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ABSTRACT

We present HOIDiNi, a text-driven diffusion framework for synthesizing realis-
tic and plausible human-object interaction (HOI). HOI generation is extremely
challenging since it induces strict contact accuracies alongside a diverse motion
manifold. While current literature trades off between realistic motions and accurate
contacts, HOIDiNi optimizes directly in the noise space of a pretrained diffusion
model using Diffusion Noise Optimization (DNO), achieving both. This is made
feasible thanks to our observation that the problem can be separated into two phases:
an object-centric phase, primarily making discrete choices of hand-object contact
locations, and a human-centric phase that refines the full-body motion to realize
this blueprint. This structured approach allows for precise hand-object contact
without compromising motion naturalness. Quantitative, qualitative, and subjective
evaluations on the GRAB and OMOMO datasets clearly indicate HOIDiNi outper-
forms prior works and baselines in contact accuracy, visual plausibility, and overall
quality. Our results demonstrate the ability to generate complex, controllable inter-
actions, including grasping, placing, and full-body coordination, driven solely by
textual prompts. Please watch the supplementary video.

1 INTRODUCTION

Human-object interaction (HOI) lies at the core of many everyday tasks, such as frying an egg or
drinking a cup of water, with crucial applications to any digital human-like agent. Even though it is
ubiquitous, this central capability still eludes modern motion generation modeling techniques. This is
because HOI modeling requires millimeters-level accuracy to avoid noticeable artifacts, but tackles a
diverse motion space, rich with nuanced human behavior.

Indeed, when applying traditional generation techniques to the rather limited HOI data available,
results often exhibit physical artifacts like inter-object penetration, floating, or implausible grasps,
even when restricted to hand-only scenarios (Huang et al., 2025; Zhang et al., 2025a; Li et al.,
2024a).

To facilitate desired accuracy while maintaining plausibility, most recent literature employs generation
guidance (Peng et al., 2023; Diller & Dai, 2024; Zhang et al., 2025b) or post-generation optimization
(Wu et al., 2024; Ghosh et al., 2023). While this can improve physical correctness, both of these
approaches adhere to fine-grained contact requirements by pulling the motion off the human manifold,
on the account of realism.

In this work, we present Human-Object Interaction through Diffusion Noise optimization (HOIDiNi),
a text-driven diffusion framework that satisfies the tight constraints of HOI while remaining on the
manifold of realistic human motion. We address this challenge using an optimization strategy that,
by design, preserves the learned motion distribution: Diffusion Noise Optimization (DNO) (Karun-
ratanakul et al., 2024), a test-time sampling method that traverses the noise space of a pretrained
diffusion model to steer generation toward desired losses. Originally applied to control free-form
motion synthesis, DNO proves to be a natural fit for HOI when carefully adapted to the structure and
demands of the task.

We begin by training a diffusion model, CPHOI, to learn the joint distribution of full-body human
motion and object trajectories, enabling coordinated interaction within a unified generative space.
A key insight is that accurate HOI depends on identifying semantically meaningful contact pairs
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Figure 1: HOIDiNi generates human-object interactions from text descriptions and object geometry,
integrated here into a 3D scene from Jay-Artist (2012).

between the palm surface and the input object’s surface. Unlike prior methods that rely on heuristics,
CPHOI dynamically predicts these contacts for each frame in addition to full-body, fingers, and object
trajectories, allowing precise, frame-consistent interaction that adapts to object shape and motion,
resulting in more stable and realistic behaviors.

As it turns out, using diffusion noise optimization over this joint discrete/continuous space of
Contact-Pairs, Human, and Object motions is challenging, with many local discontinuities that
destabilize convergence. We observe that the complexity of HOI optimization can be separated into
two optimization phases. The first, Object-Centric phase considers the motion of the object and its
contacts with the hands only, forming a reliable structural blueprint for the ensuing full-body motion.
This outline then guides the second, Human-Centric phase, which completes the full-body motion,
refining finger articulation for precise grasping, and generating natural body posture that semantically
supports the object’s behavior and dynamics.

A central challenge in the first phase is determining which locations on the hands should make contact
with the object and where. Typically in prior works Zhang et al. (2025b; 2024a), this is done using
nearest-neighbor heuristics, but this approach is brittle, especially for small or thin objects, and highly
sensitive to initialization. Instead, we explicitly predict contact pairs between the hand and object
surfaces, and optimize them jointly with the object’s 6-DoF trajectory. The DNO objective enforces
semantically meaningful placement while preventing interpenetration with supporting surfaces.

After this outline of object motion and contact locations is determined and fixed, the second phase
then optimizes the full-body motion, including the fingers, conditioned on the object trajectory
and contact pairs. In phase case, DNO helps satisfy these contacts without penetrating the object.
Throughout, the DNO process keeps the samples close to the motion manifold, ensuring realism.

Quantitative evaluations on the GRAB (Taheri et al., 2020b) and OMOMO (Li et al., 2023) datasets
demonstrate that HOIDiNi outperforms prior baselines in both interaction accuracy and motion
realism, as measured by contact precision, physical validity, and proximity to the human motion
manifold. Subjectively, a user study indicates dramatic preference to our resulting motions compared
to competing literature and baselines. Qualitatively, we showcase a range of full-scene interactions,
including object grasping and placement, all driven by textual instructions,trained on a single dataset.
These results highlight HOIDiNi’s ability to synthesize complex, controllable, and visually plausible
HOI behaviors.

2 RELATED WORK

Controlled Motion Synthesis. Current motion synthesis methods increasingly focus on controllabil-
ity. TEMOS (Petrovich et al., 2022) and MotionCLIP (Tevet et al., 2022) addressed text-to-motion
synthesis using a Transformer VAE (Vaswani et al., 2017; Kingma & Welling, 2013). T2M (Guo
et al., 2022b), T2M-GPT (Zhang et al., 2023), and MoMask (Guo et al., 2024) adopt a VQ-VAE (Van
Den Oord et al., 2017) to quantize motion and generate it sequentially in the latent space, conditioned
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Figure 2: System Overview. HOIDiNi generates Human-object Interaction (HOI) motions according
to a text prompt, a mesh describing the object, and the occupied volume in the scene, by optimizing
the diffusion noise. The Object-Centric Phase generates the object motion and its contact points
with the hands (CP and O), then the Human-Centric Phase follows and generates the full human
motion(H): body and fingers, adhering to the constraints implied by the previous phase. Both phases
use CPHOI, a pre-trained diffusion model that learned the human-object joint distribution. We apply
Diffusion Noise Optimization (DNO) (Karunratanakul et al., 2024) to fulfill the two sets of loss
functions (LObject and LHuman) without deviating from the learned distribution.

on text. MDM (Tevet et al., 2023) and MoFusion (Dabral et al., 2023) introduced the denoising
diffusion framework (Ho et al., 2020b) to motion synthesis, demonstrating its effectiveness across
multimodal tasks such as action-, text-, and music-to-motion (Tseng et al., 2023).

The diffusion paradigm enables diverse control mechanisms: PriorMDM (Shafir et al., 2024), Cond-
MDI (Cohan et al., 2024), GMD (Karunratanakul et al., 2023), and OmniControl (Xie et al., 2023)
combine temporal conditioning with Classifier-guidance (Dhariwal & Nichol, 2021) to achieve joint-
level control. MoMo (Raab et al., 2024) demonstrated motion transfer through attention injection,
while LoRA-MDM (Sawdayee et al., 2025) employed Low-Rank Adaptation (Hu et al., 2022) for
motion stylization. CAMDM (Chen et al., 2024) and A-MDM (Shi et al., 2024) accelerated sam-
pling by introducing autoregressive motion diffusion. CLoSD (Tevet et al., 2025) further integrated
autoregressive diffusion into a physics-based simulation framework for object interaction.

Diffusion Noise Optimization (DNO) (Karunratanakul et al., 2024; Ben-Hamu et al., 2024) proposes
applying spatial constraints by optimizing the initial diffusion noise, enabling precise free-form
control. DartControl (Zhao et al., 2025) built on this idea by accelerating the process through
autoregressive diffusion. We show that DNO can be extended to the millimetric accuracy required for
object interaction, and introduce a two-phase DNO strategy tailored for object interactions.

Human-Object Interaction. Early HOI methods generate motions in stages: SAGA (Wu et al.,
2022) first predicts a static target frame, then interpolates motion via a VAE decoder; GOAL (Taheri
et al., 2022) adds optimization to align motion and object; IMoS (Ghosh et al., 2023) uses dual-stream
autoregressive networks for arm and body motions followed by object alignment; TOHO (Li et al.,
2024b) predicts the object’s final position, generates grasping poses, and fills the trajectory with an
implicit representation. Diffusion-based methods have recently gained traction: OOD-HOI (Zhang
et al., 2024b) uses a dual-branch reciprocal diffusion model with IMoS-style refinement; HOI-
Diff (Peng et al., 2023), CHOIS (Li et al., 2024a), and DiffGrasp (Zhang et al., 2025b) apply classifier
guidance, with HOI-Diff using affordances and CHOIS and DiffGrasp goal functions; OMOMO (Li
et al., 2023) models hand-object paths first, then full-body motion; BimArt (Zhang et al., 2024a)
conditions contact generation on object trajectories to guide body motion. Both methods reduce task
complexity by generating only partial motion (hands or body), enabling more tractable modeling
at the cost of full-scene coherence. Finally, CLoSD (Tevet et al., 2025) and Wu et al. (2024) apply
physical trackers atop generated motion, improving grasp accuracy at the cost of realism.

Concurrent to this work, CoDa (Pi et al., 2025) applied Diffusion Noise Optimization with separate
hand and body models, thus not learning the joint Hand–Body distribution.
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3 PRELIMINARIES

Denoising diffusion models. Denoising diffusion probabilistic models (DDPMs) (Ho et al., 2020a)
define a forward Markov process {xt}Tt=0 that progressively adds Gaussian noise to a data sample
x0 ∼ pdata(x0): q(xt | xt−1) = N (

√
αtxt−1, (1 − αt)I), with αt ∈ (0, 1). As t increases, xT ap-

proaches N (0, I). The reverse process learns to denoise back to x0, optionally conditioned on c (e.g.,
text or pose). Unlike the original DDPM that predicts noise ϵt, we follow MDM (Tevet et al., 2023)
and predict x̂0 directly, yielding the training objective: Lsimple = Ex0∼p(x0|c), t∼[1,T ]

[
|x0 − x̂0|22

]
.

Diffusion noise optimization (DNO). A common approach to constrain a data sample x ∼ X is
to directly optimize it via x∗ = argminx L(x), where L encodes task-specific objectives. In the
context of HOI, such post-hoc optimization has been widely used (Ghosh et al., 2023; Zhang et al.,
2024a; Paschalidis et al., 2024), but it lacks guarantees that x∗ remains within the data distribution X ,
often resulting in unrealistic outputs. A more robust strategy is to optimize in a latent space z ∼ Z,
assuming x = D(z) for some decoder D. The optimization becomes:

z∗ = argmin
z

{L(D(z)) +R(z)}

where R(z) encourages z ∼ Z, thereby keeping the final output x∗ = D(z∗) on-manifold. This
technique is commonly employed with VAEs (Holden et al., 2016; Pavlakos et al., 2019b) and
GANs (Karras et al., 2020b; Patashnik et al., 2021) across both image and 3D domains.

DNO (Karunratanakul et al., 2024; Ben-Hamu et al., 2024) extends this principle to diffusion models,
treating the latent variable as the initial noise xT ∼ N (0, I), and the decoder as the full sampling
process of a pretrained diffusion model G, resolved using the ODE formulation of DDIM (Song et al.,
2021). The optimization is then defined over xT , with gradients propagated through all denoising
steps:

x∗
T = argmin

xT

{L(ODE(G, xT )) +Rdecorr(xT )}

Where the final output will be x∗ = ODE(G, x∗
T ). Here, Rdecorr is a decorrelation regularizer (Karras

et al., 2020a) that encourages xT to remain within the Gaussian prior. HOIDiNi extends this
formulation with a two-phase DNO strategy tailored for HOI, enabling precise contact control while
preserving motion realism.

4 METHOD

An overview of HOIDiNi is illustrated in Figure 2. Our goal is to generate realistic, contact-rich
human-object interactions (HOI) by guiding a diffusion model to satisfy task-specific constraints
without drifting off the motion manifold.

We begin by defining a structured data representation that jointly encodes full-body human motion,
object trajectories, and accurate surface-level contact points (4.1). Then, we turn to describe CPHOI,
a diffusion model that captures the joint distribution of human and object motion along with dense
contact predictions (4.2). Our model predicts contact correspondences directly, which proves essential
for stable and semantically meaningful grasps.

At inference, we employ a two-phase Diffusion Noise Optimization (DNO) (Karunratanakul et al.,
2024) strategy tailored to HOI (4.3). The first, object-centric, phase optimizes the object’s trajectory
and contact pairs based on scene constraints such as placement and support. The second, human-
centric, phase completes the full-body motion, including hand articulation, to fulfill the previously
determined contact goals while maintaining realistic posture and avoiding collisions. This struc-
ture allows us to satisfy complex physical constraints while remaining within the learned motion
distribution.

4.1 DATA REPRESENTATION

Our diffusion model, CPHOI, generates triplets of the form (CP,H,O), representing Contact Pairs,
Human motion, and Object motion, respectively. We will now elaborate on each of these components.

4
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“Taking a picture 
with a ”camera

“Inspecting a 
”large sphere

“Drinking from a 
”wine glass

“Drinking from a 
”water bottle

“Inspecting a 
”small sphere

Figure 3: Qualitative Results of human-object interactions generated by our method across diverse
prompts. For instance, “taking a picture with a camera” yields a semantically appropriate two-handed
pose. Motions are both visually plausible and aligned with the prompts.

Figure 4: CPHOI Diffusion Model. CPHOI au-
toregressively predicts the next motion segment sn
from the previous one sn−1. The figure illustrates
a single diffusion step, where the model denoises
snt to predict ŝn0 . It jointly generates human and
object motions, along with dynamic contact points,
conditioned on the object’s geometry and a text
description of the interaction.

Contact Pairs Sequence. The Contact Pairs
sequence is central to our method, generated
during the first, object-centric, phase and serve
as conditioning for the second phase. Unlike
previous approaches, that snap the given or pre-
dicted object trajectory to the hands using sim-
ple heuristics, we adopt a learned approach to
semantically predict these contacts. We de-
fine a discrete set of Anchor points A on the
fingers and palms, denoting potential contacts
between the hands and the object (See Ap-
pendix). At each frame f , and for each an-
chor a ∈ A, we represent and predict con-
tacts using a binary variable ba, indicating
whether the anchor is in contact, and a corre-
sponding position pa ∈ R3, specifying the con-
tact location on the object surface in its rest
pose. This yields the contact representation:
FCP =

[
p1, . . . , p|A|, b1, . . . , b|A|

]
of dimen-

sion (3 + 1)× |A| per-frame in the sequence.

Human Motion Representation. We adopt a
variant of the widely used HumanML3D (Guo
et al., 2022a) representation to encode human
motion. The per-frame human feature is defined as: FH =

[
rHz , ṙHx , ṙHy , α̇H , θH , jH

]
where rHz is

the vertical root height, (ṙHx , ṙHy ) denotes the planar root velocity, α̇H is the angular root velocity,
θH contains the SMPL-X pose parameters, and jH denotes the relative 3D joint positions.

The 52 relevant joints from the SMPL-X model are used, including both body and hand joint rotations
(but not shape). Unlike the original representation, we directly employ the SMPL-X pose parameters
θH , allowing us to extract the human mesh in a fully differentiable manner. This property is essential
for enabling backpropagation during the diffusion noise optimization process.

Object Motion Representation. The per-frame object’s pose is, FO =
[
θO, rO, ṙO

]
, where θO

denotes the object’s global rotation represented in Cont6d format, rO is the object’s global translation,
and ṙO is its linear velocity. Together, these parameters define the object’s 6DoF trajectory.

Final representation. Combining the representations of our three data components, we end up with
a feature representation for each frame with the form F = [FCP , FH , FO] (Figure 4, bottom)

4.2 CPHOI DIFFUSION MODEL

Our model, CPHOI, is illustrated in Figure 4. To support DNO-based optimization, which repeatedly
queries the generative model and is therefore computationally demanding, we require a fast and

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

efficient architecture. We design CPHOI as a lightweight, text-driven, autoregressive diffusion model
that incorporates geometric understanding of the object and interaction semantics. Autoregressive
diffusion, as shown in prior work (Shi et al., 2024; Chen et al., 2024), is significantly faster than
full-sequence denoising. It processes shorter segments per step and requires fewer diffusion iterations.
This efficiency is crucial for accelerating DNO (Zhao et al., 2025). Our model is inspired by the
autregressive design of DiP (Tevet et al., 2025) which also enables high-level control descriptions as
those needed for our task.

CPHOI generates the next motion segment sn = [Fi]
L
i=1 of L frames, given the previous segment,

sn−1, the object geometry in point-cloud format, and a text prompt that describes the interaction. For
each denoising step t ∈ [0, T ], the inputs to the transformer decoder backbone are the frames of the
previous segment sn−1, followed by the current segment to be denoised, snt . The model predicts the
clean version of the segment, ŝn0 .

The object’s geometry, the text condition, and the timestep t are encoded into a sequence of latent
embeddings and injected through the cross-attention of each transformer layer, at each denoising step.
To encode the geometry of the interacted object, we use a shape encoder with a PointNet++ (Qi et al.,
2017) architecture, which is trained simultaneously with the diffusion model. We uniformly sample
the mesh using V points, and encode each one into a latent descriptor of length C (V = 512 and
C = 512 in all our experiments). The text prompt is encoded into a sequence of embeddings using a
pre-trained and fixed DistilBERT (Sanh, 2019) model. The diffusion timestep t is embedded using a
standard positional embedding denoted Et.

Since object location is represented in global coordinates, whereas the human is relative to the
previous frame, we inform the model regarding the global position of the body. We hence encode the
global root transformation Troot ∈ SE(3) at the first frame of the autoregressive sequence.

Finally, all tokens belonging to the same signal type are augmented with a learned type-specific
embedding, allowing the model to distinguish between the different sources of information during
cross-attention.

4.3 TWO-PHASE GENERATION OPTIMIZATION

Accurate body-object contacts are a key component of plausible HOI motion, but represent a dis-
continuous space, with discrete and unstable decision making. Thus we found the straightforward
optimization, using a single step challenging in practice (see Figure 7). To address this, we separate
the process into two phases, each solving a different part of the problem variables:

Phase 1: Object-Centric. In this phase, we optimize the object related part only to outline the motion,
based on the given prompt, object geometry, and scene constraints (e.g., table surface). Although the
full output of the model is the triplet (CP,H,O)—representing the contact-pair sequence, human
motion, and object motion respectively—only (CP ) and (O) are considered in this stage. We found
weight sharing between phases to improve performance. The objective LObject for this phase is
defined to avoid object-scene penetrations and optionally to guide the object toward a set of target
poses in specified frames (as sometimes used in the literature (Li et al., 2024a)):

LObject = λPOS
LPOS

+ λGoalLGoal + λStaticLStatic

This objective comprises a penetration term between the object and the scene LPOS
, a goal term

encouraging the object to achieve specified poses in specified times LGoal, and the static term,
LStatic, that encourage the object to stay static in frames without predicted contact. The last two are
detailed in Appendix C.

Penetration Loss. To measure interpenetration between two watertight meshes, denoted Ma and Mb,
we define a bidirectional penetration loss that penalizes vertices of one mesh that are located inside
the volume enclosed by the other. Each mesh M consists of a set of vertices V and a set of polygons
F . Each polygon f ∈ F is associated with an outward-facing normal vector nf .

For each vertex v ∈ Va, we identify whether it is inside the other mesh simply through randomly
casting a single ray, and checking the normal direction of the intersected triangle if it exists. We
denote the vertices found as inside V in

a ⊂ Va.

6
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Figure 5: Comparisons. HOIDiNi generates semantically correct and accurate interaction with the
gaming controller. From left to right: IMoS (Ghosh et al., 2023) optimization yields inferior contacts
and unrealistic motion; CPHOI inference only generates decent poses but fails to satisfy contacts; Our
losses with Classifier Guidance brings the object insufficiently closer. Replacing our contact-point
prediction with the popular nearest-neighbor heuristic fails to choose correct contacts, in contrast to
our plausible and human-like result.

For every vertex v ∈ V in
a , we project it on Mb, and denote the projection distance as NN(v;Mb). We

then define the penetration loss from Ma into Mb as:

Lpen(Ma → Mb) =
1

|Va|
∑
v∈V in

a

∥v − NN(v;Mb)∥2

Hence, the full symmetric loss is, LPenetration = Lpen(Ma → Mb) + Lpen(Mb → Ma).

Phase 2: Human-Centric Phase. This phase refines the human motion to conform to the fixed
object motion and contact sequence (CP,O) produced in Phase 1. With the contact points fixed, this
optimization over the human manifold is much more stable. The objective of this diffusion-based
optimization is defined as:

LHuman = λCLC + LPH
+ λFootLFoot + λJitterLJitter

where LC denotes the contact loss, promoting alignment of the human body with predefined contact
points on the object. The human penetration loss term LPH

combines three components:

LPH
= λPHO

LPHO
+ λPHS

LPHS
+ λPHH

LPHH
,

representing human-object, human-scene, and human-human penetration losses, respectively. Specifi-
cally, LPHO

penalizes interpenetration between the human and the object, LPHS
prevents collisions

with the static scene, and LPHH
reduces self-intersections within the human mesh, particularly

between the hands. The contact loss LC uses L2 distance to push hand vertex locations to targets on
the moving object, as dictated by CP and O from the previous phase. The penetration loss terms are
similar to the penetration term LPOS

defined in phase 1. Together, these losses represent physical
plausibility, encouraging surface contacts while avoiding penetration, and the optimization scheme
ensures realism and human likeness.

5 EXPERIMENTS

5.1 EVALUATION SETTING

Implementation Details. Our code and checkpoints will be made available; Please watch the
supplementary video. CPHOI is implemented as a Transformer decoder architecture with 8 layers
and a hidden dimension of 512. Our point-wise object embedding network is a PointNet++ (Qi
et al., 2017) fed with 512 randomly sampled vertices from the conditioned object. We condition the
motion on a prefix of 15 frames and generate 100 frames. The model is trained with DDPM (Ho
et al., 2020b); DDIM (Song et al., 2020) is used at inference. Further details are at Appendix A.
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Experiment FID ↓ Diversity → AVE ↓ IRA ↑ Multimodality → Penetration (mm) ↓ Floating (mm) ↓

GT – 0.995 – 74.6% 0.194 5.0 ± 1.8 2.6 ± 1.8

IMoS 0.205 1.026 0.121 46.5% 0.204 3.0 ± 7.7 52.2 ± 53.8
HOIDiNi (Ours) 0.159 0.996 0.121 62.3% 0.245 6.8 ± 2.9 2.3 ± 4.7

Inference Only 0.144 1.054 0.145 68.4% 0.214 16.1 ± 20.9 151.4 ± 108.6
Single-Phase 0.221 1.026 0.140 43.0% 0.241 7.8 ± 3.6 20.1 ± 21.7
Phase1 Inference, Phase2 DNO 0.148 0.923 0.172 65.8% 0.217 6.8 ± 2.2 2.0 ± 4.1
Classifier Guidance 0.149 1.013 0.149 68.4% 0.215 14.4 ± 20.5 166.8 ± 143.2
Higher Penetration Coef. λPHO

0.156 1.015 0.144 57.0% 0.225 5.6 ± 2.9 5.9 ± 7.2
NN instead of Contact Pairs 0.162 1.040 0.153 57.9% 0.245 7.7 ± 3.8 4.3 ± 5.0
No Jitter Loss 0.160 1.026 0.143 60.5% 0.220 7.1 ± 2.7 1.9 ± 4.0

Table 1: Quantitative Results and Ablation Study. Comparison on the GRAB dataset (Taheri et al.,
2020b) using IMoS-defined (Ghosh et al., 2023) metrics for motion realism, along with average
floating and penetration errors (in millimeters). → indicates that better is closer to ground-truth
performance.

Ours vs.
Classifier
Guidance

72.1%Overall Quality
72.1%Prompt Adherence
73.5%Grasp Quality

Ours vs.
IMoS

80.3%Overall Quality
77.6%Prompt Adherence

72.4%Grasp Quality

Figure 6: User Study. We compare to two base-
lines, measuring on grasp quality, prompt adher-
ence, and overall quality over 12 random samples,
each evaluated by at least 10 users. The dashed
line marks 50% ratio.

Data. We evaluate our approach using the
GRAB (Taheri et al., 2020a) and OMOMO (Li
et al., 2023) datasets. GRAB includes SMPL-
X (Pavlakos et al., 2019a) human motion param-
eters, object 6DoF trajectories, and per-vertex
contact force data for both human and object
meshes. The dataset comprises 1,334 motion
samples from 10 different subjects. Since dif-
ferent human subjects in the dataset exhibit
varying shape parameters β, and considering
the dataset’s relatively small scale compared to
datasets like HumanML3D, we re-target all mo-
tions to a standardized, neutral SMPL-X model
with shape parameters fixed to β = 0. Addi-
tionally, we used ChatGPT 4o to enhance its
discrete action annotations into text prompts.
The OMOMO dataset includes 27,952 motion
sequences, interacting with 13 objects. It does not include finger motions and hence doesn’t enable
precise interactions. We use it strictly for comparisons with the recent literature (Li et al., 2024a).
Following it, we use the data’s subset, called FullBodyManipulation.

Baselines We compare our approach against IMoS (Ghosh et al., 2023), CHOIS (Li et al., 2024a),
and several internal baselines. One baseline applies our model at inference time without any op-
timization. Another replaces the diffusion noise optimization with classifier guidance. The third
substitutes the predicted contact pairs with nearest-neighbor-based pairs. To enable a fair comparison
with classifier guidance, we adopt DDPM hyper-sampling and increase the number of denoising steps
from 8 to 500, consistent with Peng et al. (Peng et al., 2023). We report results using the optimal
guidance scale. For the nearest-neighbor baseline, contact assignment is updated at each optimization
step based on the current nearest neighbors. Additionally, we explore increasing the penetration loss
weight by setting λPHO

= 0.9.

Metrics. We evaluated our method on motion realism and interaction accuracy. For GRAB, we
followed IMoS (Ghosh et al., 2023) metrics, computing FID, Diversity, Multimodality, Intent
Recognition Accuracy (IRA), and Average Variance Error (AVE) using a classifier trained on full-body
joint positions, hand joints, and object trajectories (Appendix D). Grasp accuracy was measured
via two failure modes: Penetration (mean depth in mm, frames with penetration only) and Floating
(frames without penetration). For OMOMO, we used the CHOIS benchmark, covering condition
adherence, motion fidelity, and interaction accuracy (Appendix D).

5.2 RESULTS

Table 1 compares our method to IMoS. HOIDiNi achieves better FID and IRA, indicating improved
realism, and significantly reduces floating while maintaining comparable penetration levels. Table 2
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Method Condition Matching Human Motion Interaction

Ts ↓ Te ↓ Txy ↓ Hfeet ↓ FS ↓ Rprec ↑ FID ↓ Cprec ↑ Crec ↑ CF1
↑ C% Phand ↓

CHOIS 1.90 6.90 2.81 4.48 0.34 0.43 0.97 0.80 0.64 0.67 0.56 0.61
HOIDiNi (ours) 0.00 0.00 0.00 3.17 0.30 0.42 1.24 0.78 0.8 0.77 0.76 0.67

Table 2: Comparison to CHOIS (Li et al., 2024a) over the OMOMO (Li et al., 2023) dataset.
Measuring condition matching, human motion, and interaction via a set of metrics defined by CHOIS.

compare our model to CHOIS using the metrics defined by them and shows that HOIDiNi improves
the contact accuracy while maintaining comparable motion fidelity. The condition matching metrics
demonstrate the preciseness of the DNO mechanism, which consistently delivers zero error.
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Figure 7: Single vs. Two-Phase Optimiza-
tion. Comparison of contact loss and changes in
predicted contact bits during DNO optimization
(shared y-axis). (Left): In the single-phase setup,
contact predictions evolve alongside motion, caus-
ing unstable objectives and hindering convergence.
(Right): In our two-phase approach, contact pairs
are fixed after the object-centric phase, resulting in
stable contact loss during the human-centric phase
presented here. In this example, the two-phase set-
ting converges to a 10× lower value. Contact-Bits
Changes denote the number of bit flips in the pre-
dicted contact matrix between successive steps.

User Study. We conducted a user study for the
GRAB dataset with 24 participants, evaluating
12 side-by-side randomly selected samples of
two models using the same inputs. As shown in
Figure 6, users preferred the results generated
by our framework. A representative screenshot
from the study interface is shown in Figure 8.

Ablation Study. Table 1 summarizes our abla-
tions. Inference-only results stay on-manifold
but suffer from severe penetration and float-
ing. Omitting object-centric optimization shows
that most constraints are resolved in the human-
centric phase. Using nearest-neighbor contacts
instead of predicted ones significantly harms
FID and IRA, indicating reduced realism.

The two-phase design is investigated in Fig-
ure 7, comparing to the single-phase setup,
where contact predictions are optimized jointly
with human motion. The single-phase approach
results in frequent updates to contact assign-
ments throughout the process. These updates
shift the contact loss objective over time, mak-
ing the optimization less stable and harder to
converge. In contrast, our two-phase approach separates contact prediction and motion optimization:
contact pairs are predicted and fixed in the first (object-centric) phase, allowing the second (human-
centric) phase to optimize a stable and well-defined contact loss objective. This decoupling enables
more consistent optimization behavior and improves convergence, as reflected in Table 1.

Qualitative Results. The supplementary video showcases a variety of motions generated by our
model, along with visual comparisons to baseline methods. Figure 10 shows contact pairs generated
by HOIDiNi. Figure 5 presents an interaction generated by HOIDiNi for the prompt “The person
is playing with the gaming controller.” The IMoS baseline demonstrates a common failure where
contacts are lacking semantic meaning and visually plausibility due to the fixed-contact snapping
approach. Similarly, only replacing our predicted contact pairs with nearest-neighbor assignments
also results in incorrect contacts and implausible motion. We further witness that applying our losses
through classifier guidance improves hand-object proximity compared to inference-only, but does not
produce realistic interactions. Figure 3 presents additional examples generated by our method. These
results further highlight the semantic correctness and visually plausibility of the synthesized motions
across a diverse set of prompts and object types.

6 CONCLUSIONS

We introduced HOIDiNi, an approach for high-precision Human–object Interaction that provides
motion fidelity through Diffusion Noise Optimization. Our results demonstrate accurate contact
handling and natural motion across complex interaction scenarios. Beyond HOI, we view HOIDiNi
as a platform for cases where high-precision is required and regular diffusion inference fails. We
encourage the community to use HOIDiNi to advance controllable, high-fidelity motion generation.
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APPENDIX

A IMPLEMENTATION DETAILS

CPHOI is implemented as a Transformer decoder architecture with 8 layers and a hidden dimension
of 512. Our point-wise object embedding network is a PointNet++ (Qi et al., 2017) fed with 512
randomly sampled vertices from the conditioned object. The model is trained with DDPM (Ho et al.,
2020b); DDIM (Song et al., 2020) is used at inference. More details per experiment can be found
in Table 3. We use the Adam optimizer (Kingma, 2014) for the noise optimization procedure. To
reduce memory costs, we focus only on the MANO (Romero et al., 2017a) subset of vertices of the
SMPL-X human body and simplify it further to 1,100 vertices for each hand. The object meshes are
simplified to 3,000 faces.
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Experiment GRAB [2020a] OMOMO [2023]

Training
parameters

# input prefix frames 15 1
# generated frames 100 119
diffusion steps (T ) 8 14
training steps 120K 50K
batch size 64 64

DNO
parameters

perturbation scale 10−6 10−5

difference penalty 10−6 10−5

λC 0.95 0.95
λFoot 0.5 0.5
λJitter 10−5 10−3

λPHO 0.05 0.05
λPHS 0.2 –
λPHH 0.05 0.05
λPOS 1.2 0.05
λGoal 0.5 0.9
λStatic 0.9 0.05
λFeetF loorContact – 0.5

Table 3: Hyper-parameters in use for each experiment.

B CONTACT REPRESENTATION

Directly generating index pairs via diffusion is challenging. To address this, we adopt a more
learnable representation. We define a fixed anchor set A, consisting of a subset of MANO (Romero
et al., 2017b) hand vertices located on the palm (Figure 9). At each frame f , and for each anchor
a ∈ A, a binary variable ba indicates whether the anchor is in contact. A corresponding position
pa ∈ R3 specifies the contact location on the object surface in its rest pose. This yields the contact
representation:

FCP =
[
p1, . . . , p|A|, b1, . . . , b|A|

]
resulting in a per-frame contact feature of dimension (3 + 1)× |A|. Figure 10 shows an example of
contact pairs generated by HOIDiNi.

For the OMOMO (Li et al., 2023) dataset, which lacks fingers’ motion, we follow CHOIS and define
the middle finger in each hand in the SMPL-X body model as the anchor, resulting in only two
anchors for this benchmark.

C ADDITIONAL DNO LOSES

C.1 OBJECT-CENTRIC LOSSES

Goal Loss. We encourage the object to reach a set of target poses at selected keyframes by penalizing
both position and orientation errors. Concretely, we define

LGoal =
1

|T |
∑
t∈T

(
∥t̂t − tt∥2 +Drot

(
R̂t, Rt

))
Where, Drot measures the angular deviation between rotation matrices R1 and R2.

Static Loss. To prevent unintended object motion, we penalize changes in position across frames
where the object is not in contact with the human. We identify contiguous non-contact intervals
{T nc

s }Ss=1, and for each such segment s, we anchor the object pose to its value at the first frame,
tstarts . The loss is then computed as:

LStatic =
1∑S

s=1 |T nc
s |

S∑
s=1

∑
t∈T nc

s

(
∥tt − ttstarts

∥2 +Drot

(
Rt, Rtstarts

))
,
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where tt and Rt are the object’s translation and rotation at frame t, respectively, and Drot measures
the angular distance between two rotations. This encourages the object to remain static when not
actively manipulated.

C.2 HUMAN-CENTRIC LOSSES

Feet-floor Contact Loss. For the OMOMO experiment, following CHOIS, we add a loss term that
enforces accurate foot contact at the mesh level.

When reconstructing the human mesh with SMPL-X (Pavlakos et al., 2019a) using predicted root
positions, joint rotations, and subject-specific body parameters, the generated feet may occasionally
fail to touch the floor. To address this, we add a guidance term that encourages realistic feet-floor
contact.

Let Jl and Jr denote the positions of the left and right toe joints. At each frame, the supporting foot
is identified by comparing their z-coordinates. We further set a threshold height h = 0.02 meters,
derived from analyzing foot heights in the ground truth motion. The guidance term is then defined as:

LFeetFloorContact = |min(Jz
l ,J

z
r )− h|2. (1)

This measures the vertical deviation between the lower toe joint and the threshold height h.

D EVALUATION METRICS

For both benchmarks, GRAB and OMOMO, we evaluate our method along two dimensions: motion
realism and interaction accuracy.

D.1 GRAB EVALUATION

For the GRAB dataset (Taheri et al., 2020a) experiment, we follow IMoS Ghosh et al. (2023), and
compute realism metrics using embeddings from the final layer of an intent classifier. However,
the classifier used in IMoS is limited to body joint positions and cannot capture fine-grained grasp
dynamics. In contrast, our evaluation employs a more expressive classifier that takes as input
body joints, hand joints, and object trajectories, allowing for a more comprehensive assessment of
interaction quality.

FID. Fréchet inception distance measures the distance between the distributions of generated and
ground-truth motions in a learned embedding space. Lower FID values indicate that the synthetic
motion is closer in distribution to real motion data, capturing both realism and diversity.

Diversity. Evaluates how varied the generated motions are across different samples for the same input
condition (e.g., prompt or object). It is computed as the average pairwise distance between multiple
motion samples in the embedding space. A lower difference between ground truth and generated
diversity scores suggests that the generated motions effectively capture the observed variability of
human movement.

AVE. Measures the discrepancy between the variance of joint positions in generated motion and that
of ground-truth motion. Specifically, it computes the average L2 difference in per-joint positional
variance across time. A lower AVE suggests that the model accurately captures the temporal dynamics
and variability of natural human movement, avoiding overly rigid or overly jittery outputs.

IRA. Intent recognition accuracy quantifies how well the generated motions conveys the intended
interaction or action. It is computed as the classification accuracy of the intent classifier on generated
samples. High IRA indicates that the generated motions are semantically meaningful and align with
their intended action labels, providing a measure of goal consistency and plausibility.

Multimodality. Assesses the model’s capacity to produce distinct motions for the same conditioning
intent. Unlike diversity, which measures sample variation globally, multimodality focuses on con-
ditional variability by comparing multiple outputs conditioned on the same prompt. This metric is
crucial for evaluating whether the model can express different plausible interaction strategies.

Penetration. Quantifies physical implausibility by measuring the extent to which the human mesh
intersects with the object mesh. We compute the mean maximal penetration depth across frames
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Figure 8: A screenshot from the user study. Figure 9: Palm anchor set A used by CPHOI for
the GRAB (Taheri et al., 2020a) experiment.

Figure 10: Contact Pairs. CPHOI predicts precise, semantically meaningful contact points between
the hand and object. Each contact pair is visualized with matching colored spheres.

where interpenetration occurs and the object is above table height. Lower penetration values indicate
more physically valid interactions, particularly in grasping and manipulation scenarios where accurate
surface contact is essential.

Floating. Captures the failure of hand-object interaction where the hand remains unnaturally far from
the object surface. It is computed as the mean shortest distance between the body and object meshes,
averaged across all motions (excluding frames with penetration and frames where the object is at
table height). High floating values typically reflect unrealistic, disconnected grasping motion.

D.2 OMOMO EVALUATION

For the OMOMO dataset (Li et al., 2023) experiment, we follow the evaluation metrics defined by
CHOIS (Li et al., 2024a):
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Condition Matching Metric. Those metrics calculate the Euclidean distance between the predicted
and input object waypoints. It includes the start and end position errors (Ts, Te), and waypoint errors
(Txy) measured in centimeters (cm).

Human Motion Quality Metric. Those metrics encompasses the foot sliding score (FS), foot
height (Hfeet), Fréchet Inception Distance (FID) and R-precision (Rprec). FS is the weighted
average of accumulated translation in the xy plane, following prior work He et al. (2022), measured
in centimeters (cm). Hfeet assesses the height of the feet, also in centimeters. Rprec and FID are
computed following the text-to-motion task Guo et al. (2022a). Rprec (top-3) measures whether the
generated motion is consistent with the text. FID assesses the motion quality by computing the
discrepancy between the distributions of ground truth and generated motions.

Interaction Quality Metrics. Those metrics assess the accuracy of hand-object interactions,
encompassing both contacts and penetrations. For contact accuracy, it employs precision (Cprec),
recall (Crec), and F1 score (CF1

) metrics following prior work Li et al. (2023). Additionally, it
includes contact percentage (C%), determined by the proportion of frames where contact is detected.
To compute the penetration score (Phand), each vertex of the hand Vi is used to query the precomputed
object’s Signed Distance Field (SDF). This process yields a corresponding distance value di for each
vertex. The penetration score is then derived by computing the average of the negative distance values
(representing penetration), formalized as 1

n

∑n
i=1 |min(di, 0)|, measured in centimeters (cm).

We note that CHOIS additionally measured the distance of the generated motion from the correspond-
ing ground truth motion. Since HOIDiNi is a generative model, not aiming to reconstruct the ground
truth, we find this metric irrelevant for our scope and omit it.

E USER STUDY

We conducted a user study for the GRAB dataset (Taheri et al., 2020a) with 24 participants, evaluating,
in total, 12 side-by-side randomly selected samples of two models using the same inputs. We asked
the user to evaluate the grasp quality, prompt adherence, and overall quality. As shown in Figure 6,
users preferred the results generated by our framework. A representative screenshot from the study
interface is shown in Figure 8.

F LLM USAGE

In this paper, we used ChatGPT 4o/5 to revise our writing, code assisting, and to enhance the
GRAB (Taheri et al., 2020a) labels into text prompts.
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