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ABSTRACT

Temporal prediction is inherently uncertain, but representing the ambiguity in nat-
ural image sequences is a challenging high-dimensional probabilistic inference
problem. For natural scenes, the curse of dimensionality renders explicit den-
sity estimation statistically and computationally intractable. Here, we describe
an implicit regression-based framework for learning and sampling the conditional
density of the next frame in a video given previous observed frames. We show that
sequence-to-image deep networks trained on a simple resilience-to-noise objective
function extract adaptive representations for temporal prediction. Synthetic exper-
iments demonstrate that this score-based framework can handle occlusion bound-
aries: unlike classical methods that average over bifurcating temporal trajectories,
it chooses among likely trajectories, selecting more probable options with higher
frequency. Furthermore, analysis of networks trained on natural image sequences
reveals that the representation automatically weights predictive evidence by its
reliability, which is a hallmark of statistical inference1.

1 INTRODUCTION

All organisms make temporal predictions, and more complex organisms make prediction about more
complex aspects of their environment. Even in the simplest cases and at very short timescales, tem-
poral prediction is difficult: sensory measurements are incomplete and insufficient to fully specify
the future, making prediction uncertain. Consider for example observing an image sequence: the
next frame in that sequence is only incompletely determined by past frames, and as a result there
is a whole distribution of possible next-frames. Typically, the distribution of the next-frame has
more than one mode, making video prediction challenging. In particular, the classical Minimum
Mean Squared Error approach to prediction (MMSE, Wiener, 1942) produces inaccurate and blurry
solutions. This failure is well understood: the MMSE solution is given by the expectation of the
next-frame, but since the distribution of the next-frame is multimodal, its expectation tends to have
a low probability. To avoid blurry predictions, video prediction methods based on optic flow have
been developed in image processing, and form the basis of most commonly used video codecs.
Unfortunately, these flow-based methods are prone to errors when motion is discontinuous, e.g.,
at occlusion boundaries, or non-rigid, e.g., on deformable objects. These failures highlight the
limitations of deterministic approaches: point estimates are inadequate for handling ambiguous sit-
uations. We will consider a probabilistic formulation of video prediction: estimating and sampling
from the conditional density of the next frame given the previous τ frames in the image sequence,
p(xt+1|xt, . . . , xt−τ+1). Abstractly, temporal prediction can be thought of as an inverse problem
that requires prior information in order to recover the part of the image sequence obfuscated by the
arrow of time.

Learning a density from data is generally considered intractable for high-dimensional signals such
as videos: the sample complexity of density estimation is exponential in the signal dimensionality
(the so-called “curse of dimensionality”). As a result, the statistical difficulty of high-dimensional
density modeling can only be approached by making strong assumptions, and many methods have
been proposed to tackle the case of video prediction (Oprea et al., 2020). Each of these methods
imposes inductive biases through choices of objective function and/or prediction architecture. But,
overall, video prediction remained largely out of reach for statistical machine learning methods until

1Code will be released upon acceptance.
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Figure 1: Modeling frameworks for probabilistic prediction. Both the classical and the proposed
approach are trained unsupervised on image sequences and learn the distribution of the next frame
conditioned on the recent past. Both approaches make predictions by sampling from this learned
conditional density, but the density can be either explicit or implicit. Left. Traditional framework:
the model is explicit and its parameters are learned through repeated iterations of inference and
sampling. The learning objective is applied end-to-end: from past frames, to inferred latent repre-
sentation, to generated next frame. Right. Proposed score-based framework: train a denoiser via
regression, i.e., a mapping from past frames and noisy observation to an estimate of the clean next
frame. The trained denoiser approximates the score function and implicitly represents the proba-
bilistic model (denoted by a funnel). To sample from this implicit model, iterative partial denoising
gradually transforms noise into a predicted next frame.

the advent of “diffusion models”, which have offered a new and highly successful paradigm for
learning generative models (Song & Ermon, 2019; Ho et al., 2020; Song et al., 2021b). They have
also been applied to video generation where they achieve impressive empirical results (Ho et al.,
2022; Blattmann et al., 2023; Bar-Tal et al., 2024; Brooks et al., 2024). These results typically
rely on huge datasets, opaque networks, and sophisticated text conditioning. In this paper, we will
consider a simplified diffusion-like framework where the learned representation can be analyzed.

Diffusion models combine two important ideas: score-matching estimation and reversing a diffusion
process. Score-matching bypasses the normalization constant that plagues maximum likelihood esti-
mation (Hyvärinen, 2005). This simplification arises from considering the gradient of the logarithm
of the data distribution—known as the score function—which does not depend on the problematic
normalization constant. Score-based estimation has its roots in the “empirical Bayes” subfield of
statistical inference, and the central role of the score of the noisy data distribution can be gener-
alized to many other types of estimation (Raphan & Simoncelli, 2011). In diffusion models, this
empirical Bayes idea is combined with a diffusion process (Sohl-Dickstein et al., 2015). Gradually
adding noise to the data is equivalent to blurring the data distribution, which has a regularizing ef-
fect: it connects all the modes of the distribution and enables gradient-based sampling. Diffusion
models are appealing because of their simplicity and generality: given data and a diffusion process,
the scores of the noisy data can be estimated via least-squares regression, and new samples from
the data distribution can be generated via stochastic score ascent. In such score-based models, the
density remains implicit and is only revealed by sampling. In contrast, traditional statistical machine
learning frameworks aim to build an explicit model of the data distribution. This contrast is illus-
trated in the case of video prediction in Figure 1. In this paper, we formulate a simple score-based
approach to video prediction that facilitates visualization of the learned representation, casting some
light on the adaptivity of trained networks and their ability to exploit spatio-temporal structure in
image sequences.

This work studies the learned representation of a probabilistic video prediction framework, making
three contributions: in Section 2, we describe a simple score-based framework for conditional den-
sity estimation applied to video prediction; then in Section 3.1, we analyze a representative case of
bifurcating trajectory that arises due to occlusion boundaries; finally in Section 3.2, we reveal the
adaptivity of representations in trained networks, making their performance partially interpretable.
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2 SCORE-BASED ESTIMATION AND SAMPLING OF CONDITIONAL DENSITIES

Given access to a video dataset, i.e., image sequences {xt ∈ Rd, t = 1, . . . , T}, we want to predict
future frames on new videos, i.e., generate probable next-frames on test image sequences. To achieve
this, we describe a scalable framework for learning to sample from the distribution of the next
frame conditioned on the recent past. First, we assume that the temporal dependencies are local
and define a corresponding network architecture. Then, we introduce a useful intermediate object,
the score of the noisy observation distribution, and propose a regression objective for training a
network to approximate the score. Finally, we express an iterative procedure that utilizes the trained
network for sampling probable next-frames. These methods extend previous work on unconditional
density modeling (Kadkhodaie & Simoncelli, 2021) to the conditional setting of video prediction.
An intuitive example with low-dimensional visualizations is given in Appendix B.

2.1 CONDITIONING WITH A SEQUENCE-TO-IMAGE NETWORK ARCHITECTURE

We assume that temporal dependencies are local and well approximated by the Markov condition:

p(xt+1|x≤t) = p(xt+1|ct), (1)

where x≤t denotes all the frames until time t, and ct = [xt, . . . , xt−τ+1] denotes the past τ frames.
We enforce this conditional independence assumption by considering networks with a finite memory
length. Specifically, we use deep convolutional networks that map sequences of images to estimates
of the next frame. The length of the temporal dependencies captured by this sequence-to-image
network can be varied by modifying the number of input frames. More details on the architecture
are provided in Appendix C. In the remainder of the text, we drop time subscripts for clarity and
write x for the target next frame, and c for the corresponding previous frames. We refer to the
conditional distribution of the next frame given past conditioning, p(x|c), as the data distribution.

2.2 LEARNING SCORE FUNCTIONS VIA DENOISING

We break down the problem of estimating the conditional distribution of the next frame into a family
of easier sub-problems: given clean past conditioning frames, remove undesired noise from an ob-
servation of the next frame. Training a network on this simple resilience-to-noise objective function
across noise levels yields an adaptive estimator of the score of the noisy observation distribution.

Specifically, we sample noisy observations of the next frame conditioned on the previous frames:
y|c ∼ pσ(y|c), where the noise is additive, white, and Gaussian, i.e., y = x+ σz, with z ∼ N (0, I).
We refer to the distribution of the noisy signal given conditioning, pσ(y|c), as the observation dis-
tribution. It is well-known in statistical estimation that the Minimum Mean Squared Error (MMSE)
denoising function is given by the posterior expectation:

argmin
x̂

E
[
||x− x̂(y, c)||2

]
= E[x|y, c]. (2)

Remarkably, this posterior expectation can be expressed as a step in the direction of the score of
the observation distribution scaled by the variance of the noise, an identity attributed to Tweedie or
Miyasawa (Robbins, 1956; Miyasawa et al., 1961):

E[x|y, c] = y + σ2∇y log pσ(y|c). (3)

This important identity links MMSE denoising with the score function, i.e., the gradient of the
logarithm of the observation distribution (a detailed derivation is provided in Appendix A). The key
idea of the score-based framework is to exploit this link in the reverse direction: first train a denoiser
to minimize MSE, and then treat the denoising residual as an approximation of the scaled score
function. In Section 2.3, we will describe how to use this approximate score function to ascend the
probability gradient and draw samples from the data distribution.

We consider networks that jointly process sequences of τ + 1 frames and produce estimates, x̂,
of the target frame, x. The input sequences contain a noisy observation of the target frame, y,
and τ past conditioning frames, c. Optimizing such a network on the video next-frame denoising
objective, eq. (2), yields a denoising residual, f(y, c) = x̂(y, c) − y, that approximates the scaled
score functions, σ2∇y log pσ(y|c), and therefore depends on the noise level, σ. In the remainder
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of this paper, we will integrate across noise levels. Specifically, we train networks to remove noise
of arbitrary magnitude, i.e., the expectation in eq. (2) is taken over the signal x, the noise z, and
the noise level σ. Such networks must (at least implicitly) infer the distortion level, σ, and are
called blind universal denoisers (Mohan et al., 2020). As a result, a trained universal blind denoiser
contains information about a whole family of scores: {∇y log pσ(y|c)}σ . Recall that adding noise
to the target next frame is equivalent to smoothing the data distribution with a Gaussian kernel, the
more noise is added, the larger the extent of the smoothing. This family therefore contains scores
at all levels of smoothness, which corresponds to a scale-space representation (Witkin, 1983) of
the score of the data distribution, ∇x log p(x|c). In summary, we train universal blind denoisers
to adaptively process signals across distortion levels and estimate a family of score functions—a
property that will be exploited in the sampling algorithm described next.

2.3 GENERATING PREDICTED FRAMES VIA SCORE ASCENT

Assuming that we have trained a denoiser, we now turn to the question of sampling from the distri-
bution implicit in the network, i.e., predicting probable next frames conditioned on past frames. In
the previous section, we showed that the residual of the optimal denoising function is proportional
to the gradient of the logarithm of the observation distribution, eq. (3). We now describe an iterative
procedure that starts from an arbitrary initialization and uses the denoiser to climb the gradient of
the logarithm of the observation distribution towards more probable images.

Specifically, we define a conditional sampling algorithm that takes partial iterative denoising steps
until reaching a sample from the data distribution, p(x|c). Starting from an arbitrary image, y0, this
algorithm moves the candidate frame, yk, in the direction of the denoising residual, and optionally
adds a small amount of fresh noise, zk ∼ N (0, I). This algorithm iterates the map:

yk = yk−1 + αkf(yk−1, c) + γkzk, (4)

where the parameter αk controls the step-size and the parameter γk controls the amplitude of the
additive noise. Importantly, we choose γk so as to reduce the effective noise level on each itera-
tion. Adding noise along the sampling iterations avoids getting stuck in local maxima and promotes
exploration. A more detailed description of these sampling parameters is provided in Appendix E.

This procedure follows the estimated scores given by a trained denoiser and gradually reduces the
effective noise level of a candidate frame until it reaches a sample of the next frame. As this al-
gorithm progresses, the candidate frame effectively traverses the scale-space family of observation
distributions from large to small noise level. Such a coarse-to-fine iterative refinement approach en-
ables local search in complex high-dimensional landscapes. Importantly, this annealing schedule is
set by the network itself: at each iteration, the step size depends on the magnitude of the denoising
residual, this magnitude is set by the blind universal denoiser, i.e., it automatically adapts to the
effective noise level of the candidate frame.

3 VISUAL TEMPORAL PREDICTION UNDER UNCERTAINTY

3.1 HANDLING OCCLUSIONS ON A PROCEDURAL DATASET

Occlusion boundaries are an inevitable result of image formation and they provide strong cues which
are exploited by biological visual systems to infer the depth ordering and relative motion of objects
in a scene. Traditional video prediction methods are based on a local translation model (e.g., block
matching methods used in MPEG coders, or optic flow methods of computer vision), and have
difficulties at occlusion boundaries. In fact, occlusions are a major source of errors for methods that
can not represent motion discontinuities and do not account for ambiguous occlusion relationships.

Moving leaves. We consider a reduced scenario focused on the challenge of ambiguous occlu-
sions. Our aim is to demonstrate that, unlike previous methods, the score-based inference framework
can handle occlusions and that it makes decisions on ambiguous sequences. Building on the “dead
leaves” model of the natural scene statistics literature (Matheron, 1975; Lee et al., 2001), we design a
dataset of moving disks. Each image sequence is composed of two moving disks whose trajectories
may intersect, resulting in one occluding the other (see Figure 2). Disks are randomly placed on an
image canvas, a random depth is assigned to each disk. Each disk is then moved along a randomly
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Figure 2: Moving leaves dataset. Example image sequences from our synthetic dataset. Each
sequence contains two disks moving along smooth curves and occluding each other. The disks
move against a blank background and the larger disk always occludes the smaller one.

chosen smooth trajectory to generate image sequences that respect occlusion relationships. Trajecto-
ries are sampled from a Gaussian process, and their average speed scales inversely with depth (i.e.,
objects at a further distance moving more slowly). For simplicity, each disk is assumed to move
within a plane at its pre-assigned depth, and thus its size in the image does not change. These image
sequences contain two reliable, albeit indirect, cues to depth: the projected disk size, and the speed
of disk motion. The luminance of each disk and of the background are selected randomly, from a
uniform distribution. More details on this dataset are provided in Appendix D.

Deciding on occlusion boundaries. A U-net with two conditioning frames (τ = 2) was trained
on the moving leaves dataset. We generate samples of probable next frame using the sampling
algorithm described in Section 2.3. A detailed description of the training and sampling algorithms
is available in Appendix E. We evaluate the network on new moving disk sequences designed to
probe the network’s ability to handle ambiguous trajectories that bifurcate into two probable future
sequences. These probe sequences contain two clean conditioning frames with disks that are moving
towards each other on a collision course. We control the relative size of the two disks and put pure
noise in place of the target next frame. As expected, when the depth ordering is unambiguous, the
network correctly estimates the most probable next frame (see Appendix F Figure 11).

A more challenging and interesting situation arises when the depth ordering is ambiguous. Example
samples around such an ambiguous occlusion boundary are displayed in Figure 3. In this example
there are no cue as to which disk will occlude the other. As expected, the estimated next frame
obtained via one-step denoising is a blurry mixture between the two possibilities. This corresponds
to the least squares optimal solution, eq. (2), which averages over the posterior. In contrast, generated
next frames obtained via iterative sampling contain sharp occlusion boundaries, with either disk
occluding the other at about equal frequency. The network effectively decides on occlusions and
generates diverse samples that, unlike one-step denoising, do not compromise between the two
possibilities. Moreover, the network has learned from the training dataset that smaller disks are
likely to be occluded and respects this property in sampled sequences. This highlights the power of
the score-based estimation and sampling framework compared to deterministic one step prediction.

Selecting more likely options with higher frequency. We vary the degree of ambiguity of a disk
occlusion by controlling the relative size of two disks moving towards one another. The results
are summarized in Figure 4 and show that the network adapts its predictions to the relative size
difference between the two disks. When the measurement are unambiguous, the samples are almost
deterministic, and on more ambiguous measurements, the samples are gradually more stochastic.

Recursive generation of sequences. Longer sequences can be generated by recursively applying
the network to its own predicted frames, and these sequences can be evaluated for their temporal
coherence. As illustrated in Figure 5, recursive applications of the one-step denoiser produce blurry
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Figure 3: Samples around ambiguous occlusion boundary. Predicting an ambiguous sequence
of moving disks. Top. Two conditioning frames contain disks of equal size moving towards each
other. The network takes as input the conditioning frames and pure noise in place of next frame
(highlighted in red). The network outputs an estimated next frame (highlighted in green). Mid-
dle. Intermediate steps of the iterative denoising procedure and corresponding sampled next-frame
(highlighted in blue). The score-based sampling algorithm uses the same conditional denoiser net-
work as above but takes partial denoising steps. Bottom. Example samples of probable next-frame
generated via iterative partial denoising starting from different random initializations.
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Network’s decisions are calibrated to ambiguous stimuliFigure 4: Decisions preceding occlusion events. Frequency of right disk occlusion in next-frame
samples as a function of the difference in radius between the two disks (averaged over 64 samples).
Highlighted red points correspond to the unambiguous examples from Figure 11 and the ambiguous
example from Figure 3. The orange curve is a logistic function fit to the choice data, it describes the
network’s sensitivity to the disk’s relative size difference.

estimates that collapse to an uninformative image after a few recursive prediction steps. In con-
trast, recursive samples obtained by sampling (iterative partial denoising) produce a coherent image
sequence with disk motion and occlusions (not shown in this particular example). However, the net-
work is limited by its short memory length, here only accessing two past conditioning frames. As a
result samples from the network tend to drop or modify disks that are occluded in the observed past
conditioning frames. As illustrated, disks tend to reappear distorted when emerging from occlusion.
Capturing longer-term temporal dependencies requires networks with longer memories. Indeed, two
conditioning frames are insufficient to capture acceleration.
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recursive estimates 

recursive samples

Figure 5: Recursive generation of moving disk sequences. Coherent sequences can be generated
via recursive sampling, but not via recursive estimation. In all three examples the first two frames
come from the test dataset and the successive frames are generated recursively, using the previous
two frames as conditioning. Top. Frames are generated by direct application of the denoiser. For the
first step of this recursive process, the inputs to the conditional denoiser are highlighted in red (the
noise observation, yt+1, is not shown) and the estimated next frame is highlighted in green. Middle.
Frames are generated via iterative partial denoising. The generated next frame (highlighted in blue)
is a sample from the conditional distribution of probable next frame. Bottom. Another example of
recursive sampling. The fourth step in the recursive sampling process is highlighted and shows that
after full occlusion of the small disk, its size, color and location are often altered.

3.2 ADAPTIVE PROBABILISTIC PREDICTION OF NATURAL VIDEOS

Conditional denoising performance. Several U-nets with varying conditioning lengths were
trained for next frame prediction on a generic dataset of small natural image sequences (see de-
scription in Appendix D). Estimated next frames for denoisers with varying number of conditioning
frames are shown for an example image sequences in Figure 6. This result holds in general over
the whole test set, as evidenced by the summarized performance plot of these networks. We quan-
tify performance according to Peak Signal to Noise Ratio2. In the unconditional case (i.e., τ = 0),
the network only exploits static image structure and performance is linear in terms of input-output
PSNR, with slope of approximately one-half, and meets the identity line around 40 dB. For condi-
tional image denoising, there is a gradual performance improvement that is particularly salient at
low input PSNR values. The largest increases in output PSNR is obtained from conditioning on
one baseline image (i.e., τ = 1). Adding a second conditioning frame (i.e., τ = 2) improves per-
formance further, which is indirect evidence that the network is making use of motion information.
The benefits of conditioning reach a plateau with three past frames. Notice that trained denoiser
networks with two and three conditioning frames match the performance of networks trained just
for prediction (i.e., two input frames xt−1, xt, no noisy observation yt+1), indicated by a horizontal
dashed line at 28dB. Remarkably, at very low input PSNR values the network automatically revert
to pure temporal prediction, ignoring the uninformative observation.

Spatio-temporal adaptive linear filtering. Visual motion carries important information for video
prediction and networks should learn to utilize this information. We analyze the action of a trained
network on an example image sequence to reveal that it is exploiting visual motion. Our U-nets are
bias-free and effectively apply an adaptive linear filter to their input (Mohan et al., 2020). Specifi-
cally, the conditional denoiser can be expressed as an input dependent linear function. For conve-
nience, we split this linear function into two parts, one applied to the conditioning frames (with c
subscript) and one applied to the noisy observation (with y subscript):

x̂(y, c) = x̂y + x̂c,where x̂y = ∇yx̂(y, c) · y, and x̂c = ∇cx̂(y, c) · c. (5)

Those input-output Jacobian matrices can be thought of as effective linear filters adapted to the input.
Evaluating those Jacobians reveals that filters that are oriented in space-time and track the motion

2PSNR is a standard quality metric measured in decibels (dB) which expresses the logarithm of the mean
squared error (MSE) relative to the range of the signal: PSNR(x, x̂) = 10 log10(I

2
range/MSE(x, x̂)), where

Irange is the range of possible pixel values of the image.
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Figure 6: Peformance of conditional denoiser, for varying numbers of conditioning frames, τ .
Left. Input-output PSNR curves summarize the test performance of trained denoisers. The horizon-
tal axis represents noise level (lower PSNR value correspond to stronger distortion). The vertical
axis represents performance (higher PSNR value corresponding to better denoising). Dashed black
lines indicate the identity, a slope of one half (expected for single image denoiser performance), and
a horizontal line at 28dB corresponds to the performance of the same network trained for prediction
alone. Right. Horizontally: example image sequence, noisy observation and target next frame at
0dB input PSNR. Vertically: estimated next frame for denoisers with varying number of condition-
ing frames (PSNR indicated with color codes matched to graph on left). Longer memory results in
higher quality denoising, showing that the denoiser can exploit spatio-temporal image structure.

of the pattern in image sequences, which is analogous to the observations made on video denoising
networks (Sheth et al., 2021). One row such example adaptive filter is displayed in Figure 7 and
shows evidence of a visual motion computation.

Adaptively weighing evidence by reliability. The network utilizes both past conditioning frame,
c, and noisy observation, y, and we now quantify how these two sources of information are combined
to produce an estimated next frame. The posterior over these two cues can be decomposed as:

p(x|y, c) = p(x, y, c)

p(y, c)
=

p(y|x)p(x, c)
p(y, c)

=
p(x|y)p(x|c)

p(x)

p(y)p(c)

p(y, c)
, (6)

where the second step uses the conditional independence of y and c given x, p(y|x, c) = p(y|x).
Notice that the posterior over y and the posterior over c are combined multiplicatively, and that
they are modulated by an interaction term that quantifies how independent these two cues are. The
corresponding decomposition in the case of squared denoising error is:

||x− x̂(y, c)||2 = ||x− x̂c||2 + ||x− x̂y||2 − ||x||2 + 2⟨x̂y, x̂c⟩, (7)

where we reuse the notation from eq. (5). This expression is a partition of variance and it reveals how
each cue contributes to the overall denoising performance. We evaluated the network performance
on three probe sequences at different noise levels. We also computed a local linear approximation
of the network at each of these levels and computed the first two terms on the right hand side of
equation 7. The results are displayed in Figure 8 and show that the network appropriately combines
evidence by weighing each cue by its reliability. These denoising curves show that conditioning has
more impact on the estimates at high noise level. As the noise level is reduced, the model relies
gradually more on the observation and finally ignores the conditioning altogether. Importantly, this
dependency is modulated by the predictibility of the image sequence. In summary, the network
performs blind evidence integration: it automatically adapts to both the distortion level in the noisy
observation, and to the amount of predictive information in the past conditioning frames.
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past conditioning observation

Figure 7: Spatio-temporal adaptive filtering. Visualization of the effective linear weights used
to compute the central denoised pixel of an example image sequence. Top. Image sequence from
the test set, a pattern is moving to the left. Dashed white lines highlight the central pixel of each
frame for reference. The two past conditioning frames are clean and the noisy observed frame has a
PSNR of about 16 dB. Bottom. Effective linear filter used by the network to weight the conditioning
frames and the noisy observation, yt+1, to estimate the center pixel of the next frame x̂t+1. Each
pixel of the estimate is effectively computed as a weighted sum of input pixels (only the weighting
corresponding to the center pixel is shown here). Notice that the effective filter locally averages the
noisy observation and focuses on the part of the previous image displaced to the right (corresponding
to leftward motion of the pattern). The estimated frame has a much higher PSNR of about 25.5 dB.

Input PSNR (dB)

O
ut

pu
t P

SN
R 

(d
B)

typical examplehard to predict easy to predict 

Figure 8: Adaptive cue combination. Local linear analysis of information integration from two
different sources, past conditioning and noisy observation. In green the denoising performance for
a single probe image sequence as in Figure 6. In orange the denoising performance due to noisy
observation only, which increases with input PSNR. In blue the denoising performance due to past
conditioning frames only, which decreases with input PSNR. These two curves are calculated using
a local linear approximation as described in eq. (5). The level at which the orange and blue curve
cross depends on how difficult the prediction is, demonstrating that the network adaptively weights
evidence by reliability. Top. A texture image sequence with non-rigid complex motion. The orange
and blue curves cross around 0dB input PSNR. Middle. A person walking to the right on a stable
background. The orange and blue curves cross around 30dB input PSNR. Bottom. A static pattern
consisting of three smooth regions separated with straight boundaries. The orange and blue curves
cross around 60dB input PSNR.

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

4 RELATED WORK

Video prediction. Estimating optic flow is an essential component of standard video codecs and
deep network solutions have been proposed (Wu et al., 2022). But explicit motion warping fails
around occlusion boundaries and non-rigid objects (Baker et al., 2011). Direct next-frame predic-
tion has been explored with generative adversarial networks (Mathieu et al., 2016). But the saddle
point objective function is difficult to train and suffers from mode collapse (Goodfellow, 2016).
Methods based on variational autoencoders (Kingma & Welling, 2014) tend to suffer from posterior
collapse (Wang et al., 2021). Normalizing flows (Dinh et al., 2014) are limited to architectures that
admit tractable Jacobians at each layer (Papamakarios et al., 2021).

Diffusion based video generation. Recent work on video generation uses diffusion models (Har-
vey et al., 2022; Höppe et al., 2022) and has been applied to video prediction Voleti et al. (2022).
These studies obtain impressive empirical results but rely on complex architectures and sampling al-
gorithms that make their results difficult to interpret. Mathematically principled approaches to video
prediction have been proposed Chen et al. (2024). Here we describe a simple score-based frame-
work that facilitates visualization of the learned representation, casting some light on the adaptivity
of trained networks and their ability to exploit spatio-temporal structure in image sequences.

5 DISCUSSION

We describe a simple framework for estimating and sampling from the distribution of probable
next-frames in image sequences and use this framework to visualize and study the adaptivity of
deep network representations. We show how deep denoising networks trained on a simple regres-
sion task—minimizing mean squared error—implicitly represent the score of the data distribution.
We put this implicit density model to use by generating probable next-frames. Experiments on syn-
thetic data show that the sampled next-frames correctly handle ambiguous situations, choosing a
depth order for objects that occlude each other, which contrast with traditional methods that blur
such ambiguous cases. Furthermore, we showed that denoisers display hallmarks of probabilistic
computation: the network adaptively combines information from past conditioning and noisy obser-
vations, appropriately weighting them according to their reliability. The adaptability to the amount
of predictive information is remarkable: the network evaluates its own ability to extract evidence
from past frames. The simplicity of the score-based framework suggests that density estimation and
sampling—although very challenging in high-dimensions—may be tackled with elementary tools:
(non-linear) least squares regression and (coarse-to-fine) gradient ascent. This is only possible be-
cause i) noise offers a local learning signal and enables sampling, and ii) the network architecture
has inductive biases that are appropriate for natural image sequences.

What is noise good for? The functional role played by noise plays in both estimation and sampling
and can be summarized by three properties: regularity, diversity, and locality. First, adding noise
smooths the energy landscape, making it easier to learn and to climb with local search methods
(both estimation and sampling are gradient based). Second, adding noise during sampling drives
exploration, allowing the samples to escape from local maxima, and promoting diversity. Third,
resilience to noise is a local objective in the sense that it brings random Gaussian samples towards
the data distribution incrementally. Such locality in the space of densities offers a powerful simpli-
fication: the transformation from data to Gaussian noise and back to data is broken down into small
steps. Denoising provides a learning signal for each of these intermediate steps and allows learning
to proceed in parallel. We conjecture that this locality of denoising underlies the statistical efficiency
of score estimation compared to traditional approaches based on end-to-end objective functions.

Implicit bias of the architecture. The performance achieved by deep networks on (conditional)
image denoising is remarkable. Accurate denoisers provide good approximations of score functions
and fuel the success of diffusion models. Understanding how the architecture of deep denoising net-
works enables such denoising performance is of great interest. Local linear analysis affords partial
access to the adaptive network representation, but it does not elucidate the formation of these rep-
resentations. Further study of deep network implicit biases is necessary, and the simple framework
and visualization methods described here offer a starting point. Finally, it would be interesting to
leverage video prediction for extracting abstract representations. Considering an encoder-decoder
architecture instead of a direct sequence-to-image mapping is a promising direction.
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A DERIVATION

In this section, we provide a detailed derivation of the conditional Tweedie/Miyasawa relationship,
equation (3). We will use the fact that for any function h:

∇yh(y) = h(y)∇y log h(y). (8)

First, express the observation density as a convolution of the data density with the measurement
density:

pσ(y|c) =
∫

p(x|c)pσ(y|x, c)dx, (9)

differentiate on both sides with respect to the noisy variable, y, and then use eq. (8):

∇ypσ(y|c) =
∫

p(x|c)∇ypσ(y|x, c)dx (10)

=

∫
p(x|c)pσ(y|x, c)∇y log pσ(y|x, c)dx, (11)

divide on both sides by the observation density, pσ(y|c), and use Bayes rule:

∇ypσ(y|c)
pσ(y|c)

=

∫
p(x|c)pσ(y|x, c)

pσ(y|c)
∇y log pσ(y|x, c)dx (12)

=

∫
p(x|y, c)∇y log pσ(y|x, c)dx, (13)

use eq. (8) again, and write the integral as an expectation:

∇y log pσ(y|c) = Ex[∇y log pσ(y|x, c)|y, c]. (14)

In the case of a Gaussian measurement density, and using the conditional independence of y and c
given x, we have:

pσ(y|x, c) = pσ(y|x) = gσ(y − x) = exp(− (y − x)2

2σ2
)/
√
2πσ2, (15)

take the logarithm and the gradient:

∇y log pσ(y|x, c) = (x− y)/σ2, (16)

plug this into eq. (14):

∇y log pσ(y|c) = (E[x|y, c]− y)/σ2, (17)

which proves eq. (3).

B INTUITIVE EXAMPLE IN ONE DIMENSION

In this section, we provide an intuitive one dimensional illustration of the score-based estimation
and sampling framework described in Section 2. For these examples we consider the simpler density
estimation problem, i.e., without conditioning.

Estimation. A simple example consisting of a one dimensional distribution comprising two point
masses is displayed in Figure 9. At very high noise levels the score points in the direction of the
origin. At lower levels of noise, the score points towards the closest of the two point masses of
the bimodal distribution. The transition between these two regimes is continuous and smooth. We
consider universal blind denoisers, i.e., mappings that automatically adjust to the noise level. The
optimal denoiser, x̂(y), should integrate over noise levels:

x̂(y) = y +

∫
σ2∇y log p(y|σ)p(σ|y)dσ. (18)

Let us numerically evaluate this optimal denoiser and specify a non-informative prior for the noise
level: p(σ) ∝ 1/σ, i.e., a log-uniform distribution. In practice, when considering image denoising,
estimating the noise level is a simple one dimensional problem that is well constrained by the many
observed pixels. We therefore approximate this optimal denoiser and use a maximum a posteriori
(MAP) plug-in estimator for the effective noise level: σ̂ = argmaxσp(σ|y).

13



702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

0.00

0.25

0.50

0.75

1.00

p
(y

)

= 0.2 = 0.4 = 1

2

0

2

2
ylo

g(
p

(y
))

-2 -1 0 1 2
y

Figure 9: Bimodal distribution and score across noise level. One dimensional illustration of the
approximation problem. Top. Bimodal distribution consisting of two point masses placed at −1/2
and 1/2 (vertical dashed lines). From left to right, the distribution is convolved with a Gaussian
kernel of increasing width, which corresponds to adding independent Gaussian noise of increasing
standard deviation. Bottom. Optimal denoising step at corresponding noise levels, i.e., the score
scaled by the noise variance. The score is the gradient of the log probability with respect to the
variable,∇y log pσ(y). The sampling process described in Section 2.3 uses these scores to gradually
reduce noise (i.e., traverse the family of noisy distributions from right to left on the top row).

Figure 10: Sampling bimodal distribution via iterative partial denoising Left. Denoising resid-
ual of the blind universal denoiser for the bimodal distribution displayed in Figure 9. The denoiser
was approximated with MAP plug-in estimator for the standard deviation of the noise (see text).
There are two stable fixed points on the data point masses of the target distribution and an unstable
fixed point between the two. Right. One dimensional illustration of the sampling procedure that
iterates the map: yk = yk−1 + 0.5f(yk−1). An example sequence ykk starting at y0 = −2 is
illustrated in orange. The sampling algorithm reaches one of the fixed points depending on initial
conditions.

Sampling. This one dimensional bimodal distribution also enables visualization of the sampling
algorithm. The algorithm proceeds by iterative partial denoising and is detailed in Section E. Using
the universal blind denoiser described in the estimation section, we can define an denoising residual,
f(y) = y − x̂(y), that approximates an adaptive score function:

f(y) ≈ σ̂(y)2∇y log p(y|σ̂(y)). (19)

For simplicity, we use a fixed step size, α = 0.5, and no additional noise, β = 1. With these choices,
the sampling algorithm iterates the map: yk = yk−1 + 0.5f(yk−1). This map choose between the
two point masses depending on the initial condition, as illustrated in Figure 10.
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C DESCRIPTION OF ARCHITECTURES

For all numerical experiments, we use U-nets composed of convolutional layers and rectifying non-
linearities at three spatial scales (Ronneberger et al., 2015). We consider sequence-to-image net-
works, i.e., mappings from τ past frames and one noisy observation to an estimated next frame:
x̂θ : Rd×τ × Rd → Rd.

Conditioning. The networks take as input the past conditioning frames concatenated with the
noisy observation, i.e., five dimensional tensors of shape: [batch, channel, time, height, width],
where time = τ + 1. The size of the first layer spatio-temporal convolution kernel is adjusted to
match the number of input frames: (τ + 1)× 3× 3. Concatenating past frames as additional input
is a simple approach to conditioning and it has the advantage of being well suited to temporal pre-
diction: conditioning frames have the same shape as the noisy observation, and local convolutional
processing can make use of these two sources of evidence for the denoising task.

Details. At each scale, the networks cascade two blocks, each containing a layer of spatial con-
volution, then layer-normalization, and finally rectification. Specifically, the convolutional filters
are of size 3 × 3 in space. The first stage contains 64 filters. Each successive stage of the encoder
doubles the number of channels and downsamples the image by a factor 2 in each spatial dimension.
Each stage of the decoder reverses this, upsampling spatially, and halving the number of channels.
Each stage of the decoder also combines information from the upsampled coarse stage with the
output of the encoding at the corresponding stage. The network directly outputs an estimated next
frame, i.e., there is no input-output skip connection. In total these networks contain almost 2 million
parameters.

Homogeneity. Importantly, we remove all bias terms from the networks, i.e., there are no additive
constants in the convolutional layers or in the normalization layers. Such bias-free networks are
positively homogeneous of order 1, i.e., scaling the input by a positive number also scales the output
by the same amount. This simplification of the network architecture was observed (Mohan et al.,
2020) to facilitate generalization across noise levels, moreover, it enables the local linear analysis
presented in section 3.2.

D DESCRIPTION OF DATASETS

Moving Leaves. Each image sequence contains two disks on a blank background that move and
occlude each other. In each sequence, both disks are assumed to have the same 3D physical size
but their distance to the imaging plane is randomized. As a result, each disk’s projected 2D size is
a reliable, although indirect, cue to its distance in the scene. The disk with larger projected 2D size
always occlude the smaller one. The trajectories of each disk are sampled from Gaussian processes,
and their average speed of motion scales inversely with distance. Thus, speed in the image plane
provides an additional (albeit weaker) cue to a disk’s distance.

This synthetic dataset contains 105 image sequences, and is split into train and test set with at a
9:1 ratio. Each sequence is composed of 11 frames and is of size 32 × 32 pixels. For each image
sequence, luminance and depth are sampled uniformly at random. The spatial positions (x and y) are
sampled from a Gaussian process, and the bandwidth of the GP scales with depth (smoother slower
trajectories for objects further away). In each image sequence, there is at least one frame where half
of smaller disk is occluded by the larger disk.

There are several benefits to using such a procedural dataset: it enables sampling a distribution along
continuous features such as size, speed, texture, etc.; and it is easy to change the rules and control
the difficulty of the task. For example allowing the disks to move along the depth axis, thereby
decoupling size from distance; or changing the occlusion rule (e.g., assuming the brighter disk
always occludes the darker, or making the occlusion rule stochastic; or changing the number of disks,
etc.). This dataset is also useful to study the representation of fast small objects, which are subject to
temporal aliasing. The moving leaves procedural dataset was designed to illustrate the fact that, even
in elementary mechanical scenarios, probabilistic modeling is appropriate. Indeed, measurements
are always incomplete and the probabilistic framework can readily handle this ambiguity.
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DAVIS32. We use the DAVIS dataset (Pont-Tuset et al., 2017), which was originally designed
as a benchmark for video object segmentation. Image sequences in this dataset contain diverse
motion of scenes and objects (eg., with fixed or moving camera, and objects moving at different
speeds and directions), which make next frame prediction challenging. Small image sequences were
cropped out of the original DAVIS dataset, each sequence is composed of 11 frames of size 32× 32
pixels. The spatial crops were taken at 21 spatial locations and 3 different spatial scales. The frames
were mapped to grayscale and their intensity rescaled to lies in [0, 1]. These approximately 5 · 104
sequences were divided into about 36 thousands training sequences (or about 400 thousand frames),
and about 5 thousands test sequences (or about 55 thousand frames).

E DESCRIPTION OF OPTIMIZATION AND SAMPLING

Training procedure. The networks are trained to minimize mean squared error weighted by in-
verse variance of the noise. For each frame in a minibatch, the logarithm of the variance of the noise
is sampled uniformly in the range [10−5, 102] (corresponding to input PSNRs in [-20dB, 50dB]).
These choices of MSE weighting and of variance distribution is equivalent, up to reparameteriza-
tion, to the commonly used likelihood weighting (Song et al., 2021a). It can be shown that this
training procedure minimizes an upper bound on the conditional entropy of the future frame x given
the past c (up to constants). Notice that these choices emphasize the samples with low noise by
sampling them more frequently and by amplifying their contribution to the loss. In practice, small
gains in denoising performance, especially in the low noise regime, can have a large impact on the
quality of generated samples. The models are trained for 1000 epochs on either the moving leaves,
or the DAVIS32 datasets using the Adam optimizer (Kingma & Ba, 2015) with default parameters
and a learning rate η = 1 · 10−3. The learning rate is halved on epoch 500, and then every 100
epochs. A detailed description is presented in Algorithm 1.

Algorithm 1 Estimation of the family of score functions via denoising
1: inputs: D = {xt}1≤t≤T , σ

2
min, σ

2
max, η

2: initialization: Set n = 1, and draw θ
3: while n ≤ N do
4: (x, c) ∼ D ▷ Draw target next frame and conditioning frames
5: log σ2 ∼ U

[
log(σ2

min), log(σ
2
max)

]
, and z ∼ N (0, Id) ▷ Draw noise level and noise

6: y = x+ σz ▷ Generate noisy observation
7: L = ||x− x̂θ(y, c)||2/σ2 ▷ Compute the weighted MSE loss
8: θ ← Adam(θ,L, η) ▷ Update the parameters
9: n← n+ 1

10: end while
11: return: x̂θ

Sampling algorithm. New samples are generated by stochastic score ascent, using a family of
learned approximate scores. The procedure is initialized on pure noise of large variance, σ∞ =
3, The algorithm proceeds by taking steps in the direction of the denoiser residual and gradually
reducing the effective noise level. This effective noise level at iteration k is defined as the root-
mean-square value of the residual: σk = ||f(yk−1, c)||/

√
d, with d the dimensionality of the target

signal. The sampling algorithm terminates when the effective noise level falls below a threshold,
we used σ0 = 0.01 in our experiments. The amount of noise added at each step of the sampling
procedure is controlled by an additional parameter, β ∈ [0, 1], which sets the proportion of injected
noise and plays the role of an inverse temperature. Specifically, at each iteration the amplitude of
the additive noise is set to: γ2

k = ((1−βαk)
2− (1−αk)

2)σ2
k. This choice ensures that the effective

noise level is reduced at each iteration, it can be thought of as an self-adapting annealing schedule
(see Kadkhodaie & Simoncelli, 2021 for the derivation). We used β = 0.5 for all experiments in
this paper. We use a geometric schedule for the step-size, αk. A detailed description is presented in
Algorithm 2.

F ADDITIONAL EXAMPLES
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Algorithm 2 Sampling via iterative partial denoising (Kadkhodaie & Simoncelli, 2021)
1: inputs: x̂, h0, β, σ0, σ∞
2: initialization: Set k = 1, and draw y0 ∼ N (0.5, σ2

0Id)
3: while σk ≥ σ∞ do
4: αk = h0k

1+h0(k−1) ▷ Set step size with geometric schedule
5: sk = x̂(yk−1, c)− yk−1 ▷ Compute the weighted score, i.e., denoiser residual
6: σ2

k = ||sk||2/d ▷ Compute the effective noise variance
7: γ2

k =
(
(1− βαk)

2 − (1− αk)
2
)
σ2
k ▷ Set noise level st. effective noise level decreases

8: zk ∼ N (0, Id) ▷ Draw noise
9: yk = yk−1 + αksk + γkzk ▷ Perform a partial denoising step and add noise

10: k ← k + 1
11: end while
12: return: xk
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easy 
example

Figure 11: Samples around unambiguous occlusion boundary. Predicting an unambiguous disk
occlusion. Top. Two conditioning frames contain disks of different size moving towards each other.
The network observes pure noise in the next frame and estimates the target (all input frames are
highlighted in red). In this example, the next frame is unambiguous: the light disk on the right
should occlude the other. As expected, the denoising estimate (highlighted in green) is a close
approximation of the target (but the edges of the disk are blurry). Middle. Intermediate steps of the
iterative partial denoising procedure, this score-based sampling algorithm uses the same conditional
denoiser network as above. The corresponding sampled probable next-frame is highlighted in blue.
Bottom. Example samples of probable next-frame generated using the iterative partial denoising
procedure starting from different random initializations. Each contain sharp occlusion boundaries,
all with the light disk on the right occluding the other. With this sampling procedure, the network
decides on the occlusion and produces diverse samples that, unlike one step denoising, do not blur
the edges.

17



918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

EstimationObservationTargetConditioning

Samples

Figure 12: Samples of probable next-frame. Sampling from the denoiser with two conditioning
frames trained on natural image sequences. Top. Example image sequence from the DAVIS test
set. The two conditioning frames show a man walking to the left and a car driving to the right in the
background. In natural image sequence, the person occludes the car in the next frame. Starting from
an observation of pure noise the network estimates a blurry next frame. Bottom. Samples starting
from different noisy initializations are shown below. They are diverse but their perceptual quality
is not very high. In particular the features of the face are lost. Sampling diverse and high quality
temporally stable trajectories along the manifold of natural images requires a larger training set and
more training iterations.
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