 𝑣 ′𝑚−

∑𝑚−1
𝑗=𝑤 𝑐 𝑗, 𝑗+1−

𝐶∗𝑤 (t′−𝛿𝑖 ) ≥ SW
∗
𝑤 (t′−𝛿𝑖 ). Now, SW∗𝑚 (t′−𝛿𝑖 ) also beats SW∗𝑖 (t

′
−𝛿𝑖 )

in t′−𝛿𝑖 , and thus 𝑖 cannot be a critical opponent of𝑤 according to

Definition 11. In sum, if CO
∗
𝑤 (t′) ≠ ∅ then𝑤 must be𝑚. □

According to Algorithm 2, the performance of DAA is entirely

determined by the design of 𝛿 . On the one hand, the output of 𝛿

determines the difficulty for a buyer to become a winner, or in other

words, it determines the allocation efficiency. On the other hand,

it also determines the payment amount for each buyer. Intuitively,

the seller can balance the allocation efficiency and the revenue

by choosing an appropriate 𝛿 . In the following contents, we ana-

lyze how to design 𝛿 such that the associated DAA is individually

rational, incentive-compatible and core-competitive.

5.1 Individually Rational and
Incentive-Compatible DAA

Recall that the communication links 𝑟𝑖 are private information, and

buyer 𝑖 can expose the information of 𝑟𝑖 in her own favor. The key

purpose of our mechanisms is to incentivize buyers to expose the

true information of both valuations and links, and then optimize the

seller’s revenue to make it core-competitive. In order to incentivize

buyers to tell the truth in Algorithm 2, the link function needs to

satisfy two properties. The first property is monotonicity, which
requires the valid buyer set to be non-decreasing with 𝑟𝑖 .

Definition 12. For any two type profiles t = ((𝑣𝑖 , 𝑟𝑖 ), t−𝑖 ) and
t̃ = ((𝑣𝑖 , 𝑟𝑖 ), t−𝑖 ) such that 𝑖 ∈ 𝜋∗ (t) ∩ 𝜋∗ (t̃), 𝛿𝑖 is monotonic (MN)
if 𝑟𝑖 ⊆ 𝑟𝑖 then 𝑉 (t̃−𝛿𝑖 ) ⊆ 𝑉 (t−𝛿𝑖 ).

If 𝛿𝑖 is monotonic, then reporting all communication links can

maximize the set of valid buyers for t−𝛿𝑖 , which potentially maxi-

mizes the compensation received from the seller according to (13).
Therefore, the monotonicity property is align with the buyers’ shar-

ing incentives. According to Algorithm 2, only buyers in 𝜋∗ (t′)
have opportunities to win the commodity. Thus, in order to improve

utilities, the losers in 𝜋∗𝑚 (t) \ 𝜋∗𝑤 (t) may behave strategically to

influence the output of 𝛿𝑖 (t′), where 𝑖 ∈ 𝜋∗𝑤 (t), such that Algo-

rithm 2 terminates after 𝑤 . To avoid such kind of behaviors, the

link function policy should also be strategy independent, which is

formally defined below.

Definition 13. For any type profile t, and two buyers 𝑖 ∈ 𝜋∗𝑤 (t),
𝑗 ∈ 𝜋∗𝑚 (t) \ 𝜋∗𝑤 (t), 𝛿𝑖 is strategy independent (SI) if 𝛿𝑖 (t) = 𝛿𝑖 (t̃) for
all t̃ = (𝑡 ′

𝑗
, t− 𝑗 ) where 𝑖, 𝑗 ∈ 𝜋∗𝑚̃ (t̃).

In other words, the strategy independent property requires that

for any buyer 𝑖 before 𝑤 , the output of 𝛿𝑖 does not vary with the

actions of the buyers after𝑤 . We say 𝛿 is MN/SI if every 𝛿𝑖 is MN/SI.

Next, we show that if 𝛿 satisfies both monotonicity and strategy

independence, then the corresponding DAA defined in Algorithm

2 is incentive-compatible and individually rational.

Theorem 5.1. If 𝛿 is monotonic and strategy independent, then
DAA is individually rational and incentive-compatible.

Proof Sketch. To prove this theorem, we show that no buyer

can gain a better revenue by deviating from truthful report, no

matter what the other buyers do. For a better illustration, we divide

all buyers into four classes: 1) 𝑖 ∉ 𝜋∗ (t′), 2) 𝑖 ∈ 𝜋∗𝑤 (t′) \ {𝑤} where
𝑤 denotes the winner in DAA, 3) 𝑖 = 𝑤 and 4) 𝑖 ∈ 𝜋∗𝑚 (t′) \ 𝜋∗𝑤 (t′).
We prove that if 𝛿 is monotonic and strategy independent, then

buyers in each class cannot do better via misreporting. The full

proof of Theorem 5.1 is given in the appendix. □

Although DAAs with 𝛿 satisfying MN and SI are individually

rational and incentive-compatible, the revenue obtained in such

DAAs can be too low. This can be shown by the following example.

Example 5.2. Let 𝛿 ∅ be the link function profile where

𝛿 ∅𝑖 (t
′) = ∅,∀𝑖 ∈ 𝑁,∀t′ ∈ 𝑇 . (14)

It is apparently that 𝛿 ∅ is MN and SI. In addition, the correspond-

ing allocation policy is also efficient. However, adopting such a

link function profile can lead to a deficit for the seller. For example,

if we apply the DAA with 𝛿 ∅ in Figure 1, then the final alloca-

tion is {𝐵, 𝐸, 𝐻, 𝐽 }. By calculation, we have that 𝑥𝐵 = −4, 𝑥𝐸 =

−3, 𝑥𝐻 = −2, 𝑥 𝐽 = 8, and eventually the seller’s revenue equals

−3 = −4 − 3 − 2 + 8 − 2, where the last term −2 represents the

transmission costs. In fact, the DAA with 𝛿 ∅ is exactly the VCG

mechanism within the PONM setting. Therefore, to design DAAs

with competitive revenue, 𝛿 should satisfy additional conditions.

5.2 Core-Competitive DAA
This section investigates conditions under which DAA is core-

competitive. Recall that theminimum core revenueCoreRev(𝑁0,𝑊 )
is upper bounded by SW

∗ (t−1∗ ) where buyer 1∗ denotes the first
critical buyer in 𝑁 ∗ (t). If DAA generates a revenue higher than

SW
∗ (t−1∗ ), then clearly it is core-competitive. From Lemma 4.2 and

Proposition 2, we know that critical buyers are key to obtain the

upper bound. Next, we introduce a condition called path blocking
(PB) which is interconnected with critical buyers. We prove that

if 𝛿 is path blocking, then the corresponding DAA can obtain a

competitive revenue that is no less than SW
∗ (t−1∗ ).

Definition 14. For any type profile t and 𝑖 ∈ 𝜋∗ (t), 𝛿𝑖 is path
blocking (PB) if there is no transaction path from 𝑖 to𝑚 under t−𝛿𝑖 .

In other words, if 𝛿𝑖 is PB, then under t−𝛿𝑖 all transaction paths

from the seller to buyer𝑚 do not pass through 𝑖 . We say 𝛿 is PB if

all 𝛿𝑖 is PB. Given any 𝛿 satisfying PB, we can prove the following.

Lemma 5.3. If 𝛿 is path blocking, then for all buyers 𝑖 with 𝑥𝑖 (t) <
0, we have that 𝑖 ∈ 𝑁 ∗ (t) and 𝛿𝑖 (t) ∈ CS∗𝑖 (t).
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Proof. Given any type profile t, we know that only buyers in

𝜋∗𝑤 (t) \ {𝑤} can have negative payments according to Algorithm

2. For any buyer 𝑖 ∈ 𝜋∗𝑤 (t) \ {𝑤}, her payment is identical to

SW
∗ (t−𝑖 ) − SW∗ (t−𝛿𝑖 ). Since 𝛿 is PB, then there is no transaction

path from 𝑖 to𝑚 under t−𝛿𝑖 , which implies that 𝜋∗𝑚 (t−𝛿𝑖 ) ⊆ 𝑉 (t−𝑖 ).
Suppose that𝑚 ∈ 𝜋∗ (t−𝛿𝑖 ), then𝑚 must be the winner of 𝜋∗ (t−𝛿𝑖 ).
Since 𝑖 ∉ 𝜋∗𝑚 (t−𝛿𝑖 ), then SW

∗ (t−𝑖 ) = SW
∗ (t−𝛿𝑖 ) = SW

∗
𝑚 (t−𝛿𝑖 ),

resulting in that 𝑥𝑖 (t) = 0. Hence, if 𝑥𝑖 (t) < 0, then𝑚 ∉ 𝜋∗ (t−𝛿𝑖 ),
which means that buyer 𝑖 ∈ 𝑁 ∗ (t) and 𝛿𝑖 (t) ∈ CS∗𝑖 (t). □

Based on Lemma 4.2 and Lemma 5.3, we next prove that DAA is

individually rational, incentive-compatible and core-competitive

provided that 𝛿 is MN, SI and PB.

Theorem 5.4. If 𝛿 is monotonic, strategy independent and path
blocking, then DAA is individually rational, incentive-compatible and
core-competitive.

Proof. Given any type profile t and any 𝛿 satisfying MN, SI

and PB, let NP
∗ (t) = {1⋄, · · · , 𝑞⋄} ⊆ 𝜋∗𝑤 (t) \ {𝑤} denote the set

of buyers with negative payments and let (𝑞 + 1)⋄ represent𝑤 for

convenience sake. Based on Algorithm 2 and Lemma 5.3, the seller’s

revenue 𝑅(DAA, t) obtained in DAA can be expressed by∑︁
𝑖∈𝑁

𝑥𝑖 (t) −𝐶∗𝑤 (t) =
∑︁

𝑖∈NP∗ (t)
𝑥𝑖 (t) + (𝑥𝑤 (t) −𝐶∗𝑤 (t)). (15)

Since 𝑥𝑤 (t) is at least𝐶∗𝑤 (t) +SW∗ (t−𝑤), then 𝑅(DAA, t) is at least∑︁
𝑖∈NP∗ (t)

(SW∗ (t−𝑖 ) − SW∗ (t−𝛿𝑖 )) + SW
∗ (t−𝑤). (16)

According to Lemma 5.3, for all 𝑖 ∈ NP∗ (t), we haveNP∗ (t) ⊂ 𝑁 ∗ (t)
and 𝛿𝑖 (t) ∈ CS∗𝑖 (t). Based on Lemma 4.2, the value of (16) is at least

𝑞⋄∑︁
𝑖=1⋄
(SW∗ (t−𝑖 ) − SW∗ (t−𝑖+1)) + SW∗ (t−𝑤) = SW

∗ (t−1⋄ ) . (17)

Since 1
⋄ ∈ 𝑁 ∗ (t), then based on (15) − (17) and Lemma 4.2, we

have that 𝑅(DAA, t) ≥ SW
∗ (t−1⋄ ) ≥ SW

∗ (t−1∗ ). According to

Definition 8 and Corollary 4.4, the DAA is core-competitive. □

According to Algorithm 2, we know that the allocation policy

of DAA is not efficient, that is it does not always allocate the com-

modity to maximize the social welfare. However, our next result

shows that the auction outcome must be in the core whenever it

produces an efficient allocation.

Proposition 5. Given a type profile t and a 𝛿 satisfying MN, SI
and PB, if 𝜋 (t) = 𝜋∗ (t), then (𝑢𝑖 (t,DAA))𝑖∈𝑁0

∈ Core(𝑁0,𝑊 ).

Proof. Since 𝛿 is MN and SI, then all buyers will act truthfully

in DAA. Suppose 𝜋 (t) = 𝜋∗ (t) for a type profile t. According to the
payment policy, only buyers in 𝜋∗ (t) could have non-zero utilities.

Moreover, based on Lemma 5.3, we have that only buyers in 𝑁 ∗ (t)
could have positive payoffs. According to (13), for any 𝑖∗ ∈ 𝑁 ∗ (t) \
{𝑚}, her payoff 𝑢𝑖∗ (t,DAA) equals SW∗ (t−𝛿𝑖∗ ) − SW

∗ (t−𝑖∗ ). Since
𝛿 is PB, then based on Lemma 5.3 and Lemma 4.2, we have that

𝑢𝑖∗ (t,DAA) ≤ SW
∗ (t−𝑖∗+1) − SW∗ (t−𝑖∗ ), where 𝑖∗ + 1 ∈ 𝑁 ∗ (t). In

addition, according to (12), the winner𝑚’s payoff 𝑢𝑚 (t,DAA) is at
most 𝑣𝑚 − (SW∗ (t−𝑚) +𝐶∗𝑚 (t)) = SW

∗ (t) − SW∗ (t−𝑚). Based on

the core characterizations of Proposition 2, we conclude that the

utility profile (𝑢𝑖 (t,DAA))𝑖∈𝑁0
∈ Core(𝑁0,𝑊 ). □

We next demonstrate two examples to end this section. These ex-

amples provide an affirmative answer to the feasibility of designing

truthful and core-competitive auctions in PONM.

Example 5.5. Let 𝛿𝑟 be the link function profile where

𝛿𝑟𝑖 (t
′) = 𝑟 ′𝑖 ,∀𝑖 ∈ 𝑁, t′ ∈ 𝑇 . (18)

According to the definition of 𝛿𝑟 , the valid buyer set 𝑉 (t′−𝛿𝑟
𝑖

) is
independent of 𝑟 ′

𝑖
and 𝛿𝑟

𝑖
(t′) is independent of other buyers’ reports.

Therefore, 𝛿𝑟 is MN and SI. In addition, as all communication links

from 𝑖 are removed under t′−𝛿𝑟
𝑖

, clearly there is no transaction path

from 𝑖 to𝑚 in t′−𝛿𝑟
𝑖

, i.e., 𝛿𝑟 is PB. Therefore, the DAA with 𝛿𝑟 is IC,

IR and CC. Applying 𝛿𝑟 in Figure 1, we get that the final transaction

is {𝐵, 𝐸} and 𝑥𝐵 = 0, 𝑥𝐸 = 6. Eventually, the seller’s revenue is

5 = 0 + 6 − 1 > CoreRev(𝑁0,𝑊 ) = 4. According to (12) and (13),
we know that under 𝛿𝑟 , only the winner could have positive payoff.

Even though, we emphasize that buyers still have incentives to do

the sharing. This is because that spreading the auction information

outwardly as far as possible can reduce the competitiveness of other

buyers, thus increasing the probability of winning, and can also

reduce the number of critical opponents, thus lowering potential

payments. To compensate buyers more, thus making them more

motivated to share, we can adopt the following link function profile.

Example 5.6. We say 𝑗 ∈ 𝑟 ′
𝑖
is an intermediary of 𝑖 if there exists

𝑘 ≠ 𝑖 such that 𝑘 ∈ 𝑟 ′
𝑗
. Let 𝛿𝐼 be the link function profile where

𝛿𝐼𝑖 (t
′) = { 𝑗 | 𝑗 is an intermediary of 𝑖},∀𝑖 ∈ 𝑁, t′ ∈ 𝑇 . (19)

One can further verify that 𝛿𝐼 also satisfies MN, SI and PB. Given

the example market of Figure 1, we have that 𝛿𝐼
𝐵
= {𝐸} and 𝛿𝐼

𝐸
=

{𝐼 , 𝐻 }. If we apply the DAA with 𝛿𝐼 in the example market. We

can get that the final allocation is {𝐵, 𝐸} and 𝑥𝐵 = −1, 𝑥𝐸 = 6.

Eventually, the seller’s revenue is 4 = −1+ 6− 1 = CoreRev(𝑁0,𝑊 ).

6 CONCLUSIONS AND FUTUREWORK
This study explored the feasibility of designing auction mechanisms

in PONM that generate a revenue competitive against the core

revenue. We provided an affirmative answer to this question, by

characterizing a class of incentive-compatible auction rules with

the core-competitiveness property. Although this work primarily

focused on single item settings, the distributed nature of PONM

makes the problem of designing core-competitive auctions non

trivial, which requires navigating the intricate trade-off between

allocation efficiency and revenue.

This research opens up avenues for further investigation and

poses several intriguing research questions. One immediate exten-

sion is core-competitive auctions in more general auction settings,

such as multi-unit auctions or package auctions in PONM. Explor-

ing the dynamics and challenges of designing auctions in these

contexts can provide valuable insights into the feasibility and mech-

anisms for achieving core-competitive outcomes. Additionally, it is

also interesting to explore non-truthful auctions in PONM whose

outcome is always in the core with respect to the reported types.

Investigating such auction mechanisms and analyzing their prop-

erties can deepen our understanding of the strategic behavior of

participants in PONM auctions and offer alternative approaches to

achieving core outcomes.
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A OMITTED PROOF FOR SECTION 4
Proof of Proposition 2. To prove this proposition, it is suffi-

cient to show that the inequity

∑
𝑖∈𝑆 𝑢𝑖 ≥𝑊 (𝑆) holds for all 𝑆 ⊆ 𝑁0.

Given any type profile t, let 𝑢 be any utility profile defined by the

three conditions listed in the proposition. According to Lemma

4.2, SW
∗ (t−𝑖∗+1) ≥ SW

∗ (t−𝑖∗ ) for any 𝑖∗ ∈ 𝑁 ∗ (t), therefore 𝑢 is a

feasible utility profile. According to "1)" and "3)", we know that

𝑢0 = SW
∗ (t) −

∑︁
𝑖∗∈𝑁 ∗ (t)

𝑢𝑖∗ . (20)

Based on "2)", we further have that

∑
𝑖∗∈𝑁 ∗ (t) 𝑢𝑖∗ is at most∑︁

𝑖∗∈𝑁 ∗ (t)
SW
∗ (t−𝑖∗+1) − SW∗ (t−𝑖∗ ) = SW

∗ (t) − SW∗ (t−1∗ ), (21)

where recall that 1
∗
is the first buyer in 𝑁 ∗ (t). Therefore, based on

(20) and (21), we have that for any 𝑢 defined in the proposition,

𝑢0 ≥ SW
∗ (t−1∗ ) ≥ 0. (22)

Since𝑊 (𝑆) = 0 for any 𝑆 not including the seller, hence such 𝑆

cannot be a blocking coalition under𝑢. Next, consider all 𝑆 including

the seller, we prove that no such 𝑆 can be a blocking coalition by

mathematical induction. For convenience, let 𝑆−𝑖∗ denote all 𝑆 not

including buyer 𝑖∗ ∈ 𝑁 ∗ (t).
Base Step: For any 𝑆 ∈ 𝑆−1∗ , it is clear that𝑊 (𝑆) ≤ SW

∗ (t−1∗ ).
According to "2)", we know that

SW
∗ (t−1∗ ) ≤ SW

∗ (t−2∗ ) − 𝑢1∗ ≤ SW
∗ (t) −

∑︁
𝑖∗∈𝑁 ∗ (t)

𝑢𝑖∗ . (23)

According to (20) and the fact that 𝑢𝑖 ≥ 0, we have that

𝑊 (𝑆) ≤ SW
∗ (t−1∗ ) ≤ 𝑢0 ≤

∑︁
𝑖∈𝑆

𝑢𝑖 . (24)

Therefore, any 𝑆 ∈ 𝑆−1∗ cannot be a blocking coalition.
Induction Hypothesis: Suppose 𝑆 cannot be a blocking coali-

tion for all 𝑆 ∈ 𝑆−𝑘∗ where 𝑘 = 1, 2, · · · , 𝑖 .
Induction Step: For any 𝑆 ∈ 𝑆−𝑖∗+1, we show that 𝑆 cannot be

a blocking coalition. According to the induction hypothesis, we

only need to consider all 𝑆 that includes {1∗, 2∗, · · · , 𝑖∗}. For any
𝑆 ∈ 𝑆−𝑖∗+1, we have that

𝑊 (𝑆) ≤ SW
∗ (t−𝑖∗+1) ≤ SW

∗ (t−𝑖∗+2) − 𝑢𝑖∗+1 (25)

≤ SW
∗ (t) −

𝑝∗∑︁
𝑗∗=𝑖∗+1

𝑢 𝑗∗ = 𝑢0 +
𝑖∗∑︁

𝑗∗=1∗
𝑢 𝑗∗ ≤

∑︁
𝑖∈𝑆

𝑢𝑖 . (26)

Therefore, we have that for all 𝑖∗ ∈ 𝑁 ∗ (t) and all 𝑆 ∈ 𝑆−𝑖∗ , 𝑆 cannot

be a blocking coalition. Finally, consider all 𝑆 that includes the seller

and 𝑁 ∗ (t), then according to "1)" and "3)", we have that

𝑊 (𝑆) ≤𝑊 (𝑁0) = SW
∗ (t) =

∑︁
𝑖∈𝑁0

𝑢𝑖 =
∑︁

𝑖∈𝑁 ∗ (t)∪{0}
𝑢𝑖 =

∑︁
𝑖∈𝑆

𝑢𝑖 .

(27)

Based on the above analysis, we conclude that for any type profile

t, the utility profile 𝑢 is in the core. □

Proof of Corollary 4.3. Based on "1)" and "3)" of Proposition

2, we know that

𝑢0 = SW
∗ (t) −

∑︁
𝑖∗∈𝑁 ∗ (t)

𝑢𝑖∗ . (28)

According to "2)", we further have that

∑
𝑖∗∈𝑁 ∗ (t) 𝑢𝑖∗ is at most∑︁

𝑖∗∈𝑁 ∗ (t)
SW
∗ (t−𝑖∗+1) − SW∗ (t−𝑖∗ ) = SW

∗ (t) − SW∗ (t−1∗ ), (29)

where recall that 1
∗
is the first buyer in 𝑁 ∗ (t). Therefore, based on

(28) and (29), we have that 𝑢0 ≥ SW
∗ (t−1∗ ) for any 𝑢 defined in

the Proposition 2. □

Proof of Corollary 4.4. For any type profile t, CoreRev(𝑁0,𝑊 )
represents the minimum core revenue. Proposition 1 proves that

any core revenue is at least SW
∗ (t−𝜋∗ ). Proposition 2 and Corol-

lary 4.3 show that there exist core outcomes in which 𝑢0 is exactly

SW
∗ (t−1∗ ). Therefore, we have SW∗ (t−𝜋∗ ) ≤ CoreRev(𝑁0,𝑊 ) ≤

SW
∗ (t−1∗ ). □

B OMITTED PROOF FOR SECTION 5
Proof of Theorem 5.1. Given any instance of the DAA with 𝛿

satisfying monotonic and strategy independent, we show that all

buyers’ utilities are non-negative and are maximized by reporting

their types truthfully. Given a reported type profile t′, suppose
𝜋∗ (t′) = {1, 2, · · · ,𝑤,𝑤 + 1, · · · ,𝑚} and buyer 𝑖 reports her true

type (𝑣𝑖 , 𝑟𝑖 ), where𝑤 denotes the winner in the DAA and𝑚 denotes

the winner of the efficient transaction. Next, we prove that 𝑖 cannot

improve her utility by misreporting her type. For convenience, we

use t̃′ to denote the type profile under which 𝑖 misreports her type

to (𝑣 ′
𝑖
, 𝑟 ′
𝑖
).

Case 1: 𝑖 ∉ 𝜋∗ (t′). According to Algorithm 2, buyer 𝑖’s utility is

zero. The only way for 𝑖 to change her utility is to report (𝑣 ′
𝑖
, 𝑟 ′
𝑖
)

such that she becomes the winner of the efficient allocation. Now,

her payment is at least SW
∗ (t̃′−𝑖 ) +𝐶

∗
𝑖
(t̃′) and her utility is at most

𝑣𝑖 −𝐶∗𝑖 (t̃
′) − SW∗ (t̃′−𝑖 ). As 𝑖 ∉ 𝜋∗ (t′) and 𝐶∗

𝑖
(t′) is not affected by

𝑖’s report, we have that 𝐶∗
𝑖
(t̃′) = 𝐶∗

𝑖
(t′) and SW

∗ (t̃′−𝑖 ) = SW
∗ (t′),

therefore 𝑖’s utility is at most 𝑣𝑖 −𝐶∗𝑖 (t
′) − SW∗ (t′) = SW

∗
𝑖
(t′) −

SW
∗ (t′) ≤ 0. That is, all buyers out of 𝜋∗ (t′) cannot increase

utilities by misreporting.

Case 2: 𝑖 ∈ 𝜋∗𝑤 (t′) \ {𝑤}. According to Algorithm 2, 𝑖’s util-

ity is identical to SW
∗ (t′−𝛿𝑖 ) − SW

∗ (t′−𝑖 ) which is non-negative as

𝑉 (t′−𝑖 ) ⊆ 𝑉 (t
′
−𝛿𝑖 ). Since 𝑖 does not win, we know that SW

∗ (t′−𝛿𝑖 ) >
SW
∗
𝑖
(t′−𝛿𝑖 ). If buyer 𝑖 misreports to become the winner, her util-

ity is at most SW
∗
𝑖
(t̃′−𝛿𝑖 ) − SW

∗ (t̃′−𝑖 ) = SW
∗
𝑖
(t′−𝛿𝑖 ) − SW

∗ (t′−𝑖 ) <
SW
∗ (t′−𝛿𝑖 ) − SW

∗ (t′−𝑖 ). Therefore, it is no good for 𝑖 to become the

winner. Moreover, suppose buyer 𝑖 is still a buyer in 𝜋∗𝑤 (t̃′) \ {𝑤̃}
after misreporting, then according to the MN property of 𝛿𝑖 , we

have that SW
∗ (t′−𝛿𝑖 ) ≥ SW

∗ (t̃′−𝛿𝑖 ) and hence 𝑖’s utility is reduced.

In sum, all buyers in 𝜋∗𝑤 (t′) \ {𝑤} cannot increase their utilities by
misreporting.

Case 3: 𝑖 = 𝑤 . Consider the following two subcases.

[i.] CO∗𝑤 (t′) = ∅. Based on Algorithm 2, we know that the

winner’s payment is exactly SW
∗ (t′−𝑖 ) + 𝐶

∗
𝑖
(t′) and her utility

is identical to SW
∗ (t′−𝛿𝑖 ) − SW

∗ (t′−𝑖 ). On the one hand, if 𝑖 still

wins after misreporting, then her payment is at least SW
∗ (t̃′−𝑖 ) =

SW
∗ (t′−𝑖 ) and her utility is at most SW

∗ (t′−𝛿𝑖 ) − SW
∗ (t′−𝑖 ) (note

that CO
∗
𝑤 (t̃′) may not be empty when 𝑖 misreports). On the other

hand, if 𝑖 misreports to a buyer in Case 2, her utility becomes

SW
∗ (t̃′−𝛿𝑖 ) − SW

∗ (t̃′−𝑖 ). Since 𝑖 wins in t′−𝛿𝑖 , then according to the

10 Submission ID: 1425. 2023-10-13 07:38. Page 10 of 1–11.
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MN and SI properties, we have that SW
∗ (t̃′−𝛿𝑖 ) < SW

∗ (t′−𝛿𝑖 ). As
SW
∗ (t̃′−𝑖 ) = SW

∗ (t′−𝑖 ), we know that 𝑖 cannot increase her utility.

Therefore, the winner cannot increase her utility by misreporting

when there is no critical opponent.

[ii.] CO∗𝑤 (t′) ≠ ∅. According to Proposition 4, the winner must

be buyer𝑚 and her utility can be expressed as

𝑣𝑚−max{SW∗ (t′−𝑚)+𝐶∗𝑚 (t′), max

𝑘∈CO∗𝑚 (t′ )
{SW∗

𝑘
(t′−𝛿𝑘 )+𝐶

∗
𝑚 (t′−𝛿𝑘 )}}.

We first show that𝑚 cannot be a buyer in Case 2 by misreporting.

Consider the contrary that𝑚 becomes a buyer in Case 2 by (𝑣 ′𝑚, 𝑟 ′𝑚).
Then 𝜋∗𝑚 (t′) = 𝜋∗𝑚 (t̃′) ⊂ 𝜋∗

𝑚̃
(t′), where 𝑚̃ is the winner in 𝜋∗ (t̃′).

Now, consider any 𝑘 ∈ CO
∗
𝑚 (t′). As 𝑘 is a critical opponent, we

have that𝑚,𝑚̃ ∈ 𝑉 (t′−𝛿𝑘 ) and 𝜋∗
𝑘
(t′−𝛿𝑘 ) are the transaction with

the second highest social welfare in t′−𝛿𝑘 . Therefore, we have that
SW
∗
𝑘
(t′−𝛿𝑘 ) ≥ SW

∗
𝑚̃
(t′−𝛿𝑘 ). When 𝑚 misreports, 𝑚̃ becomes the

new winner of the efficient transaction, and thereby we must have

that SW
∗
𝑚̃
(t̃′) > SW

∗
𝑚 (t̃′). Based on the SI property and the fact

that𝑚,𝑚̃ ∈ t̃′−𝛿𝑘 , we further have that SW
∗
𝑚̃
(t̃′−𝛿𝑘 ) > SW

∗
𝑚 (t̃′−𝛿𝑘 ).

In addition, it is clear that SW
∗
𝑘
(t̃′−𝛿𝑘 ) ≥ SW

∗
𝑚̃
(t̃′−𝛿𝑘 ), now 𝜋∗

𝑘
(t̃′−𝛿𝑘 )

becomes the transaction with the highest social welfare in t̃′−𝛿𝑘 !
According to Algorithm 2, buyer 𝑘 has priority to win in advance,

and thus 𝑚 cannot be a buyer of Case 2, which contradicts the

assumption. Next, suppose𝑚 is thewinner in 𝜋∗ (t̃′) and still wins in
Algorithm 2. For any buyer 𝑘 ∈ CO∗𝑚 (t′), based on the SI property

and Definition 11, we know that 𝑘 is still a critical opponent in

t̃′. However, under (𝑣 ′𝑚, 𝑟 ′𝑚) some other buyers may become new

critical opponents, i.e., CO
∗
𝑚 (t′) ⊆ CO

∗
𝑚 (t̃′), which will potentially

increase 𝑚’s payment. In sum, 𝑚 cannot increase her utility by

misreporting if there are critical opponents.

Case 4: 𝑖 ∈ 𝜋∗𝑚 (t′) \ 𝜋∗𝑤 (t′). According to Algorithm 2, 𝑖’s util-

ity is zero. We first prove that 𝑖 cannot become a buyer in Case

2 by misreporting. Suppose 𝑖 becomes a buyer of Case 2 by sub-

mitting (𝑣 ′
𝑖
, 𝑟 ′
𝑖
), then SW

∗
𝑖
(t̃′) < SW

∗
𝑚̃
(t̃′). As SW∗𝑤 (t′−𝛿𝑤 ) is the

transaction with the highest social welfare in t′−𝛿𝑤 , it is clear that
SW
∗
𝑤 (t′−𝛿𝑤 ) ≥ SW

∗
𝑚̃
(t′−𝛿𝑤 ). Based on the SI property and the

fact of 𝑟 ′
𝑖
⊆ 𝑟𝑖 , we further have that SW

∗
𝑤 (t̃′−𝛿𝑤 ) ≥ SW

∗
𝑚̃
(t̃′−𝛿𝑤 ) >

SW
∗
𝑖
(t̃′−𝛿𝑤 ). Therefore, SW

∗
𝑤 (t̃′−𝛿𝑤 ) is still the transaction with the

highest social welfare in t̃′−𝛿𝑤 . According to Algorithm 2, 𝑖 cannot

be a buyer of Case 2. Thus, the only way for 𝑖 to change her utility

is to submit a report (𝑣 ′
𝑖
, 𝑟 ′
𝑖
) such that she becomes the winner of

𝜋∗ (t̃′) and also wins in Algorithm 2. In this case, she must beat

𝑤 in t̃′−𝛿𝑤 . Based on the SI property, we know that SW
∗
𝑤 (t̃′−𝛿𝑤 )

will become the transaction with the second highest social welfare

in t̃′−𝛿𝑤 . According to Definition 11, 𝑤 will become a critical op-

ponent of 𝑖! Now, 𝑖’s payment is at least SW
∗
𝑤 (t̃′−𝛿𝑤 ) +𝐶

∗
𝑖
(t̃′−𝛿𝑤 )

and her utility is at most 𝑣𝑖 −𝐶∗𝑖 (t̃
′
−𝛿𝑤 ) − SW

∗
𝑤 (t̃′−𝛿𝑤 ). Recall that

𝐶∗
𝑖
(t̃′−𝛿𝑤 ) = 𝐶∗

𝑖
(t′−𝛿𝑤 ) and SW

∗
𝑤 (t̃′−𝛿𝑤 ) = SW

∗
𝑤 (t′−𝛿𝑤 ), so 𝑖’s util-

ity is at most SW
∗
𝑖
(t′−𝛿𝑤 ) − SW

∗
𝑤 (t′−𝛿𝑤 ) < 0. In sum, all buyers

𝜋∗𝑚 (t′) \ 𝜋∗𝑤 (t′) cannot increase their utilities by misreporting.

Based on the above analysis, we conclude that if 𝛿 is MN and SI,

then the DAA defined in Algorithm 2 is IR and IC. □
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