

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 HOIDiNi: HUMAN-OBJECT INTERACTION THROUGH DIFFUSION NOISE OPTIMIZATION

Anonymous authors

Paper under double-blind review

ABSTRACT

We present HOIDiNi, a text-driven diffusion framework for synthesizing realistic and plausible human-object interaction (HOI). HOI generation is extremely challenging since it induces strict contact accuracies alongside a diverse motion manifold. While current literature trades off between realistic motions and accurate contacts, HOIDiNi optimizes directly in the noise space of a pretrained diffusion model using Diffusion Noise Optimization (DNO), achieving both. This is made feasible thanks to our observation that the problem can be separated into two phases: an object-centric phase, primarily making discrete choices of hand-object contact locations, and a human-centric phase that refines the full-body motion to realize this blueprint. This structured approach allows for precise hand-object contact without compromising motion naturalness. Quantitative, qualitative, and subjective evaluations on the GRAB and OMOMO datasets clearly indicate HOIDiNi outperforms prior works and baselines in contact accuracy, visual plausibility, and overall quality. Our results demonstrate the ability to generate complex, controllable interactions, including grasping, placing, and full-body coordination, driven solely by textual prompts. [Please watch the supplementary video.](#)

1 INTRODUCTION

Human-object interaction (HOI) lies at the core of many everyday tasks, such as frying an egg or drinking a cup of water, with crucial applications to any digital human-like agent. Even though it is ubiquitous, this central capability still eludes modern motion generation modeling techniques. This is because HOI modeling requires millimeters-level accuracy to avoid noticeable artifacts, but tackles a diverse motion space, rich with nuanced human behavior.

Indeed, when applying traditional generation techniques to the rather limited HOI data available, results often exhibit physical artifacts like inter-object penetration, floating, or implausible grasps, even when restricted to hand-only scenarios (Huang et al., 2025; Zhang et al., 2025a; Li et al., 2024a).

To facilitate desired accuracy while maintaining plausibility, most recent literature employs generation guidance (Peng et al., 2023; Diller & Dai, 2024; Zhang et al., 2025b) or post-generation optimization (Wu et al., 2024; Ghosh et al., 2023). While this can improve physical correctness, both of these approaches adhere to fine-grained contact requirements by pulling the motion off the human manifold, on the account of realism.

In this work, we present **Human-Object Interaction through Diffusion Noise optimization** (HOIDiNi), a text-driven diffusion framework that satisfies the tight constraints of HOI while remaining on the manifold of realistic human motion. We address this challenge using an optimization strategy that, by design, preserves the learned motion distribution: Diffusion Noise Optimization (DNO) (Karunratanakul et al., 2024), a test-time sampling method that traverses the noise space of a pretrained diffusion model to steer generation toward desired losses. Originally applied to control free-form motion synthesis, DNO proves to be a natural fit for HOI when carefully adapted to the structure and demands of the task.

We begin by training a diffusion model, CPHOI, to learn the joint distribution of full-body human motion and object trajectories, enabling coordinated interaction within a unified generative space. A key insight is that accurate HOI depends on identifying semantically meaningful contact pairs

Figure 1: HOIDiNi generates human-object interactions from text descriptions and object geometry, integrated here into a 3D scene from Jay-Artist (2012).

between the palm surface and the input object’s surface. Unlike prior methods that rely on heuristics, CPHOI dynamically predicts these contacts for each frame in addition to full-body, fingers, and object trajectories, allowing precise, frame-consistent interaction that adapts to object shape and motion, resulting in more stable and realistic behaviors.

As it turns out, using diffusion noise optimization over this joint discrete/continuous space of Contact-Pairs, Human, and Object motions is challenging, with many local discontinuities that destabilize convergence. We observe that the complexity of HOI optimization can be separated into two optimization phases. The first, Object-Centric phase considers the motion of the object and its contacts with the hands only, forming a reliable structural blueprint for the ensuing full-body motion. This outline then guides the second, Human-Centric phase, which completes the full-body motion, refining finger articulation for precise grasping, and generating natural body posture that semantically supports the object’s behavior and dynamics.

A central challenge in the first phase is determining which locations on the hands should make contact with the object and where. Typically in prior works Zhang et al. (2025b; 2024a), this is done using nearest-neighbor heuristics, but this approach is brittle, especially for small or thin objects, and highly sensitive to initialization. Instead, we explicitly predict contact pairs between the hand and object surfaces, and optimize them jointly with the object’s 6-DoF trajectory. The DNO objective enforces semantically meaningful placement while preventing interpenetration with supporting surfaces.

After this outline of object motion and contact locations is determined and fixed, the second phase then optimizes the full-body motion, including the fingers, conditioned on the object trajectory and contact pairs. In phase case, DNO helps satisfy these contacts without penetrating the object. Throughout, the DNO process keeps the samples close to the motion manifold, ensuring realism.

Quantitative evaluations on the GRAB (Taheri et al., 2020b) and OMOMO (Li et al., 2023) datasets demonstrate that HOIDiNi outperforms prior baselines in both interaction accuracy and motion realism, as measured by contact precision, physical validity, and proximity to the human motion manifold. Subjectively, a user study indicates dramatic preference to our resulting motions compared to competing literature and baselines. Qualitatively, we showcase a range of full-scene interactions, including object grasping and placement, all driven by textual instructions, trained on a single dataset. These results highlight HOIDiNi’s ability to synthesize complex, controllable, and visually plausible HOI behaviors.

2 RELATED WORK

Controlled Motion Synthesis. Current motion synthesis methods increasingly focus on controllability. TEMOS (Petrovich et al., 2022) and MotionCLIP (Tevet et al., 2022) addressed text-to-motion synthesis using a Transformer VAE (Vaswani et al., 2017; Kingma & Welling, 2013). T2M (Guo et al., 2022b), T2M-GPT (Zhang et al., 2023), and MoMask (Guo et al., 2024) adopt a VQ-VAE (Van Den Oord et al., 2017) to quantize motion and generate it sequentially in the latent space, conditioned

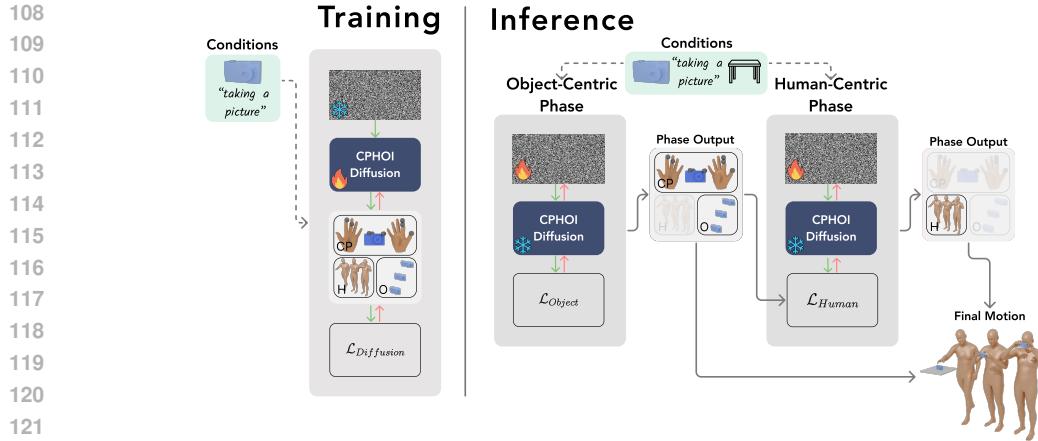


Figure 2: **System Overview.** HOIDiNi generates Human-object Interaction (HOI) motions according to a text prompt, a mesh describing the object, and the occupied volume in the scene, by optimizing the diffusion noise. The *Object-Centric Phase* generates the object motion and its contact points with the hands (*CP* and *O*), then the *Human-Centric Phase* follows and generates the full human motion(*H*): body and fingers, adhering to the constraints implied by the previous phase. Both phases use CPHOI, a pre-trained diffusion model that learned the human-object joint distribution. We apply Diffusion Noise Optimization (DNO) (Karunratanakul et al., 2024) to fulfill the two sets of loss functions ($\mathcal{L}_{\text{Object}}$ and $\mathcal{L}_{\text{Human}}$) without deviating from the learned distribution.

on text. MDM (Tevet et al., 2023) and MoFusion (Dabral et al., 2023) introduced the denoising diffusion framework (Ho et al., 2020b) to motion synthesis, demonstrating its effectiveness across multimodal tasks such as action-, text-, and music-to-motion (Tseng et al., 2023).

The diffusion paradigm enables diverse control mechanisms: PriorMDM (Shafir et al., 2024), Cond-MDI (Cohan et al., 2024), GMD (Karunratanakul et al., 2023), and OmniControl (Xie et al., 2023) combine temporal conditioning with Classifier-guidance (Dhariwal & Nichol, 2021) to achieve joint-level control. MoMo (Raab et al., 2024) demonstrated motion transfer through attention injection, while LoRA-MDM (Sawdayee et al., 2025) employed Low-Rank Adaptation (Hu et al., 2022) for motion stylization. CAMDM (Chen et al., 2024) and A-MDM (Shi et al., 2024) accelerated sampling by introducing autoregressive motion diffusion. CLoSD (Tevet et al., 2025) further integrated autoregressive diffusion into a physics-based simulation framework for object interaction.

Diffusion Noise Optimization (DNO) (Karunratanakul et al., 2024; Ben-Hamu et al., 2024) proposes applying spatial constraints by optimizing the initial diffusion noise, enabling precise free-form control. DartControl (Zhao et al., 2025) built on this idea by accelerating the process through autoregressive diffusion. We show that DNO can be extended to the millimetric accuracy required for object interaction, and introduce a two-phase DNO strategy tailored for object interactions.

Human-Object Interaction. Early HOI methods generate motions in stages: SAGA (Wu et al., 2022) first predicts a static target frame, then interpolates motion via a VAE decoder; GOAL (Taheri et al., 2022) adds optimization to align motion and object; IMoS (Ghosh et al., 2023) uses dual-stream autoregressive networks for arm and body motions followed by object alignment; TOHO (Li et al., 2024b) predicts the object’s final position, generates grasping poses, and fills the trajectory with an implicit representation. Diffusion-based methods have recently gained traction: OOD-HOI (Zhang et al., 2024b) uses a dual-branch reciprocal diffusion model with IMoS-style refinement; HOI-Diff (Peng et al., 2023), CHOIS (Li et al., 2024a), and DiffGrasp (Zhang et al., 2025b) apply classifier guidance, with HOI-Diff using affordances and CHOIS and DiffGrasp goal functions; OMOMO (Li et al., 2023) models hand-object paths first, then full-body motion; BimArt (Zhang et al., 2024a) conditions contact generation on object trajectories to guide body motion. Both methods reduce task complexity by generating only partial motion (hands or body), enabling more tractable modeling at the cost of full-scene coherence. Finally, CLoSD (Tevet et al., 2025) and Wu et al. (2024) apply physical trackers atop generated motion, improving grasp accuracy at the cost of realism.

Concurrent to this work, CoDa (Pi et al., 2025) applied Diffusion Noise Optimization with separate hand and body models, thus not learning the joint Hand–Body distribution.

162 **3 PRELIMINARIES**

164 **Denoising diffusion models.** Denoising diffusion probabilistic models (DDPMs) (Ho et al., 2020a)
 165 define a forward Markov process $\{x_t\}_{t=0}^T$ that progressively adds Gaussian noise to a data sample
 166 $x_0 \sim p_{\text{data}}(x_0)$: $q(x_t | x_{t-1}) = \mathcal{N}(\sqrt{\alpha_t}x_{t-1}, (1 - \alpha_t)I)$, with $\alpha_t \in (0, 1)$. As t increases, x_T ap-
 167 proaches $\mathcal{N}(0, I)$. The reverse process learns to denoise back to x_0 , optionally conditioned on c (e.g.,
 168 text or pose). Unlike the original DDPM that predicts noise ϵ_t , we follow MDM (Tevet et al., 2023)
 169 and predict \hat{x}_0 directly, yielding the training objective: $\mathcal{L}_{\text{simple}} = \mathbb{E}_{x_0 \sim p(x_0 | c), t \sim [1, T]} [\|x_0 - \hat{x}_0\|_2^2]$.

170 **Diffusion noise optimization (DNO).** A common approach to constrain a data sample $x \sim X$ is
 171 to directly optimize it via $x^* = \arg \min_x \mathcal{L}(x)$, where \mathcal{L} encodes task-specific objectives. In the
 172 context of HOI, such post-hoc optimization has been widely used (Ghosh et al., 2023; Zhang et al.,
 173 2024a; Paschalidis et al., 2024), but it lacks guarantees that x^* remains within the data distribution X ,
 174 often resulting in unrealistic outputs. A more robust strategy is to optimize in a latent space $z \sim Z$,
 175 assuming $x = D(z)$ for some decoder D . The optimization becomes:

$$177 \quad z^* = \arg \min_z \{\mathcal{L}(D(z)) + \mathcal{R}(z)\}$$

179 where $\mathcal{R}(z)$ encourages $z \sim Z$, thereby keeping the final output $x^* = D(z^*)$ on-manifold. This
 180 technique is commonly employed with VAEs (Holden et al., 2016; Pavlakos et al., 2019b) and
 181 GANs (Karras et al., 2020b; Patashnik et al., 2021) across both image and 3D domains.

182 DNO (Karunratanakul et al., 2024; Ben-Hamu et al., 2024) extends this principle to diffusion models,
 183 treating the latent variable as the initial noise $x_T \sim \mathcal{N}(0, I)$, and the decoder as the full sampling
 184 process of a pretrained diffusion model G , resolved using the ODE formulation of DDIM (Song et al.,
 185 2021). The optimization is then defined over x_T , with gradients propagated through all denoising
 186 steps:

$$187 \quad x_T^* = \arg \min_{x_T} \{\mathcal{L}(\text{ODE}(G, x_T)) + \mathcal{R}_{\text{decorr}}(x_T)\}$$

189 Where the final output will be $x^* = \text{ODE}(G, x_T^*)$. Here, $\mathcal{R}_{\text{decorr}}$ is a decorrelation regularizer (Karras
 190 et al., 2020a) that encourages x_T to remain within the Gaussian prior. HOIDiNi extends this
 191 formulation with a two-phase DNO strategy tailored for HOI, enabling precise contact control while
 192 preserving motion realism.

194 **4 METHOD**

196 An overview of HOIDiNi is illustrated in Figure 2. Our goal is to generate realistic, contact-rich
 197 human-object interactions (HOI) by guiding a diffusion model to satisfy task-specific constraints
 198 without drifting off the motion manifold.

200 We begin by defining a structured data representation that jointly encodes full-body human motion,
 201 object trajectories, and accurate surface-level contact points (4.1). Then, we turn to describe CPHOI,
 202 a diffusion model that captures the joint distribution of human and object motion along with dense
 203 contact predictions (4.2). Our model predicts contact correspondences directly, which proves essential
 204 for stable and semantically meaningful grasps.

205 At inference, we employ a two-phase Diffusion Noise Optimization (DNO) (Karunratanakul et al.,
 206 2024) strategy tailored to HOI (4.3). The first, object-centric, phase optimizes the object’s trajectory
 207 and contact pairs based on scene constraints such as placement and support. The second, human-
 208 centric, phase completes the full-body motion, including hand articulation, to fulfill the previously
 209 determined contact goals while maintaining realistic posture and avoiding collisions. This struc-
 210 ture allows us to satisfy complex physical constraints while remaining within the learned motion
 211 distribution.

212 **4.1 DATA REPRESENTATION**

214 Our diffusion model, CPHOI, generates triplets of the form (CP, H, O) , representing Contact Pairs,
 215 Human motion, and Object motion, respectively. We will now elaborate on each of these components.

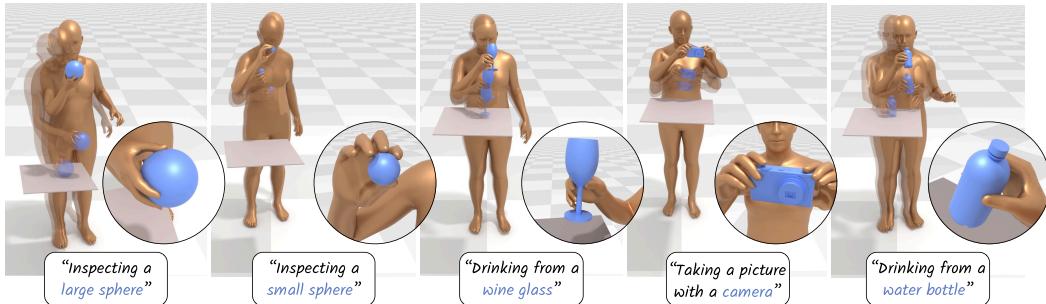


Figure 3: **Qualitative Results** of human-object interactions generated by our method across diverse prompts. For instance, “taking a picture with a camera” yields a semantically appropriate two-handed pose. Motions are both visually plausible and aligned with the prompts.

Contact Pairs Sequence. The Contact Pairs sequence is central to our method, generated during the first, object-centric, phase and serve as conditioning for the second phase. Unlike previous approaches, that snap the given or predicted object trajectory to the hands using simple heuristics, we adopt a learned approach to semantically predict these contacts. We define a discrete set of Anchor points \mathcal{A} on the fingers and palms, denoting potential contacts between the hands and the object (See Appendix). At each frame f , and for each anchor $a \in \mathcal{A}$, we represent and predict contacts using a binary variable b_a , indicating whether the anchor is in contact, and a corresponding position $p_a \in \mathbb{R}^3$, specifying the contact location on the object surface in its rest pose. This yields the **contact representation**: $F_{CP} = [p_1, \dots, p_{|\mathcal{A}|}, b_1, \dots, b_{|\mathcal{A}|}]$ of dimension $(3 + 1) \times |\mathcal{A}|$ per-frame in the sequence.

Human Motion Representation. We adopt a variant of the widely used HumanML3D (Guo et al., 2022a) representation to encode human motion. The per-frame human feature is defined as: $F_H = [r_z^H, \dot{r}_x^H, \dot{r}_y^H, \dot{\alpha}^H, \theta^H, j^H]$ where r_z^H is the vertical root height, $(\dot{r}_x^H, \dot{r}_y^H)$ denotes the planar root velocity, $\dot{\alpha}^H$ is the angular root velocity, θ^H contains the SMPL-X pose parameters, and j^H denotes the relative 3D joint positions.

The 52 relevant joints from the SMPL-X model are used, including both body and hand joint rotations (but not shape). Unlike the original representation, we directly employ the SMPL-X pose parameters θ^H , allowing us to extract the human mesh in a fully differentiable manner. This property is essential for enabling backpropagation during the diffusion noise optimization process.

Object Motion Representation. The per-frame object’s pose is, $F_O = [\theta^O, r^O, \dot{r}^O]$, where θ^O denotes the object’s global rotation represented in Cont6d format, r^O is the object’s global translation, and \dot{r}^O is its linear velocity. Together, these parameters define the object’s 6DoF trajectory.

Final representation. Combining the representations of our three data components, we end up with a feature representation for each frame with the form $\mathbf{F} = [F_{CP}, F_H, F_O]$ (Figure 4, bottom)

4.2 CPHOI DIFFUSION MODEL

Our model, CPHOI, is illustrated in Figure 4. To support DNO-based optimization, which repeatedly queries the generative model and is therefore computationally demanding, we require a fast and

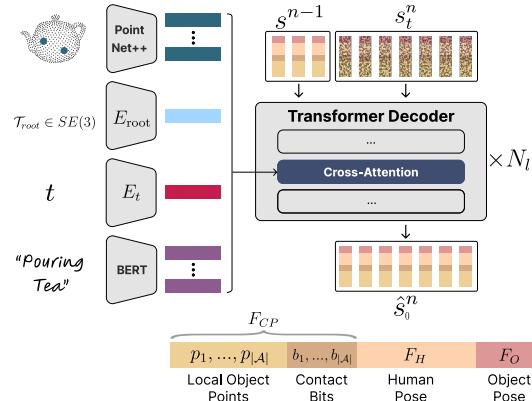


Figure 4: **CPHOI Diffusion Model.** CPHOI autoregressively predicts the next motion segment s^n from the previous one s^{n-1} . The figure illustrates a single diffusion step, where the model denoises s_t^n to predict \hat{s}_0^n . It jointly generates human and object motions, along with dynamic contact points, conditioned on the object’s geometry and a text description of the interaction.

efficient architecture. We design CPHOI as a lightweight, text-driven, autoregressive diffusion model that incorporates geometric understanding of the object and interaction semantics. Autoregressive diffusion, as shown in prior work (Shi et al., 2024; Chen et al., 2024), is significantly faster than full-sequence denoising. It processes shorter segments per step and requires fewer diffusion iterations. This efficiency is crucial for accelerating DNO (Zhao et al., 2025). Our model is inspired by the autoregressive design of DiP (Tevet et al., 2025) which also enables high-level control descriptions as those needed for our task.

CPHOI generates the next motion segment $s^n = [F_i]_{i=1}^L$ of L frames, given the previous segment, s^{n-1} , the object geometry in point-cloud format, and a text prompt that describes the interaction. For each denoising step $t \in [0, T]$, the inputs to the transformer decoder backbone are the frames of the previous segment s^{n-1} , followed by the current segment to be denoised, s_t^n . The model predicts the clean version of the segment, \hat{s}_0^n .

The object’s geometry, the text condition, and the timestep t are encoded into a sequence of latent embeddings and injected through the cross-attention of each transformer layer, at each denoising step. To encode the *geometry of the interacted object*, we use a shape encoder with a PointNet++ (Qi et al., 2017) architecture, which is trained simultaneously with the diffusion model. We uniformly sample the mesh using V points, and encode each one into a latent descriptor of length C ($V = 512$ and $C = 512$ in all our experiments). The *text prompt* is encoded into a sequence of embeddings using a pre-trained and fixed DistilBERT (Sanh, 2019) model. The *diffusion timestep* t is embedded using a standard positional embedding denoted E_t .

Since object location is represented in global coordinates, whereas the human is relative to the previous frame, we inform the model regarding the global position of the body. We hence encode the global root transformation $T_{root} \in SE(3)$ at the first frame of the autoregressive sequence.

Finally, all tokens belonging to the same signal type are augmented with a learned type-specific embedding, allowing the model to distinguish between the different sources of information during cross-attention.

4.3 TWO-PHASE GENERATION OPTIMIZATION

Accurate body-object contacts are a key component of plausible HOI motion, but represent a discontinuous space, with discrete and unstable decision making. Thus we found the straightforward optimization, using a single step challenging in practice (see Figure 7). To address this, we separate the process into two phases, each solving a different part of the problem variables:

Phase 1: Object-Centric. In this phase, we optimize the object related part only to outline the motion, based on the given prompt, object geometry, and scene constraints (e.g., table surface). Although the full output of the model is the triplet (CP, H, O) —representing the contact-pair sequence, human motion, and object motion respectively—only (CP) and (O) are considered in this stage. We found weight sharing between phases to improve performance. The objective \mathcal{L}_{Object} for this phase is defined to avoid object-scene penetrations and optionally to guide the object toward a set of target poses in specified frames (as sometimes used in the literature (Li et al., 2024a)):

$$\mathcal{L}_{Object} = \lambda_{POS} \mathcal{L}_{POS} + \lambda_{Goal} \mathcal{L}_{Goal} + \lambda_{Static} \mathcal{L}_{Static}$$

This objective comprises a penetration term between the object and the scene \mathcal{L}_{POS} , a goal term encouraging the object to achieve specified poses in specified times \mathcal{L}_{Goal} , and the static term, \mathcal{L}_{Static} , that encourage the object to stay static in frames without predicted contact. The last two are detailed in Appendix C.

Penetration Loss. To measure interpenetration between two watertight meshes, denoted M_a and M_b , we define a bidirectional penetration loss that penalizes vertices of one mesh that are located inside the volume enclosed by the other. Each mesh M consists of a set of vertices \mathcal{V} and a set of polygons \mathcal{F} . Each polygon $f \in \mathcal{F}$ is associated with an outward-facing normal vector \mathbf{n}_f .

For each vertex $\mathbf{v} \in \mathcal{V}_a$, we identify whether it is inside the other mesh simply through randomly casting a single ray, and checking the normal direction of the intersected triangle if it exists. We denote the vertices found as inside $\mathcal{V}_a^{\text{in}} \subset \mathcal{V}_a$.

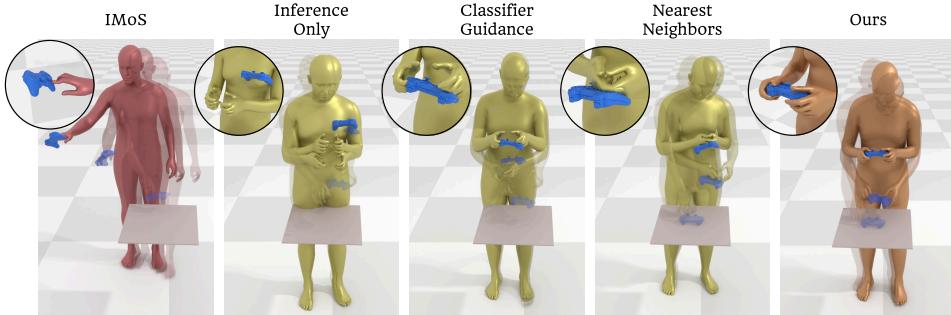


Figure 5: **Comparisons.** HOIDiNi generates semantically correct and accurate interaction with the gaming controller. From left to right: IMoS (Ghosh et al., 2023) optimization yields inferior contacts and unrealistic motion; CPHOI *inference only* generates decent poses but fails to satisfy contacts; Our losses with *Classifier Guidance* brings the object insufficiently closer. Replacing our contact-point prediction with the popular *nearest-neighbor* heuristic fails to choose correct contacts, in contrast to our plausible and human-like result.

For every vertex $v \in \mathcal{V}_a^{\text{in}}$, we project it on M_b , and denote the projection distance as $\text{NN}(v; M_b)$. We then define the penetration loss from M_a into M_b as:

$$\mathcal{L}_{\text{pen}}(M_a \rightarrow M_b) = \frac{1}{|\mathcal{V}_a|} \sum_{v \in \mathcal{V}_a^{\text{in}}} \|v - \text{NN}(v; M_b)\|^2$$

Hence, the full symmetric loss is, $\mathcal{L}_{\text{Penetration}} = \mathcal{L}_{\text{pen}}(M_a \rightarrow M_b) + \mathcal{L}_{\text{pen}}(M_b \rightarrow M_a)$.

Phase 2: Human-Centric Phase. This phase refines the human motion to conform to the fixed object motion and contact sequence (CP, O) produced in Phase 1. With the contact points fixed, this optimization over the human manifold is much more stable. The objective of this diffusion-based optimization is defined as:

$$\mathcal{L}_{\text{Human}} = \lambda_C \mathcal{L}_C + \mathcal{L}_{P_H} + \lambda_{\text{Foot}} \mathcal{L}_{\text{Foot}} + \lambda_{\text{Jitter}} \mathcal{L}_{\text{Jitter}}$$

where \mathcal{L}_C denotes the contact loss, promoting alignment of the human body with predefined contact points on the object. The human penetration loss term \mathcal{L}_{P_H} combines three components:

$$\mathcal{L}_{P_H} = \lambda_{P_{HO}} \mathcal{L}_{P_{HO}} + \lambda_{P_{HS}} \mathcal{L}_{P_{HS}} + \lambda_{P_{HH}} \mathcal{L}_{P_{HH}},$$

representing human-object, human-scene, and human-human penetration losses, respectively. Specifically, $\mathcal{L}_{P_{HO}}$ penalizes interpenetration between the human and the object, $\mathcal{L}_{P_{HS}}$ prevents collisions with the static scene, and $\mathcal{L}_{P_{HH}}$ reduces self-intersections within the human mesh, particularly between the hands. The contact loss \mathcal{L}_C uses L_2 distance to push hand vertex locations to targets on the moving object, as dictated by CP and O from the previous phase. The penetration loss terms are similar to the penetration term $\mathcal{L}_{P_{OS}}$ defined in phase 1. Together, these losses represent physical plausibility, encouraging surface contacts while avoiding penetration, and the optimization scheme ensures realism and human likeness.

5 EXPERIMENTS

5.1 EVALUATION SETTING

Implementation Details. Our code and checkpoints will be made available; Please watch the supplementary video. CPHOI is implemented as a Transformer decoder architecture with 8 layers and a hidden dimension of 512. Our point-wise object embedding network is a PointNet++ (Qi et al., 2017) fed with 512 randomly sampled vertices from the conditioned object. We condition the motion on a prefix of 15 frames and generate 100 frames. The model is trained with DDPM (Ho et al., 2020b); DDIM (Song et al., 2020) is used at inference. Further details are at Appendix A.

Experiment	FID ↓	Diversity →	AVE ↓	IRA ↑	Multimodality →	Penetration (mm) ↓	Floating (mm) ↓
GT	–	0.995	–	74.6%	0.194	5.0 ± 1.8	2.6 ± 1.8
IMoS	0.205	1.026	0.121	46.5%	0.204	3.0 ± 7.7	52.2 ± 53.8
HOIDiNi (Ours)	0.159	0.996	0.121	62.3%	0.245	6.8 ± 2.9	2.3 ± 4.7
Inference Only	0.144	1.054	0.145	68.4%	0.214	16.1 ± 20.9	151.4 ± 108.6
Single-Phase	0.221	1.026	0.140	43.0%	0.241	7.8 ± 3.6	20.1 ± 21.7
Phase1 Inference, Phase2 DNO	0.148	0.923	0.172	65.8%	0.217	6.8 ± 2.2	2.0 ± 4.1
Classifier Guidance	0.149	1.013	0.149	68.4%	0.215	14.4 ± 20.5	166.8 ± 143.2
Higher Penetration Coef. λ_{PHO}	0.156	<u>1.015</u>	0.144	57.0%	0.225	5.6 ± 2.9	5.9 ± 7.2
NN instead of Contact Pairs	0.162	1.040	<u>0.153</u>	57.9%	0.245	7.7 ± 3.8	4.3 ± 5.0
No Jitter Loss	0.160	1.026	0.143	60.5%	0.220	7.1 ± 2.7	1.9 ± 4.0

Table 1: **Quantitative Results and Ablation Study.** Comparison on the GRAB dataset (Taheri et al., 2020b) using IMoS-defined (Ghosh et al., 2023) metrics for motion realism, along with average floating and penetration errors (in millimeters). → indicates that better is closer to ground-truth performance.

Data. We evaluate our approach using the GRAB (Taheri et al., 2020a) and OMOMO (Li et al., 2023) datasets. **GRAB** includes SMPL-X (Pavlakos et al., 2019a) human motion parameters, object 6DoF trajectories, and per-vertex contact force data for both human and object meshes. The dataset comprises 1,334 motion samples from 10 different subjects. Since different human subjects in the dataset exhibit varying shape parameters β , and considering the dataset’s relatively small scale compared to datasets like HumanML3D, we re-target all motions to a standardized, neutral SMPL-X model with shape parameters fixed to $\beta = 0$. Additionally, we used ChatGPT 4o to enhance its discrete action annotations into text prompts. The **OMOMO** dataset includes 27,952 motion sequences, interacting with 13 objects. It **does not include finger motions** and hence doesn’t enable precise interactions. We use it strictly for comparisons with the recent literature (Li et al., 2024a). Following it, we use the data’s subset, called FullBodyManipulation.

Baselines We compare our approach against IMoS (Ghosh et al., 2023), CHOIS (Li et al., 2024a), and several internal baselines. One baseline applies our model at inference time without any optimization. Another replaces the diffusion noise optimization with classifier guidance. The third substitutes the predicted contact pairs with nearest-neighbor-based pairs. To enable a fair comparison with classifier guidance, we adopt DDPM hyper-sampling and increase the number of denoising steps from 8 to 500, consistent with Peng et al. (Peng et al., 2023). We report results using the optimal guidance scale. For the nearest-neighbor baseline, contact assignment is updated at each optimization step based on the current nearest neighbors. Additionally, we explore increasing the penetration loss weight by setting $\lambda_{PHO} = 0.9$.

Metrics. We evaluated our method on motion realism and interaction accuracy. For GRAB, we followed IMoS (Ghosh et al., 2023) metrics, computing *FID*, *Diversity*, *Multimodality*, *Intent Recognition Accuracy* (*IRA*), and *Average Variance Error* (*AVE*) using a classifier trained on full-body joint positions, hand joints, and object trajectories (Appendix D). Grasp accuracy was measured via two failure modes: *Penetration* (mean depth in mm, frames with penetration only) and *Floating* (frames without penetration). For OMOMO, we used the CHOIS benchmark, covering condition adherence, motion fidelity, and interaction accuracy (Appendix D).

5.2 RESULTS

Table 1 compares our method to IMoS. HOIDiNi achieves better FID and IRA, indicating improved realism, and significantly reduces floating while maintaining comparable penetration levels. Table 2

Figure 6: **User Study.** We compare to two baselines, measuring on grasp quality, prompt adherence, and overall quality over 12 random samples, each evaluated by at least 10 users. The dashed line marks 50% ratio.

Method	Condition Matching			Human Motion				Interaction				
	$T_s \downarrow$	$T_e \downarrow$	$T_{xy} \downarrow$	$H_{feet} \downarrow$	$FS \downarrow$	$R_{prec} \uparrow$	$FID \downarrow$	$C_{prec} \uparrow$	$C_{rec} \uparrow$	$C_{F_1} \uparrow$	$C_{\%}$	$P_{hand} \downarrow$
CHOIS	1.90	6.90	2.81	4.48	0.34	0.43	0.97	0.80	0.64	0.67	0.56	0.61
HOIDiNi (ours)	0.00	0.00	0.00	3.17	0.30	0.42	1.24	0.78	0.8	0.77	0.76	0.67

Table 2: Comparison to CHOIS (Li et al., 2024a) over the OMOMO (Li et al., 2023) dataset. Measuring condition matching, human motion, and interaction via a set of metrics defined by CHOIS.

compare our model to CHOIS using the metrics defined by them and shows that HOIDiNi improves the contact accuracy while maintaining comparable motion fidelity. The *condition matching* metrics demonstrate the preciseness of the DNO mechanism, which consistently delivers zero error.

User Study. We conducted a user study for the GRAB dataset with 24 participants, evaluating 12 side-by-side randomly selected samples of two models using the same inputs. As shown in Figure 6, users preferred the results generated by our framework. A representative screenshot from the study interface is shown in Figure 8.

Ablation Study. Table 1 summarizes our ablations. Inference-only results stay on-manifold but suffer from severe penetration and floating. Omitting object-centric optimization shows that most constraints are resolved in the human-centric phase. Using nearest-neighbor contacts instead of predicted ones significantly harms FID and IRA, indicating reduced realism.

The two-phase design is investigated in Figure 7, comparing to the single-phase setup, where contact predictions are optimized jointly with human motion. The single-phase approach results in frequent updates to contact assignments throughout the process. These updates shift the contact loss objective over time, making the optimization less stable and harder to converge. In contrast, our two-phase approach separates contact prediction and motion optimization: contact pairs are predicted and fixed in the first (object-centric) phase, allowing the second (human-centric) phase to optimize a stable and well-defined contact loss objective. This decoupling enables more consistent optimization behavior and improves convergence, as reflected in Table 1.

Qualitative Results. The supplementary video showcases a variety of motions generated by our model, along with visual comparisons to baseline methods. Figure 10 shows contact pairs generated by HOIDiNi. Figure 5 presents an interaction generated by HOIDiNi for the prompt “The person is playing with the gaming controller.” The IMoS baseline demonstrates a common failure where contacts are lacking semantic meaning and visually plausibility due to the fixed-contact snapping approach. Similarly, only replacing our predicted contact pairs with nearest-neighbor assignments also results in incorrect contacts and implausible motion. We further witness that applying our losses through classifier guidance improves hand-object proximity compared to inference-only, but does not produce realistic interactions. Figure 3 presents additional examples generated by our method. These results further highlight the semantic correctness and visually plausibility of the synthesized motions across a diverse set of prompts and object types.

6 CONCLUSIONS

We introduced HOIDiNi, an approach for high-precision Human–object Interaction that provides motion fidelity through Diffusion Noise Optimization. Our results demonstrate accurate contact handling and natural motion across complex interaction scenarios. Beyond HOI, we view HOIDiNi as a platform for cases where high-precision is required and regular diffusion inference fails. We encourage the community to use HOIDiNi to advance controllable, high-fidelity motion generation.

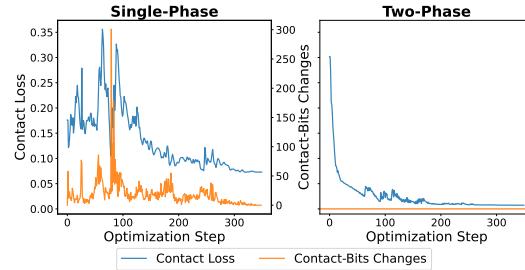


Figure 7: **Single vs. Two-Phase Optimization.** Comparison of contact loss and changes in predicted contact bits during DNO optimization (shared y-axis). **(Left):** In the single-phase setup, contact predictions evolve alongside motion, causing unstable objectives and hindering convergence. **(Right):** In our two-phase approach, contact pairs are fixed after the object-centric phase, resulting in stable contact loss during the human-centric phase presented here. In this example, the two-phase setting converges to a 10x lower value. *Contact-Bits Changes* denote the number of bit flips in the predicted contact matrix between successive steps.

486 REFERENCES
487488 Heli Ben-Hamu, Omri Puny, Itai Gat, Brian Karrer, Uriel Singer, and Yaron Lipman. D-flow:
489 Differentiating through flows for controlled generation. *arXiv preprint arXiv:2402.14017*, 2024.490 Rui Chen, Mingyi Shi, Shaoli Huang, Ping Tan, Taku Komura, and Xuelin Chen. Taming dif-
491 fusion probabilistic models for character control. In *ACM SIGGRAPH 2024 Conference Pa-*
492 *pers, SIGGRAPH '24*, New York, NY, USA, 2024. Association for Computing Machinery. doi:
493 10.1145/3641519.3657440. URL <https://doi.org/10.1145/3641519.3657440>.494 Setareh Cohan, Guy Tevet, Daniele Reda, Xue Bin Peng, and Michiel van de Panne. Flexible motion
495 in-betweening with diffusion models, 2024.496 Rishabh Dabral, Muhammad Hamza Mughal, Vladislav Golyanik, and Christian Theobalt. Mofusion:
497 A framework for denoising-diffusion-based motion synthesis. In *Computer Vision and Pattern*
498 *Recognition (CVPR)*, Washington, DC, USA, 2023. IEEE Computer Society.500 Prafulla Dhariwal and Alexander Quinn Nichol. Diffusion models beat gans on image synthesis.
501 *Advances in Neural Information Processing Systems*, 34:8780–8794, 2021.502 Christian Diller and Angela Dai. Cg-hoi: Contact-guided 3d human-object interaction generation.
503 In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pp.
504 19888–19901, 2024.505 Anindita Ghosh, Rishabh Dabral, Vladislav Golyanik, Christian Theobalt, and Philipp Slusallek.
506 Imos: Intent-driven full-body motion synthesis for human-object interactions. In *Computer*
507 *Graphics Forum*, volume 42, pp. 1–12. Wiley Online Library, 2023.508 Chuan Guo, Shihao Zou, Xinxin Zuo, Sen Wang, Wei Ji, Xingyu Li, and Li Cheng. Generating
509 diverse and natural 3d human motions from text. In *Proceedings of the IEEE/CVF Conference on*
510 *Computer Vision and Pattern Recognition (CVPR)*, pp. 5152–5161, June 2022a.511 Chuan Guo, Shihao Zou, Xinxin Zuo, Sen Wang, Wei Ji, Xingyu Li, and Li Cheng. Generating
512 diverse and natural 3d human motions from text. In *Proceedings of the IEEE/CVF Conference on*
513 *Computer Vision and Pattern Recognition*, pp. 5152–5161, Washington, DC, USA, 2022b. IEEE
514 Computer Society.515 Chuan Guo, Yuxuan Mu, Muhammad Gohar Javed, Sen Wang, and Li Cheng. Momask: Generative
516 masked modeling of 3d human motions. In *Proceedings of the IEEE/CVF Conference on Computer*
517 *Vision and Pattern Recognition*, pp. 1900–1910, 2024.518 Chengan He, Jun Saito, James Zachary, Holly Rushmeier, and Yi Zhou. Nemf: Neural motion fields
519 for kinematic animation. In *NeurIPS*, 2022.520 Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising Diffusion Probabilistic Models. *Advances in*
521 *Neural Information Processing Systems*, 33:6840–6851, 2020a.522 Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. *Advances in*
523 *Neural Information Processing Systems*, 33:6840–6851, 2020b.524 Daniel Holden, Jun Saito, and Taku Komura. A deep learning framework for character motion
525 synthesis and editing. *ACM Transactions on Graphics (TOG)*, 35(4):1–11, 2016.526 Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
527 Weizhu Chen, et al. Lora: Low-rank adaptation of large language models. *ICLR*, 1(2):3, 2022.528 Mingzhen Huang, Fu-Jen Chu, Bugra Tekin, Kevin J Liang, Haoyu Ma, Weiyao Wang, Xingyu Chen,
529 Pierre Gleize, Hongfei Xue, Siwei Lyu, Kris Kitani, Matt Feiszli, and Hao Tang. Hoigpt: Learning
530 long sequence hand-object interaction with language models. In *IEEE Conference on Computer*
531 *Vision and Pattern Recognition (CVPR)*, Nashville, USA, 2025.532 Jay-Artist. Blend Swap — Country-Kitchen Cycles — blendswap.com. <https://blendswap.com/blend/5156>, 2012. [Accessed 10-06-2025].

540 Tero Karras, Samuli Laine, Miika Aittala, Janne Hellsten, Jaakko Lehtinen, and Timo Aila. Analyzing
 541 and improving the image quality of StyleGAN. In *Proc. CVPR*, 2020a.
 542

543 Tero Karras, Samuli Laine, Miika Aittala, Janne Hellsten, Jaakko Lehtinen, and Timo Aila. Analyzing
 544 and improving the image quality of stylegan. In *Proceedings of the IEEE/CVF conference on*
 545 *computer vision and pattern recognition*, pp. 8110–8119, 2020b.

546 Korrawe Karunratanakul, Konpat Preechakul, Supasorn Suwajanakorn, and Siyu Tang. Gmd: Con-
 547 trollable human motion synthesis via guided diffusion models. *arXiv preprint arXiv:2305.12577*,
 548 2023.

549 Korrawe Karunratanakul, Konpat Preechakul, Emre Aksan, Thabo Beeler, Supasorn Suwajanakorn,
 550 and Siyu Tang. Optimizing diffusion noise can serve as universal motion priors. In *Proceedings of*
 551 *the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pp. 1334–1345, 2024.

552 Diederik P Kingma. Adam: A method for stochastic optimization. *arXiv preprint arXiv:1412.6980*,
 553 2014.

554 Diederik P Kingma and Max Welling. Auto-encoding variational bayes. *arXiv preprint*
 555 *arXiv:1312.6114*, 2013.

556 Jiaman Li, Jiajun Wu, and C Karen Liu. Object motion guided human motion synthesis. *ACM*
 557 *Transactions on Graphics (TOG)*, 42(6):1–11, 2023.

558 Jiaman Li, Alexander Clegg, Roozbeh Mottaghi, Jiajun Wu, Xavier Puig, and C Karen Liu. Control-
 559 lable human-object interaction synthesis. In *European Conference on Computer Vision*, pp. 54–72.
 560 Springer, 2024a.

561 Quanzhou Li, Jingbo Wang, Chen Change Loy, and Bo Dai. Task-oriented human-object interactions
 562 generation with implicit neural representations. In *Proceedings of the IEEE/CVF Winter Conference*
 563 *on Applications of Computer Vision*, pp. 3035–3044, 2024b.

564 Georgios Paschalidis, Romana Wilschut, Dimitrije Antić, Omid Taheri, and Dimitrios Tzionas. 3d
 565 whole-body grasp synthesis with directional controllability. *arXiv preprint arXiv:2408.16770*,
 566 2024.

567 Or Patashnik, Zongze Wu, Eli Shechtman, Daniel Cohen-Or, and Dani Lischinski. Styleclip: Text-
 568 driven manipulation of stylegan imagery. In *Proceedings of the IEEE/CVF international conference*
 569 *on computer vision*, pp. 2085–2094, 2021.

570 Georgios Pavlakos, Vasileios Choutas, Nima Ghorbani, Timo Bolkart, Ahmed A. A. Osman, Dimitrios
 571 Tzionas, and Michael J. Black. Expressive body capture: 3D hands, face, and body from a single
 572 image. In *Proceedings IEEE Conf. on Computer Vision and Pattern Recognition (CVPR)*, pp.
 573 10975–10985, Washington, DC, USA, 2019a. IEEE Computer Society.

574 Georgios Pavlakos, Vasileios Choutas, Nima Ghorbani, Timo Bolkart, Ahmed AA Osman, Dimitrios
 575 Tzionas, and Michael J Black. Expressive body capture: 3d hands, face, and body from a single
 576 image. In *Proceedings of the IEEE/CVF conference on computer vision and pattern recognition*,
 577 pp. 10975–10985, 2019b.

578 Xiaogang Peng, Yiming Xie, Zizhao Wu, Varun Jampani, Deqing Sun, and Huaizu Jiang. Hoi-diff:
 579 Text-driven synthesis of 3d human-object interactions using diffusion models. *arXiv preprint*
 580 *arXiv:2312.06553*, 2023.

581 Mathis Petrovich, Michael J. Black, and Gü̈l Varol. TEMOS: Generating diverse human motions
 582 from textual descriptions. In *European Conference on Computer Vision (ECCV)*, 2022.

583 Huaijin Pi, Zhi Cen, Zhiyang Dou, and Taku Komura. Coda: Coordinated diffusion noise optimization
 584 for whole-body manipulation of articulated objects. *arXiv preprint arXiv:2505.21437*, 2025.

585 Charles Ruizhongtai Qi, Li Yi, Hao Su, and Leonidas J Guibas. Pointnet++: Deep hierarchical feature
 586 learning on point sets in a metric space. *Advances in neural information processing systems*, 30,
 587 2017.

594 Sigal Raab, Inbar Gat, Nathan Sala, Guy Tevet, Rotem Shalev-Arkushin, Ohad Fried, Amit H
595 Bermano, and Daniel Cohen-Or. Monkey see, monkey do: Harnessing self-attention in motion
596 diffusion for zero-shot motion transfer. *arXiv preprint arXiv:2406.06508*, 2024.

597

598 Javier Romero, Dimitrios Tzionas, and Michael J. Black. Embodied hands: Modeling and capturing
599 hands and bodies together. *ACM Transactions on Graphics, (Proc. SIGGRAPH Asia)*, 36(6),
600 November 2017a.

601 Javier Romero, Dimitrios Tzionas, and Michael J Black. Embodied hands: modeling and capturing
602 hands and bodies together. *ACM Transactions on Graphics (TOG)*, 36(6):1–17, 2017b.

603

604 V Sanh. Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. *arXiv preprint
605 arXiv:1910.01108*, 2019.

606 Haim Sawdayee, Chuan Guo, Guy Tevet, Bing Zhou, Jian Wang, and Amit H Bermano. Dance like
607 a chicken: Low-rank stylization for human motion diffusion. *arXiv preprint arXiv:2503.19557*,
608 2025.

609

610 Yoni Shafir, Guy Tevet, Roy Kapon, and Amit Haim Bermano. Human motion diffusion as a
611 generative prior. In *The Twelfth International Conference on Learning Representations*, 2024.
612 URL <https://openreview.net/forum?id=dTpbEdN9kr>.

613 Yi Shi, Jingbo Wang, Xuekun Jiang, Bingkun Lin, Bo Dai, and Xue Bin Peng. Interactive character
614 control with auto-regressive motion diffusion models. *ACM Transactions on Graphics (TOG)*, 43
615 (4):1–14, 2024.

616

617 Jiaming Song, Chenlin Meng, and Stefano Ermon. Denoising diffusion implicit models. In *International
618 Conference on Learning Representations*, OpenReview.net, 2020. OpenReview.net.

619

620 Jiaming Song, Chenlin Meng, and Stefano Ermon. Denoising diffusion implicit models. In *International
621 Conference on Learning Representations*, 2021. URL <https://openreview.net/forum?id=St1giarCHLP>.

622

623 Omid Taheri, Nima Ghorbani, Michael J. Black, and Dimitrios Tzionas. GRAB: A dataset of whole-
624 body human grasping of objects. In *European Conference on Computer Vision (ECCV)*, 2020a.
625 URL <https://grab.is.tue.mpg.de>.

626

627 Omid Taheri, Nima Ghorbani, Michael J Black, and Dimitrios Tzionas. Grab: A dataset of whole-
628 body human grasping of objects. In *Computer Vision–ECCV 2020: 16th European Conference,
629 Glasgow, UK, August 23–28, 2020, Proceedings, Part IV 16*, pp. 581–600. Springer, 2020b.

630

631 Omid Taheri, Vasileios Choutas, Michael J Black, and Dimitrios Tzionas. Goal: Generating 4d
632 whole-body motion for hand-object grasping. In *Proceedings of the IEEE/CVF Conference on
633 Computer Vision and Pattern Recognition*, pp. 13263–13273, 2022.

634

635 Guy Tevet, Brian Gordon, Amir Hertz, Amit H Bermano, and Daniel Cohen-Or. Motionclip:
636 Exposing human motion generation to clip space. In *Computer Vision–ECCV 2022: 17th Euro-
637 pean Conference, Tel Aviv, Israel, October 23–27, 2022, Proceedings, Part XXII*, pp. 358–374,
638 Berlin/Heidelberg, Germany, 2022. Springer, Springer International Publishing.

639

640 Guy Tevet, Sigal Raab, Brian Gordon, Yoni Shafir, Daniel Cohen-or, and Amit Haim Bermano.
641 Human motion diffusion model. In *The Eleventh International Conference on Learning Represen-
642 tations*, 2023. URL <https://openreview.net/forum?id=SJ1kSy02jwu>.

643

644 Guy Tevet, Sigal Raab, Setareh Cohan, Daniele Reda, Zhengyi Luo, Xue Bin Peng, Amit Haim
645 Bermano, and Michiel van de Panne. CLoSD: Closing the loop between simulation and diffu-
646 sion for multi-task character control. In *The Thirteenth International Conference on Learning
647 Representations*, 2025. URL <https://openreview.net/forum?id=pZISppZSTv>.

648

649 Jonathan Tseng, Rodrigo Castellon, and Karen Liu. Edge: Editable dance generation from music.
650 In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pp.
651 448–458, 2023.

648 Aaron Van Den Oord, Oriol Vinyals, et al. Neural discrete representation learning. *Advances in*
 649 *neural information processing systems*, 30, 2017.

650

651 Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
 652 Kaiser, and Illia Polosukhin. Attention is all you need. *Advances in neural information processing*
 653 *systems*, 30, 2017.

654

655 Yan Wu, Jiahao Wang, Yan Zhang, Siwei Zhang, Otmar Hilliges, Fisher Yu, and Siyu Tang. Saga:
 656 Stochastic whole-body grasping with contact. In *European Conference on Computer Vision*, pp.
 657 257–274. Springer, 2022.

658

659 Zhen Wu, Jiaman Li, Pei Xu, and C Karen Liu. Human-object interaction from human-level
 660 instructions. *arXiv preprint arXiv:2406.17840*, 2024.

661

662 Yiming Xie, Varun Jampani, Lei Zhong, Deqing Sun, and Huaizu Jiang. Omnicontrol: Control
 663 any joint at any time for human motion generation. In *The Twelfth International Conference on*
 664 *Learning Representations*, OpenReview.net, 2023. OpenReview.net.

665

666 Jianrong Zhang, Yangsong Zhang, Xiaodong Cun, Shaoli Huang, Yong Zhang, Hongwei Zhao,
 667 Hongtao Lu, and Xi Shen. T2m-gpt: Generating human motion from textual descriptions with
 668 discrete representations. In *Proceedings of the IEEE/CVF Conference on Computer Vision and*
 669 *Pattern Recognition (CVPR)*, Washington, DC, USA, 2023. IEEE Computer Society.

670

671 Wanyue Zhang, Rishabh Dabral, Vladislav Golyanik, Vasileios Choutas, Eduardo Alvarado, Thabo
 672 Beeler, Marc Habermann, and Christian Theobalt. Bimart: A unified approach for the synthesis of
 673 3d bimanual interaction with articulated objects. *arXiv preprint arXiv:2412.05066*, 2, 2024a.

674

675 Wanyue Zhang, Rishabh Dabral, Vladislav Golyanik, Vasileios Choutas, Eduardo Alvarado, Thabo
 676 Beeler, Marc Habermann, and Christian Theobalt. Bimart: A unified approach for the synthesis of
 677 3d bimanual interaction with articulated objects. *Proceedings of the IEEE/CVF Conference on*
 678 *Computer Vision and Pattern Recognition (CVPR)*, 2025a.

679

680 Yixuan Zhang, Hui Yang, Chuachen Luo, Junran Peng, Yuxi Wang, and Zhaoxiang Zhang. Ood-hoi:
 681 Text-driven 3d whole-body human-object interactions generation beyond training domains. *arXiv*
 682 *preprint arXiv:2411.18660*, 2024b.

683

684 Yonghao Zhang, Qiang He, Yanguang Wan, Yinda Zhang, Xiaoming Deng, Cuixia Ma, and Hongan
 685 Wang. Diffgrasp: Whole-body grasping synthesis guided by object motion using a diffusion model.
 686 In *Proceedings of the AAAI Conference on Artificial Intelligence*, volume 39, pp. 10320–10328,
 687 2025b.

688

689 Kaifeng Zhao, Gen Li, and Siyu Tang. DartControl: A diffusion-based autoregressive motion model
 690 for real-time text-driven motion control. In *The Thirteenth International Conference on Learning*
 691 *Representations (ICLR)*, 2025.

692

693

694 **APPENDIX**

695

696 **A IMPLEMENTATION DETAILS**

697

698 CPHOI is implemented as a Transformer decoder architecture with 8 layers and a hidden dimension
 699 of 512. Our point-wise object embedding network is a PointNet++ (Qi et al., 2017) fed with 512
 700 randomly sampled vertices from the conditioned object. The model is trained with DDPM (Ho et al.,
 701 2020b); DDIM (Song et al., 2020) is used at inference. More details per experiment can be found
 702 in Table 3. We use the Adam optimizer (Kingma, 2014) for the noise optimization procedure. To
 703 reduce memory costs, we focus only on the MANO (Romero et al., 2017a) subset of vertices of the
 704 SMPL-X human body and simplify it further to 1,100 vertices for each hand. The object meshes are
 705 simplified to 3,000 faces.

	Experiment	GRAB [2020a]	OMOMO [2023]
Training parameters	# input prefix frames	15	1
	# generated frames	100	119
	diffusion steps (T)	8	14
	training steps	120K	50K
	batch size	64	64
DNO parameters	perturbation scale	10^{-6}	10^{-5}
	difference penalty	10^{-6}	10^{-5}
	λ_C	0.95	0.95
	λ_{Foot}	0.5	0.5
	λ_{Jitter}	10^{-5}	10^{-3}
	λ_{PHO}	0.05	0.05
	λ_{PHS}	0.2	–
	λ_{PHH}	0.05	0.05
	λ_{POS}	1.2	0.05
	λ_{Goal}	0.5	0.9
	λ_{Static}	0.9	0.05
	$\lambda_{FeetFloorContact}$	–	0.5

Table 3: Hyper-parameters in use for each experiment.

B CONTACT REPRESENTATION

Directly generating index pairs via diffusion is challenging. To address this, we adopt a more learnable representation. We define a fixed anchor set \mathcal{A} , consisting of a subset of MANO (Romero et al., 2017b) hand vertices located on the palm (Figure 9). At each frame f , and for each anchor $a \in \mathcal{A}$, a binary variable b_a indicates whether the anchor is in contact. A corresponding position $p_a \in \mathbb{R}^3$ specifies the contact location on the object surface in its rest pose. This yields the contact representation:

$$F_{CP} = [p_1, \dots, p_{|\mathcal{A}|}, b_1, \dots, b_{|\mathcal{A}|}]$$

resulting in a per-frame contact feature of dimension $(3 + 1) \times |\mathcal{A}|$. Figure 10 shows an example of contact pairs generated by HOIDiNi.

For the OMOMO (Li et al., 2023) dataset, which lacks fingers’ motion, we follow CHOIS and define the middle finger in each hand in the SMPL-X body model as the anchor, resulting in only two anchors for this benchmark.

C ADDITIONAL DNO LOSSES

C.1 OBJECT-CENTRIC LOSSES

Goal Loss. We encourage the object to reach a set of target poses at selected keyframes by penalizing both position and orientation errors. Concretely, we define

$$\mathcal{L}_{Goal} = \frac{1}{|\mathcal{T}|} \sum_{t \in \mathcal{T}} \left(\|\hat{\mathbf{t}}_t - \mathbf{t}_t\|^2 + \mathcal{D}_{\text{rot}}(\hat{R}_t, R_t) \right)$$

Where, \mathcal{D}_{rot} measures the angular deviation between rotation matrices R_1 and R_2 .

Static Loss. To prevent unintended object motion, we penalize changes in position across frames where the object is not in contact with the human. We identify contiguous non-contact intervals $\{\mathcal{T}_s^{\text{nc}}\}_{s=1}^S$, and for each such segment s , we anchor the object pose to its value at the first frame, t_s^{start} . The loss is then computed as:

$$\mathcal{L}_{\text{Static}} = \frac{1}{\sum_{s=1}^S |\mathcal{T}_s^{\text{nc}}|} \sum_{s=1}^S \sum_{t \in \mathcal{T}_s^{\text{nc}}} \left(\|\mathbf{t}_t - \mathbf{t}_{t_s^{\text{start}}}\|^2 + \mathcal{D}_{\text{rot}}(R_t, R_{t_s^{\text{start}}}) \right),$$

756 where \mathbf{t}_t and R_t are the object’s translation and rotation at frame t , respectively, and \mathcal{D}_{rot} measures
 757 the angular distance between two rotations. This encourages the object to remain static when not
 758 actively manipulated.

760 C.2 HUMAN-CENTRIC LOSSES

762 **Feet-floor Contact Loss.** For the OMOMO experiment, following CHOIS, we add a loss term that
 763 enforces accurate foot contact at the mesh level.

764 When reconstructing the human mesh with SMPL-X (Pavlakos et al., 2019a) using predicted root
 765 positions, joint rotations, and subject-specific body parameters, the generated feet may occasionally
 766 fail to touch the floor. To address this, we add a guidance term that encourages realistic feet-floor
 767 contact.

768 Let \mathbf{J}_l and \mathbf{J}_r denote the positions of the left and right toe joints. At each frame, the supporting foot
 769 is identified by comparing their z-coordinates. We further set a threshold height $h = 0.02$ meters,
 770 derived from analyzing foot heights in the ground truth motion. The guidance term is then defined as:

$$772 L_{\text{FeetFloorContact}} = |\min(\mathbf{J}_l^z, \mathbf{J}_r^z) - h|_2. \quad (1)$$

773 This measures the vertical deviation between the lower toe joint and the threshold height h .

775 D EVALUATION METRICS

777 For both benchmarks, GRAB and OMOMO, we evaluate our method along two dimensions: motion
 778 realism and interaction accuracy.

780 D.1 GRAB EVALUATION

782 For the GRAB dataset (Taheri et al., 2020a) experiment, we follow IMoS Ghosh et al. (2023), and
 783 compute realism metrics using embeddings from the final layer of an intent classifier. However,
 784 the classifier used in IMoS is limited to body joint positions and cannot capture fine-grained grasp
 785 dynamics. In contrast, our evaluation employs a more expressive classifier that takes as input
 786 body joints, hand joints, and object trajectories, allowing for a more comprehensive assessment of
 787 interaction quality.

788 **FID.** Fréchet inception distance measures the distance between the distributions of generated and
 789 ground-truth motions in a learned embedding space. Lower FID values indicate that the synthetic
 790 motion is closer in distribution to real motion data, capturing both realism and diversity.

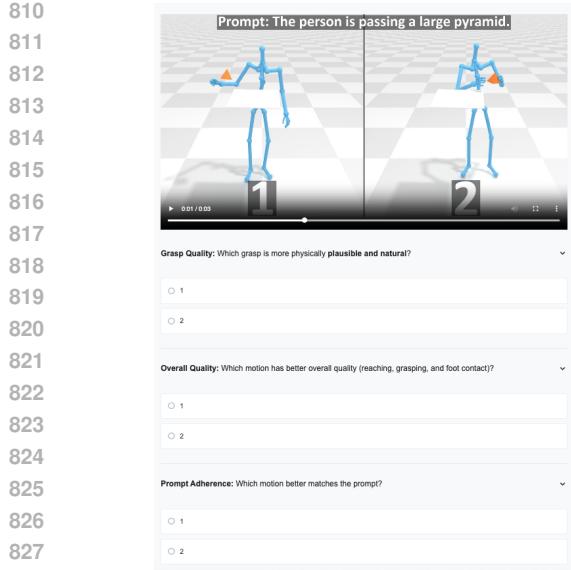
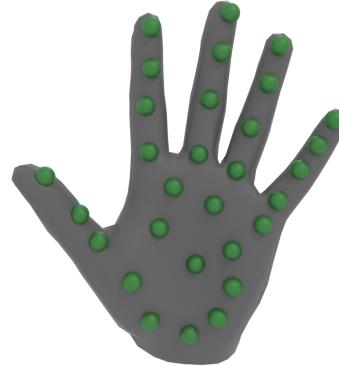
791 **Diversity.** Evaluates how varied the generated motions are across different samples for the same input
 792 condition (e.g., prompt or object). It is computed as the average pairwise distance between multiple
 793 motion samples in the embedding space. A lower difference between ground truth and generated
 794 diversity scores suggests that the generated motions effectively capture the observed variability of
 795 human movement.

796 **AVE.** Measures the discrepancy between the variance of joint positions in generated motion and that
 797 of ground-truth motion. Specifically, it computes the average L^2 difference in per-joint positional
 798 variance across time. A lower AVE suggests that the model accurately captures the temporal dynamics
 799 and variability of natural human movement, avoiding overly rigid or overly jittery outputs.

800 **IRA.** Intent recognition accuracy quantifies how well the generated motions conveys the intended
 801 interaction or action. It is computed as the classification accuracy of the intent classifier on generated
 802 samples. High IRA indicates that the generated motions are semantically meaningful and align with
 803 their intended action labels, providing a measure of goal consistency and plausibility.

804 **Multimodality.** Assesses the model’s capacity to produce distinct motions for the same conditioning
 805 intent. Unlike diversity, which measures sample variation globally, multimodality focuses on
 806 conditional variability by comparing multiple outputs conditioned on the same prompt. This metric is
 807 crucial for evaluating whether the model can express different plausible interaction strategies.

809 **Penetration.** Quantifies physical implausibility by measuring the extent to which the human mesh
 intersects with the object mesh. We compute the mean maximal penetration depth across frames

Figure 9: Palm anchor set \mathcal{A} used by CPHOI for the GRAB (Taheri et al., 2020a) experiment.Figure 10: **Contact Pairs.** CPHOI predicts precise, semantically meaningful contact points between the hand and object. Each contact pair is visualized with matching colored spheres.

850
851
852 where interpenetration occurs and the object is above table height. Lower penetration values indicate
853 more physically valid interactions, particularly in grasping and manipulation scenarios where accurate
854 surface contact is essential.

855 **Floating.** Captures the failure of hand-object interaction where the hand remains unnaturally far from
856 the object surface. It is computed as the mean shortest distance between the body and object meshes,
857 averaged across all motions (excluding frames with penetration and frames where the object is at
858 table height). High floating values typically reflect unrealistic, disconnected grasping motion.

D.2 OMOMO EVALUATION

860
861
862 For the OMOMO dataset (Li et al., 2023) experiment, we follow the evaluation metrics defined by
863 CHOIS (Li et al., 2024a):

864 **Condition Matching Metric.** Those metrics calculate the Euclidean distance between the predicted
 865 and input object waypoints. It includes the start and end position errors (T_s, T_e), and waypoint errors
 866 (T_{xy}) measured in centimeters (cm).
 867

868 **Human Motion Quality Metric.** Those metrics encompasses the foot sliding score (FS), foot
 869 height (H_{feet}), *Fréchet Inception Distance* (*FID*) and *R-precision* (R_{prec}). FS is the weighted
 870 average of accumulated translation in the xy plane, following prior work He et al. (2022), measured
 871 in centimeters (cm). H_{feet} assesses the height of the feet, also in centimeters. R_{prec} and *FID* are
 872 computed following the text-to-motion task Guo et al. (2022a). R_{prec} (top-3) measures whether the
 873 generated motion is consistent with the text. *FID* assesses the motion quality by computing the
 874 discrepancy between the distributions of ground truth and generated motions.
 875

876 **Interaction Quality Metrics.** Those metrics assess the accuracy of hand-object interactions,
 877 encompassing both contacts and penetrations. For contact accuracy, it employs precision (C_{prec}),
 878 recall (C_{rec}), and F1 score (C_{F_1}) metrics following prior work Li et al. (2023). Additionally, it
 879 includes contact percentage ($C\%$), determined by the proportion of frames where contact is detected.
 880 To compute the penetration score (P_{hand}), each vertex of the hand V_i is used to query the precomputed
 881 object's Signed Distance Field (SDF). This process yields a corresponding distance value d_i for each
 882 vertex. The penetration score is then derived by computing the average of the negative distance values
 883 (representing penetration), formalized as $\frac{1}{n} \sum_{i=1}^n |\min(d_i, 0)|$, measured in centimeters (cm).
 884

885 We note that CHOIS additionally measured the distance of the generated motion from the correspond-
 886 ing ground truth motion. Since HOIDiNi is a generative model, not aiming to reconstruct the ground
 887 truth, we find this metric irrelevant for our scope and omit it.
 888

887 E USER STUDY

889 We conducted a user study for the GRAB dataset (Taheri et al., 2020a) with 24 participants, evaluating,
 890 in total, 12 side-by-side randomly selected samples of two models using the same inputs. We asked
 891 the user to evaluate the *grasp quality*, *prompt adherence*, and *overall quality*. As shown in Figure 6,
 892 users preferred the results generated by our framework. A representative screenshot from the study
 893 interface is shown in Figure 8.
 894

895 F LLM USAGE

896 In this paper, we used ChatGPT 4o/5 to revise our writing, code assisting, and to enhance the
 897 GRAB (Taheri et al., 2020a) labels into text prompts.
 898

900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917