Automated Visualization Code Synthesis via Multi-Path Reasoning and
Feedback-Driven Optimization

Anonymous ACL submission

Abstract

Rapid advancements in Large Language Mod-
els (LLMs) have accelerated their integration
into automated visualization code generation
applications. Despite advancements through
few-shot prompting and query expansion, ex-
isting methods remain limited in handling am-
biguous and complex queries, thereby requir-
ing manual intervention. To overcome these
limitations, we propose VisPath: a Multi-Path
Reasoning and Feedback-Driven Optimization
Framework for Visualization Code Generation.
VisPath handles underspecified queries through
structured, multi-stage processing. It begins
by reformulating the user input via Chain-
of-Thought (CoT) prompting, which refers to
the initial query while generating multiple ex-
tended queries in parallel, enabling the LLM
to capture diverse interpretations of the user
intent. These queries then generate candidate
visualization scripts, which are executed to pro-
duce diverse images. By assessing the visual
quality and correctness of each output, VisPath
generates targeted feedback that is aggregated
to select an optimal final result. Extensive ex-
periments on widely-used benchmarks includ-
ing MatPlotBench and the Qwen-Agent Code
Interpreter Benchmark show that VisPath out-
performs state-of-the-art methods, offering a
more reliable solution for Al-driven visualiza-
tion code generation.

1 Introduction

Data visualization has long been an essential tool
in data analysis and scientific research, enabling
users to uncover patterns and relationships in com-
plex datasets (Vondrick et al., 2013; Demiralp
et al., 2017; Unwin, 2020; Li et al., 2024a). Tra-
ditionally, creating visualizations requires manu-
ally writing code using libraries such as Matplotlib,
Seaborn, or D3.js (Barrett et al., 2005; Bisong and
Bisong, 2019; Zhu, 2013). These approaches de-
mand programming expertise and significant effort

i .
+ Chat2Vis
E] *Query ﬁ &]
—~75 Prompt 5 Code N
Query Builder Agent
Add prefix
H “Use a dataframe ...”
: Visual Feedback
! MatPIOtAgent {SE:ha?]ecevT;blllty
, Query o
E] N E] c = Vlsual
ode [
Query Ex?::z;mn Agent Age"t
: Self-debugging (check executability)
i VisPath (Ours)
' & &
E] — . ——> Code —Z Vlsual — >—>
Multi-Path Synthesis
Query ‘Agont Agent _ Feedback V‘\ge“t'

Exploring multiple Vlsual Feedback
trajectoris for query . Enhance
visibility :

Figure 1: Overview of different approaches for visu-
alization code generation. Comparing two baseline
methods, namely Chat2VIS (Maddigan and Susnjak,
2023) and MatPlotAgent (Yang et al., 2024), with our
proposed VisPath framework.

to craft effective visual representations, which can
be a barrier for many users (Bresciani and Eppler,
2015; Saket et al., 2018; Sharif et al., 2024). As
datasets continue to grow in size and complexity,
researchers have explored ways to automate visu-
alization generation, aiming to make the process
more efficient and accessible (Wang et al., 2015;
Dibia and Demiralp, 2019; Qian et al., 2021).

In response to this challenge, Large Language
Models (LLMs) have emerged as a promising solu-
tion for simplifying visualization creation (Wang
et al., 2023a; Han et al., 2023; Xie et al., 2024).
By translating natural language instructions into
executable code, LLM-based systems eliminate
the need for extensive programming knowledge,
allowing users to generate visualizations more in-
tuitively (Xiao et al., 2023; Ge et al., 2023; Zhang
et al., 2024b). Recent visualization methods such
as ChartGPT (Tian et al., 2024) and NL4DV (Sah
et al., 2024) demonstrate the potential of LLMs to
provide interactive, conversational interfaces for



visualization. These systems enable users to create
complex charts with minimal effort, bridging the
gap between technical expertise and effective data
exploration (Dibia, 2023; Kim et al., 2024).

More recently, LLM-based visualization frame-
works such as Chat2VIS (Maddigan and Susnjak,
2023) and MatPlotAgent (Yang et al., 2024) have
been introduced to improve automated visualiza-
tion code generation. Specifically, Chat2VIS fol-
lows a prefix-based approach, guiding LLMs to
generate visualization code consistently; and Mat-
PlotAgent expands the query before code genera-
tion. However, these methods face several limita-
tions: (1) they generate code in a single-path man-
ner, limiting exploration of alternative solutions
and unable to fix-out when caught in misleading
bugs; (2) they rely on predefined structures or ex-
amples which restrict adaptability to ambiguous
or unconventional user queries; (3) they encapsu-
late limitation in their inability to aggregate and
synthesize multi-dimensional feedback. Without a
mechanism to retrieve outputs that reflect diverse
possibilities, they face difficulties in capturing the
intricate details required for visualizations that are
both functionally precise and contextually relevant.

To address these limitations, we introduce Vis-
Path: A Branch Exploration Framework for Visu-
alization Code Synthesis via Multi-Path Reason-
ing and Feedback-Driven Optimization, a novel
approach that redefines how visualization code is
generated, as illustrated in Figure 1. Traditional
methods often fall short of delivering the depth and
precision users truly need, struggle to capture the
intricate details that make a visualization not just
functional but meaningful. VisPath challenges this
limitation by incorporating Multi-Path Reasoning
and Feedback-Driven Optimization, systematically
exploring multiple interpretative pathways to con-
struct a more accurate, context-aware, and fully
executable visualization.

Rather than simply translating user input into
code, VisPath ensures that every critical aspect,
both explicitly stated and implicitly necessary, is
carefully considered, creating a visualization that is
not only correct but insightful. At its core, it gener-
ates multiple reasoning paths that analyze the user’s
intent from different perspectives, producing struc-
tured blueprints that are then transformed into visu-
alization scripts through Chain-of-Thought (CoT)
prompting. These multiple candidates are evalu-
ated using a Vision-Language Model (VLM) to
assess accuracy, clarity, and alignment with the

intended message. The results are then refined
through an Aggregation Module, optimizing the
final output for both reliability and impact.
Extensive experiments on benchmark datasets,
including MatPlotBench (Yang et al., 2024) and
Qwen-Agent Code Interpreter Benchmark!, demon-
strate that VisPath consistently outperforms state-
of-the-art methods across all evaluation metrics. In
addition, ablation studies confirm that VisPath’s
performance gains primarily stem from its Multi-
Path Reasoning mechanism and feedback-driven
optimization. By systematically generating and
evaluating multiple reasoning paths and leverag-
ing iterative feedback aggregation, VisPath signif-
icantly enhances the accuracy, robustness against
underspecified queries, and adaptability to diverse
user intents. Our investigations demonstrate its
ability to capture nuanced user intents, improve
execution reliability, and minimize errors, making
visualization code generation more accessible and
effective for domains such as business intelligence,
scientific research, and automated reporting.

2 Related Work

Numerous methods have been applied for Text-
to-Visualization (Text2Vis) generation, which has
significantly evolved over the years, adapting to
new paradigms in data visualization and natural
language processing (Dibia and Demiralp, 2019;
Wau et al., 2022; Chen et al., 2022a,b; Rashid et al.,
2022; Zhang et al., 2024a). Early approaches such
as Voyager (Wongsuphasawat et al., 2015) and
Eviza (Setlur et al., 2016) largely relied on rule-
based systems, which mapped textual commands to
predefined chart templates or specifications through
handcrafted heuristics (de Aratijo Lima and Diniz
Junqueira Barbosa, 2020). While these methods
demonstrated the feasibility of automatically con-
verting text into visualizations (Moritz et al., 2018;
Cui et al., 2019), they often required extensive do-
main knowledge and struggled with more nuanced
or ambiguous user requirements (Li et al., 2021;
Wang et al., 2023b). Inspired by developments in
deep learning, researchers began to incorporate neu-
ral networks to handle free-form natural language
and broaden the range of supported visualization
types (Liu et al., 2021; Luo et al., 2021).

Building on these machine learning strategies,
numerous studies have utilized LLMs to further en-

"https://github.com/QwenLM/Qwen-
Agent/blob/main/benchmark/code_interpreter/README.md



0 User Query & raw data ‘9 © Multi-Path Agent —
e e ———— —— e ———

Conditional means with observations: Show the conditional
means, aligning each pointplot in the center of the strips by
adjusting the width allotted to each category (.8 by default)
by the number of hue levels.
1 5 sample rows from the dataset
sepal_length sepal_width petal_length petal width species

5.1 35 14 0.2 setosa
49
47
46

5.0

0O Final Visualization %

;ns.stripplot(x:'species', y="sepal_width', data=iris,
jitter=0.2, color="black’)

30
32
311
36

14 02  setosa

13 Group the data
15

14

0.2
0.2
0.2

setosa

0
1
2
S setosa
4

setosa

Plot Creation: Create a pointplot
using sep_al,len?]th as the y-axis

and species as

sns.pointplot(x='species’, y="'sepal_width', data=iris,
dodge=True, color='"red’, errorbar="sd", join=False)
plt.xlabel("Species")

plt.ylabel("Sepal Width (cm)")

plt.title("Sepal Width by Species with Conditional
Means")

Conditional Means of Petal Width for Each Species

Path 1

Generate Conditional Means:

column and calculate the
conditional mean of sepal_length
for each species.

Feedback 1

Multi-Path reasoning
| 1 |
Path 2 Path 3
N NV

Generate Conditional Means: Generate Conditional Means:
Group the data by the species Group the data by the species
column and calculate the column and calculate the
conditional mean of sepal_width  conditional mean of petal_length
for each species. for each species.

N2

by the species

Plot Creation: Create a ﬁoimplot
using sepal_width as the y-axis

and species as the x-axis.

Plot Creation: Create a ﬂoimplot
using petal_length as the y-axis

the x-axis. and species as the x-axis.

| | |
© Visual Feedback Agent

Visual Feedback

Feedback 2

Feedback 3
L | ]

O Synthesis Agent

Figure 2: Overview of the proposed VisPath framework for creating robust visualization code generation. The
framework consists of combination of Multi-Path Agent, Visual Feedback Agent, and Synthesis Agent.

hance system flexibility. Recent frameworks such
as Chat2VIS (Maddigan and Susnjak, 2023) and
Prompt4Vis (Li et al., 2024b) utilize few-shot learn-
ing or query expansion to refine user queries, sub-
sequently generating Python visualization scripts
through instruction-based prompting. More recent
approaches, such as MatPlotAgent (Yang et al.,
2024) and PlotGen (Goswami et al., 2025), extend
these frameworks by integrating a vision-language
feedback model to iteratively optimize the final
code based on evaluations of the rendered visu-
alizations. The aforementioned approaches often
struggle to effectively capture user intent in com-
plex visualization tasks. By committing to a sin-
gle reasoning trajectory, they may produce code
that is syntactically correct yet semantically mis-
aligned with user expectations, requiring extensive
manual adjustments. This challenge is particularly
pronounced when user input is ambiguous or un-
derspecified, leading to an iterative cycle of prompt
refinement and code modification, consequently
limiting the intended efficiency of automation. To
address these limitations, we introduce VisPath, a
novel framework that integrates Multi-Path Rea-
soning with feedback from VLMs to enhance visu-
alization code generation.

3 Methodology

We introduce VisPath, a framework for robust vi-
sualization code generation that leverages diverse
reasoning and visual feedback. VisPath is built
on three core components: (1) Multi-Path Query
Expansion, which generates multiple reasoning
paths informed by the dataset description; (2) Code
Generation from Expanded Queries, which synthe-
sizes candidate visualization scripts via Chain-of-
Thought (CoT) prompting while grounding them
in the actual data context; and (3) Feedback-Driven
Code Optimization, where a VLM evaluates and
refines the outputs to ensure generation robust vi-
sualization code. An overview of this process is
shown in Figure 2.

3.1 Multi-Path Generation

The potential for rigid interpretation is a major lim-
itation in visualization code generation, a single
query can have multiple valid representations de-
pending on its dataset structure. VisPath mitigates
this by generating multiple extended queries within
a single interaction. Given a user query ) and a
corresponding dataset description D, a Multi-Path
Agent is employed to expand the query into K dis-



tinct reasoning pathways:

'7RK}:fmpa(QaD)v (1)

where fipa denotes the function of the Multi-Path
Agent implemented via an LLM. The dataset de-
scription D plays a crucial core in shaping these
reasoning paths by providing contextual informa-
tion about variable types, inherent relationships,
and the suitability of different chart types for a
more grounded interpretation of the query.

Each R; serves as a detailed logical blueprint
outlining one possible approach to fulfill the visual-
ization request. The purpose of generating multiple
reasoning paths is not simply to increase their quan-
tity, but to ensure interpretive diversity. Vispath mit-
igates the risk of depending on a single, potentially
incorrect assumption by intentionally exploring al-
ternative and context-aware reasoning strategies.
This design ensures that our framework effectively
considers a broad range of potential interpretations,
thereby increasing the quality of reasoning and the
likelihood of capturing the true user intent even
when queries are ambiguous or underspecified.

{R1, Ra, ..

3.2 Code Generation from Reasoning Paths

Once diverse reasoning paths are established, the
subsequent stage involves translating each path
into executable Python scripts. For each reason-
ing path R; generated in Equation 1, a dedicated
Code Generation LLM produces the corresponding
visualization code using Chain-of-Thought (CoT)
prompting:

Ci = fCOdC(DvRi)) (2)

where f.oqe represents the code generation function.
The dataset description D is explicitly provided to
ground the generated code in the actual data con-
text, ensuring that variable names, data types, and
visualization parameters align correctly with the
underlying data attributes. The generated code C;
is then executed to render a candidate visualization:

%:fexec(oi)> i:1727"'7K7 (3)

with fexec serving as the code execution function.
By executing the code directly, we ensure that the
visualization accurately reflects the intended opera-
tions without reintroducing the dataset description
D at this stage, as the code has already been condi-
tioned on D during its generation.

In practice, some generated codes may not be
executable. Rather than engaging in an explicit

debugging loop, we record the execution status as
a binary executability indicator:

1, if C} is executable
€ = . 4)
0, otherwise.
To route the outputs appropriately, we introduce:
lot i Vi ife; =1
Z — plot image(V;), 1 € (5
error message from C;, ife; = 0.

The result Z; (either the rendered visualization or
the error message) is then provided, along with C;
and the initial query @), to the feedback model in
the subsequent stage.

3.3 Feedback-Driven Code Optimization

While most code generation frameworks primarily
focus on producing syntactically correct scripts, our
framework extends beyond this by incorporating an
additional mechanism. As final stage, VisPath syn-
thesizes the most robust and accurate visualization
code by leveraging both the executability informa-
tion and structured visual feedback. A VLM is
employed to analyze each candidate by evaluating
the initial query (), the generated code C;, and the
routed output Z;. This evaluation is formalized as:

F; = freedback (@, Ciy Zi), (6)

where F; provides structured feedback on key as-
pects such as chart layout, the alignment between
the intended request and the rendered visualization
(or error context), and visual readability (including
potential improvements). To capture the complete
quality signal from each candidate, we pair the
feedback with its corresponding generated code:

S;=(Ci,Fy), i=12,....K. (]

Leveraging the collective code-feedback pairs
along with the initial query () and the dataset de-
scription D, an Integration Module synthesizes the
final, refined visualization code:

c* = fintegrate (Qa D, {Sz}zlil) ) (8)

where C* represents the optimized visualization
code and fiyegrate denotes the function that aggre-
gates the strengths of each candidate code along-
side its corresponding feedback. This formulation
ensures that the final code is not only constructed
based on the insights extracted from the candidate
outputs but is also meticulously aligned with the
original user query and the provided dataset de-
scription. An algorithm for VisPath is detailed in
Algorithm 1 as shown below:



Algorithm 1 Algorithm for VisPath

Require: User query (), dataset D, number of reasoning
paths K, Multi-Path Agent fipa, Code Generation LLM
feode, Code Execution Function fexec, Feedback Model
ffeedbacky IﬂtegratiOH Module fimegrale
// Step 1: Multi-Path Query Expansion

1: {R1, R2, ey RK} «— fmpa(Q7 D)
// Step 2: Code Generation from Reasoning Paths

2: for: =1to K do
3: C’L — fcode(D7Ri)
4: ‘/z — fexec(ci)
1, if C; executes successfully
5: €; < .
0, otherwise
6: 7 plot image(V5), 1f € =1
error message from C;, ife; =0
7: end for

// Step 3: Feedback-Driven Code Optimization
8: fori =1to K do
9: F; + freedvack(Q, Ci, Z;)
10: Sl — (Cz,Fl)
11: end for
12: C* fimegrale (Q, D7 {Sh 527 ..
13: return C*

.Sk}

4 Experiments

4.1 Setup

In this section, we detail our experimental config-
uration, including (1) experimental datasets, (2)
model specifications, and (3) baseline methods for
evaluating the performance of the proposed Vis-
Path.

4.1.1 Experimental Datasets

We evaluate our approach on two Text-to-
Visualization benchmarks: MatPlotBench (Yang
et al., 2024) and Qwen-Agent Code Interpreter
Benchmark. Specifically, MatPlotBench comprises
100 items with ground truth images; we focus on its
simple instruction subset for nuanced queries. In
contrast, the Qwen-Agent Code Interpreter Bench-
mark includes 295 records: 163 related to visu-
alization, and evaluates Python code interpreters
on tasks such as mathematical problem solving,
data visualization, and file handling based on Code
Executability and Code Correctness.

4.1.2 Models Used

Large Language Models (LLMs): For the
code inference stage, we experiment with GPT-
40 mini (Achiam et al., 2023) and Gemini 2.0
Flash (Team et al., 2024) to generate candidate
visualization code from the reasoning paths. Both
models are configured with a temperature of 0.2
to ensure precise and focused outputs, in line with
previous work (Yang et al., 2024). To evaluate the

generated code quality and guide the subsequent
optimization process, we utilize GPT-40 (Achiam
et al., 2023) and Gemini 2.0 Flash (Team et al.,
2024) as our visualization feedback model, which
provides high-quality reference assessments.

Vision-Language Models (VLMs): In order to
assess the visual quality and correctness of the
rendered plots, we incorporate vision evaluation
models into our framework. Specifically, GPT-
4o (Achiam et al., 2023) is employed for detailed
plot evaluation in all evaluation tasks. This setup
ensures the thorough evaluation of both the syntac-
tic correctness of the code and the aesthetic quality
of the resulting visualizations.

4.1.3 Evaluation Metrics

In our experiments, we utilized evaluation met-
rics introduced by previous work to ensure consis-
tency and comparability. MatPlotBench (Bisong
and Bisong, 2019) assesses graph generation mod-
els using two key metrics: Plot Score, which mea-
sures similarity to the Ground Truth (0-100), and
Executable Score, which represents the percentage
of error-free code executions. Qwen-Agent Code In-
terpreter benchmark? evaluates visualization mod-
els based on Visualization-Hard and Visualization-
Easy, measuring how well generated images align
with queries of different difficulty levels. Com-
pared to MatPlotBench, Qwen-Agent Code Inter-
preter benchmark assesses image alignment via a
code correctness metric. Previous studies showed
that GPT-based VLM evaluations align well with
human assessments (Yang et al., 2024), hence VLM
was used for evaluation.

4.1.4 Baseline Methods

We compare VisPath against competitive baselines:
(1) Zero-Shot directly generates visualization code
without intermediate reasoning, (2) CoT Prompting
uses Chain-of-Thought (CoT) prompting to articu-
late its reasoning, while (3) Chat2VIS (Maddigan
and Susnjak, 2023) employs guiding prefixes to
mitigate ambiguity, and (4) MatPlotAgent (Yang
et al., 2024) first expands the query and then refines
the code via a self-debugging loop with feedback.
Moreover, our proposed framework VisPath gen-
erates three reasoning paths with corresponding
visual feedback to refine the final output.> For a

Zhttps://github.com/QwenLM/Qwen-
Agent/blob/main/benchmark/code_interpreter/README.md
SPrompts are detailed in Appendix A.



Model Methods MatPlotBench Qwen-Agent Code Interpreter benchmark
Plot Score Executable Rate (%) Visualization-Hard Visualization-Easy Avg.
Zero-Shot 62.38 53 59.68 45.50 52.59
CoT Prompting (Wei et al., 2022) 61.95 50 57.50 40.00 48.75
GPT-40 mini Chat2VIS (Maddigan and Susnjak, 2023) 56.98 53 59.36 36.50 47.93
MatPlotAgent (Yang et al., 2024) 63.90 58 67.50 53.25 60.38
VisPath" (Ours) 66.12 60 70.68 57.23 63.96
Zero-Shot 55.00 54 68.97 52.18 60.58
CoT Prompting (Wei et al., 2022) 53.56 6l 40.00 63.89 51.95
Gemini 2.0 Flash  Chat2VIS (Maddigan and Susnjak, 2023) 54.89 55 59.36 56.50 57.93
MatPlotAgent (Yang et al., 2024) 56.31 58 77.62 51.50 64.56
VisPath" (Ours) 59.37 63 80.79 57.17 68.98

Table 1: Performance comparison of various methods across different benchmarks. Zero-Shot refers to directly
generating code. CoT Prompting utilizes Chain of Thought Prompting. Visualization-Hard and Visualization-Easy
refer to the Accuracy of Code Execution Results on different subsets of the Qwen-Agent Code Interpreter benchmark.
Bold text indicates the best performance, underlined text indicates the second-best performance. T denotes our

proposed method.

fair comparison aligned with our experimental set-
ting, MatPlotAgent is limited to three iterations,
and uses critique-based debugging loop as well.

4.2 Experimental Analysis

VisPath is evaluated against four baselines: Zero
Shot prompting, CoT prompting, Chat2VIS, and
MatPlotAgent. The evaluation is conducted on Mat-
PlotBench and the Qwen-Agent Code Interpreter
benchmark using GPT-40 mini and Gemini 2.0
Flash, as shown in Table 1.

Zero-Shot prompting generates visualization
code directly from natural language queries with-
out intermediate reasoning. While computation-
ally efficient, it often struggles to handle ambiguity
or under-specification, resulting in misaligned or
incomplete outputs. On MatPlotBench (GPT-4o
mini), it achieves a Plot Score of 62.38 and an
Executable Rate of 53%. CoT prompting further
introduces a single reasoning step to expose in-
termediate decisions and improve interpretability.
However, on MatPlotBench, it slightly underper-
forms Zero-Shot in both Plot Score and Executable
Rate, indicating reliance on a fixed reasoning path
may reduce adaptability to diverse input structures.

Chat2VIS extends CoT prompting by adopting
prefix templates to improve coherence and reduce
ambiguity in user instructions. While this approach
is effective for well-structured or common query
formats, its dependence on fixed templates limits
adaptability when processing loosely specified or
novel queries. Such limitation is evident in its per-
formance on MatPlotBench, where it achieves a
Plot Score of 56.98 and an Executable Rate of 53%.

Furthermore, MatPlotAgent incorporates query ex-
pansion and iterative self-debugging mechanisms
to enhance robustness. While effective at correct-
ing execution-level errors, its revisions are confined
to localized adjustments and do not address higher-
order semantic ambiguities.

In contrast, our proposed framework VisPath is
specifically designed to overcome these limitations
observed in prior methods by dynamically gener-
ating multiple reasoning paths and refining them
through structured visual feedback. In particular,
template-based approaches such as Chat2VIS of-
fer limited adaptability due to their reliance on
predefined input formats, while methods such as
MatPlotAgent focus on localized corrections with-
out addressing broader semantic ambiguity. Unlike
prior methods, VisPath generates diverse interpreta-
tions of user intent and evaluates them holistically
using structured vision-language feedback. This en-
ables more flexible handling of under-specified or
ambiguous inputs, resulting in semantically aligned
and executable visualizations.

Evaluated across multiple benchmark settings,
VisPath notably outperforms baselines, achieving
up to 9.14 point gains in Plot Score and a 10% point
increase in Executable Rate. These improvements
well demonstrate VisPath’s robustness in explor-
ing diverse reasoning paths and iteratively refine
outputs through structured visual feedback, effec-
tively reducing semantic ambiguity and improving
execution reliability.



Performance Comparison by Path K

MatPlotBench MatPlotBench
w/ GPT-40-mini w/ Gemini 2.0 Flash

Metrics ? Metrics
80| \o\ -0~ PlotScore 6 -0~ PlotScore
"0, Executable Rate

xecutable Ra 2
625 Executable Rate
58

..
525 o N L
500 o ¢ e
2 3 4 5 5 7 8 2 3 4 5 6 7 8
K K

Qwen-Agent Code Interpreter Benchmark Qwen-Agent Code Interpreter Benchmark
w/ GPT-40-mini w/ Gemini 2.0 Flash
70 - Metrics 80 A Metrics

-~ o -8~ Hard e S -8~ Hard

o= -~ ~ Ses| & .- ..
2 -

Figure 3: Effect of varying the number of reasoning
paths K on performance across datasets and models.
Metrics include Plot Score, Executable Rate. The results
show that K = 3 achieves the best overall balance, with
larger K values reducing performance.

4.3 Ablation Study

To further examine the robustness and design
choices of VisPath, we conduct a series of abla-
tion experiments in this section. Specifically, we
analyze the following three aspects: (i) varying
the number of generated reasoning paths, (ii) the
effect of removing visual feedback during integra-
tion, and (ii1) the contribution of visual feedback
beyond binary executability.

4.3.1 Varying the Number of Reasoning Paths

To investigate the contribution of reasoning path
diversity, we conducted ablation experiments by
varying the number of generated reasoning paths
K. In particular, we extended the range of K from
2 to 8 to examine the effect of increased path mul-
tiplicity on the overall performance of VisPath, as
shown in Figure 3.

We observe a consistent pattern across all model
and dataset combinations: performance improves
as K increases from 2 to 3, confirming that lim-
ited diversity (K = 2) often fails to capture nu-
anced interpretations of user queries. For exam-
ple, with GPT-40 mini on MatPlotBench, the Plot
Score improves from 64.02 to 66.12 (+2.10), and
the Executable Rate improves from 58% to 60%
(+2 points). On Gemini 2.0 Flash, the Plot Score
increases from 56.59 to 59.37 (+2.78), and the Ex-
ecutable Rate from 56% to 61% (+5 points).

While K = 4 achieves the highest executable
rate on MatPlotBench with GPT-40 mini (62%),
we further extend our analysis up to K = 8 to com-

prehensively assess the impact of reasoning path
diversity. However, beyond K = 4, we observe
diminishing returns and even performance degrada-
tion, which is likely due to noisy or redundant rea-
soning paths. While added diversity initially aids
interpretation, excessive expansion burdens the in-
tegration process and reduces overall efficiency.

Among all configurations tested up to K = 8§,
K = 3 emerges as the most balanced choice, of-
fering substantial performance gains in both the
Executable Rate and the Plot Score while avoiding
the inefficiencies observed at higher values of K.
Hence, we adopt K = 3 as the default configura-
tion throughout our experiments.

4.3.2 Robustness with a Simple Integration

We evaluate an alternative integration strategy that
simplifies the aggregation of multiple reasoning
paths to further validate the robustness of VisPath.

Model Feedback MatPlotBench Qwen-Agent
Plot Score Executable Rate (%) Avg.
.. (w/o) feedback 63.76 56 58.00
GPT-do mini (w) feedback 66,12 60 63.96
- (w/o) feedback 55.28 57 64.03
Gemini 20 Flash ) foedback ~ 59.37 63 68.98

Table 2: Performance comparison of VisPath with
and without visual feedback. The MatPlotBench
scores (Plot Score and Executable Rate) and the average
score from the Qwen-Agent Code Interpreter bench-
mark are shown for two LLMs.

Instead of refining each candidate visualization
with feedback from vision-language feedback, this
approach aggregates three candidate codes: each
derived from a distinct reasoning path, without in-
termediate corrections. This setup reduces compu-
tational overhead and execution time while preserv-
ing the benefits of interpretive diversity.

As shown in Table 2, even under this simpli-
fied configuration, VisPath outperforms all base-
line methods, confirming that Multi-Path Reason-
ing alone offers a strong foundation for visualiza-
tion code generation. While full feedback-driven
optimization leads to additional performance im-
provements, this result highlights that the primary
strength of VisPath lies in its capacity to explore
and leverage diverse reasoning trajectories. The
framework remains effective and adaptable, even
with minimal refinements, further validating impor-
tance of its core design.



LLM Variant Plot Score Executable Rate (%)
GPT-40 mini (w) feAedbac.k 66.12 60

(w) binary feedback 64.82 58
Gemini 2.0 Flash (w) feedback 59.37 63

(w) binary feedback 57.68 59

Table 3: Ablation results isolating the impact of
rendered visual feedback. Comparing the full Vis-
Path model using structured plot-based feedback with a
binary-only feedback variant. Visual feedback provides
consistent gains in both Plot Score and Executable Rate
across LLMs.

4.3.3 Distinct Contribution of Visual
Feedback

To assess the role of visual feedback in improv-
ing code quality, we compare two variants of our
framework. The first, VisPath (w/ feedback), uses
a VLM to evaluate both rendered plots and error
messages. The second, VisPath Execute (w/ binary
feedback), simplifies evaluation by relying solely
on the binary success or failure of code execution.

Incorporating rendered visual feedback im-
proves the Executable Rate by 2% — 4% and con-
sistently boosts the Plot Score across both LLMs,
as shown in Table 3. On GPT-40 mini, Plot Score
increases from 64.82 to 66.12 (+1.30) and Exe-
cutable Rate from 58% to 60% (+2 points). On
Gemini 2.0 Flash, Plot Score rises from 57.68 to
59.37 (+1.69), and Executable Rate from 59% to
63% (+4 points). Despite the numerical gains are
modest, the results demonstrate the unique value
of structured visual evaluation. Visual feedback
enables more refined and user-aligned outputs by
capturing subtle rendering issues that may not af-
fect executability, demonstrating its importance in
the final synthesis stage.

5 Discussion

Our proposed VisPath framework substantially ad-
vances visualization code generation by addressing
the core weaknesses of existing methods: limited
interpretive flexibility and insufficient refinement.
By employing Multi-Path Reasoning, VisPath ex-
plores diverse interpretations of user intent, which
leads to more accurate visualizations, especially for
ambiguous queries. Experimental results confirm
its superiority: VisPath outperforms all baselines
on both MatPlotBench and the Qwen-Agent Code
Interpreter benchmark, with up to 9.14% improve-
ment in Plot Score and 10% in Executable Rate.
Ablation studies further validate VisPath’s design.

First, increasing the number of reasoning paths en-
hances both visual quality and code executability.
Second, even without visual feedback, Multi-Path
Reasoning alone proves highly effective. Third,
using structured plot-based feedback, rather than
binary execution signals, significantly improves
output alignment with user intent, confirming the
value of our feedback-driven optimization loop.

The figures provided in Appendix clearly il-
lustrate VisPath’s robustness.* In Case 1, it cor-
rectly centers conditional means using adjusted
strip widths, unlike other methods that misalign
pointplots or ignore key parameters. In Case 2, Vis-
Path generates a proper polar bar chart with radial
coordinates and legible labels, while others either
fail to render or produce standard rectangular plots,
with text often overlapping or unreadable. Case
3 highlights VisPath’s ability to handle composi-
tional visualization requests: it correctly interprets
the instruction to "visualize in 3 different ways" by
generating a multi-subplot layout that includes line,
scatter, and bar plots. Other approaches, by con-
trast, either collapsed all time series into a single
chaotic plot or failed to differentiate the visualiza-
tion modalities at all. These examples demonstrate
how VisPath’s Multi-Path Reasoning and visual
feedback lead to more precise and semantically
aligned visualizations than current alternatives.

6 Conclusion

In this work, we present VisPath, a framework
that leverages Multi-Path Reasoning and feedback-
driven optimization to enhance automated visual-
ization code generation. Unlike prior methods, our
approach seamlessly combines Multi-Path Reason-
ing with feedback-driven optimization. Accurately
capturing diverse user intents and refining gener-
ated code, VisPath achieves notable improvements
in both execution success and visual quality on
challenging benchmarks such as MatPlotBench and
the Qwen-Agent Code Interpreter Benchmark. By
prioritizing adaptability, VisPath is uniquely posi-
tioned to handle ambiguous user queries through a
combination of diverse reasoning paths and visual
feedback integration. Future work could explore
VisPath’s adaptability in more dynamic, real-world
scenarios, further broadening its scope and practi-
cal utility in complex data analysis contexts.

*The detailed cases are provided in Appendix B.



7 Limitations

Despite its effectiveness, the current framework re-
lies on a limited feedback mechanism focused on
query-code and query-plot alignment. While infor-
mative, these signals may overlook finer-grained
elements essential to interpretability. Thus, future
work could improve feedback depth by assessing
individual plot components, such as readability
and visual coherence, enabling more precise and
refined visualization code generation. Moreover,
while achieving strong performance, VisPath re-
quires several rounds of agent interaction, includ-
ing multi-path reasoning, execution, and feedback
integration, which may introduce inefficiencies in
certain use cases. Future work could explore ways
to selectively identify the most promising reason-
ing paths early in the process, reducing redundant
computation while preserving the benefits of di-
verse interpretation.

References

Josh Achiam, Steven Adler, Sandhini Agarwal, Lama
Ahmad, Ilge Akkaya, Florencia Leoni Aleman,
Diogo Almeida, Janko Altenschmidt, Sam Altman,
Shyamal Anadkat, et al. 2023. Gpt-4 technical report.
arXiv preprint arXiv:2303.08774.

Paul Barrett, John Hunter, J Todd Miller, J-C Hsu, and
Perry Greenfield. 2005. matplotlib—a portable python
plotting package. In Astronomical data analysis soft-
ware and systems XIV, volume 347, page 91.

Ekaba Bisong and Ekaba Bisong. 2019. Matplotlib
and seaborn. Building machine learning and deep
learning models on google cloud platform: A com-
prehensive guide for beginners, pages 151-165.

Sabrina Bresciani and Martin J Eppler. 2015. The pit-
falls of visual representations: A review and clas-
sification of common errors made while design-
ing and interpreting visualizations. Sage Open,
5(4):2158244015611451.

Qiaochu Chen, Shankara Pailoor, Celeste Barnaby,
Abby Criswell, Chenglong Wang, Greg Durrett, and
Isil Dillig. 2022a. Type-directed synthesis of vi-
sualizations from natural language queries. Pro-
ceedings of the ACM on Programming Languages,
6(OOPSLA2):532-559.

Yiru Chen, Ryan Li, Austin Mac, Tianbao Xie, Tao
Yu, and Eugene Wu. 2022b. NI2interface: Interac-
tive visualization interface generation from natural
language queries. arXiv preprint arXiv:2209.08834.

Weiwei Cui, Xiaoyu Zhang, Yun Wang, He Huang, Bei
Chen, Lei Fang, Haidong Zhang, Jian-Guan Lou,
and Dongmei Zhang. 2019. Text-to-viz: Automatic

generation of infographics from proportion-related
natural language statements. /EEE transactions on
visualization and computer graphics, 26(1):906-916.

Raul de Aradjo Lima and Simone Diniz Junqueira Bar-
bosa. 2020. Vismaker: a question-oriented visualiza-
tion recommender system for data exploration. arXiv
e-prints, pages arXiv—2002.

Cagatay Demiralp, Peter J Haas, Srinivasan
Parthasarathy, and Tejaswini Pedapati. 2017.
Foresight: Recommending visual insights. arXiv
preprint arXiv:1707.03877.

Victor Dibia. 2023. Lida: A tool for automatic gener-
ation of grammar-agnostic visualizations and info-
graphics using large language models. arXiv preprint
arXiv:2303.02927.

Victor Dibia and Cagatay Demiralp. 2019. Data2vis:
Automatic generation of data visualizations us-
ing sequence-to-sequence recurrent neural networks.
IEEE computer graphics and applications, 39(5):33—
46.

Yan Ge, Victor Junqiu Wei, Yuanfeng Song, Ja-
son Chen Zhang, and Raymond Chi-Wing Wong.
2023. Automatic data visualization generation from
chinese natural language questions. arXiv preprint
arXiv:2309.07650.

Kanika Goswami, Puneet Mathur, Ryan Rossi, and
Franck Dernoncourt. 2025. PlotGen: Multi-Agent
LLM-based Scientific Data Visualization via Multi-
modal Feedback. Preprint, arXiv:2502.00988.

Yucheng Han, Chi Zhang, Xin Chen, Xu Yang,
Zhibin Wang, Gang Yu, Bin Fu, and Hanwang
Zhang. 2023. Chartllama: A multimodal 1lm for
chart understanding and generation. arXiv preprint
arXiv:2311.16483.

Jaeyoung Kim, Sihyeon Lee, Hyeon Jeon, Keon-Joo
Lee, Hee-Joon Bae, Bohyoung Kim, and Jinwook
Seo. 2024. Phenoflow: A human-Ilm driven visual
analytics system for exploring large and complex
stroke datasets. IEEE Transactions on Visualization
and Computer Graphics.

Guozheng Li, Xinyu Wang, Gerile Aodeng, Shunyuan
Zheng, Yu Zhang, Chuangxin Ou, Song Wang, and
Chi Harold Liu. 2024a. Visualization generation
with large language models: An evaluation. arXiv
preprint arXiv:2401.11255.

Haotian Li, Yong Wang, Songheng Zhang, Yangqiu
Song, and Huamin Qu. 2021. Kg4vis: A knowl-
edge graph-based approach for visualization recom-
mendation. IEEE Transactions on Visualization and
Computer Graphics, 28(1):195-205.

Shuaimin Li, Xuanang Chen, Yuanfeng Song, Yunze
Song, and Chen Zhang. 2024b. Prompt4Vis: Prompt-
ing Large Language Models with Example Mining
and Schema Filtering for Tabular Data Visualization.
Preprint, arXiv:2402.07909.


https://doi.org/10.48550/arXiv.2502.00988
https://doi.org/10.48550/arXiv.2502.00988
https://doi.org/10.48550/arXiv.2502.00988
https://doi.org/10.48550/arXiv.2502.00988
https://doi.org/10.48550/arXiv.2502.00988
https://doi.org/10.48550/arXiv.2402.07909
https://doi.org/10.48550/arXiv.2402.07909
https://doi.org/10.48550/arXiv.2402.07909
https://doi.org/10.48550/arXiv.2402.07909
https://doi.org/10.48550/arXiv.2402.07909

Can Liu, Yun Han, Ruike Jiang, and Xiaoru Yuan. 2021.
Advisor: Automatic visualization answer for natural-
language question on tabular data. In 2021 IEEE 14th
Pacific Visualization Symposium (PacificVis), pages
11-20. IEEE.

Yuyu Luo, Nan Tang, Guoliang Li, Jiawei Tang,
Chengliang Chai, and Xuedi Qin. 2021. Natural lan-
guage to visualization by neural machine translation.
IEEE Transactions on Visualization and Computer
Graphics, 28(1):217-226.

Paula Maddigan and Teo Susnjak. 2023. Chat2vis: Fine-
tuning data visualisations using multilingual natural
language text and pre-trained large language models.
arXiv preprint arXiv:2303.14292.

Dominik Moritz, Chenglong Wang, Greg L Nelson,
Halden Lin, Adam M Smith, Bill Howe, and Jef-
frey Heer. 2018. Formalizing visualization design
knowledge as constraints: Actionable and extensible
models in draco. IEEE transactions on visualization
and computer graphics, 25(1):438—448.

Xin Qian, Ryan A Rossi, Fan Du, Sungchul Kim, Eun-
yee Koh, Sana Malik, Tak Yeon Lee, and Joel Chan.
2021. Learning to recommend visualizations from
data. In Proceedings of the 27th ACM SIGKDD con-
ference on knowledge discovery & data mining, pages

1359-1369.

Md Mahinur Rashid, Hasin Kawsar Jahan, Annysha
Huzzat, Riyasaat Ahmed Rahul, Tamim Bin Zakir,
Farhana Meem, Md Saddam Hossain Mukta, and
Swakkhar Shatabda. 2022. Text2chart: A multi-
staged chart generator from natural language text.
In Pacific-Asia Conference on Knowledge Discovery
and Data Mining, pages 3—16. Springer.

Subham Sah, Rishab Mitra, Arpit Narechania, Alex
Endert, John Stasko, and Wenwen Dou. 2024. Gen-
erating analytic specifications for data visualization
from natural language queries using large language
models. arXiv preprint arXiv:2408.13391.

Bahador Saket, Alex Endert, and Cagatay Demiralp.
2018. Task-based effectiveness of basic visualiza-
tions. IEEE transactions on visualization and com-

puter graphics, 25(7):2505-2512.

Vidya Setlur, Sarah E Battersby, Melanie Tory, Rich
Gossweiler, and Angel X Chang. 2016. Eviza: A
natural language interface for visual analysis. In
Proceedings of the 29th annual symposium on user
interface software and technology, pages 365-377.

Ather Sharif, Joo Gyeong Kim, Jessie Zijia Xu, and
Jacob O Wobbrock. 2024. Understanding and reduc-
ing the challenges faced by creators of accessible
online data visualizations. In Proceedings of the 26th
International ACM SIGACCESS Conference on Com-
puters and Accessibility, pages 1-20.

Gemini Team, Petko Georgiev, Ving Ian Lei, Ryan
Burnell, Libin Bai, Anmol Gulati, Garrett Tanzer,
Damien Vincent, Zhufeng Pan, Shibo Wang, et al.

10

2024. Gemini 1.5: Unlocking multimodal under-
standing across millions of tokens of context. arXiv
preprint arXiv:2403.05530.

Yuan Tian, Weiwei Cui, Dazhen Deng, Xinjing Yi, Yu-
run Yang, Haidong Zhang, and Yingcai Wu. 2024.
Chartgpt: Leveraging llms to generate charts from
abstract natural language. IEEE Transactions on Vi-
sualization and Computer Graphics.

Antony Unwin. 2020. Why is data visualization im-
portant? what is important in data visualization?
Harvard Data Science Review, 2(1):1.

Carl Vondrick, Aditya Khosla, Tomasz Malisiewicz,
and Antonio Torralba. 2013. Hoggles: Visualizing
object detection features. In Proceedings of the IEEE
International Conference on Computer Vision, pages
1-8.

Chenglong Wang, John Thompson, and Bongshin Lee.
2023a. Data formulator: Ai-powered concept-driven
visualization authoring. IEEE Transactions on Visu-
alization and Computer Graphics.

Lei Wang, Songheng Zhang, Yun Wang, Ee-Peng Lim,
and Yong Wang. 2023b. Llm4vis: Explainable vi-
sualization recommendation using chatgpt. arXiv
preprint arXiv:2310.07652.

Lidong Wang, Guanghui Wang, and Cheryl Ann Alexan-
der. 2015. Big data and visualization: methods, chal-
lenges and technology progress. Digital Technolo-
gies, 1(1):33-38.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten
Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny Zhou,
et al. 2022. Chain-of-thought prompting elicits rea-
soning in large language models. Advances in neural
information processing systems, 35:24824-24837.

Kanit Wongsuphasawat, Dominik Moritz, Anushka
Anand, Jock Mackinlay, Bill Howe, and Jeffrey Heer.
2015. Voyager: Exploratory analysis via faceted
browsing of visualization recommendations. /[EEE
transactions on visualization and computer graphics,
22(1):649-658.

Chenfei Wu, Jian Liang, Lei Ji, Fan Yang, Yuejian Fang,
Daxin Jiang, and Nan Duan. 2022. Niiwa: Visual
synthesis pre-training for neural visual world creation.
In European conference on computer vision, pages
720-736. Springer.

Shishi Xiao, Suizi Huang, Yue Lin, Yilin Ye, and Wei
Zeng. 2023. Let the chart spark: Embedding seman-
tic context into chart with text-to-image generative
model. IEEE Transactions on Visualization and Com-
puter Graphics.

Yupeng Xie, Yuyu Luo, Guoliang Li, and Nan Tang.
2024. Haichart: Human and ai paired visualization
system. arXiv preprint arXiv:2406.11033.



Zhiyu Yang, Zihan Zhou, Shuo Wang, Xin Cong,
Xu Han, Yukun Yan, Zhenghao Liu, Zhixing Tan,
Pengyuan Liu, Dong Yu, et al. 2024. Matplota-
gent: Method and evaluation for llm-based agen-

tic scientific data visualization. arXiv preprint
arXiv:2402.11453.

Songheng Zhang, Lei Wang, Toby Jia-Jun Li, Qiaomu
Shen, Yixin Cao, and Yong Wang. 2024a. Chartify-
text: Automated chart generation from data-involved
texts via llm. arXiv preprint arXiv:2410.14331.

Zhehao Zhang, Weicheng Ma, and Soroush Vosoughi.
2024b. Is gpt-4v (ision) all you need for automat-
ing academic data visualization? exploring vision-
language models’ capability in reproducing academic
charts. In Findings of the Association for Computa-
tional Linguistics: EMNLP 2024, pages 8271-8288.

Nick Qi Zhu. 2013. Data visualization with D3. js
cookbook. Packt Publishing Ltd.

11

A Appendix A. Prompts Used

Prompt for Multi-Path Reasoning

[System Prompt] According to the user
query, expand and solidify the query into
detailed instruction on how to write python
code to fulfill the user query’s requirements.
Import the appropriate libraries. Pinpoint
the correct library functions to call and set
each parameter in every function call
accordingly.

[User Prompt] Think step by step.
Generate three distinct extended queries
based on the given query. Ensure that you
first analyze the given data description and
create queries that align with the data. If no
data description is provided, follow the
initial query as is. You must follow the
Python list format for the output. Do not
modify the detailed instructions from the
original user query. initial query: ori_query
Data description: data_description

Output format: [extended_path_1,
extended_path_2, extended_path_3]

Prompt for Code Generation

[System Prompt] You are an expert in data
visualization code generation. Think step
by step and write the generated code in the
format “‘python...*“‘, where "..." represents
the generated code. The code must end
with ‘plt.show()*.

[User Prompt] Think step by step. Based
on the user’s query and the provided data
description, generate Python code using
‘matplotlib.pyplot‘ and ‘seaborn‘ to create
the requested plot. Ensure that the code is
formatted as “‘...*“‘, where "..." represents
the generated code.

User query: {query}

Data description: {data_description}

113




Prompt for Visual Feedback

[System Prompt] Given a code, a user
query, and an image of the current plot,
please determine whether the plot
accurately follows the user query. Provide
detailed instructions on how to enhance the
plot using Python code.

[User Prompt] Carefully analyze the
provided Python code, the user query, and
the plot image (if available) to assess
whether the generated plot meets the user
query requirements. If the plot image is
missing, check the error message that
occurred in the code. Compare the plot
with the user query, highlight discrepancies,
and provide clear, actionable instructions to
modify the code. Additionally, suggest
improvements for better visualization,
focusing on clarity, readability, and
alignment with the user’s objectives.

Code: {code}

User query: {ori_query}

\. J

Prompt for Synthesis

[System Prompt] You are an expert on
data visualization code judgement and
aggregation.

[User Prompt] Think step by step. Given
the provided user query, data description,
multiple data visualization codes generated
for the query, and feedback for each code’s
generated image. Your task is to:

1. Carefully review the user query and the
data description.

2. Examine each version of the data
visualization code along with the feedback
provided for each version.

3. Synthesize the feedbacks for each code,
user query insights, data description to
create a final version of the code.

4. Your goal is to produce a final version of
code that more effectively fulfills the user
query by integrating the best elements from
all versions and applying necessary
corrections.

User Query: {ori_query}

Data Description: {data_description}

Code for aggregation with corresponding
feedback: {code_for_aggregation}

12

Prompt for Evaluation: MatplotBench

You are an excellent judge at evaluating
visualization plots between a model
generated plot and the ground truth. You
will be giving scores on how well it
matches the ground truth plot.

The generated plot will be given to you as
the first figure. If the first figure is blank,
that means the code failed to generate a
figure. Another plot will be given to you as
the second figure, which is the desired
outcome of the user query, meaning it is the
ground truth for you to reference. Please
compare the two figures head to head and
rate them. Suppose the second figure has a
score of 100, rate the first figure on a scale
from O to 100. Scoring should be carried
out in the following aspect:

1. Plot correctness:

Compare closely between the generated
plot and the ground truth, the more
resemblance the generated plot has
compared to the ground truth, the higher
the score. The score should be
proportionate to the resemblance between
the two plots. In some rare occurrence, see
if the data points are generated randomly
according to the query, if so, the generated
plot may not perfectly match the ground
truth, but it is correct nonetheless.

Only rate the first figure, the second figure
is only for reference.

If the first figure is blank, that means the
code failed to generate a figure.

Give a score of 0 on the Plot correctness.
After scoring from the above aspect, please
give a final score. The final score is
preceded by the [FINAL SCORE] token.
For example [FINAL SCORE]: 40.

Prompt for Evaluation: Qwen-Agent Code
Interpreter benchmark

Please judge whether the image is
consistent with the [Question] below, if it is
consistent then reply "right", if not then
reply "wrong".

Question: {query}




B Appendix B. Case Study

13



Raw Data (First 5 Rows)

User Query

Conditional means with observations: Show the
conditional means, aligning each pointplot in the center
of the strips by adjusting the width allotted to each
category (.8 by default) by the number of hue levels.

Multi-Path Reasoning

Generate Conditional Means: Group
the data by the species column and
calculate the conditional mean of
sepal_length for each species. Plot
Creation: Create a pointplot using
sepal_length as the y-axis and
species as the x-axis. Align the
pointplot in the center of the strips
by adjusting the width allotted to
each category

The Middle Generated Figures

Sepal Length vs. Species with Conditional Means

Visual Feedback

Centering Point Plots: The primary
goal is to center the point plots within
each group of strips. The current code
uses dodge=True in sns.pointplot,
which is intended for use with a hue
variable to separate points within
each category. Since there's no hue
here, dodge=True isn't helping.

Final Code

[ 5.1 35
1 49 3.0
2 47 32
2 46 2l
4 50 36

Generate Conditional Means: Group
the data by the species column and
calculate the conditional mean of
sepal_width for each species. Plot
Creation: Create a pointplot using
sepal_width as the y-axis and
species as the x-axis. Align the
pointplot in the center of the strips
by adjusting the width allotted to
each category (default width of .8
adjusted by the number of hue levels).

The current plot displays both strip
plots and point plots, which is good.
The point plots are overlaid on the
strip plots, but they are not precisely
centered within each category's
strip plot distribution. The user
specifically mentions adjusting the
width allotted to each category.

sns.stripplot(x="species', y="sepal width', data=iris, jitter=0.2, color="black")
sns.pointplot(x='species', y="sepal _width', data=iris, dodge=True, color="red', errorbar="sd", join=False)

plt.xlabel("Species")
plt.ylabel("Sepal Width (cm)")

plt.title("Sepal Width by Species with Conditional Means")

Final Figure

Zero Shot

odnarsd Wans of Sep

CoT

Chat2VIS

MatPlotAgent

sepal_length sepal_width petal_length petal_width ~species

14 02 setosa
14 02  setosa
13 02  setosa
ik 02 setosa
14 02 setosa

Generate Conditional Means: Group
the data by the species column and
calculate the conditional mean of
petal length for each species.

Plot Creation: Create a pointplot
using petal_length as the y-axis and
species as the x-axis.

Align the pointplot in the center of the
strips by adjusting the width allotted
to each category

Adjust pointplot position: To align the
pointplot markers with the center of the
strip plot observations, use the dodge
parameter in sns.pointplot. The user
query specifies that the width allotted
to each category should be adjusted
by the number of hue levels, but since
there's no hue specified,

VisPath

Conditional Means of Ptal Width for Each Species

Figure 4: Overview of the end-to-end process of visualizing conditional means alignment.

14



Raw Data (First 5 Rows)

User Query

Create a bar chart on a polar axis

Multi-Path Reasoning

To create a bar chart on a polar axis
using Matplotlib, we will follow these
steps: 1. Import the necessary libraries:
pandas for data manipulation and
matplotlib for plotting. 2. Load the data
from 'data.csv' using pandas. 3. Extract
the 'theta', 'radii', and 'width'
columns from the DataFrame. 4. Use
the 'bar' function from Matplotlib to
create a bar chart on a polar axis.

The Middle Generated Figures

Visual Feedback

7. **Enhancements for Clarity**:

- Add a title to the plot using
‘ax.set_title("Your Title Here')" to
provide context.

- Adjust the limits of the radial axis
if necessary using
“ax.set_ylim(min_value,
max_value) to ensure all data
points are visible.

Final Code

# Create a polar plot

width
0.511723
0.311652
0426659
0.628240
0.566700

theta radii
0.000000
0.314159
0628319
0.942478

1.256637

7.003673
7.427508
7.092800
5.667455
9.777853

A w N = o

In this methodology, we will utilize
Seaborn for enhanced visualization
aesthetics. Steps: 1. Import pandas for
data handling and seaborn for plotting. 2.
Load the data from 'data.csv' into a
DataFrame. 3. Create a new column in
the DataFrame that converts 'theta' to
degrees for better readability. 4. Use
Seaborn's 'barplot' function to create
a bar chart, specifying the polar
coordinates manually

Barchart o

2. **Convert Data for Polar Plot**:

- Since you are creating a polar bar
plot, you need to convert the
‘theta_degrees’ to radians because the
polar plot in Matplotlib uses radians.
3. **Create a Polar Plot**:

- Instead of using ‘sns.barplot’,

you will need to create a polar plot
using
“plt.subplot(projection="'polar')".

fig, ax = plt.subplots(subplot_kw={'projection': 'polar'})
bars = ax.bar(theta, radii, width=width, bottom=0.0)

# Customize the plot

ax.set_title('Polar Bar Chart of Radii by Theta', va='bottom'")

Final Figure

Zero Shot

Chat2VIS

Polar Bar Chartgf Width vs Theta

-
a0
o
r//fh‘“
| = Ll
‘\r mg =5 <— o
| N
/ / /l\
i
a2 o w0 at

1350

MatPlotAgent

For this approach, we will use Plotly for
interactive visualization. Steps: 1.
Import pandas for data manipulation and
plotly.express for plotting. 2. Load the
data from 'data.csv' into a DataFrame. 3.
Prepare the data by ensuring 'theta’ is in
radians and 'radii' and 'width' are
correctly formatted. 4. Use Plotly's
'px.bar_polar' function to create an
interactive polar bar chart

4. **Fix Rendering Error by
Adjusting Plot Parameters**:

- Remove the width='width' argument
from px.bar_polar if the user did not
request it. This prevents potential
rendering errors and simplifies the
chart for basic use cases.

VisPath

Polar Bar Chart of Radi by Theta
)

Figure 5: Overview of the end-to-end process of generating a polar bar chart.

15



Raw Data (First 5 Rows)

User Query

Visualize a large number of time series in 3 different

ways

Multi-Path Reasoning

1. **Methodology 1: Using Matplotlib
for Line Plots**

- **Step 3:** Iterate through each
column of the DataFrame and plot the
time series using
“plt.plot(df[column])’. This will create
a line plot for each time series.

- **Step 4:** Use “plt.title('Time
Series Visualization')' to set a title for
the plot and "plt.xlabel('Time')" and
‘plt.ylabel('"Value')" to label the axes.
This provides context to the viewer.

The Middle Generated Figures

Visual Feedback

**Create Multiple Subplots®*:
Instead of plotting all time series on
a single plot, create a grid of
subplots to visualize the data in
three different ways. You can use
‘plt.subplots()" to create a grid layout.

Final Code

# Create subplots

fig, axs = plt.subplots(1, 3, figsize=(15, 5))

# Scatter Plot

o 1 2
-0.594418 -1.499821
1409404  0.469888
0607031  0.295746
2498500
3327207

0.122476
0.089344
0277713
1222288
0905164

1.631578
3.029735

&8 w N = o

2. **Methodology 2: Using Seaborn for
Enhanced Aesthetics**

- **Step 3:** Reshape the DataFrame
using ‘pd.melt(df)’ to convert it into a
long format suitable for Seaborn. This
allows us to plot multiple time series
easily.

- **Step 4:** Use
“sns.lineplot(data=melted_df,
x='variable', y="value',
hue='variable')" to create a line plot
with different colors for each time series.

Time Series Visualization with Seaborn

[EEEERRNERE !

**Create Multiple Plots**: Since the
user requested three different
visualizations, you need to create
three separate plots. ...

**Modify the Code to Create
Subplots**: Use “plt.subplots()’ to
create a figure with multiple subplots.

axs[1].scatter(df.index, df.iloc[:, 1], label='"Time Series 2', color="orange')
axs[1].set_title('Scatter Plot of Time Series 2”)

Final Figure
Zero Shot

Chat2VIS

-1.844712
-1.492742

MatPlotAgent

3 4
0.479895
-3272114
1783222  2.551155
2751248

3.822442

3.093966
3.499925

3. **Methodology 3: Using Plotly for
Interactive Visualizations**

- **Step 3:** Reshape the DataFrame
using ‘pd.melt(df)’ to convert it into a
long format suitable for Plotly.

- **Step 4:** Create an interactive
line plot using ‘fig = px.line(melted_df,
x='variable', y="value',
color="variable', title="Interactive
Time Series Visualization')'. This
enables users to hover over points for
more information.

2. **Modify the Code to Include
Multiple Plots**:

- After creating the line plot, add
code to create a scatter plot using
“px.scatter()’.

- Then, create a bar plot using
‘px.bar()".

VisPath

Figure 6: Overview of the end-to-end process of visualizing time series data in three different ways.

16



	Introduction
	Related Work
	Methodology
	Multi-Path Generation
	Code Generation from Reasoning Paths
	Feedback-Driven Code Optimization

	Experiments
	Setup
	Experimental Datasets
	Models Used
	Evaluation Metrics
	Baseline Methods

	Experimental Analysis
	Ablation Study
	Varying the Number of Reasoning Paths
	Robustness with a Simple Integration
	Distinct Contribution of Visual Feedback


	Discussion
	Conclusion
	Limitations
	Appendix A. Prompts Used
	Appendix B. Case Study

