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Abstract— This paper addresses a risk-sensitive remote esti-
mation problem for cyber-physical systems (CPSs) where the
accurate model of a dynamic system is not completely known
or may differ from the assumed model. In CPSs, sensors and
the monitoring control center are remotely located. Sensors
transmit the measurements via unreliable wireless communica-
tion channels that are vulnerable to cyber-attacks. Specifically,
attackers can inject false data to alter the measurements in the
communication channel or attack sensors. To tackle this, we
design a risk-sensitive filtering algorithm to operate under false
data injection attacks. The proposed estimator aims to minimize
the risk-sensitive error criterion, defined as the expectation of
the accumulated exponential quadratic error. Simulation results
demonstrate the effectiveness of the proposed algorithm.

I. INTRODUCTION

In recent years, addressing estimation issues within cyber-
physical systems (CPSs) has become a topic of significant
interest [1], [2]. This is owing to their extensive applications
in diverse fields such as advanced healthcare, intelligent
transportation, power grids, terrestrial exploration, hazardous
environments, and among others [3]–[5]. The CPSs enable
users to monitor and control physical systems remotely via
wireless communication channels.

In the CPSs, the sensor measurements are transmitted
to the remotely located computing units through unreliable
wireless communication channels. In such scenarios, various
interferences occur in measurements, such as random de-
lay, packet dropout, measurement fading, and others, which
degrade the performance of the estimators [6]–[9]. The
strong dependencies on the wireless channel also make the
CPSs vulnerable to cyber-attacks. Various attack models are
considered in the literature, such as denial of service (DoS)
attacks [10], replay attacks [11], and false data injection
attacks (FDIA) [12]–[16]. Contrary to the DoS attacks, which
target the communication network, FDIA targets sensors,
actuators and communication channels [17]. In such case,
the intruders have access to the measurement data and can
alter the measurement arbitrarily [12], [15]. In addition, the
false injection can be chosen such that the dynamical system
can be destabilized [18]. Solving state estimation problems
in CPSs becomes challenging in the presence of FDIA.

The state estimation algorithm computes the marginal
posterior distribution of the state at each time step, given
the history of measurements [19], [20]. For linear Gaussian
systems, a closed-form solution can be exactly computed
using the Kalman filter (KF) [19], [21]. The Kalman filter is
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developed based on the assumption that the system and mea-
surement models are known. However, in practice, the system
model is not completely known or slightly deviates from the
assumed nominal model. For such kinds of problems, several
robust estimation algorithms are developed [22]–[29]. These
robust algorithms provide good performance under nominal
conditions and acceptable performance under nonnominal
conditions [27].

This paper addresses the risk-sensitive estimation problem
for uncertain dynamic systems under false data injection
attacks. The uncertainty in the model is related to the
dynamics, which signifies the deviation from the assumed
nominal model [27]. The model uncertainty is unknown
and deterministic, and it is not related to the process noise.
The measurement received at the remote estimator may be
affected by the false data injection attacks on the communi-
cation channels or sensors in CPSs. In this paper, we derive
a cost function by considering the exponential of the past
and present squared estimation errors for the linear Gaussian
state-space model, and by minimizing this cost function, we
obtain a closed-form solution.

The primary contribution of this article is the development
of a closed-form solution for linear Gaussian systems that ac-
counts for model uncertainty and false data injection attacks
in the measurements. We also demonstrate the performance
of the proposed method through numerical simulations. A
schematic diagram of the proposed method is illustrated in
Fig. 1.

II. PROBLEM FORMULATION

Consider a discrete-time stochastic dynamic system with
the following state-space model [19]:

xk = Ak−1xk−1 + ηk−1, (1)
zk = Ckxk + νk, (2)

where xk ∈ Rnx is the state of the dynamic system, and zk ∈
Rnz is the sensor measurement. The state transition matrix
is Ak−1 ∈ Rnx×nx , and the measurement matrix is Ck ∈
Rnz×nx . The process noise ηk−1 and the measurement noise
νk are assumed to be uncorrelated white Gaussian noise with
mean zero and covariances Qk−1 and Rk, respectively. The
initial state x0 ∼ N (x̂0|0, P

xx
0|0), ηk−1, and νk are mutually

independent.

A. Model mismatch scenario

In many applications, an accurate stochastic model of
the system is unavailable; in such cases, the system model20

24
 IE

EE
 In

te
rn

at
io

na
l C

on
fe

re
nc

e 
on

 M
ul

tis
en

so
r F

us
io

n 
an

d 
In

te
gr

at
io

n 
fo

r I
nt

el
lig

en
t S

ys
te

m
s (

M
FI

) |
 9

79
-8

-3
50

3-
68

03
-1

/2
4/

$3
1.

00
 ©

20
24

 IE
EE

 |
 D

O
I: 

10
.1

10
9/

M
FI

62
65

1.
20

24
.1

07
05

76
5

Authorized licensed use limited to: AALTO UNIVERSITY. Downloaded on October 11,2024 at 11:33:13 UTC from IEEE Xplore.  Restrictions apply. 



Process dynamics

xk = (Ak−1 +∆Ak−1)xk−1 + ηk−1
xk

Sensor

zk = Ckxk + νk
zk Wireless

channel

FDIA

yk

Risk-sensitive
filtering

p(xk | Ik)

Fig. 1. Schematic diagram of the proposed risk-sensitive estimation algorithm under false data injection attacks.

differs from the assumed model. The process dynamics with
uncertainty can be represented as [27], [29]

xk = (Ak−1 +∆Ak−1)xk−1 + ηk−1, (3)

where ∆Ak−1 is an unknown, arbitrary, and deterministic
model uncertainty. The model uncertainty in (3) is an intrin-
sic aspect of the plant dynamics, signifying that the values of
one or more process parameters deviate from their nominal
assumptions.

B. Measurement model under false data injection attacks

Refer to Fig. 1, sensors send measurements to the remotely
located estimator through the unreliable communication net-
work. The attacker may inject false data since wireless
channels are vulnerable to cyber-attacks. The measurement
equation under false data injection attacks (FDIA) can be
expressed as

yk = zk + ξkak, (4)

where yk ∈ Rnz is the measurement under FDIA, and ak ∼
N (µ, Σ) is false data attack model. The measurement model
is designed based on the Bernoulli random variable ξk ∈
{0, 1} as follows:

Pr(ξk = 1) = E[ξk] = E[ξmk ] = p,

P r(ξk = 0) = E[(1− ξk)
m] = E[1− ξk] = 1− p,

E[(ξk − p)2] = (1− p)p,

(5)

where m is any positive integer, Pr : F → [0, 1] is the
probability measure in the probability space (Ω,F , P r) with
sigma-algebra F of an event in the sample space Ω, and E
is the expectation operator.

Remark 1: For the purpose of stealthiness, the attacker
follows the Bernoulli model to manipulate the data abruptly.

III. RISK-SENSITIVE FILTERING UNDER FALSE DATA
INJECTION ATTACKS

In this section, we develop a risk-sensitive KF under the
FDIA based on the minimization of the risk-sensitive error
criterion.

A. Objective
Our aim is to find an optimal posterior estimate x̂∗

k|k
given the measurements y1:k, k ∈ {1, 2, . . .} for (3)-(4). We
consider a risk-sensitive cost function [27], [29]

Lk(x̂k|k|y1:k) =E
[
exp

( k−1∑
i=0

µ1
i (xi − x̂i|i)

⊤(xi − x̂i|i)

+ µ2
k(xk − x̂k|k)

⊤(xk − x̂k|k)
)]

,

(6)

where E[·] represent the expectation over the posterior den-
sity of xk and the statistics of ξk. The error cost function is
scaled by two time-varying risk-sensitive parameters µ1

i > 0
and µ2

k > 0, which are used for scaling the past errors and
present error, respectively. Since x̂k|k is unknown, and x̂i|i,
i = 0 : k − 1 is known and represented with x̂∗

i|i, the cost
function in (6) can be written as

Lk(x̂k|k | y1:k) = E

[
exp

( k−1∑
i=0

µ1
i e

∗⊤
i|i e

∗
i|i + µ2

ke
⊤
k|kek|k

)]
,

(7)
where e∗i|i = (xi − x̂∗

i|i), and ek|k = (xk − x̂k|k). Our
objective is to estimate the state estimate at each time step,
which minimizes (7)

x̂∗
k|k = argmin

x̂k|k
Lk(x̂k|k | y1:k). (8)

B. Bayesian framework of filtering
The Kalman filter computes the marginal posterior dis-

tribution of the state xk at each time step k provided the
measurements y1:k, that is, p(xk | y1:k). The density function
p(xk | y1:k) is constructed recursively in two steps: (i)
prediction step and (ii) update step. Using the information
p(xk−1 | y1:k−1), the predictive distribution of state xk can
be computed following the Chapman-Kolmogorov equation
[19]

p(xk | y1:k−1) =

∫
p(xk | xk−1) p(xk−1 | y1:k−1) dxk−1.

(9)
After receiving the measurement yk, the posterior distribution
of the state xk is computed using Bayes’ rule [19]

p(xk | y1:k) =
p(yk | xk) p(xk | y1:k−1)

γk
, (10)
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where the normalization constant γk is

γk =

∫
p(yk | xk) p(xk | y1:k−1)dxk.

C. Background on risk-sensitive filtering

Consider the information set available at time step k is
Ik =

{
y1:k, e1|1, . . . , ek−1|k−1

}
. The conditional posterior

information state is defined as [20, p. 373], [29]

ζk ≜ p(xk | Ik)

= exp
( k−1∑

i=0

µ1
i e

⊤
i|iei|i

)
p(xk | y1:k), ∀ k ∈ {1, 2, . . .}

(11)

where the initial posterior information state is ζ0 = p(x0) ∼
N (x̂0|0, P

xx
0|0). Next, substituting (9) and (10) into (11), we

get

ζk =
p(yk | xk)

γk

∫
p(xk | xk−1) exp(µ

1
k−1e

⊤
k−1|k−1

× ek−1|k−1) exp
( k−2∑

i=0

µ1
i e

⊤
i|iei|i

)
p(xk−1 | y1:k−1) dxk−1,

=
p(yk | xk)

γk

∫
p(xk | xk−1) exp(µ

1
k−1e

⊤
k−1|k−1

× ek−1|k−1) ζk−1 dxk−1.
(12)

Defining the predicted information state density p(xk |
Ik−1, ek−1|k−1), as follows [29]:

p(xk | Ik−1, ek−1|k−1) =

∫
p(xk | xk−1)

× exp(µ1
k−1e

⊤
k−1|k−1ek−1|k−1) ζk−1dxk−1.

(13)

Using (13), the posterior density for the information state
(12) can be written as

ζk =
p(yk | xk)

γk
p(xk | Ik−1, ek−1|k−1). (14)

The cost function (7) is re-written as

Lk(x̂k|k | y1:k) =
∫

exp
( k−1∑

i=0

µ1
i e

⊤
i|iei|i + µ2

ke
⊤
k|kek|k

)
× p(xk | y1:k) dxk.

(15)
Using (11), (15) can be written as

Lk(x̂k|k|y1:k) =
∫

exp(µ2
kek|ke

⊤
k|k) ζk dxk. (16)

In the sequel, we solve (8) using (13)-(16) to obtain risk-
sensitive estimate of the dynamical system given in (3) with
the measurement model (4) under the false data injection
attacks.

D. Risk-sensitive filtering under FDIA

In this subsection, we derive a prediction and an update
steps for the risk-sensitive filtering under FDIA. Since ζ0
follows the Gaussian distribution with mean x̂0|0 and co-
variance P xx

0|0. Consequently, ζk−1 follows the unnormalized
Gaussian distribution, represented as [27], [29]

ζk−1 =
C1√

(2π)nx |P xx
k−1|k−1|

exp
(
− 1

2
e⊤k−1|k−1

× (P xx
k−1|k−1)

−1ek−1|k−1

)
,

(17)

where C1 = exp
(∑k−2

i=0 µ1
i e

⊤
i|iei|i

)
. Substituting (17) into

(13), we get

p(xk | Ik−1, ek−1|k−1)

= C2

∫
p(xk | xk−1) exp

(
e⊤k−1|k−1(µ

1
k−1I)ek−1|k−1

)
× exp

(
− 1

2
e⊤k−1|k−1(P

xx
k−1|k−1)

−1ek−1|k−1

)
dxk−1

= C2

∫
p(xk | xk−1) exp

[
− 1

2

{
e⊤k−1|k−1(P

xx
k−1|k−1)

−1

× ek−1|k−1 + e⊤k−1|k−1(−2µ1
k−1I)ek−1|k−1

}]
dxk−1

= C2

∫
p(xk | xk−1) exp

[
− 1

2

{
e⊤k−1|k−1

(
(P xx

k−1|k−1)
−1

− 2µ1
k−1I

)
ek−1|k−1

}]
dxk−1,

(18)

where C2 =
C1√

(2π)nx |P xx
k−1|k−1|

, µ1
k−1 is a non-negative

real number such that 2µ1
k−1P

xx
k−1|k−1 < I for every k, and

I is an identity matrix. Denoting Pk−1 =
(
(P xx

k−1|k−1)
−1 −

2µ1
k−1I

)−1

, (18) can be rewritten as

p(xk | Ik−1, ek−1|k−1) =

C2

∫
p(xk | xk−1)N

(
xk−1 | x̂k−1|k−1, Pk−1

)
dxk−1.

(19)

From (19), we write

p(xk−1 | Ik−1, ek−1|k−1) = N
(
xk−1 | x̂k−1|k−1, Pk−1

)
.

(20)

The joint distribution of xk and xk−1 given Ik−1, ek−1|k−1

can be expressed as

p(xk−1, xk | Ik−1, ek−1|k−1)

= p(xk | xk−1) p(xk−1|Ik−1, ek−1|k−1)

= N (xk | Ak−1xk−1, Qk−1)N (xk−1 | x̂k−1|k−1, Pk−1)

= N

([
xk−1

xk

] ∣∣∣∣x̂′
2, P

′
2

)
,

(21)
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where

x̂′
2 =

[
x̂k−1|k−1

Ak−1x̂k−1|k−1

]
, (22)

and

P ′
2 =

[
Pk−1 Pk−1A

⊤
k−1

Ak−1Pk−1 Ak−1Pk−1A
⊤
k−1 +Qk−1

]
. (23)

We compute the marginal distribution of xk following [19,
Lemma A.3] as

p(xk | Ik−1, ek−1|k−1) = N
(
xk | x̂k|k−1, P

xx
k|k−1

)
, (24)

where

x̂k|k−1 = Ak−1x̂k−1|k−1,

P xx
k|k−1 = Ak−1Pk−1A

⊤
k−1 +Qk−1.

Next, we approximate the joint distribution of xk and yk
given Ik−1, ek−1:k−1 as follows:

p(xk, yk | Ik−1, ek−1:k−1)

= p(yk | xk) p(xk | Ik−1, ek−1:k−1)

= N (yk | Ckxk + pµ, Rk + pΣ + (1− p)pµµ⊤)

×N (xk | x̂k|k−1, P
xx
k|k−1)

= N
([

xk

yk

] ∣∣∣∣ [ x̂k|k−1

Ckx̂k|k−1 + pµ

]
,

[
P xx
k|k−1 P xy

k|k−1

P yx
k|k−1 P yy

k|k−1

])
.

(25)

Following [19, Lemma A.3], we compute the conditional
distribution of xk as follows:

p(xk | yk, Ik−1, ek−1|k−1) = p(xk | Ik)
= N (xk | x̂k|k, P

xx
k|k),

where

x̂k|k = x̂k|k−1 + P xy
k|k−1(P

yy
k|k−1)

−1(yk − ŷk|k−1), (26)

P xx
k|k = P xx

k|k−1 − P xy
k|k−1(P

yy
k|k−1)

−1(P xy
k|k−1)

⊤. (27)

To compute the posterior mean and covariance (26)-(27), we
evaluate ŷk|k−1, P yy

k|k−1, and P xy
k|k−1. To that end, we provide

the following lemma.
Lemma 1: The second-moment of

(
ξk(ak−µ)+(ξk−p)µ

)
can be written as:

E
[(
ξk(ak − µ) + (ξk − p)µ

)(
ξk(ak − µ)+

(ξk − p)µ
)⊤]

= pΣ + p(1− p)µµ⊤.
(28)

Proof: The proof is provided in Appendix A.
Theorem 1: The expected value of the measurement con-

ditioned on Ik−1, ek−1|k−1 is expressed as

ŷk|k−1 = E[yk | Ik−1, ek−1|k−1] = Ckx̂k|k−1 + pµ, (29)

the innovation covariance of yk is

P yy
k|k−1 = CkP

xx
k|k−1C

⊤
k +Rk + pΣ + p(1− p)µµ⊤, (30)

and the cross-covariance between state xk and measurement
yk is given by

P xy
k|k−1 = P xx

k|k−1C
⊤
k . (31)

Proof: The detailed proof is provided in Appendix B.

The developed risk-sensitive filter under false data in-
jection attack is presented in Algorithm 1. For the
sake of simplicity, in Algorithm 1, we introduce Θ =
{Ak, Ck, Qk, Rk, µ,Σ, µ

1
k} to represent all the required pa-

rameters at every iteration. Note that if µ1
k = 0, the

resulting algorithm becomes the Kalman filter under false
data injection attacks.

Algorithm 1 Risk sensitive Kalman filter under FDIA
1: function [x̂k|k, P

xx
k|k] = RS-KF-FD(x̂0|0, P

xx
0|0, Θ).

2: for k = 1, 2, . . . do
3: x̂k|k−1 = Ak−1x̂k−1|k−1.
4: P xx

k|k−1 = Ak−1Pk−1A
⊤
k−1 +Qk−1.

5: Compute ŷk|k−1, P yy
k|k−1, and P xy

k|k−1 using (29),
(30), and (31).

6: x̂k|k = x̂k|k−1 + P xy
k|k−1(P

yy
k|k−1)

−1(yk − ŷk|k−1).
7: P xx

k|k = P xx
k|k−1 − P xy

k|k−1(P
yy
k|k−1)

−1(P xy
k|k−1)

⊤.
8: end for
9: end function

IV. SIMULATION RESULTS

Problem 1: Let us consider a linear system whose stochas-
tic state-space model is given by [22], [29]

xk =

[
0 −0.5
1 1

]
xk−1 +

[
−6
1

]
ηk−1,

zk =
[
−10 1

]
xk + νk,

where xk ∈ R2 is the state, zk ∈ R is sensor output,
process noise ηk−1 ∼ N (0, 1) and measurement noise
νk ∼ N (0, 3.6). In this problem, the uncertainty in system
modelling is considered as ∆A = diag(0, 0.25). The false
data attack parameter is selected ak ∼ N (0.9, 50), and the
attack probability is 0.5. The filter is initialized with x0 ∼
N (02×1, P

xx
0|0), where P xx

0|0 = diag(1, 5). The simulation is
performed for 400 time steps.

In this problem, we implemented the standard Kalman
Filter (KF), the risk-sensitive Kalman Filter (RS-KF), the
Kalman Filter under false data (FD) attacks (KF-FD), and
the proposed risk-sensitive Kalman Filter under false data
attacks (RS-KF-FD) with µ1

k = 0.005. We compared the
performance of these estimation algorithms using the root-
mean-square error (RMSE) obtained from 500 Monte Carlo
(MC) runs, as shown in Fig. 2. The results indicate that the
proposed RS-KF-FD achieves the lowest RMSE.

V. CONCLUSION

In this article, we developed the risk-sensitive filtering al-
gorithm under the false data injection attacks. The developed
algorithm minimized the expectation of the accumulated
exponential quadratic estimation error. The efficacy of the
proposed algorithm was illustrated in a simulated experiment.

In future, we will extend the proposed method to address
multiplicative attacks. This will involve approximating the
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Fig. 2. The RMSE values obtained from 500 MC runs are computed by
different estimators.

false data injected measurement model using conditional
expectation, employing the generalized statistics linear re-
gression approach.

APPENDIX

Appendix A: Proof of Lemma 1

Proof: The second-moment of
(
ξk(ak−µ)+(ξk−p)µ

)
can be computed as

E
[(
ξk(ak − µ) + (ξk − p)µ

)(
ξk(ak − µ) + (ξk

− p)µ
)⊤]

= E
[
ξ2k(ak − µ)(ak − µ)⊤

]
+ E

[
ξk

× (ξk − p)(ak − µ)µ⊤]+ E
[
ξk(ξk − p)µ

× (ak − µ)⊤
]
+ E

[
(ξk − p)2µµ⊤].

Using the property of ξk and ak, the above equation becomes
(28).

Appendix B: Proof of Theorem 1

Proof: The measurement at k-th time step, yk is inde-
pendent of the past errors, e1|1, . . . , ek−1|k−1. Following (4),
we calculate the conditional expectation of the measurement

ŷk|k−1 = E[yk | Ik−1, ek−1|k−1]

= E[(Ckxk + νk + ξkak) | y1:k−1]

= Ckx̂k|k−1 + pµ.

Next, we calculate the innovation covariance of the measure-
ment as follows:

P yy
k|k−1 = E

[
(yk − ŷk|k−1)(yk − ŷk|k−1)

⊤ | Ik−1, ek−1|k−1

]
= E

[{
Ck(xk − x̂k|k−1) + νk + ξk(ak − µ) + (ξk − p)µ

}
×
{
Ck(xk − x̂k|k−1) + νk + ξk(ak − µ) + (ξk − p)

× µ

}⊤

| Ik−1, ek−1|k−1

]
.

Using Lemma 1, the above equation becomes (30). The
cross-covariance between state and false-data injected mea-
surement can be calculated as

P xy
k|k−1 = E

[
(xk − x̂k|k−1)(yk − ŷk|k−1)

⊤ | Ik−1, ek−1|k−1

]
= E

[(
xk − x̂k|k−1

)(
Ck(xk − x̂k|k−1) + νk + ξk(ak − µ)

+ (ξk − p)µ
)⊤

| Ik−1, ek−1|k−1

]
= P xx

k|k−1C
⊤
k .
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