
Automated Visualization Code Synthesis via Multi-Path Reasoning and
Feedback-Driven Optimization

Anonymous ACL submission

Abstract

Rapid advancements in Large Language Mod-001
els (LLMs) have accelerated their integration002
into automated visualization code generation003
applications. Despite advancements through004
few-shot prompting and query expansion, ex-005
isting methods remain limited in handling am-006
biguous and complex queries, thereby requir-007
ing manual intervention. To overcome these008
limitations, we propose VisPath: a Multi-Path009
Reasoning and Feedback-Driven Optimization010
Framework for Visualization Code Generation.011
VisPath handles underspecified queries through012
structured, multi-stage processing. It begins013
by reformulating the user input via Chain-014
of-Thought (CoT) prompting, which refers to015
the initial query while generating multiple ex-016
tended queries in parallel, enabling the LLM017
to capture diverse interpretations of the user018
intent. These queries then generate candidate019
visualization scripts, which are executed to pro-020
duce diverse images. By assessing the visual021
quality and correctness of each output, VisPath022
generates targeted feedback that is aggregated023
to select an optimal final result. Extensive ex-024
periments on widely-used benchmarks includ-025
ing MatPlotBench and the Qwen-Agent Code026
Interpreter Benchmark show that VisPath out-027
performs state-of-the-art methods, offering a028
more reliable solution for AI-driven visualiza-029
tion code generation.030

1 Introduction031

Data visualization has long been an essential tool032

in data analysis and scientific research, enabling033

users to uncover patterns and relationships in com-034

plex datasets (Vondrick et al., 2013; Demiralp035

et al., 2017; Unwin, 2020; Li et al., 2024a). Tra-036

ditionally, creating visualizations requires manu-037

ally writing code using libraries such as Matplotlib,038

Seaborn, or D3.js (Barrett et al., 2005; Bisong and039

Bisong, 2019; Zhu, 2013). These approaches de-040

mand programming expertise and significant effort041

Chat2Vis

VisPath (Ours)

MatPlotAgent

Query

Query Query

Expansion

Add prefix

“Use a dataframe ...”

Exploring multiple

trajectoris for query

Visual Feedbac
 Enhance visibility :

 ...

Visual Feedbac
 Enhance

visibility
 ..
 ...

*Query

*Cod
e

*Expanded

 Query

Query

Multi-Path

Agent

Synthesis

Agent

Visual

Feedback

Agent

Prompt

Builder

Q

Q

Q

EQ

EQ1

EQ2

EQ3

VF

Q

C

C1 VF1

VF2

VF3

C2

C3

Visual

Agent

Code

Agent

Self-debugging (check executability)

Code

Agent

Code

Agent

Figure 1: Overview of different approaches for visu-
alization code generation. Comparing two baseline
methods, namely Chat2VIS (Maddigan and Susnjak,
2023) and MatPlotAgent (Yang et al., 2024), with our
proposed VisPath framework.

to craft effective visual representations, which can 042

be a barrier for many users (Bresciani and Eppler, 043

2015; Saket et al., 2018; Sharif et al., 2024). As 044

datasets continue to grow in size and complexity, 045

researchers have explored ways to automate visu- 046

alization generation, aiming to make the process 047

more efficient and accessible (Wang et al., 2015; 048

Dibia and Demiralp, 2019; Qian et al., 2021). 049

In response to this challenge, Large Language 050

Models (LLMs) have emerged as a promising solu- 051

tion for simplifying visualization creation (Wang 052

et al., 2023a; Han et al., 2023; Xie et al., 2024). 053

By translating natural language instructions into 054

executable code, LLM-based systems eliminate 055

the need for extensive programming knowledge, 056

allowing users to generate visualizations more in- 057

tuitively (Xiao et al., 2023; Ge et al., 2023; Zhang 058

et al., 2024b). Recent visualization methods such 059

as ChartGPT (Tian et al., 2024) and NL4DV (Sah 060

et al., 2024) demonstrate the potential of LLMs to 061

provide interactive, conversational interfaces for 062

1

visualization. These systems enable users to create063

complex charts with minimal effort, bridging the064

gap between technical expertise and effective data065

exploration (Dibia, 2023; Kim et al., 2024).066

More recently, LLM-based visualization frame-067

works such as Chat2VIS (Maddigan and Susnjak,068

2023) and MatPlotAgent (Yang et al., 2024) have069

been introduced to improve automated visualiza-070

tion code generation. Specifically, Chat2VIS fol-071

lows a prefix-based approach, guiding LLMs to072

generate visualization code consistently; and Mat-073

PlotAgent expands the query before code genera-074

tion. However, these methods face several limita-075

tions: (1) they generate code in a single-path man-076

ner, limiting exploration of alternative solutions077

and unable to fix-out when caught in misleading078

bugs; (2) they rely on predefined structures or ex-079

amples which restrict adaptability to ambiguous080

or unconventional user queries; (3) they encapsu-081

late limitation in their inability to aggregate and082

synthesize multi-dimensional feedback. Without a083

mechanism to retrieve outputs that reflect diverse084

possibilities, they face difficulties in capturing the085

intricate details required for visualizations that are086

both functionally precise and contextually relevant.087

To address these limitations, we introduce Vis-088

Path: A Branch Exploration Framework for Visu-089

alization Code Synthesis via Multi-Path Reason-090

ing and Feedback-Driven Optimization, a novel091

approach that redefines how visualization code is092

generated, as illustrated in Figure 1. Traditional093

methods often fall short of delivering the depth and094

precision users truly need, struggle to capture the095

intricate details that make a visualization not just096

functional but meaningful. VisPath challenges this097

limitation by incorporating Multi-Path Reasoning098

and Feedback-Driven Optimization, systematically099

exploring multiple interpretative pathways to con-100

struct a more accurate, context-aware, and fully101

executable visualization.102

Rather than simply translating user input into103

code, VisPath ensures that every critical aspect,104

both explicitly stated and implicitly necessary, is105

carefully considered, creating a visualization that is106

not only correct but insightful. At its core, it gener-107

ates multiple reasoning paths that analyze the user’s108

intent from different perspectives, producing struc-109

tured blueprints that are then transformed into visu-110

alization scripts through Chain-of-Thought (CoT)111

prompting. These multiple candidates are evalu-112

ated using a Vision-Language Model (VLM) to113

assess accuracy, clarity, and alignment with the114

intended message. The results are then refined 115

through an Aggregation Module, optimizing the 116

final output for both reliability and impact. 117

Extensive experiments on benchmark datasets, 118

including MatPlotBench (Yang et al., 2024) and 119

Qwen-Agent Code Interpreter Benchmark1, demon- 120

strate that VisPath consistently outperforms state- 121

of-the-art methods across all evaluation metrics. In 122

addition, ablation studies confirm that VisPath’s 123

performance gains primarily stem from its Multi- 124

Path Reasoning mechanism and feedback-driven 125

optimization. By systematically generating and 126

evaluating multiple reasoning paths and leverag- 127

ing iterative feedback aggregation, VisPath signif- 128

icantly enhances the accuracy, robustness against 129

underspecified queries, and adaptability to diverse 130

user intents. Our investigations demonstrate its 131

ability to capture nuanced user intents, improve 132

execution reliability, and minimize errors, making 133

visualization code generation more accessible and 134

effective for domains such as business intelligence, 135

scientific research, and automated reporting. 136

2 Related Work 137

Numerous methods have been applied for Text- 138

to-Visualization (Text2Vis) generation, which has 139

significantly evolved over the years, adapting to 140

new paradigms in data visualization and natural 141

language processing (Dibia and Demiralp, 2019; 142

Wu et al., 2022; Chen et al., 2022a,b; Rashid et al., 143

2022; Zhang et al., 2024a). Early approaches such 144

as Voyager (Wongsuphasawat et al., 2015) and 145

Eviza (Setlur et al., 2016) largely relied on rule- 146

based systems, which mapped textual commands to 147

predefined chart templates or specifications through 148

handcrafted heuristics (de Araújo Lima and Diniz 149

Junqueira Barbosa, 2020). While these methods 150

demonstrated the feasibility of automatically con- 151

verting text into visualizations (Moritz et al., 2018; 152

Cui et al., 2019), they often required extensive do- 153

main knowledge and struggled with more nuanced 154

or ambiguous user requirements (Li et al., 2021; 155

Wang et al., 2023b). Inspired by developments in 156

deep learning, researchers began to incorporate neu- 157

ral networks to handle free-form natural language 158

and broaden the range of supported visualization 159

types (Liu et al., 2021; Luo et al., 2021). 160

Building on these machine learning strategies, 161

numerous studies have utilized LLMs to further en- 162

1https://github.com/QwenLM/Qwen-
Agent/blob/main/benchmark/code_interpreter/README.md

2

Conditional means with observations: Show the conditional
means, aligning each pointplot in the center of the strips by
adjusting the width allotted to each category (.8 by default)
by the number of hue levels.

❶ User Query & raw data

❺ Final Visualization

❷ Multi-Path Agent

❹ Synthesis Agent

Path 1

Feedback 1

Multi-Path reasoning

Visual Feedback

Path 2

Feedback 2

Path 3

Feedback 3

❸ Visual Feedback Agent

Generate Conditional Means:
Group the data by the species
column and calculate the
conditional mean of
for each species.

Plot Creation: Create a pointplot
using as the y-axis
and species as the x-axis.

...

sepal_length

sepal_length

Generate Conditional Means:
Group the data by the species
column and calculate the
conditional mean of
for each species.

Plot Creation: Create a pointplot
using as the y-axis
and species as the x-axis.

...

petal_length

petal_length

Generate Conditional Means:
Group the data by the species
column and calculate the
conditional mean of
for each species.

Plot Creation: Create a pointplot
using as the y-axis
and species as the x-axis.

...

sepal_width

sepal_width

…

sns.stripplot(x='species', y='sepal_width', data=iris,
jitter=0.2, color='black')

sns.pointplot(x='species', y='sepal_width', data=iris,
dodge=True, color='red', errorbar="sd", join=False)

plt.xlabel("Species")

plt.ylabel("Sepal Width (cm)")

plt.title("Sepal Width by Species with Conditional
Means")

…

...

↓ 5 sample rows from the dataset

Figure 2: Overview of the proposed VisPath framework for creating robust visualization code generation. The
framework consists of combination of Multi-Path Agent, Visual Feedback Agent, and Synthesis Agent.

hance system flexibility. Recent frameworks such163

as Chat2VIS (Maddigan and Susnjak, 2023) and164

Prompt4Vis (Li et al., 2024b) utilize few-shot learn-165

ing or query expansion to refine user queries, sub-166

sequently generating Python visualization scripts167

through instruction-based prompting. More recent168

approaches, such as MatPlotAgent (Yang et al.,169

2024) and PlotGen (Goswami et al., 2025), extend170

these frameworks by integrating a vision-language171

feedback model to iteratively optimize the final172

code based on evaluations of the rendered visu-173

alizations. The aforementioned approaches often174

struggle to effectively capture user intent in com-175

plex visualization tasks. By committing to a sin-176

gle reasoning trajectory, they may produce code177

that is syntactically correct yet semantically mis-178

aligned with user expectations, requiring extensive179

manual adjustments. This challenge is particularly180

pronounced when user input is ambiguous or un-181

derspecified, leading to an iterative cycle of prompt182

refinement and code modification, consequently183

limiting the intended efficiency of automation. To184

address these limitations, we introduce VisPath, a185

novel framework that integrates Multi-Path Rea-186

soning with feedback from VLMs to enhance visu-187

alization code generation.188

3 Methodology 189

We introduce VisPath, a framework for robust vi- 190

sualization code generation that leverages diverse 191

reasoning and visual feedback. VisPath is built 192

on three core components: (1) Multi-Path Query 193

Expansion, which generates multiple reasoning 194

paths informed by the dataset description; (2) Code 195

Generation from Expanded Queries, which synthe- 196

sizes candidate visualization scripts via Chain-of- 197

Thought (CoT) prompting while grounding them 198

in the actual data context; and (3) Feedback-Driven 199

Code Optimization, where a VLM evaluates and 200

refines the outputs to ensure generation robust vi- 201

sualization code. An overview of this process is 202

shown in Figure 2. 203

3.1 Multi-Path Generation 204

The potential for rigid interpretation is a major lim- 205

itation in visualization code generation, a single 206

query can have multiple valid representations de- 207

pending on its dataset structure. VisPath mitigates 208

this by generating multiple extended queries within 209

a single interaction. Given a user query Q and a 210

corresponding dataset description D, a Multi-Path 211

Agent is employed to expand the query into K dis- 212

3

tinct reasoning pathways:213

{R1, R2, . . . , RK} = fmpa(Q,D), (1)214

where fmpa denotes the function of the Multi-Path215

Agent implemented via an LLM. The dataset de-216

scription D plays a crucial core in shaping these217

reasoning paths by providing contextual informa-218

tion about variable types, inherent relationships,219

and the suitability of different chart types for a220

more grounded interpretation of the query.221

Each Ri serves as a detailed logical blueprint222

outlining one possible approach to fulfill the visual-223

ization request. The purpose of generating multiple224

reasoning paths is not simply to increase their quan-225

tity, but to ensure interpretive diversity. Vispath mit-226

igates the risk of depending on a single, potentially227

incorrect assumption by intentionally exploring al-228

ternative and context-aware reasoning strategies.229

This design ensures that our framework effectively230

considers a broad range of potential interpretations,231

thereby increasing the quality of reasoning and the232

likelihood of capturing the true user intent even233

when queries are ambiguous or underspecified.234

3.2 Code Generation from Reasoning Paths235

Once diverse reasoning paths are established, the236

subsequent stage involves translating each path237

into executable Python scripts. For each reason-238

ing path Ri generated in Equation 1, a dedicated239

Code Generation LLM produces the corresponding240

visualization code using Chain-of-Thought (CoT)241

prompting:242

Ci = fcode(D,Ri), (2)243

where fcode represents the code generation function.244

The dataset description D is explicitly provided to245

ground the generated code in the actual data con-246

text, ensuring that variable names, data types, and247

visualization parameters align correctly with the248

underlying data attributes. The generated code Ci249

is then executed to render a candidate visualization:250

Vi = fexec(Ci), i = 1, 2, . . . ,K, (3)251

with fexec serving as the code execution function.252

By executing the code directly, we ensure that the253

visualization accurately reflects the intended opera-254

tions without reintroducing the dataset description255

D at this stage, as the code has already been condi-256

tioned on D during its generation.257

In practice, some generated codes may not be258

executable. Rather than engaging in an explicit259

debugging loop, we record the execution status as 260

a binary executability indicator: 261

ϵi =

{
1, if Ci is executable
0, otherwise.

(4) 262

To route the outputs appropriately, we introduce: 263

Zi =

{
plot image(Vi), if ϵi = 1,

error message from Ci, if ϵi = 0.
(5) 264

The result Zi (either the rendered visualization or 265

the error message) is then provided, along with Ci 266

and the initial query Q, to the feedback model in 267

the subsequent stage. 268

3.3 Feedback-Driven Code Optimization 269

While most code generation frameworks primarily 270

focus on producing syntactically correct scripts, our 271

framework extends beyond this by incorporating an 272

additional mechanism. As final stage, VisPath syn- 273

thesizes the most robust and accurate visualization 274

code by leveraging both the executability informa- 275

tion and structured visual feedback. A VLM is 276

employed to analyze each candidate by evaluating 277

the initial query Q, the generated code Ci, and the 278

routed output Zi. This evaluation is formalized as: 279

Fi = ffeedback(Q,Ci, Zi), (6) 280

where Fi provides structured feedback on key as- 281

pects such as chart layout, the alignment between 282

the intended request and the rendered visualization 283

(or error context), and visual readability (including 284

potential improvements). To capture the complete 285

quality signal from each candidate, we pair the 286

feedback with its corresponding generated code: 287

Si = (Ci, Fi), i = 1, 2, . . . ,K. (7) 288

Leveraging the collective code-feedback pairs 289

along with the initial query Q and the dataset de- 290

scription D, an Integration Module synthesizes the 291

final, refined visualization code: 292

C∗ = fintegrate
(
Q,D, {Si}Ki=1

)
, (8) 293

where C∗ represents the optimized visualization 294

code and fintegrate denotes the function that aggre- 295

gates the strengths of each candidate code along- 296

side its corresponding feedback. This formulation 297

ensures that the final code is not only constructed 298

based on the insights extracted from the candidate 299

outputs but is also meticulously aligned with the 300

original user query and the provided dataset de- 301

scription. An algorithm for VisPath is detailed in 302

Algorithm 1 as shown below: 303

4

Algorithm 1 Algorithm for VisPath
Require: User query Q, dataset D, number of reasoning

paths K, Multi-Path Agent fmpa, Code Generation LLM
fcode, Code Execution Function fexec, Feedback Model
ffeedback, Integration Module fintegrate
// Step 1: Multi-Path Query Expansion

1: {R1, R2, . . . , RK} ← fmpa(Q,D)
// Step 2: Code Generation from Reasoning Paths

2: for i = 1 to K do
3: Ci ← fcode(D,Ri)
4: Vi ← fexec(Ci)

5: ϵi ←

{
1, if Ci executes successfully
0, otherwise

6: Zi ←

{
plot image(Vi), if ϵi = 1

error message from Ci, if ϵi = 0

7: end for
// Step 3: Feedback-Driven Code Optimization

8: for i = 1 to K do
9: Fi ← ffeedback(Q,Ci, Zi)

10: Si ← (Ci, Fi)
11: end for
12: C∗ ← fintegrate

(
Q,D, {S1, S2, . . . , SK}

)
13: return C∗

4 Experiments304

4.1 Setup305

In this section, we detail our experimental config-306

uration, including (1) experimental datasets, (2)307

model specifications, and (3) baseline methods for308

evaluating the performance of the proposed Vis-309

Path.310

4.1.1 Experimental Datasets311

We evaluate our approach on two Text-to-312

Visualization benchmarks: MatPlotBench (Yang313

et al., 2024) and Qwen-Agent Code Interpreter314

Benchmark. Specifically, MatPlotBench comprises315

100 items with ground truth images; we focus on its316

simple instruction subset for nuanced queries. In317

contrast, the Qwen-Agent Code Interpreter Bench-318

mark includes 295 records: 163 related to visu-319

alization, and evaluates Python code interpreters320

on tasks such as mathematical problem solving,321

data visualization, and file handling based on Code322

Executability and Code Correctness.323

4.1.2 Models Used324

Large Language Models (LLMs): For the325

code inference stage, we experiment with GPT-326

4o mini (Achiam et al., 2023) and Gemini 2.0327

Flash (Team et al., 2024) to generate candidate328

visualization code from the reasoning paths. Both329

models are configured with a temperature of 0.2330

to ensure precise and focused outputs, in line with331

previous work (Yang et al., 2024). To evaluate the332

generated code quality and guide the subsequent 333

optimization process, we utilize GPT-4o (Achiam 334

et al., 2023) and Gemini 2.0 Flash (Team et al., 335

2024) as our visualization feedback model, which 336

provides high-quality reference assessments. 337

Vision-Language Models (VLMs): In order to 338

assess the visual quality and correctness of the 339

rendered plots, we incorporate vision evaluation 340

models into our framework. Specifically, GPT- 341

4o (Achiam et al., 2023) is employed for detailed 342

plot evaluation in all evaluation tasks. This setup 343

ensures the thorough evaluation of both the syntac- 344

tic correctness of the code and the aesthetic quality 345

of the resulting visualizations. 346

4.1.3 Evaluation Metrics 347

In our experiments, we utilized evaluation met- 348

rics introduced by previous work to ensure consis- 349

tency and comparability. MatPlotBench (Bisong 350

and Bisong, 2019) assesses graph generation mod- 351

els using two key metrics: Plot Score, which mea- 352

sures similarity to the Ground Truth (0–100), and 353

Executable Score, which represents the percentage 354

of error-free code executions. Qwen-Agent Code In- 355

terpreter benchmark2 evaluates visualization mod- 356

els based on Visualization-Hard and Visualization- 357

Easy, measuring how well generated images align 358

with queries of different difficulty levels. Com- 359

pared to MatPlotBench, Qwen-Agent Code Inter- 360

preter benchmark assesses image alignment via a 361

code correctness metric. Previous studies showed 362

that GPT-based VLM evaluations align well with 363

human assessments (Yang et al., 2024), hence VLM 364

was used for evaluation. 365

4.1.4 Baseline Methods 366

We compare VisPath against competitive baselines: 367

(1) Zero-Shot directly generates visualization code 368

without intermediate reasoning, (2) CoT Prompting 369

uses Chain-of-Thought (CoT) prompting to articu- 370

late its reasoning, while (3) Chat2VIS (Maddigan 371

and Susnjak, 2023) employs guiding prefixes to 372

mitigate ambiguity, and (4) MatPlotAgent (Yang 373

et al., 2024) first expands the query and then refines 374

the code via a self-debugging loop with feedback. 375

Moreover, our proposed framework VisPath gen- 376

erates three reasoning paths with corresponding 377

visual feedback to refine the final output.3 For a 378

2https://github.com/QwenLM/Qwen-
Agent/blob/main/benchmark/code_interpreter/README.md

3Prompts are detailed in Appendix A.

5

Model Methods
MatPlotBench Qwen-Agent Code Interpreter benchmark

Plot Score Executable Rate (%) Visualization-Hard Visualization-Easy Avg.

GPT-4o mini

Zero-Shot 62.38 53 59.68 45.50 52.59
CoT Prompting (Wei et al., 2022) 61.95 50 57.50 40.00 48.75
Chat2VIS (Maddigan and Susnjak, 2023) 56.98 53 59.36 36.50 47.93
MatPlotAgent (Yang et al., 2024) 63.90 58 67.50 53.25 60.38
VisPath† (Ours) 66.12 60 70.68 57.23 63.96

Gemini 2.0 Flash

Zero-Shot 55.00 54 68.97 52.18 60.58
CoT Prompting (Wei et al., 2022) 53.56 61 40.00 63.89 51.95
Chat2VIS (Maddigan and Susnjak, 2023) 54.89 55 59.36 56.50 57.93
MatPlotAgent (Yang et al., 2024) 56.31 58 77.62 51.50 64.56
VisPath† (Ours) 59.37 63 80.79 57.17 68.98

Table 1: Performance comparison of various methods across different benchmarks. Zero-Shot refers to directly
generating code. CoT Prompting utilizes Chain of Thought Prompting. Visualization-Hard and Visualization-Easy
refer to the Accuracy of Code Execution Results on different subsets of the Qwen-Agent Code Interpreter benchmark.
Bold text indicates the best performance, underlined text indicates the second-best performance. † denotes our
proposed method.

fair comparison aligned with our experimental set-379

ting, MatPlotAgent is limited to three iterations,380

and uses critique-based debugging loop as well.381

4.2 Experimental Analysis382

VisPath is evaluated against four baselines: Zero383

Shot prompting, CoT prompting, Chat2VIS, and384

MatPlotAgent. The evaluation is conducted on Mat-385

PlotBench and the Qwen-Agent Code Interpreter386

benchmark using GPT-4o mini and Gemini 2.0387

Flash, as shown in Table 1.388

Zero-Shot prompting generates visualization389

code directly from natural language queries with-390

out intermediate reasoning. While computation-391

ally efficient, it often struggles to handle ambiguity392

or under-specification, resulting in misaligned or393

incomplete outputs. On MatPlotBench (GPT-4o394

mini), it achieves a Plot Score of 62.38 and an395

Executable Rate of 53%. CoT prompting further396

introduces a single reasoning step to expose in-397

termediate decisions and improve interpretability.398

However, on MatPlotBench, it slightly underper-399

forms Zero-Shot in both Plot Score and Executable400

Rate, indicating reliance on a fixed reasoning path401

may reduce adaptability to diverse input structures.402

Chat2VIS extends CoT prompting by adopting403

prefix templates to improve coherence and reduce404

ambiguity in user instructions. While this approach405

is effective for well-structured or common query406

formats, its dependence on fixed templates limits407

adaptability when processing loosely specified or408

novel queries. Such limitation is evident in its per-409

formance on MatPlotBench, where it achieves a410

Plot Score of 56.98 and an Executable Rate of 53%.411

Furthermore, MatPlotAgent incorporates query ex- 412

pansion and iterative self-debugging mechanisms 413

to enhance robustness. While effective at correct- 414

ing execution-level errors, its revisions are confined 415

to localized adjustments and do not address higher- 416

order semantic ambiguities. 417

In contrast, our proposed framework VisPath is 418

specifically designed to overcome these limitations 419

observed in prior methods by dynamically gener- 420

ating multiple reasoning paths and refining them 421

through structured visual feedback. In particular, 422

template-based approaches such as Chat2VIS of- 423

fer limited adaptability due to their reliance on 424

predefined input formats, while methods such as 425

MatPlotAgent focus on localized corrections with- 426

out addressing broader semantic ambiguity. Unlike 427

prior methods, VisPath generates diverse interpreta- 428

tions of user intent and evaluates them holistically 429

using structured vision-language feedback. This en- 430

ables more flexible handling of under-specified or 431

ambiguous inputs, resulting in semantically aligned 432

and executable visualizations. 433

Evaluated across multiple benchmark settings, 434

VisPath notably outperforms baselines, achieving 435

up to 9.14 point gains in Plot Score and a 10% point 436

increase in Executable Rate. These improvements 437

well demonstrate VisPath’s robustness in explor- 438

ing diverse reasoning paths and iteratively refine 439

outputs through structured visual feedback, effec- 440

tively reducing semantic ambiguity and improving 441

execution reliability. 442

6

Figure 3: Effect of varying the number of reasoning
paths K on performance across datasets and models.
Metrics include Plot Score, Executable Rate. The results
show that K = 3 achieves the best overall balance, with
larger K values reducing performance.

4.3 Ablation Study443

To further examine the robustness and design444

choices of VisPath, we conduct a series of abla-445

tion experiments in this section. Specifically, we446

analyze the following three aspects: (i) varying447

the number of generated reasoning paths, (ii) the448

effect of removing visual feedback during integra-449

tion, and (iii) the contribution of visual feedback450

beyond binary executability.451

4.3.1 Varying the Number of Reasoning Paths452

To investigate the contribution of reasoning path453

diversity, we conducted ablation experiments by454

varying the number of generated reasoning paths455

K. In particular, we extended the range of K from456

2 to 8 to examine the effect of increased path mul-457

tiplicity on the overall performance of VisPath, as458

shown in Figure 3.459

We observe a consistent pattern across all model460

and dataset combinations: performance improves461

as K increases from 2 to 3, confirming that lim-462

ited diversity (K = 2) often fails to capture nu-463

anced interpretations of user queries. For exam-464

ple, with GPT-4o mini on MatPlotBench, the Plot465

Score improves from 64.02 to 66.12 (+2.10), and466

the Executable Rate improves from 58% to 60%467

(+2 points). On Gemini 2.0 Flash, the Plot Score468

increases from 56.59 to 59.37 (+2.78), and the Ex-469

ecutable Rate from 56% to 61% (+5 points).470

While K = 4 achieves the highest executable471

rate on MatPlotBench with GPT-4o mini (62%),472

we further extend our analysis up to K = 8 to com-473

prehensively assess the impact of reasoning path 474

diversity. However, beyond K = 4, we observe 475

diminishing returns and even performance degrada- 476

tion, which is likely due to noisy or redundant rea- 477

soning paths. While added diversity initially aids 478

interpretation, excessive expansion burdens the in- 479

tegration process and reduces overall efficiency. 480

Among all configurations tested up to K = 8, 481

K = 3 emerges as the most balanced choice, of- 482

fering substantial performance gains in both the 483

Executable Rate and the Plot Score while avoiding 484

the inefficiencies observed at higher values of K. 485

Hence, we adopt K = 3 as the default configura- 486

tion throughout our experiments. 487

4.3.2 Robustness with a Simple Integration 488

We evaluate an alternative integration strategy that 489

simplifies the aggregation of multiple reasoning 490

paths to further validate the robustness of VisPath. 491

Model Feedback MatPlotBench Qwen-Agent

Plot Score Executable Rate (%) Avg.

GPT-4o mini (w/o) feedback 63.76 56 58.00
(w) feedback 66.12 60 63.96

Gemini 2.0 Flash (w/o) feedback 55.28 57 64.03
(w) feedback 59.37 63 68.98

Table 2: Performance comparison of VisPath with
and without visual feedback. The MatPlotBench
scores (Plot Score and Executable Rate) and the average
score from the Qwen-Agent Code Interpreter bench-
mark are shown for two LLMs.

Instead of refining each candidate visualization 492

with feedback from vision-language feedback, this 493

approach aggregates three candidate codes: each 494

derived from a distinct reasoning path, without in- 495

termediate corrections. This setup reduces compu- 496

tational overhead and execution time while preserv- 497

ing the benefits of interpretive diversity. 498

As shown in Table 2, even under this simpli- 499

fied configuration, VisPath outperforms all base- 500

line methods, confirming that Multi-Path Reason- 501

ing alone offers a strong foundation for visualiza- 502

tion code generation. While full feedback-driven 503

optimization leads to additional performance im- 504

provements, this result highlights that the primary 505

strength of VisPath lies in its capacity to explore 506

and leverage diverse reasoning trajectories. The 507

framework remains effective and adaptable, even 508

with minimal refinements, further validating impor- 509

tance of its core design. 510

7

LLM Variant Plot Score Executable Rate (%)

GPT-4o mini
(w) feedback 66.12 60
(w) binary feedback 64.82 58

Gemini 2.0 Flash
(w) feedback 59.37 63
(w) binary feedback 57.68 59

Table 3: Ablation results isolating the impact of
rendered visual feedback. Comparing the full Vis-
Path model using structured plot-based feedback with a
binary-only feedback variant. Visual feedback provides
consistent gains in both Plot Score and Executable Rate
across LLMs.

4.3.3 Distinct Contribution of Visual511

Feedback512

To assess the role of visual feedback in improv-513

ing code quality, we compare two variants of our514

framework. The first, VisPath (w/ feedback), uses515

a VLM to evaluate both rendered plots and error516

messages. The second, VisPath Execute (w/ binary517

feedback), simplifies evaluation by relying solely518

on the binary success or failure of code execution.519

Incorporating rendered visual feedback im-520

proves the Executable Rate by 2%− 4% and con-521

sistently boosts the Plot Score across both LLMs,522

as shown in Table 3. On GPT-4o mini, Plot Score523

increases from 64.82 to 66.12 (+1.30) and Exe-524

cutable Rate from 58% to 60% (+2 points). On525

Gemini 2.0 Flash, Plot Score rises from 57.68 to526

59.37 (+1.69), and Executable Rate from 59% to527

63% (+4 points). Despite the numerical gains are528

modest, the results demonstrate the unique value529

of structured visual evaluation. Visual feedback530

enables more refined and user-aligned outputs by531

capturing subtle rendering issues that may not af-532

fect executability, demonstrating its importance in533

the final synthesis stage.534

5 Discussion535

Our proposed VisPath framework substantially ad-536

vances visualization code generation by addressing537

the core weaknesses of existing methods: limited538

interpretive flexibility and insufficient refinement.539

By employing Multi-Path Reasoning, VisPath ex-540

plores diverse interpretations of user intent, which541

leads to more accurate visualizations, especially for542

ambiguous queries. Experimental results confirm543

its superiority: VisPath outperforms all baselines544

on both MatPlotBench and the Qwen-Agent Code545

Interpreter benchmark, with up to 9.14% improve-546

ment in Plot Score and 10% in Executable Rate.547

Ablation studies further validate VisPath’s design.548

First, increasing the number of reasoning paths en- 549

hances both visual quality and code executability. 550

Second, even without visual feedback, Multi-Path 551

Reasoning alone proves highly effective. Third, 552

using structured plot-based feedback, rather than 553

binary execution signals, significantly improves 554

output alignment with user intent, confirming the 555

value of our feedback-driven optimization loop. 556

The figures provided in Appendix clearly il- 557

lustrate VisPath’s robustness.4 In Case 1, it cor- 558

rectly centers conditional means using adjusted 559

strip widths, unlike other methods that misalign 560

pointplots or ignore key parameters. In Case 2, Vis- 561

Path generates a proper polar bar chart with radial 562

coordinates and legible labels, while others either 563

fail to render or produce standard rectangular plots, 564

with text often overlapping or unreadable. Case 565

3 highlights VisPath’s ability to handle composi- 566

tional visualization requests: it correctly interprets 567

the instruction to "visualize in 3 different ways" by 568

generating a multi-subplot layout that includes line, 569

scatter, and bar plots. Other approaches, by con- 570

trast, either collapsed all time series into a single 571

chaotic plot or failed to differentiate the visualiza- 572

tion modalities at all. These examples demonstrate 573

how VisPath’s Multi-Path Reasoning and visual 574

feedback lead to more precise and semantically 575

aligned visualizations than current alternatives. 576

6 Conclusion 577

In this work, we present VisPath, a framework 578

that leverages Multi-Path Reasoning and feedback- 579

driven optimization to enhance automated visual- 580

ization code generation. Unlike prior methods, our 581

approach seamlessly combines Multi-Path Reason- 582

ing with feedback-driven optimization. Accurately 583

capturing diverse user intents and refining gener- 584

ated code, VisPath achieves notable improvements 585

in both execution success and visual quality on 586

challenging benchmarks such as MatPlotBench and 587

the Qwen-Agent Code Interpreter Benchmark. By 588

prioritizing adaptability, VisPath is uniquely posi- 589

tioned to handle ambiguous user queries through a 590

combination of diverse reasoning paths and visual 591

feedback integration. Future work could explore 592

VisPath’s adaptability in more dynamic, real-world 593

scenarios, further broadening its scope and practi- 594

cal utility in complex data analysis contexts. 595

4The detailed cases are provided in Appendix B.

8

7 Limitations596

Despite its effectiveness, the current framework re-597

lies on a limited feedback mechanism focused on598

query-code and query-plot alignment. While infor-599

mative, these signals may overlook finer-grained600

elements essential to interpretability. Thus, future601

work could improve feedback depth by assessing602

individual plot components, such as readability603

and visual coherence, enabling more precise and604

refined visualization code generation. Moreover,605

while achieving strong performance, VisPath re-606

quires several rounds of agent interaction, includ-607

ing multi-path reasoning, execution, and feedback608

integration, which may introduce inefficiencies in609

certain use cases. Future work could explore ways610

to selectively identify the most promising reason-611

ing paths early in the process, reducing redundant612

computation while preserving the benefits of di-613

verse interpretation.614

References615

Josh Achiam, Steven Adler, Sandhini Agarwal, Lama616
Ahmad, Ilge Akkaya, Florencia Leoni Aleman,617
Diogo Almeida, Janko Altenschmidt, Sam Altman,618
Shyamal Anadkat, et al. 2023. Gpt-4 technical report.619
arXiv preprint arXiv:2303.08774.620

Paul Barrett, John Hunter, J Todd Miller, J-C Hsu, and621
Perry Greenfield. 2005. matplotlib–a portable python622
plotting package. In Astronomical data analysis soft-623
ware and systems XIV, volume 347, page 91.624

Ekaba Bisong and Ekaba Bisong. 2019. Matplotlib625
and seaborn. Building machine learning and deep626
learning models on google cloud platform: A com-627
prehensive guide for beginners, pages 151–165.628

Sabrina Bresciani and Martin J Eppler. 2015. The pit-629
falls of visual representations: A review and clas-630
sification of common errors made while design-631
ing and interpreting visualizations. Sage Open,632
5(4):2158244015611451.633

Qiaochu Chen, Shankara Pailoor, Celeste Barnaby,634
Abby Criswell, Chenglong Wang, Greg Durrett, and635
Işil Dillig. 2022a. Type-directed synthesis of vi-636
sualizations from natural language queries. Pro-637
ceedings of the ACM on Programming Languages,638
6(OOPSLA2):532–559.639

Yiru Chen, Ryan Li, Austin Mac, Tianbao Xie, Tao640
Yu, and Eugene Wu. 2022b. Nl2interface: Interac-641
tive visualization interface generation from natural642
language queries. arXiv preprint arXiv:2209.08834.643

Weiwei Cui, Xiaoyu Zhang, Yun Wang, He Huang, Bei644
Chen, Lei Fang, Haidong Zhang, Jian-Guan Lou,645
and Dongmei Zhang. 2019. Text-to-viz: Automatic646

generation of infographics from proportion-related 647
natural language statements. IEEE transactions on 648
visualization and computer graphics, 26(1):906–916. 649

Raul de Araújo Lima and Simone Diniz Junqueira Bar- 650
bosa. 2020. Vismaker: a question-oriented visualiza- 651
tion recommender system for data exploration. arXiv 652
e-prints, pages arXiv–2002. 653

Çağatay Demiralp, Peter J Haas, Srinivasan 654
Parthasarathy, and Tejaswini Pedapati. 2017. 655
Foresight: Recommending visual insights. arXiv 656
preprint arXiv:1707.03877. 657

Victor Dibia. 2023. Lida: A tool for automatic gener- 658
ation of grammar-agnostic visualizations and info- 659
graphics using large language models. arXiv preprint 660
arXiv:2303.02927. 661

Victor Dibia and Çağatay Demiralp. 2019. Data2vis: 662
Automatic generation of data visualizations us- 663
ing sequence-to-sequence recurrent neural networks. 664
IEEE computer graphics and applications, 39(5):33– 665
46. 666

Yan Ge, Victor Junqiu Wei, Yuanfeng Song, Ja- 667
son Chen Zhang, and Raymond Chi-Wing Wong. 668
2023. Automatic data visualization generation from 669
chinese natural language questions. arXiv preprint 670
arXiv:2309.07650. 671

Kanika Goswami, Puneet Mathur, Ryan Rossi, and 672
Franck Dernoncourt. 2025. PlotGen: Multi-Agent 673
LLM-based Scientific Data Visualization via Multi- 674
modal Feedback. Preprint, arXiv:2502.00988. 675

Yucheng Han, Chi Zhang, Xin Chen, Xu Yang, 676
Zhibin Wang, Gang Yu, Bin Fu, and Hanwang 677
Zhang. 2023. Chartllama: A multimodal llm for 678
chart understanding and generation. arXiv preprint 679
arXiv:2311.16483. 680

Jaeyoung Kim, Sihyeon Lee, Hyeon Jeon, Keon-Joo 681
Lee, Hee-Joon Bae, Bohyoung Kim, and Jinwook 682
Seo. 2024. Phenoflow: A human-llm driven visual 683
analytics system for exploring large and complex 684
stroke datasets. IEEE Transactions on Visualization 685
and Computer Graphics. 686

Guozheng Li, Xinyu Wang, Gerile Aodeng, Shunyuan 687
Zheng, Yu Zhang, Chuangxin Ou, Song Wang, and 688
Chi Harold Liu. 2024a. Visualization generation 689
with large language models: An evaluation. arXiv 690
preprint arXiv:2401.11255. 691

Haotian Li, Yong Wang, Songheng Zhang, Yangqiu 692
Song, and Huamin Qu. 2021. Kg4vis: A knowl- 693
edge graph-based approach for visualization recom- 694
mendation. IEEE Transactions on Visualization and 695
Computer Graphics, 28(1):195–205. 696

Shuaimin Li, Xuanang Chen, Yuanfeng Song, Yunze 697
Song, and Chen Zhang. 2024b. Prompt4Vis: Prompt- 698
ing Large Language Models with Example Mining 699
and Schema Filtering for Tabular Data Visualization. 700
Preprint, arXiv:2402.07909. 701

9

https://doi.org/10.48550/arXiv.2502.00988
https://doi.org/10.48550/arXiv.2502.00988
https://doi.org/10.48550/arXiv.2502.00988
https://doi.org/10.48550/arXiv.2502.00988
https://doi.org/10.48550/arXiv.2502.00988
https://doi.org/10.48550/arXiv.2402.07909
https://doi.org/10.48550/arXiv.2402.07909
https://doi.org/10.48550/arXiv.2402.07909
https://doi.org/10.48550/arXiv.2402.07909
https://doi.org/10.48550/arXiv.2402.07909

Can Liu, Yun Han, Ruike Jiang, and Xiaoru Yuan. 2021.702
Advisor: Automatic visualization answer for natural-703
language question on tabular data. In 2021 IEEE 14th704
Pacific Visualization Symposium (PacificVis), pages705
11–20. IEEE.706

Yuyu Luo, Nan Tang, Guoliang Li, Jiawei Tang,707
Chengliang Chai, and Xuedi Qin. 2021. Natural lan-708
guage to visualization by neural machine translation.709
IEEE Transactions on Visualization and Computer710
Graphics, 28(1):217–226.711

Paula Maddigan and Teo Susnjak. 2023. Chat2vis: Fine-712
tuning data visualisations using multilingual natural713
language text and pre-trained large language models.714
arXiv preprint arXiv:2303.14292.715

Dominik Moritz, Chenglong Wang, Greg L Nelson,716
Halden Lin, Adam M Smith, Bill Howe, and Jef-717
frey Heer. 2018. Formalizing visualization design718
knowledge as constraints: Actionable and extensible719
models in draco. IEEE transactions on visualization720
and computer graphics, 25(1):438–448.721

Xin Qian, Ryan A Rossi, Fan Du, Sungchul Kim, Eun-722
yee Koh, Sana Malik, Tak Yeon Lee, and Joel Chan.723
2021. Learning to recommend visualizations from724
data. In Proceedings of the 27th ACM SIGKDD con-725
ference on knowledge discovery & data mining, pages726
1359–1369.727

Md Mahinur Rashid, Hasin Kawsar Jahan, Annysha728
Huzzat, Riyasaat Ahmed Rahul, Tamim Bin Zakir,729
Farhana Meem, Md Saddam Hossain Mukta, and730
Swakkhar Shatabda. 2022. Text2chart: A multi-731
staged chart generator from natural language text.732
In Pacific-Asia Conference on Knowledge Discovery733
and Data Mining, pages 3–16. Springer.734

Subham Sah, Rishab Mitra, Arpit Narechania, Alex735
Endert, John Stasko, and Wenwen Dou. 2024. Gen-736
erating analytic specifications for data visualization737
from natural language queries using large language738
models. arXiv preprint arXiv:2408.13391.739

Bahador Saket, Alex Endert, and Çağatay Demiralp.740
2018. Task-based effectiveness of basic visualiza-741
tions. IEEE transactions on visualization and com-742
puter graphics, 25(7):2505–2512.743

Vidya Setlur, Sarah E Battersby, Melanie Tory, Rich744
Gossweiler, and Angel X Chang. 2016. Eviza: A745
natural language interface for visual analysis. In746
Proceedings of the 29th annual symposium on user747
interface software and technology, pages 365–377.748

Ather Sharif, Joo Gyeong Kim, Jessie Zijia Xu, and749
Jacob O Wobbrock. 2024. Understanding and reduc-750
ing the challenges faced by creators of accessible751
online data visualizations. In Proceedings of the 26th752
International ACM SIGACCESS Conference on Com-753
puters and Accessibility, pages 1–20.754

Gemini Team, Petko Georgiev, Ving Ian Lei, Ryan755
Burnell, Libin Bai, Anmol Gulati, Garrett Tanzer,756
Damien Vincent, Zhufeng Pan, Shibo Wang, et al.757

2024. Gemini 1.5: Unlocking multimodal under- 758
standing across millions of tokens of context. arXiv 759
preprint arXiv:2403.05530. 760

Yuan Tian, Weiwei Cui, Dazhen Deng, Xinjing Yi, Yu- 761
run Yang, Haidong Zhang, and Yingcai Wu. 2024. 762
Chartgpt: Leveraging llms to generate charts from 763
abstract natural language. IEEE Transactions on Vi- 764
sualization and Computer Graphics. 765

Antony Unwin. 2020. Why is data visualization im- 766
portant? what is important in data visualization? 767
Harvard Data Science Review, 2(1):1. 768

Carl Vondrick, Aditya Khosla, Tomasz Malisiewicz, 769
and Antonio Torralba. 2013. Hoggles: Visualizing 770
object detection features. In Proceedings of the IEEE 771
International Conference on Computer Vision, pages 772
1–8. 773

Chenglong Wang, John Thompson, and Bongshin Lee. 774
2023a. Data formulator: Ai-powered concept-driven 775
visualization authoring. IEEE Transactions on Visu- 776
alization and Computer Graphics. 777

Lei Wang, Songheng Zhang, Yun Wang, Ee-Peng Lim, 778
and Yong Wang. 2023b. Llm4vis: Explainable vi- 779
sualization recommendation using chatgpt. arXiv 780
preprint arXiv:2310.07652. 781

Lidong Wang, Guanghui Wang, and Cheryl Ann Alexan- 782
der. 2015. Big data and visualization: methods, chal- 783
lenges and technology progress. Digital Technolo- 784
gies, 1(1):33–38. 785

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten 786
Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny Zhou, 787
et al. 2022. Chain-of-thought prompting elicits rea- 788
soning in large language models. Advances in neural 789
information processing systems, 35:24824–24837. 790

Kanit Wongsuphasawat, Dominik Moritz, Anushka 791
Anand, Jock Mackinlay, Bill Howe, and Jeffrey Heer. 792
2015. Voyager: Exploratory analysis via faceted 793
browsing of visualization recommendations. IEEE 794
transactions on visualization and computer graphics, 795
22(1):649–658. 796

Chenfei Wu, Jian Liang, Lei Ji, Fan Yang, Yuejian Fang, 797
Daxin Jiang, and Nan Duan. 2022. Nüwa: Visual 798
synthesis pre-training for neural visual world creation. 799
In European conference on computer vision, pages 800
720–736. Springer. 801

Shishi Xiao, Suizi Huang, Yue Lin, Yilin Ye, and Wei 802
Zeng. 2023. Let the chart spark: Embedding seman- 803
tic context into chart with text-to-image generative 804
model. IEEE Transactions on Visualization and Com- 805
puter Graphics. 806

Yupeng Xie, Yuyu Luo, Guoliang Li, and Nan Tang. 807
2024. Haichart: Human and ai paired visualization 808
system. arXiv preprint arXiv:2406.11033. 809

10

Zhiyu Yang, Zihan Zhou, Shuo Wang, Xin Cong,810
Xu Han, Yukun Yan, Zhenghao Liu, Zhixing Tan,811
Pengyuan Liu, Dong Yu, et al. 2024. Matplota-812
gent: Method and evaluation for llm-based agen-813
tic scientific data visualization. arXiv preprint814
arXiv:2402.11453.815

Songheng Zhang, Lei Wang, Toby Jia-Jun Li, Qiaomu816
Shen, Yixin Cao, and Yong Wang. 2024a. Chartify-817
text: Automated chart generation from data-involved818
texts via llm. arXiv preprint arXiv:2410.14331.819

Zhehao Zhang, Weicheng Ma, and Soroush Vosoughi.820
2024b. Is gpt-4v (ision) all you need for automat-821
ing academic data visualization? exploring vision-822
language models’ capability in reproducing academic823
charts. In Findings of the Association for Computa-824
tional Linguistics: EMNLP 2024, pages 8271–8288.825

Nick Qi Zhu. 2013. Data visualization with D3. js826
cookbook. Packt Publishing Ltd.827

A Appendix A. Prompts Used 828

Prompt for Multi-Path Reasoning

[System Prompt] According to the user
query, expand and solidify the query into
detailed instruction on how to write python
code to fulfill the user query’s requirements.
Import the appropriate libraries. Pinpoint
the correct library functions to call and set
each parameter in every function call
accordingly.
[User Prompt] Think step by step.
Generate three distinct extended queries
based on the given query. Ensure that you
first analyze the given data description and
create queries that align with the data. If no
data description is provided, follow the
initial query as is. You must follow the
Python list format for the output. Do not
modify the detailed instructions from the
original user query. initial query: ori_query
Data description: data_description
Output format: [extended_path_1,
extended_path_2, extended_path_3]

829

Prompt for Code Generation

[System Prompt] You are an expert in data
visualization code generation. Think step
by step and write the generated code in the
format “‘python...“‘, where "..." represents
the generated code. The code must end
with ‘plt.show()‘.
[User Prompt] Think step by step. Based
on the user’s query and the provided data
description, generate Python code using
‘matplotlib.pyplot‘ and ‘seaborn‘ to create
the requested plot. Ensure that the code is
formatted as “‘...“‘, where "..." represents
the generated code.
User query: {query}
Data description: {data_description}

830

11

Prompt for Visual Feedback

[System Prompt] Given a code, a user
query, and an image of the current plot,
please determine whether the plot
accurately follows the user query. Provide
detailed instructions on how to enhance the
plot using Python code.
[User Prompt] Carefully analyze the
provided Python code, the user query, and
the plot image (if available) to assess
whether the generated plot meets the user
query requirements. If the plot image is
missing, check the error message that
occurred in the code. Compare the plot
with the user query, highlight discrepancies,
and provide clear, actionable instructions to
modify the code. Additionally, suggest
improvements for better visualization,
focusing on clarity, readability, and
alignment with the user’s objectives.
Code: {code}
User query: {ori_query}

831

Prompt for Synthesis

[System Prompt] You are an expert on
data visualization code judgement and
aggregation.
[User Prompt] Think step by step. Given
the provided user query, data description,
multiple data visualization codes generated
for the query, and feedback for each code’s
generated image. Your task is to:
1. Carefully review the user query and the
data description.
2. Examine each version of the data
visualization code along with the feedback
provided for each version.
3. Synthesize the feedbacks for each code,
user query insights, data description to
create a final version of the code.
4. Your goal is to produce a final version of
code that more effectively fulfills the user
query by integrating the best elements from
all versions and applying necessary
corrections.
User Query: {ori_query}
Data Description: {data_description}
Code for aggregation with corresponding
feedback: {code_for_aggregation}

832

Prompt for Evaluation: MatplotBench

You are an excellent judge at evaluating
visualization plots between a model
generated plot and the ground truth. You
will be giving scores on how well it
matches the ground truth plot.
The generated plot will be given to you as
the first figure. If the first figure is blank,
that means the code failed to generate a
figure. Another plot will be given to you as
the second figure, which is the desired
outcome of the user query, meaning it is the
ground truth for you to reference. Please
compare the two figures head to head and
rate them. Suppose the second figure has a
score of 100, rate the first figure on a scale
from 0 to 100. Scoring should be carried
out in the following aspect:
1. Plot correctness:
Compare closely between the generated
plot and the ground truth, the more
resemblance the generated plot has
compared to the ground truth, the higher
the score. The score should be
proportionate to the resemblance between
the two plots. In some rare occurrence, see
if the data points are generated randomly
according to the query, if so, the generated
plot may not perfectly match the ground
truth, but it is correct nonetheless.
Only rate the first figure, the second figure
is only for reference.
If the first figure is blank, that means the
code failed to generate a figure.
Give a score of 0 on the Plot correctness.
After scoring from the above aspect, please
give a final score. The final score is
preceded by the [FINAL SCORE] token.
For example [FINAL SCORE]: 40.

833

Prompt for Evaluation: Qwen-Agent Code
Interpreter benchmark

Please judge whether the image is
consistent with the [Question] below, if it is
consistent then reply "right", if not then
reply "wrong".
Question: {query}

834

12

B Appendix B. Case Study835

13

Case 1

User Query Raw Data (First 5 Rows)

Conditional means with observations: Show the
conditional means, aligning each pointplot in the center
of the strips by adjusting the width allotted to each
category (.8 by default) by the number of hue levels.

Multi-Path Reasoning
Generate Conditional Means: Group
the data by the species column and
calculate the conditional mean of
sepal_length for each species. Plot
Creation: Create a pointplot using
sepal_length as the y-axis and
species as the x-axis. Align the
pointplot in the center of the strips
by adjusting the width allotted to
each category
…

Generate Conditional Means: Group
the data by the species column and
calculate the conditional mean of
sepal_width for each species. Plot
Creation: Create a pointplot using
sepal_width as the y-axis and
species as the x-axis. Align the
pointplot in the center of the strips
by adjusting the width allotted to
each category (default width of .8
adjusted by the number of hue levels).
…

Generate Conditional Means: Group
the data by the species column and
calculate the conditional mean of
petal_length for each species.
Plot Creation: Create a pointplot
using petal_length as the y-axis and
species as the x-axis.
Align the pointplot in the center of the
strips by adjusting the width allotted
to each category
…

The Middle Generated Figures

Visual Feedback
…

Centering Point Plots: The primary
goal is to center the point plots within
each group of strips. The current code
uses dodge=True in sns.pointplot,
which is intended for use with a hue
variable to separate points within
each category. Since there's no hue
here, dodge=True isn't helping.
…

…

The current plot displays both strip
plots and point plots, which is good.
The point plots are overlaid on the
strip plots, but they are not precisely
centered within each category's
strip plot distribution. The user
specifically mentions adjusting the
width allotted to each category.
…

…

Adjust pointplot position: To align the
pointplot markers with the center of the
strip plot observations, use the dodge
parameter in sns.pointplot. The user
query specifies that the width allotted
to each category should be adjusted
by the number of hue levels, but since
there's no hue specified,
…

Final Code
…

sns.stripplot(x='species', y='sepal_width', data=iris, jitter=0.2, color='black')
sns.pointplot(x='species', y='sepal_width', data=iris, dodge=True, color='red', errorbar="sd", join=False)
plt.xlabel("Species")
plt.ylabel("Sepal Width (cm)")
plt.title("Sepal Width by Species with Conditional Means")
…

Final Figure

Zero Shot CoT Chat2VIS MatPlotAgent VisPath

Figure 4: Overview of the end-to-end process of visualizing conditional means alignment.

14

Case 2

User Query Raw Data (First 5 Rows)

Create a bar chart on a polar axis

Multi-Path Reasoning
To create a bar chart on a polar axis
using Matplotlib, we will follow these
steps: 1. Import the necessary libraries:
pandas for data manipulation and
matplotlib for plotting. 2. Load the data
from 'data.csv' using pandas. 3. Extract
the 'theta', 'radii', and 'width'
columns from the DataFrame. 4. Use
the 'bar' function from Matplotlib to
create a bar chart on a polar axis.
…

In this methodology, we will utilize
Seaborn for enhanced visualization
aesthetics. Steps: 1. Import pandas for
data handling and seaborn for plotting. 2.
Load the data from 'data.csv' into a
DataFrame. 3. Create a new column in
the DataFrame that converts 'theta' to
degrees for better readability. 4. Use
Seaborn's 'barplot' function to create
a bar chart, specifying the polar
coordinates manually
…

For this approach, we will use Plotly for
interactive visualization. Steps: 1.
Import pandas for data manipulation and
plotly.express for plotting. 2. Load the
data from 'data.csv' into a DataFrame. 3.
Prepare the data by ensuring 'theta' is in
radians and 'radii' and 'width' are
correctly formatted. 4. Use Plotly's
'px.bar_polar' function to create an
interactive polar bar chart
…

The Middle Generated Figures

Not Executable

Visual Feedback
7. **Enhancements for Clarity**:
 - Add a title to the plot using
`ax.set_title('Your Title Here')` to
provide context.
- Adjust the limits of the radial axis
if necessary using
`ax.set_ylim(min_value,
max_value)` to ensure all data
points are visible.
…

2. **Convert Data for Polar Plot**:
 - Since you are creating a polar bar
plot, you need to convert the
`theta_degrees` to radians because the
polar plot in Matplotlib uses radians.
3. **Create a Polar Plot**:
 - Instead of using `sns.barplot`,
you will need to create a polar plot
using
`plt.subplot(projection='polar')`.
…

…

4. **Fix Rendering Error by
Adjusting Plot Parameters**:
- Remove the width='width' argument
from px.bar_polar if the user did not
request it. This prevents potential
rendering errors and simplifies the
chart for basic use cases.
…

Final Code
…

Create a polar plot
fig, ax = plt.subplots(subplot_kw={'projection': 'polar'})
bars = ax.bar(theta, radii, width=width, bottom=0.0)
Customize the plot
ax.set_title('Polar Bar Chart of Radii by Theta', va='bottom')
…

Final Figure
Zero Shot CoT Chat2VIS MatPlotAgent VisPath

Figure 5: Overview of the end-to-end process of generating a polar bar chart.

15

Case 3

User Query Raw Data (First 5 Rows)

Visualize a large number of time series in 3 different
ways

Multi-Path Reasoning
1. **Methodology 1: Using Matplotlib
for Line Plots**
…

- **Step 3:** Iterate through each
column of the DataFrame and plot the
time series using
`plt.plot(df[column])`. This will create
a line plot for each time series.
 - **Step 4:** Use `plt.title('Time
Series Visualization')` to set a title for
the plot and `plt.xlabel('Time')` and
`plt.ylabel('Value')` to label the axes.
This provides context to the viewer.
…

2. **Methodology 2: Using Seaborn for
Enhanced Aesthetics**
…

 - **Step 3:** Reshape the DataFrame
using `pd.melt(df)` to convert it into a
long format suitable for Seaborn. This
allows us to plot multiple time series
easily.
 - **Step 4:** Use
`sns.lineplot(data=melted_df,
x='variable', y='value',
hue='variable')` to create a line plot
with different colors for each time series.
…

3. **Methodology 3: Using Plotly for
Interactive Visualizations**
…

- **Step 3:** Reshape the DataFrame
using `pd.melt(df)` to convert it into a
long format suitable for Plotly.
 - **Step 4:** Create an interactive
line plot using `fig = px.line(melted_df,
x='variable', y='value',
color='variable', title='Interactive
Time Series Visualization')`. This
enables users to hover over points for
more information.
…

The Middle Generated Figures

Visual Feedback
…

Create Multiple Subplots:
Instead of plotting all time series on
a single plot, create a grid of
subplots to visualize the data in
three different ways. You can use
`plt.subplots()` to create a grid layout.
…

…

Create Multiple Plots: Since the
user requested three different
visualizations, you need to create
three separate plots. …
**Modify the Code to Create
Subplots**: Use `plt.subplots()` to
create a figure with multiple subplots.
…

…

2. **Modify the Code to Include
Multiple Plots**:
- After creating the line plot, add
code to create a scatter plot using
`px.scatter()`.
- Then, create a bar plot using
`px.bar()`.
…

Final Code
…

Create subplots
fig, axs = plt.subplots(1, 3, figsize=(15, 5))
 …
Scatter Plot
axs[1].scatter(df.index, df.iloc[:, 1], label='Time Series 2', color='orange')
axs[1].set_title('Scatter Plot of Time Series 2’)
…

Final Figure
Zero Shot CoT Chat2VIS MatPlotAgent VisPath

Figure 6: Overview of the end-to-end process of visualizing time series data in three different ways.

16

	Introduction
	Related Work
	Methodology
	Multi-Path Generation
	Code Generation from Reasoning Paths
	Feedback-Driven Code Optimization

	Experiments
	Setup
	Experimental Datasets
	Models Used
	Evaluation Metrics
	Baseline Methods

	Experimental Analysis
	Ablation Study
	Varying the Number of Reasoning Paths
	Robustness with a Simple Integration
	Distinct Contribution of Visual Feedback

	Discussion
	Conclusion
	Limitations
	Appendix A. Prompts Used
	Appendix B. Case Study

