
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

MUONBP: FASTER MUON VIA BLOCK-PERIODIC OR-
THOGONALIZATION

Anonymous authors
Paper under double-blind review

ABSTRACT

Gradient orthogonalization is a simple strategy that shows great utility in speed-
ing up gradient descent. The Muon optimizer (Jordan et al., 2024b) combines
gradient orthogonalization with first-order momentum and achieves significant
improvement in data efficiency over Adam/AdamW for language model training.
However, when using model parallelism, gradient orthogonalization introduces
additional overhead compared to coordinate-wise optimizers (such as AdamW)
due to additional gather and scatter operations on gradient matrix shards from
different devices. This additional communication can amount to a throughput
hit of 5%-10% compared to Adam/AdamW. To remedy this, we propose Muon
with Block-Periodic Orthogonalization (MuonBP), which applies orthogonaliza-
tion independently to matrix shards on each device and periodically performs full
orthogonalization to maintain training stability at scale. We show how to ad-
just the learning rate from the baseline to MuonBP and give convergence guar-
antees for this algorithm. Crucially, our theory dictates that we use two stepsizes:
one for the blockwise orthogonalization steps, and one for the full orthogonaliza-
tion steps. Our method is simple, requires minimal hyperparameter adjustments,
and achieves competitive iteration complexity compared with the baselines Muon
and Dion while providing per-iteration throughput comparable to coordinate-wise
methods such as AdamW. When training an 8B model with eight-way tensor par-
allelism and ZeRO optimizer state sharding, MuonBP achieves 8% throughput
increase compared to Muon with no degradation in performance.

1 INTRODUCTION

First order optimization methods have been the staple in the success of deep learning in the last
decade. In particular, Adam (Kingma & Ba, 2015; Loshchilov & Hutter, 2019a) has become the
de facto standard across both industry and academia. Despite numerous attempts to improve upon
Adam’s performance, it has remained unchallenged as the optimizer of choice for training large-
scale neural networks. But this wall might be starting to crack. A recent newcomer, Muon (Jor-
dan et al., 2024b), consistently outperforms Adam on various LLM training tasks ranging from
small scale benchmarks to larger LLM training setting with up to 1T model parameters Team et al.
(2025). Muon is more data efficient than Adam, requiring fewer tokens to reach the same valida-
tion loss (Liu et al., 2025). It also enjoys a higher critical batch size, which allows for further use
of parallelism (Essential AI et al., 2025) to accelerate training. Both of these aspects are critical
in large-scale LLM pretraining, where even marginal efficiency gains can translate into substantial
computational and financial savings.

Muon orthogonalizes the update matrix for each layer before using it in a descent step, and it
can be seen as a form of steepest descent (Bernstein, 2025) or as a Non-Euclidean Trust Region
method (Kovalev, 2025). A key disadvantage of Muon, compared to Adam, is that orthogonal-
ization is not a coordinate-wise operation. Rather, it requires gathering the gradient matrix from
different devices whenever model parallelism is used. This introduces additional throughput over-
head compared to Adam (Essential AI, 2025). Although Muon is more token efficient, it is strictly
slower than Adam on a per-iteration basis under model parallelism.

The goal of this work is to bridge this throughput gap while preserving the data efficiency of Muon.
To this end, we propose Muon with Block-Periodic orthogonalization (MuonBP, Algorithm 1).

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

MuonBP block-orthogonalizes the matrix shards on each device independently and periodically
gathers the shards for a full orthogonalization. In the off-period iterations, MuonBP does not require
any additional communication, recovering the communication efficiency of Adam. However, or-
thogonalizing shards only is not enough for a competitive performance. We observe this block-only
variant (BlockMuon, (Boreiko et al., 2025)) suffers from a potentially worse convergence guaran-
tee and fails as the models scale up. Hence, we introduce periodic global orthogonalization steps.
Combined, MuonBP recovers the performance of Muon with a drastic reduction in communication
overhead. Our main contributions are as follows.

• We propose MuonBP, a variant of Muon with local orthogonalization interleaved with periodic
full orthogonalization. In the off-period iterations, MuonBP treats each tensor parallel shard in-
dependently and orthogonalizes it separately. In the on-period iterations we gather the tensors
and do a full orthogonalization. Our experiments with a period of 5 indicate that we recover the
performance of Muon with 5× reduction in the optimizer step communication volume.

• We provide a theoretical analysis of the algorithm (Theorem 2) that shows (a) the blocking period
P smoothly interpolates between the convergence rate of Muon and BlockMuon, that (b) we
should use two different learning rates in the blocking vs full iterations, and finally (c) gives us
guidance on how to scale the learning rate when using block orthogonalization.

• Empirically, we show that MuonBP converges faster than the baseline (non-blocking) Muon algo-
rithm (Jordan et al., 2024b), Dion (Ahn et al., 2025), AdamW (Kingma & Ba, 2015; Loshchilov
& Hutter, 2019b), and BlockMuon (Boreiko et al., 2025) in practical pretraining tasks in terms of
the wall-clock time. We observe that our method recovers the original Muon’s performance with
a up to 8% increase in throughput under layerwise sharding and tensor parallelism.

We briefly outline the rest of this paper. In Section 2, we provide necessary background for a steepest
descent view of Muon, which will be useful for other sections. We discuss related work and compare
our work to few others who examined orthogonalized updates in large scale distributed settings. In
Section 3, we discuss our algorithm with convergence analysis, our goal is to analyze the effect of
periodicity in the behaviour of our algorithm. Finally, in Section 4, we examine our algorithm in
billion-scale training settings and compare to other baselines in terms of accuracy and throughput.

2 BACKGROUND AND RELATED WORK

Optimizers as steepest descent. Bernstein & Newhouse (2024b) argued for viewing different opti-
mizers as steepest descent under different norms. This perspective is very useful in analyzing Muon
as it (a) clarifies what Muon is optimizing for, and (b) gives a common template to compare Muon,
its blockwise variants, and coordinate-wise methods like Adam. For example, when EMA is turned
off in Adam, it reduces to sign descent. We may observe that for any x ∈ Rd and a differentiable
function f

argmin∆x∈Rd

(
f(x) + ⟨∇f(x), x+∆x⟩+ λ

2 ∥∆x∥2∞
)
= −
∥∇f(x)∥1

λ
sign(∇f(x)), (1)

where ∥u∥∞ = maxi=1,...,d |ui|. The steepest descent view results in the additional scaling by
∥∇f(x)∥1 in the numerator. This scaling factor results in different parameter update norm every
iteration (∝ ∥∇f(x)∥1). We can instead explicitly control the parameter update norm by using the
Non-Euclidean Trust Region (NTR) formulation. This is the formulation used by Kovalev (2025):
at iterate x, NTR minimizes the first-order model of f over a norm ball {∆ :∥ ∆ ∥≤ 1/λ}, which
yields the steepest-descent direction in that norm. For ∥·∥∞ this recovers (unscaled) sign descent.
The NTR formulation also allows for elegant theoretical analysis, including incorporating algorith-
mic techniques such as momentum (Kovalev, 2025). For these reasons, we will adopt the NTR
framework as our algorithmic template in Section 3.

Muon. Changing the norm used from ∥·∥∞ to any other norm opens up a large design space of
optimization algorithms. For example, we may use different norms for different parameters in a
neural network. If the parameter X of a certain layer is a matrix of dimensions m × n, using the
operator norm ∥X∥op = supz∈Rn

∥Xz∥
∥z∥ instead gives

argmin∆X|∥∆X∥op≤
1
λ
(f(X) + ⟨∇f(X), X +∆X⟩) = − 1

λ
Orth(∇f(X)), (2)

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

where Orth(U) = (UU⊤)−
†
2U . If we use Newton-Schulz iterations (Algorithm 2) to approxi-

mately compute the orthogonalization and apply the maximization to a running momentum buffer in-
stead of the gradient directly, we obtain Muon (Jordan et al., 2024b). Bernstein & Newhouse (2024a)
argue for using layer-dependent norms depending on the expected norm for the input vs output of
each layer. In practice, the choice of norm is also motivated by empirical performance (Jordan et al.,
2024b). If we instead use the ℓ1 → ℓ2-induced norm, we obtain column normalization. That is, given
a stochastic gradient G = [G:,1 G:,2 · · · G:,n], we set ∆X = − 1

λ

[
G:,1

∥G:,1∥ · · · G:,n

∥G:,n∥

]
.

This was used for the first layer in Scion (Pethick et al., 2025) and for every layer save the last in
SCALE (Glentis et al., 2025). Glentis et al. (2025) show that this using column normalization with
momentum on the last layer allows for training transformers competitive with Adam and Muon for
up to 1B parameters scale.

The choice of norm dictates the operation to be done at every step and its structure (e.g. coordinate-
wise vs. matrix-wise). This, in turn, determines both the computational cost of the update and
whether distributed execution requires cross-device collectives.

Computational costs. For a parameter matrix of size m×n, the per-step cost of SGD with Momen-
tum is just 2mn floating point operations and 4mn FLOPs for Adam. In comparison, orthogonaliza-
tion is more expensive. Using K Newtow-Schulz iterations (Algorithm 2 in the Appendix), the total
is 2mn + 2K(2nm2 +m3) FLOPs assuming without loss of generality that m ≤ n (Jordan et al.,
2024b). Some approaches to reducing the computational cost of orthogonalization include tuning
a, b, c in Algorithm 2 to reduce the number of steps needed (Jordan et al., 2024b) or using adaptive
per-step a, b, c (Amsel et al., 2025). Note that this computational cost might be small relative to the
forward and backward passes in backpropagation. A common rule of thumb is fwd+bwd computa-
tion≈ 6NT FLOPs for a dense network with N params and input size of T tokens. For larger batch
sizes, this becomes more dominant as the optimizer step is independent of the input size.

Communication costs. Modern neural networks are trained with a combination of data and model
parallelism. Data Parallelism (DP) replicates model parameters, gradients, and optimizer states
across the communication network but passes different data batches to each DP group. The gradi-
ents are synchronized across the different devices before applying the optimizer step. While this
replicates the optimizer step computation across different DP groups, it adds no additional com-
munication cost. In contrast, model parallelism typically will shard some or all of these tensors.
Tensor Parallelism (Shoeybi et al., 2019) (TP) shards the model parameters for both storage and
computation; This sharding is done along one or more dimensions (e.g. row, column) of each ten-
sor. Pipeline Parallelism (Huang et al., 2018) (PP) also shards model parameters for both storage
and computation, but does so by dividing the layers among different PP groups. The Zero Redun-
dancy Optimizer (Rajbhandari et al., 2019) (ZeRO), Fully Sharded Data Parallelism (Zhao et al.,
2023) (FSDP), and FSDP2 (Liang et al., 2024) shard model parameters either by layer or on the
first dimension, but do that for the purpose of saving memory. Before doing the forward/backward
computation involving a certain layer, ZeRO/FSDP2 undo the sharding they apply first.

Communication cost of Muon. There are several strategies for parallelizing Muon and they deter-
mine the communication costs involved (Essential AI, 2025). If we use TP or FSDP2, we have to
do an additional all-gather across the TP/FSDP2 groups to gather the model parameters. A naive
all-gather would force us to orthogonalize the same matrix in parallel which is redundant. A better
alternative is to use two all-to-all communications to redistribute different layer tensors. This suffers
from two issues: (a) we still have to do two additional collective operations, and (b) if the number of
matrices to be orthogonalized is larger than the number of GPUs, some GPUs would sit idle. If we
use ZeRO, then the fact that the optimizer states, parameters, and gradients are already sharded lay-
erwise helps greatly: we do not need to do an all-gather across the distributed optimizer groups and
can apply orthogonalization layerwise in parallel. In this case, the only extra communication cost
we suffer from comes from all-gathering across the TP groups. For an 8B parameter LlaMa-style
transformer, this gives a throughput reduction of 8%-10%

This additional communication burden has motivated the development of Dion (Ahn et al., 2025)
and, concurrently to our work, Boreiko et al. (2025) introduce a variant of BlockMuon (Algorithm 1
with P =∞). Dion (Ahn et al., 2025) maintains a low-rank approximation of the momentum matrix
and distributes the orthogonalization process. For large enough batch sizes, Dion’s computational

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

cost is perfectly divided by the number of devices and its communication cost scales with the smaller
rank.

Other preconditioning algorithms. Many of the same computational and communication con-
straints discussed above also apply to other gradient preconditioning algorithms, e.g. Sham-
poo (Gupta et al., 2018), K-FAC (Martens & Grosse, 2015), and ASGO/One-Sided Shampoo (An
et al., 2025; Xie et al., 2025). Distributed Shampoo (Shi et al., 2023) uses blocking, intermittent
preconditioner updates, and layer-wise sharding similar to ZeRO-1/FSDP to reduce the amount of
communication.

3 ALGORITHMS AND CONVERGENCE

Our starting point is the observation that column- or row-wise normalization can be viewed as or-
thogonalization applied on a submatrix of size m × 1 or 1 × n. An intermediate method between
row-wise normalization and column-wise normalization would be orthogonalizing submatrices of
dimensions p× q each where p ≤ m and q ≤ n. This has two benefits,

• We reduce the amount of floating point operations per Newton-Schulz step from 2(2nm2 +m3)

to 2(2pq2 + q3) × mn
pq = 2(2mnq + mnq2

p ) floating point operations (assuming without loss of
generality that p ≤ q). For example, the MLP layers in LlaMa 3 405B (Grattafiori et al., 2024)
have m,n ∈ {53248, 16384}. Here, orthogonalizing submatrices with 8-way TP gives a speedup
of ≈ 2.36× for the up-projection and ≈ 9.06× for the down-projection per Newton–Schulz step
relative to full orthogonalization.

• If we use blocks corresponding to the model parallelism used, we can entirely eliminate orthogo-
nalization’s communication overhead under any regime. We discuss this in more detail below.

How blocks align with model-parallel shards. We divide each parameter, gradient, and opti-
mizer state tensor into blocks and define each of these blocks to be exactly the tensor shard that
resides on a device under the chosen model-parallelism layout. This makes the communication
pattern explicit and ensures that a “block” step never requires cross-device traffic.

• Tensor Parallelism (TP). In Megatron-style (Shoeybi et al., 2019) column-parallel linear layers, a
weight W ∈ Rm×n is split by columns across c TP ranks, so each rank holds W (j) ∈ Rm×(n/c)

and produces a local gradient shard G(j) ∈ Rm×(n/c). A block is G(j); block-orthogonalization
acts on m × (n/c) matrices and needs no gather/scatter. In row-parallel layers, W is split by
rows across r ranks, so each shard is ((m/r) × n) and the block is G(i) ∈R(m/r)×n. For hybrid
2D TP (row × column), the global W is partitioned into an r × c grid of rectangular shards
((m/r) × (n/c)). TP is often applied not just to the linear layer but also to the attention weights
as well, and the same discussion applies.

• FSDP2 (dim-0 sharding). When parameters are sharded only for memory (layer/dim-0), each
rank holds a contiguous slice along the first dimension. During the optimizer step, block denotes
this local slice; thus block-orthogonalization again requires no parameter all-gather. The same
definition applies under TP+FSDP: the block is the intersection of the TP and FSDP partitions,
i.e., a single

(
m
rrow
× n

ccol

)
shard.

In order to develop algorithms that minimize communication, we want to do block-wise operations
as much as possible and keep “global” operations to a minimum. To this end, we analyze the variant
of Muon that only does blockwise operations in Section 3.1. Our analysis shows that in the worst
case, the convergence of this variant might be much worse than full Muon. To remedy this, we
develop and analyze our block-periodic variant in Section 3.2.

3.1 BLOCK ORTHOGONALIZATION

BlockMuon (Algorithm 1 with P = ∞) applies orthogonalization to these blocks, in parallel, on
different devices (Boreiko et al., 2025). This removes the need for any added communication and
reduces the computational cost of orthogonalization. To better understand the convergence of Block-
Muon, we analyze the algorithm under the assumptions of smoothness, bounded stochastic gradient
variance, and norm equivalence characterized by ρ. We state our assumptions more clearly below.

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

Assumption 1 (Smoothness). We assume that f : Rm×n → R is L-smooth with respect to a norm
∥·∥. That is, let ∥·∥∗ be the corresponding dual norm, then for all X,Y ∈ Rm×n → R we assume
∥∇f(X)−∇f(Y )∥∗ ≤ L∥X − Y ∥.
Assumption 2 (Bounded Variance). Suppose that the stochastic gradients G(X) are (a) unbiased,

Eξ [G(X; ξ)] = ∇f(X), and (b) have bounded variance Eξ

[
∥G(X; ξ)−∇f(X)∥2

]
≤ σ2.

Assumption 3 (Norm Equivalence). The norm ∥·∥ satisfies ∥X∥ ≤ ρ∥X∥F for some ρ > 0.

As mentioned before, we will use the Non-Euclidean Trust Region (NTR) template (provided next)
to analyze both algorithms.

Mt = µMt−1 +Gt, Xt+1 = argmin
X:∥X−Xt∥≤η

⟨Mt, X −Xt⟩ , (NTR)

where Gt is a stochastic gradient with expectation ∇f(Xt). This framework was adopted for the
convergence analysis of Muon by Kovalev (2025) and the next theorem is a slight modification of
Theorem 2 in their work. The proof is also similar to (Li & Hong, 2025, Theorem 2.1).
Theorem 1. Suppose that the function f satisfies Assumptions 1 to 3 and that f is lower bounded
by f∗. Then for any η > 0 and µ ∈ [0, 1] the iterates generated by equation NTR satisfy

E [mint=0,...,T−1 ∥∇f(Xt)∥∗] ≤
f(X0)− f∗

ηT
+

3
√
L(f(X0)− f∗)

T

µ

1− µ

+
2(1− µ)ρσ

T
+

Lηµ

1− µ
+ ρσ

√
1− µ

1 + µ
+

Lη

2
.

(3)

Theorem 1 applies to Muon, since under ∥·∥ = ∥·∥op, eq. (NTR) reduces to orthogonalizing mo-
mentum. The next lemma shows that Block-Muon can also be studied in the same framework.
Lemma 1 (Dual of the Block-Spectral Norm). Let X ∈ Rm×n be partitioned into r × c blocks.
Define the block-spectral norm as B(X) = max1≤i≤r, 1≤j≤c ∥Xi,j∥op. Its dual norm is B∗(X) =∑

i,j∥Xi,j∥op,∗, where ∥ · ∥∗ is the nuclear norm.

BlockMuon is just eq. (NTR) with ∥·∥ = B(·). To compare between the convergence of Muon and
BlockMuon, we consider the simplified setting when σ = 0 and apply Theorem 1. Minimizing

Equation (3) over η and µ yields ηop,∗ =
√

2(f(X0)−f∗)
TLop

and µ = 0 and the convergence guarantee

∥∇f(Xτ )∥op,∗ ≤
√

2Lop(f(X0)−f∗)
T , where Lop is the smoothness constant of f with respect to the

operatorwnorm. Similarly, the best guarantee for BlockMuon is achieved by ηblock,∗ =
√

f(X0)−f∗
6TLB

and is B∗(∇f(X ′
τ )) ≤

√
2LB(f(X0)−f∗)

T , where τ ′ = argmint B
∗(∇f(X ′

t)) and LB is the smooth-
ness constant of f in the block norm B(·). To compare the two guarantees for BlockMuon and
Muon, we use the facts that ∥·∥op,∗ ≤ B∗(·) and LB ≤ rcLop (proved in Appendix A.1) to get

∥∇f(X ′
τ ′)∥op,∗ ≤

√
2LB(f(X0)−f∗)

T ≤
√
rc
√

2Lop(f(X0)−f∗)
T . Thus, under the same operator norm

metric, BlockMuon’s best point X ′
τ ′ has a gradient dual norm that is at most a

√
rc factor worse than

Muon’s best point Xτ in the worst case; when LB ≈ Lop (e.g., curvature well captured by blocks),
the two bounds match up to constants. Note that in the former case, we would have LB ≈ (rc)Lop

and ηop,∗
ηblock,∗

=
√

LB

Lop
=
√
rc. Whereas, in the ideal scenario when ηop,∗ ≈ ηblock,∗, the optimal

learning rate would be the same for both algorithms. Thus the optimal ratio of the learning rate of
Block-Muon and Muon is between 1 and 1/

√
rc.

The picture we see is thus clear: BlockMuon is faster on a per-step basis, as we do not need to
perform any additional communication over coordinate-wise methods, but this comes at the cost
of a worse convergence guarantee (by a factor of

√
rc in the worst case). It seems straightforward

then that we should minimize wall-clock time by choosing block sizes r and c that balance this
tradeoff. While this is theoretically plausible, in practice the block sizes are naturally a function of
network topology (i.e. FSDP or TP degrees) and changing them would add more latency and require
redistributing tensors to and from their original layouts.

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

3.2 BLOCK-PERIODIC ORTHOGONALIZATION

We instead offer another alternative to tuning block sizes that (a) has a simple implementation, and
(b) gives us a clear tunable knob that smoothly interpolates between BlockMuon and Muon. Given a
period P , Muon with Block-Periodic orthogonalization instead uses BlockMuon for P−1

P steps and
then uses full orthogonalization for one step. If P = 1 we get Muon, while if P →∞ we get Block-
Muon. Using P in between both extremes allows us to balance out the tradeoff between iteration
complexity and per-step communication cost. We state the algorithm in full below as Algorithm 1.
Note that we use two stepsizes, ηfull and ηblock, depending on whether we communicate during that
step or not. We will later show this gives a better convergence rate than just using one stepsize.

The next theorem studies the convergence of this algorithm and allows us to make the above intuition
rigorous.
Theorem 2 (Convergence of MuonBP). Suppose that f satisfies Assumption 1 with respect to both
the operator norm ∥ · ∥op with constant Lop and the block-spectral norm B(·) with constant LB,
and that Assumption 2 holds. Assume f is lower bounded by f∗ and let ∆0 = f(X0) − f∗. Fix
a period P ≥ 1, momentum µ ∈ [0, 1), and two stepsizes ηfull > 0 and ηblock > 0. Define
η̄ = ηfull

P + ηblock(P−1)
P , ηmax = max(ηfull, ηblock), and

A = max{ηfull
√
Lop, ηblock

√
LB}, Q =

Lopη
2
full

2P
+

LBη
2
block(P − 1)

2P
,

R =
2µ

1− µ

(
Lop ηfull max{ηblock

√
rc, ηfull}

P
+

LB ηblock max{ηfull, ηblock}(P − 1)

P

)
.

Then for any horizon T divisible by P , the iterates of Algorithm 1 satisfy

mint=0,...,T−1 E [∥∇f(Xt)∥op,∗] ≤ ∆0

η̄T + 4(1−µ)σ ηmax

η̄T + 6µ
√
∆0 A

(1−µ)η̄T + Q+R
η̄ + 2σ

√
1−µ
1+µ . (4)

To simplify the comparison we consider the noiseless case where σ = 0 and the optimal momentum
parameter is then µ = 0. To minimize Equation (4), we define the harmonic-average smoothness

L̄BP by L̄−1
BP = 1

P L−1
op + P−1

P L−1
B . The optimal stepsizes are then η∗full = 1

Lop

√
2∆0

T L̄BP and

η∗block = 1
LB

√
2∆0

T L̄BP and the convergence rate is mint<T ∥∇f(Xt)∥op,∗ ≤
√

2∆0L̄BP

T . There-

fore, the convergence of BlockMuon, Muon, and MuonBP is proportional to
√
LB,

√
Lop, and√

L̄BP, respectively. It is easy to see that Lop ≤ L̄BP ≤ LB and thus the convergence rate of
MuonBP is in between Muon and BlockMuon. The period P acts as a tunable knob that lets us slide
between the two extremes and this is directly reflected in the convergence rates we obtain. Observe
that to get this rate, it is crucial that we use two stepsizes ηfull and ηblock depending on whether
we are applying full orthogonalization or block-wise orthogonalization. On the contrary, if we were
to force using a single stepsize for all steps ηt ≡ η, the optimal choice becomes η∗ =

√
2∆0

T L̄BP2

with L̄BP2 =
Lop

P + P−1
P LB, yielding a convergence rate proportional to L̄BP2 rather than L̄BP.

Since L̄BP is the weighted harmonic mean and L̄BP2 is the weighted arithmetic mean of the same
constants, we have L̄BP ≤ L̄BP2 with strict inequality unless Lop = LB, so tying the stepsizes
generally yields worse convergence. Observe that, as in our previous comparison, the optimal ratio
between ηblock and ηfull is between 1 and 1/

√
rc.

AdamW learning rate transfer. Liu et al. (2025) introduce a learning rate scaling rule that allows
reusing the AdamW learning rate for Muon by matching the root-mean square norm of the updates
to be the same as AdamW. To ensure that the updates have RMS β, they scale the update matrices
by β ·

√
max(m,n) where m× n are the update matrix dimensions. Following our theorem above,

which shows using different learning rates for the blocking and non-blocking matrices is ideal, we
also adopt this rule and scale the updates by the dimensions of the smaller matrix on block steps and
the dimensions of the full matrix on non-blocking steps.

Communication cost of MuonBP. On a block step, MuonBP performs orthogonalization on the
local shard and updates the local parameter slice; no optimizer-state all-gather/scatter is needed.
Only the usual DP gradient all-reduce (already required by the training stack) occurs. On a full
step, MuonBP temporarily gathers shards to materialize Mt (or Gt) per tensor, performs global
orthogonalization, then scatters back.

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Algorithm 1: MuonBP

1 M
(m)
−1 ← 0 for all devices m

2 for t← 0 to T − 1 do
3 for each device m do in parallel
4 Get local shard G

(m)
t of the full

gradient Gt

5 M
(m)
t ← µM

(m)
t−1 +G

(m)
t

6 if t mod P = 0 then
7 Gather {M (m)

t }m to form full Mt

8 Ut ← Orthogonalize-via-NS(Mt)
9 Xt+1 ← Xt − ηfullUt

10 else
11 for each device m do in parallel
12 U

(m)
t ←
Orthogonalize-via-NS(M (m)

t )

13 X
(m)
t+1 ← X

(m)
t − ηblockU

(m)
t

14 return XT

Choice of period. Ideally the period P should
be chosen to minimize the wall-clock time to
reach a certain accuracy ε, defined as the prod-
uct of number of iterations to reach this ac-
curacy Titer(ϵ, P ) (which can be derived from
Theorem 2) and the expected wall-clock time
per iteration Twall(P ). The latter is a function
of network communication speed, the model
parallelism used, and tensor dimensions. This
can be difficult to model in closed form, and
in practice we resort to trying out different val-
ues of P for shorter runs first. We found that
the simple choice P = 5 balanced this tradeoff
well in most of our experiments.

4 EXPERIMENTS

We conduct experiments in two main settings
both of which are Llama-style language model
pretraining setups. Firstly, we use a setting
with FSDP2 and TP where we study the effect
of varying blocking degree and orthogonaliza-
tion period on convergence under extensive hy-
perparameter tuning. Then, we benchmark our

method with a small 160M model setup from (Ahn et al., 2025); and compare MuonBP to AdamW,
Muon (with full all-gather at every step), BlockMuon, and Dion. FSDP2 shards optimizer states in
0th dimension to different workers, resulting in increased communication for Muon. In the second
setting we use ZeRO layer-wise (Rajbhandari et al., 2019) optimizer state sharding and TP. Here, we
primarily compare MuonBP (Algorithm 1), BlockMuon (Algorithm 1 with P = ∞), and baseline
Muon (with full all-gather every step), under billion scale model sizes and longer tokens. Both ex-
periment groups are meant to showcase the accuracy and throughput improvements brought about
by our algorithm in realistic pretraining settings.

4.1 TRAINING WITH DIM-0 DATA SHARDING

2.0 4.0 8.0 16.0
Block Period

2
4

8
16

B
lo

ck
 M

uo
n 

D
eg

re
e

3.3579 3.3635 3.3678 3.3659

3.3649 3.3737 3.3769 3.3832

3.3731 3.4005 3.4046 3.4127

3.3950 3.4561 3.4469 3.4794

3.36

3.38

3.40

3.42

3.44

3.46

Va
lid

at
io

n 
Lo

ss

Figure 1: Validation loss as a function
of orthogonalization period for different
TP degrees (280M model).

Experimental setting and hyperparameters. We aug-
ment the Modded-NanoGPT codebase (Jordan et al.,
2024a) with SimpleFSDP (Zhang et al., 2024) and
TP (Shoeybi et al., 2019) via the DTensor API integrated
into PyTorch 2.0 (Liang, 2023). We use the FineWeb
dataset (Penedo et al., 2024) for the experiments in this
section.

Figure 1 shows the effect of varying both the TP degree
and the period of orthogonalization on the final validation
loss achieved. We use the modernized GPT-style archi-
tecture of Modded-NanoGPT (Jordan et al., 2024a) for
this experiment. We use 12 layers, 6 attention heads, and
a model dimension of 768. We use the smaller model
size (280M) in order to run an extensive grid search. Fol-
lowing the codebase, we use separate learning rates for
Adam (applied to 1D parameters and the input embed-
ding) and Muon, and do not use the RMS norm matching
trick of Section 4.2. We tune the Adam/Muon learning
rates over the grid (0.0001, 0.001, 0.01, 0.1, 0.5, 1, 2, 4, 8) ∗ base where base = 0.012 for Adam
and base = 0.08 for Muon. We see that decreasing the block period directly decreases the loss for
all the degrees we consider, with the effect most pronounced at the highest degrees.

We use the Dion codebase (Ahn et al., 2025) for the second comparison and train a 160M pa-
rameter model with a batch size of 1024, sequence length 1024, model dimension 768, 12 layers

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

and 12 attention heads per attention layer. We use the WSD schedule with no warmup and a 20%
cooldown. The learning rate is 0.02 for all methods (with AdamW rms norm matching) except for
AdamW, where we found by a grid search that 0.008 performed better. We use TP degree of 2 and
FSDP degree of 4, and use Lion as the scalar optimizer in line with the codebase. The throughputs
for all the methods were similar at this scale, although they were significantly lower compared to
throughputs on Megatron-LM with layerwise sharding. We believe more experiments are needed to
compare against Dion, particularly to integrate it into widely used open source frameworks such as
Megatron-LM. We also plot the loss curves in Figure 11 in Appendix B.

Muon BlockMuon MuonBP Dion AdamW
Min Validation Loss 3.36 3.36 3.34 3.37 3.62
Min Training Loss 3.02 2.97 2.94 2.95 3.21
Throughput (TFLOP/s/GPU) 50.90 51.77 51.40 45.64 52.80

Table 1: Training/validation losses and throughput on 160M model trained with TP=2 and FSDP=4.

4.2 TRAINING WITH LAYERWISE-SHARDING

Experimental setting and hyperparameters. We built upon the Distributed Muon implemen-
tation of (Liu et al., 2025) in the Megatron-LM framework (Shoeybi et al., 2019) and mod-
ified it to support block-wise tensor parallel orthogonalization with periodic full orthogonal-
ization. We used Llama-style model architecture (Touvron et al., 2023a;b) with RoPE (Su
et al., 2024), SwiGLU activation (Shazeer, 2020), and mixed-precision training (bf16 compu-
tations with fp32 master weights). We use the Llama 3 tokenizer (Grattafiori et al., 2024)
on the OpenWebText dataset (Gokaslan et al., 2019) for experiments at the 0.9-1.2B scale
and the FineWeb data (Penedo et al., 2024) for experiments at the 8B scale. For the ex-
periments in this section, we used nodes that have 8xA100 GPUs with 40GB of RAM each.

Figure 2: Parameter norm vs
iteration of competing meth-
ods.

We train models in the following scales and settings: 960M and
1.26B, 1.26B with extended training (3x Chinchilla tokens), and 8B
parameters with large (1.2 × 10−3) and small (0.6 × 10−3) learn-
ing rates. The models below 8B in scale use a batch size of 128
sequences and each run takes place on a single node with 2 DP
groups and 4 TP nodes per group. The 8B model uses a batch size
of 256 sequences with 4 DP groups distributed across 4 nodes and
8 TP nodes per group. As discussed in Section 3.2, we use AdamW
RMS norm matching for learning rate scaling (Liu et al., 2025). All
of the architectural details are provided in Table 4 in the supple-
mentary material and more details on our choices of hyperparam-
eters, learning rate, and learning rate scheduling are found in the
appendix. We do the two learning rate runs at 8B scale to show that
with the larger base learning rate, even after adjusting for blocking
with the RMS norm matching, BlockMuon becomes unstable.

Results. Resulting perplexities are summarized in Table 2. The loss curves for all models are
deferred to Appendix B. Table 2 shows that BlockMuon performs worse in both training and valida-
tion loss across all model scales considered. This still holds true for relatively long ( 3x Chinchilla)
training, as the parameter norms grow a lot more for the fully blocked version of Muon compared
to either baseline or blocking with intermittent orthogonalization. Note that this happens despite
the fact that we use AdamW RMS norm matching scaled with the dimensions of the sliced blocks
(as outlined in Section Section 3). We observe that we have to use smaller learning rates to keep
BlockMuon stable compared to Muon and MuonBP and is potentially a symptom of the instability
we observe when using BlockMuon. We do not observe instability when using smaller learning rates
(Figure 10), but then baseline Muon, BlockMuon, and MuonBP all lead to the same suboptimal per-
formance. In Figure 3, we plot the validation ppl vs wall-clock time. We characterize our method’s
performance with respect to two related metric: firstly, given a target ppl value our method reaches
considerably faster in wall-clock time; secondly given a runtime budget our method results in lower

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

(a) Validation ppl. vs. runtime (b) Validation ppl. vs. runtime for large lr

Figure 3: 8B model validation perplexities. Comparison of Muon, BlockMuon, and MuonBP across
wall-clock time. For a target validation perplexity our method is ∼ 10− 13% faster in terms of the
wall-clock time to reach it, and for a given time point before the learning rate decay our method
results in ∼ 5− 7% lower perplexity compared to the baseline.

Table 2: Validation and training perplexity (lower is better). Columns show models; each model has
validation and training sub-columns. Best perplexities within each model size are in bold.

960M 1.2B 1.2Ba 8B 8Bb

Method Val Train Val Train Val Train Val Train Val Train

Muon 15.33 13.44 14.13 12.83 12.62 10.88 12.90 11.74 13.40 12.39
BlockMuon 20.29 18.08 16.28 14.86 13.29 11.51 13.68 12.62 24.68 23.17
MuonBP 15.12 13.21 13.78 12.44 12.45 10.71 12.77 11.59 12.97 11.93

a Three-times data with large learning rate. b Large learning rate.

validation ppl (we give exemplary points in Figure 3). These two views indicate the usefulness of
MuonBP in practical scenarios.

Table 3: Average through-
put (TFLOP/s/GPU) for each
method and model.

Method 960M 1.2B 8B

Muon 112.97 136.53 105.09
BlockMuon 115.43 139.17 114.75
MuonBP 113.54 138.95 113.37

Interestingly, overall, our method outperforms Muon despite doing
less number of full orthogonalization, we believe this may be due
to a regularization effect due to intermittency, we leave the analysis
of this behavior as future work.

Throughput. We report throughput numbers in table 3. We ob-
serve similar throughput across methods in smaller scale experi-
ments as layer-wise sharding results in minimal all-gathers for the
Muon. However, as the model scale increases the effect of all-
gathers makes its presence felt. Consequently, in 8B model setting we observe a ∼ 8% increase
in throughput for our method compared to the Muon without any degradation in performance. This
translates to hundreds of thousands of dollars saved in training costs in today’s large-scale pretrain-
ing runs.

5 CONCLUSION

We have introduced a new algorithm, MuonBP, and analyzed its convergence properties. MuonBP
shows promising performance in training models up to the 8B parameter scale compared to Muon
and BlockMuon. There are many questions still left: for example, we did not explore varying
the period P over the duration of training, or how we might adaptively tune it based on observed
properties. Exploring the use of block orthogonalization with expert parallelism is also an important
topic we leave to future work.

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

REPRODUCIBILITY STATEMENT

Section 3 and the Appendix provide all details necessary to reproduce the theoretical results
presented in this paper. Our code-base is built upon publicly available frameworks (Megatron-
LM (Shoeybi et al., 2019) and Modded NanoGPT (Jordan et al., 2024a)). Section 4 and the Ap-
pendix describe the experimental settings and hyperparameters in detail. To further support repro-
ducibility, we will release our implementation and training scripts upon publication.

REFERENCES

Kwangjun Ahn, Byron Xu, Natalie Abreu, and John Langford. Dion: Distributed orthonormalized
updates. arXiv preprint arXiv:2504.05295, 2025. URL http://arxiv.org/abs/2504.
05295v2.

Joshua Ainslie, James Lee-Thorp, Michiel de Jong, Yury Zemlyanskiy, Federico Lebrón, and Sumit
Sanghai. GQA: Training generalized multi-query transformer models from multi-head check-
points. In Houda Bouamor, Juan Pino, and Kalika Bali (eds.), Proceedings of the 2023 Conference
on Empirical Methods in Natural Language Processing, pp. 4895–4901, Singapore, December
2023. Association for Computational Linguistics. doi: 10.18653/v1/2023.emnlp-main.298. URL
https://aclanthology.org/2023.emnlp-main.298/.

Noah Amsel, David Persson, Christopher Musco, and Robert M. Gower. The polar express:
Optimal matrix sign methods and their application to the Muon algorithm. arXiv preprint
arXiv:2505.16932, 2025. URL http://arxiv.org/abs/2505.16932v2.

Kang An, Yuxing Liu, Rui Pan, Yi Ren, Shiqian Ma, Donald Goldfarb, and Tong Zhang. ASGO:
Adaptive structured gradient optimization. arXiv preprint arXiv:2503.20762, 2025. URL http:
//arxiv.org/abs/2503.20762v2.

Jeremy Bernstein. Deriving Muon, 2025. URL https://jeremybernste.in/writing/
deriving-muon.

Jeremy Bernstein and Laker Newhouse. Modular duality in deep learning. arXiv preprint
arXiv:2410.21265, 2024a. URL http://arxiv.org/abs/2410.21265v2.

Jeremy Bernstein and Laker Newhouse. Old optimizer, new norm: an anthology. arXiv preprint,
abs/2409.20325, 2024b. URL https://arXiv.org/abs/2409.20325.

Valentyn Boreiko, Zhiqi Bu, and Sheng Zha. Towards understanding of orthogonalization in muon.
In High-dimensional Learning Dynamics 2025, 2025. URL https://openreview.net/
forum?id=ppmyFtr9EW.

Essential AI. Layer sharding for large-scale training with Muon. Essential AI Blog, May 2025.
URL https://www.essential.ai/blog/infra.

Essential AI, Ishaan Shah, Anthony M. Polloreno, Karl Stratos, Philip Monk, Adarsh Chaluvaraju,
Andrew Hojel, Andrew Ma, Anil Thomas, Ashish Tanwer, Darsh J Shah, Khoi Nguyen, Kurt
Smith, Michael Callahan, Michael Pust, Mohit Parmar, Peter Rushton, Platon Mazarakis, Ritvik
Kapila, Saurabh Srivastava, Somanshu Singla, Tim Romanski, Yash Vanjani, and Ashish Vaswani.
Practical efficiency of Muon for pretraining. arXiv preprint arXiv:2505.02222, 2025.

Athanasios Glentis, Jiaxiang Li, Andi Han, and Mingyi Hong. A minimalist optimizer design for
LLM pretraining. arXiv preprint arXiv:2506.16659, 2025. URL http://arxiv.org/abs/
2506.16659v1.

Aaron Gokaslan, Vanya Cohen, Ellie Pavlick, and Stefanie Tellex. OpenWebText corpus. http:
//Skylion007.github.io/OpenWebTextCorpus, 2019.

Aaron Grattafiori, Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad
Al-Dahle, Aiesha Letman, Akhil Mathur, Alan Schelten, Alex Vaughan, et al. The llama 3 herd
of models. arXiv preprint arXiv:2407.21783, 2024.

10

http://arxiv.org/abs/2504.05295v2
http://arxiv.org/abs/2504.05295v2
https://aclanthology.org/2023.emnlp-main.298/
http://arxiv.org/abs/2505.16932v2
http://arxiv.org/abs/2503.20762v2
http://arxiv.org/abs/2503.20762v2
https://jeremybernste.in/writing/deriving-muon
https://jeremybernste.in/writing/deriving-muon
http://arxiv.org/abs/2410.21265v2
https://arXiv.org/abs/2409.20325
https://openreview.net/forum?id=ppmyFtr9EW
https://openreview.net/forum?id=ppmyFtr9EW
https://www.essential.ai/blog/infra
http://arxiv.org/abs/2506.16659v1
http://arxiv.org/abs/2506.16659v1
http://Skylion007.github.io/OpenWebTextCorpus
http://Skylion007.github.io/OpenWebTextCorpus


540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Vineet Gupta, Tomer Koren, and Yoram Singer. Shampoo: Preconditioned stochastic tensor opti-
mization. CoRR, 2018. URL http://arxiv.org/abs/1802.09568v2.

Alex Hägele, Elie Bakouch, Atli Kosson, Leandro Von Werra, and Martin Jaggi. Scaling laws
and compute-optimal training beyond fixed training durations. Advances in Neural Information
Processing Systems, 37:76232–76264, 2024.

Yanping Huang, Youlong Cheng, Ankur Bapna, Orhan Firat, Mia Xu Chen, Dehao Chen, Hy-
oukJoong Lee, Jiquan Ngiam, Quoc V. Le, Yonghui Wu, and Zhifeng Chen. GPipe: Effi-
cient training of giant neural networks using pipeline parallelism. CoRR, 2018. URL http:
//arxiv.org/abs/1811.06965v5.

Keller Jordan, Jeremy Bernstein, Brendan Rappazzo, fernbear.bsky.social, Boza Vlado, You Ji-
acheng, Franz Cesista, Braden Koszarsky, and Grad62304977. modded-nanogpt: Speedrun-
ning the nanogpt baseline, 2024a. URL https://github.com/KellerJordan/
modded-nanogpt.

Keller Jordan, Yuchen Jin, Vlado Boza, Jiacheng You, Franz Cesista, Laker Newhouse, and Jeremy
Bernstein. Muon: An optimizer for hidden layers in neural networks, 2024b. URL https:
//kellerjordan.github.io/posts/muon/.

Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In Yoshua
Bengio and Yann LeCun (eds.), 3rd International Conference on Learning Representations, ICLR
2015, San Diego, CA, USA, May 7-9, 2015, Conference Track Proceedings, 2015. URL http:
//arXiv.org/abs/1412.6980.

Dmitry Kovalev. Understanding gradient orthogonalization for deep learning via non-euclidean
trust-region optimization. CoRR, 2025. URL http://arxiv.org/abs/2503.12645v2.

Jiaxiang Li and Mingyi Hong. A note on the convergence of muon. arXiv preprint
arXiv:2502.02900, 2025.

Wanchao Liang. Pytorch dtensor rfc. GitHub Issue, 2023. URL https://github.com/
pytorch/pytorch/issues/88838. GitHub Issue #88838.

Wanchao Liang, Tianyu Liu, Less Wright, Will Constable, Andrew Gu, Chien-Chin Huang, Iris
Zhang, Wei Feng, Howard Huang, Junjie Wang, Sanket Purandare, Gokul Nadathur, and Stratos
Idreos. TorchTitan: One-stop pytorch native solution for production ready LLM pre-training.
CoRR, 2024. URL http://arxiv.org/abs/2410.06511v1.

Jingyuan Liu, Jianlin Su, Xingcheng Yao, Zhejun Jiang, Guokun Lai, Yulun Du, Yidao Qin, Weixin
Xu, Enzhe Lu, Junjie Yan, Yanru Chen, Huabin Zheng, Yibo Liu, Shaowei Liu, Bohong Yin,
Weiran He, Han Zhu, Yuzhi Wang, Jianzhou Wang, Mengnan Dong, Zheng Zhang, Yongsheng
Kang, Hao Zhang, Xinran Xu, Yutao Zhang, Yuxin Wu, Xinyu Zhou, and Zhilin Yang. Muon is
scalable for LLM training. CoRR, 2025. URL http://arxiv.org/abs/2502.16982v1.

Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. In 7th International
Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019.
OpenReview.net, 2019a. URL https://openreview.net/forum?id=Bkg6RiCqY7.

Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. In International Confer-
ence on Learning Representations, 2019b. URL https://openreview.net/forum?id=
Bkg6RiCqY7.

James Martens and Roger Grosse. Optimizing neural networks with kronecker-factored approximate
curvature. In International conference on machine learning, pp. 2408–2417. PMLR, 2015.

Guilherme Penedo, Hynek Kydlı́ček, Anton Lozhkov, Margaret Mitchell, Colin A Raffel, Leandro
Von Werra, Thomas Wolf, et al. The fineweb datasets: Decanting the web for the finest text data
at scale. Advances in Neural Information Processing Systems, 37:30811–30849, 2024.

Thomas Pethick, Wanyun Xie, Kimon Antonakopoulos, Zhenyu Zhu, Antonio Silveti-Falls, and
Volkan Cevher. Training deep learning models with norm-constrained lmos. CoRR, 2025. URL
http://arxiv.org/abs/2502.07529v2.

11

http://arxiv.org/abs/1802.09568v2
http://arxiv.org/abs/1811.06965v5
http://arxiv.org/abs/1811.06965v5
https://github.com/KellerJordan/modded-nanogpt
https://github.com/KellerJordan/modded-nanogpt
https://kellerjordan.github.io/posts/muon/
https://kellerjordan.github.io/posts/muon/
http://arXiv.org/abs/1412.6980
http://arXiv.org/abs/1412.6980
http://arxiv.org/abs/2503.12645v2
https://github.com/pytorch/pytorch/issues/88838
https://github.com/pytorch/pytorch/issues/88838
http://arxiv.org/abs/2410.06511v1
http://arxiv.org/abs/2502.16982v1
https://openreview.net/forum?id=Bkg6RiCqY7
https://openreview.net/forum?id=Bkg6RiCqY7
https://openreview.net/forum?id=Bkg6RiCqY7
http://arxiv.org/abs/2502.07529v2


594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Samyam Rajbhandari, Jeff Rasley, Olatunji Ruwase, and Yuxiong He. ZeRO: Memory optimizations
toward training trillion parameter models. CoRR, 2019. URL http://arxiv.org/abs/
1910.02054v3.

Noam Shazeer. GLU variants improve transformer, 2020. URL https://arxiv.org/abs/
2002.05202.

Hao-Jun Michael Shi, Tsung-Hsien Lee, Shintaro Iwasaki, Jose Gallego-Posada, Zhijing Li,
Kaushik Rangadurai, Dheevatsa Mudigere, and Michael Rabbat. A distributed data-parallel py-
torch implementation of the distributed shampoo optimizer for training neural networks at-scale.
CoRR, 2023. URL http://arxiv.org/abs/2309.06497v1.

Mohammad Shoeybi, Mostofa Patwary, Raul Puri, Patrick LeGresley, Jared Casper, and Bryan
Catanzaro. Megatron-lm: Training multi-billion parameter language models using model par-
allelism. arXiv preprint arXiv:1909.08053, 2019.

Jianlin Su, Murtadha Ahmed, Yu Lu, Shengfeng Pan, Wen Bo, and Yunfeng Liu. RoFormer: En-
hanced transformer with rotary position embedding. Neurocomputing, 568:127063, 2024.

Kimi Team, Yifan Bai, Yiping Bao, Guanduo Chen, Jiahao Chen, Ningxin Chen, Ruijue Chen,
Yanru Chen, Yuankun Chen, Yutian Chen, Zhuofu Chen, Jialei Cui, Hao Ding, Mengnan Dong,
Angang Du, Chenzhuang Du, Dikang Du, Yulun Du, Yu Fan, Yichen Feng, Kelin Fu, Bofei Gao,
Hongcheng Gao, Peizhong Gao, Tong Gao, Xinran Gu, Longyu Guan, Haiqing Guo, Jianhang
Guo, Hao Hu, Xiaoru Hao, Tianhong He, Weiran He, Wenyang He, Chao Hong, Yangyang Hu,
Zhenxing Hu, Weixiao Huang, Zhiqi Huang, Zihao Huang, Tao Jiang, Zhejun Jiang, Xinyi Jin,
Yongsheng Kang, Guokun Lai, Cheng Li, Fang Li, Haoyang Li, Ming Li, Wentao Li, Yanhao
Li, Yiwei Li, Zhaowei Li, Zheming Li, Hongzhan Lin, Xiaohan Lin, Zongyu Lin, Chengyin
Liu, Chenyu Liu, Hongzhang Liu, Jingyuan Liu, Junqi Liu, Liang Liu, Shaowei Liu, T. Y. Liu,
Tianwei Liu, Weizhou Liu, Yangyang Liu, Yibo Liu, Yiping Liu, Yue Liu, Zhengying Liu, Enzhe
Lu, Lijun Lu, Shengling Ma, Xinyu Ma, Yingwei Ma, Shaoguang Mao, Jie Mei, Xin Men, Yibo
Miao, Siyuan Pan, Yebo Peng, Ruoyu Qin, Bowen Qu, Zeyu Shang, Lidong Shi, Shengyuan Shi,
Feifan Song, Jianlin Su, Zhengyuan Su, Xinjie Sun, Flood Sung, Heyi Tang, Jiawen Tao, Qifeng
Teng, Chensi Wang, Dinglu Wang, Feng Wang, Haiming Wang, Jianzhou Wang, Jiaxing Wang,
Jinhong Wang, Shengjie Wang, Shuyi Wang, Yao Wang, Yejie Wang, Yiqin Wang, Yuxin Wang,
Yuzhi Wang, Zhaoji Wang, Zhengtao Wang, Zhexu Wang, Chu Wei, Qianqian Wei, Wenhao Wu,
Xingzhe Wu, Yuxin Wu, Chenjun Xiao, Xiaotong Xie, Weimin Xiong, Boyu Xu, Jing Xu, Jinjing
Xu, L. H. Xu, Lin Xu, Suting Xu, Weixin Xu, Xinran Xu, Yangchuan Xu, Ziyao Xu, Junjie
Yan, Yuzi Yan, Xiaofei Yang, Ying Yang, Zhen Yang, Zhilin Yang, Zonghan Yang, Haotian Yao,
Xingcheng Yao, Wenjie Ye, Zhuorui Ye, Bohong Yin, Longhui Yu, Enming Yuan, Hongbang
Yuan, Mengjie Yuan, Haobing Zhan, Dehao Zhang, Hao Zhang, Wanlu Zhang, Xiaobin Zhang,
Yangkun Zhang, Yizhi Zhang, Yongting Zhang, Yu Zhang, Yutao Zhang, Yutong Zhang, Zheng
Zhang, Haotian Zhao, Yikai Zhao, Huabin Zheng, Shaojie Zheng, Jianren Zhou, Xinyu Zhou,
Zaida Zhou, Zhen Zhu, Weiyu Zhuang, and Xinxing Zu. Kimi K2: Open agentic intelligence.
arXiv preprint arXiv:2507.20534, 2025. URL https://arxiv.org/abs/2507.20534.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée
Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, Aurelien Rodriguez, Ar-
mand Joulin, Edouard Grave, and Guillaume Lample. Llama: Open and efficient foundation
language models. arXiv preprint, abs/2302.13971, 2023a. URL https://arXiv.org/abs/
2302.13971.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Niko-
lay Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, Dan Bikel, Lukas Blecher,
Cristian Canton Ferrer, Moya Chen, Guillem Cucurull, David Esiobu, Jude Fernandes, Jeremy
Fu, Wenyin Fu, Brian Fuller, Cynthia Gao, Vedanuj Goswami, Naman Goyal, Anthony Hartshorn,
Saghar Hosseini, Rui Hou, Hakan Inan, Marcin Kardas, Viktor Kerkez, Madian Khabsa, Isabel
Kloumann, Artem Korenev, Punit Singh Koura, Marie-Anne Lachaux, Thibaut Lavril, Jenya Lee,
Diana Liskovich, Yinghai Lu, Yuning Mao, Xavier Martinet, Todor Mihaylov, Pushkar Mishra,
Igor Molybog, Yixin Nie, Andrew Poulton, Jeremy Reizenstein, Rashi Rungta, Kalyan Saladi,
Alan Schelten, Ruan Silva, Eric Michael Smith, Ranjan Subramanian, Xiaoqing Ellen Tan, Binh
Tang, Ross Taylor, Adina Williams, Jian Xiang Kuan, Puxin Xu, Zheng Yan, Iliyan Zarov, Yuchen

12

http://arxiv.org/abs/1910.02054v3
http://arxiv.org/abs/1910.02054v3
https://arxiv.org/abs/2002.05202
https://arxiv.org/abs/2002.05202
http://arxiv.org/abs/2309.06497v1
https://arxiv.org/abs/2507.20534
https://arXiv.org/abs/2302.13971
https://arXiv.org/abs/2302.13971


648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Zhang, Angela Fan, Melanie Kambadur, Sharan Narang, Aurelien Rodriguez, Robert Stojnic,
Sergey Edunov, and Thomas Scialom. Llama 2: Open foundation and fine-tuned chat models.
arXiv preprint, abs/2307.09288, 2023b. URL https://arXiv.org/abs/2307.09288.

Shuo Xie, Tianhao Wang, Sashank Reddi, Sanjiv Kumar, and Zhiyuan Li. Structured preconditioners
in adaptive optimization: a unified analysis. CoRR, 2025. URL http://arxiv.org/abs/
2503.10537v1.

Ruisi Zhang, Tianyu Liu, Will Feng, Andrew Gu, Sanket Purandare, Wanchao Liang, and Francisco
Massa. SimpleFSDP: Simpler fully sharded data parallel with torch.compile, 2024. URL https:
//arxiv.org/abs/2411.00284.

Yanli Zhao, Andrew Gu, Rohan Varma, Liang Luo, Chien-Chin Huang, Min Xu, Less Wright,
Hamid Shojanazeri, Myle Ott, Sam Shleifer, Alban Desmaison, Can Balioglu, Pritam Damania,
Bernard Nguyen, Geeta Chauhan, Yuchen Hao, Ajit Mathews, and Shen Li. Pytorch FSDP:
Experiences on scaling fully sharded data parallel. CoRR, 2023. URL http://arxiv.org/
abs/2304.11277v2.

13

https://arXiv.org/abs/2307.09288
http://arxiv.org/abs/2503.10537v1
http://arxiv.org/abs/2503.10537v1
https://arxiv.org/abs/2411.00284
https://arxiv.org/abs/2411.00284
http://arxiv.org/abs/2304.11277v2
http://arxiv.org/abs/2304.11277v2


702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Appendix
A MAIN PROOFS

A.1 NORM EQUIVALENCES

Lemma 2 (Dual of the block-spectral norm). Let X ∈ Rm×n be partitioned into r × c blocks
Xij ∈ Rmb×nb (not necessarily square). Define

B(X) = max
1≤i≤r, 1≤j≤c

∥Xij∥op.

With the Frobenius inner product ⟨X,G⟩ = tr(X⊤G) =
∑

i,j tr(X
⊤
ijGij), one has

sup
B(G)≤1

⟨X,G⟩ =
r∑

i=1

c∑
j=1

∥ Xij ∥∗ .

Moreover, if Xij = UijΣijV
⊤
ij is an SVD, then

Z⋆
ij =

{
UijV

⊤
ij , Xij ̸= 0,

0, Xij = 0,

is feasible with B(Z⋆) ≤ 1 and attains the supremum:

⟨X,Z⋆⟩ =
∑
i,j

∥ Xij ∥∗ .

Consequently the dual norm of B(·) is B∗(Y ) =
∑

i,j ∥ Yij ∥∗.

Proof. For any feasible G with B(G) ≤ 1, Cauchy-Schwartz gives us

⟨Xij , Gij⟩ ≤∥ Xij ∥∗ ∥ Gij ∥op≤∥ Xij ∥∗ .

Summing over blocks,

⟨X,G⟩ =
∑
i,j

⟨Xij , Gij⟩ ≤
∑
i,j

∥ Xij ∥∗ .

Taking the supremum over feasible G yields

sup
B(G)≤1

⟨X,G⟩ ≤
∑
i,j

∥ Xij ∥∗ .

We now show the above upper bound is achieved by Z⋆. Let Xij = UijΣijV
⊤
ij be an SVD and

define Z⋆ blockwise by Z⋆
ij = UijV

⊤
ij if Xij ̸= 0 and Z⋆

ij = 0 otherwise. Then ∥ Z⋆
ij ∥op= 1 when

Xij ̸= 0 and 0 when Xij = 0, so B(Z⋆) ≤ 1. Moreover,

⟨Xij , Z
⋆
ij⟩ = tr

(
(UijΣijV

⊤
ij )

⊤(UijV
⊤
ij )
)
= tr(Σij) =∥ Xij ∥∗ .

Summing over blocks gives ⟨X,Z⋆⟩ =
∑

i,j ∥ Xij ∥∗, which matches the upper bound, hence Z⋆

is optimal and the stated supremum value holds.

Lemma 3. The norm equivalence constants in Assumption 3 for the operator norm and block-
spectral norm are both equal to one. That is,

ρop = 1 and ρblock = 1.

Proof. The operator norm ∥X∥op (the largest singular value) is always less than or equal to
the Frobenius norm ∥X∥F (the root-sum-square of all singular values), hence ρop = 1. The
block-spectral norm is a maximum of block operator norms, B(X) = maxi,j∥Xi,j∥op ≤
maxi,j ∥Xi,j∥F ≤

√∑
i,j ∥Xi,j∥2F = ∥X∥F , which implies ρblock = 1 as well.

14



756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

Lemma 4. (Relations of norms) Suppose that B(·) is the block-norm corresponds to a partitioning
a matrix of size m× n into r × c blocks of size mb × nb each. Then the following relations hold

B(G) ≤ ∥G∥op ≤
√
rcB(G),

∥G∥op,∗ ≤ B∗(G) ≤
√
rc∥G∥op,∗.

Moreover, if a function f is Lop-smooth with respect to the operator norm and LB-smooth with
respect to the block-norm, we have

Lop ≤ LB ≤ (rc) · Lop.

Proof. Write G as an r × c block matrix with blocks Gij ∈ Rmb×nb and recall B(G) =
maxi,j∥Gij∥op. We first prove that B(G) ≤ ∥G∥op. Let Ri ∈ 0, 1mb×m select the i-th block
of rows and Cj ∈ 0, 1n×nb select the j-th block of columns, so Gij = RiGCj . Because Ri and Cj

are partial isometries, ∥Ri∥op = ∥Cj∥op = 1. By submultiplicativity,

∥Gij∥op = ∥RiGCj∥op ≤ ∥Ri∥op∥G∥op∥Cj∥op = ∥G∥op.
Taking the maximum over (i, j) yields B(G) ≤ ∥G∥op.

Now we prove the upper bound on ∥G∥op. Let u ∈ Rm, v ∈ Rn be unit vectors and partition them
as u = [u1 . . . ur], v = [v1 . . . vc] with ui ∈ Rmb and vj ∈ Rnb . Then∣∣u⊤Gv

∣∣ = ∣∣∣ r∑
i=1

c∑
j=1

u⊤
i Gijvj

∣∣∣
≤

r∑
i=1

c∑
j=1

∣∣u⊤
i Gi,jvj

∣∣
≤

r∑
i=1

c∑
j=1

∥ui∥2∥Gij∥op∥vj∥2

≤ B(G)

(
r∑

i=1

∥ui∥2

) c∑
j=1

∥vj∥2


≤ B(G)

√
r

√√√√ r∑
i=1

∥ui∥22
√
c

√√√√ c∑
j=1

∥vj∥22

=
√
rcB(G),

where we used Cauchy–Schwarz applied to the vectors of blockwise ℓ2 norms. Taking the supremum
over unit u, v gives ∥G∥op ≤

√
rcB(G).

For the dual norm bounds, observe that if norms || · ||a and || · ||b satisfy α|| · ||a ≤ || · ||b ≤ β|| · ||a,
then their duals satisfy

1

β
|| · ||∗a ≤ || · ||∗b ≤

1

α
|| · ||∗a.

Applying this with || · ||a = B(·), || · ||b = ∥·∥op, α = 1, β =
√
rc yields

∥G∥op,∗ ≤ B∗(G) ≤
√
rc∥G∥op,∗.

Finally, for the smoothness bounds, we have for any X ̸= Y

∥∇f(X)−∇f(Y )∥op,∗
∥X − Y ∥op

≤ B∗(∇f(X)−∇f(Y ))

∥X − Y ∥op

≤ B∗(∇f(X)−∇f(Y ))

B(X − Y )
≤
√
rc∥∇f(X)−∇f(Y )∥op,∗

B(X − Y )

≤ (rc)
∥∇f(X)−∇f(Y )∥op,∗

∥X − Y ∥op
.

Taking the supremum over X,Y such that X ̸= Y immediately yields Lop ≤ LB ≤ (rc)Lop.

15



810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

A.2 CONVERGENCE PROOFS

Lemma 5 (Descent Lemma). Suppose that Assumptions 1 and 2 hold for f : Rm×n → R. Then the
iterations of the algorithm without a regularizer satisfy:

f(Xk+1) ≤ f(Xk)− η∥∇f(Xk)∥+ 2η∥∇f(Xk)− (1− µ)Mk∥∗ +
3

2
Lη2.

Proof. By smoothness,

f(Xk+1) ≤ f(Xk) + ⟨∇f(Xk), Xk+1 −Xk⟩+
L

2
∥Xk+1 −Xk∥2∗

≤ f(Xk)− η ⟨∇f(Xk),Orth(Mk)⟩+
Lη2

2

= f(Xk)− η ⟨∇f(Xk)− (1− µ)Mk,Orth(Mk)⟩ − η(1− µ) ⟨Mk,Orth(Mk)⟩+
Lη2

2

≤ f(Xk) + η∥∇f(Xk)− (1− µ)Mk∥∗∥Orth(Mk)∥ − η(1− µ)∥Mk∥∗ +
Lη2

2

≤ f(Xk) + η∥∇f(Xk)− (1− µ)Mk∥∗ − η∥(1− µ)Mk∥∗ +
Lη2

2

≤ f(Xk) + 2η∥∇f(Xk)− (1− µ)Mk∥∗ − η∥∇f(Xk)∥∗ +
Lη2

2
.

Lemma 6. Suppose that f satisfies Assumption 1 in some norm ∥·∥ and is lower bounded by f∗,
then

∥∇f(X)∥2∗ ≤ 2L (f(X)− f∗) .

Proof. Define

X+ = argmin
Y

[
f(X) + ⟨∇f(X), Y −X⟩+ L

2
∥Y −X∥

]
= X − η∥∇f(X)∥∗Z,

where Z satisfies ∥Z∥ ≤ 1 and ⟨∇f(X), Z⟩ = ∥∇f(X)∥∗. By smoothness,

f(X+) ≤ f(X) + ⟨∇f(X), X+ −X⟩+ L

2
∥X+ −X∥2

= f(X)− η∥∇f(X)∥2∗ +
Lη2

2
∥∇f(X)∥2∗

= f(X)− η

(
1− Lη

2

)
∥∇f(X)∥2∗.

Plugging η = 1
L gives

f∗ ≤ f(X+) ≤ f(X)−
∥∇f(X)∥2∗

2L
.

Therefore,

∥∇f(X)∥2∗ ≤ 2L (f(X)− f∗) .

Lemma 7. Let f satisfy Assumptions 1 to 3 in some norm ∥·∥with smoothness constant L, stochastic
gradient variance σ2, and ℓ2-norm ratio ρ. Let Mτ be defined as

Mτ = µMτ−1 +Gτ ,

Xτ+1 = Xτ − ητZτ ,

where ∥Zτ∥ητ ≤ A for all τ ≤ k. Then,

E [∥∇f(Xk)− (1− µ)Mk∥∗] ≤ µk(1− µ)2ρσ + µk+1
√

2L∆0 +
LAµ

1− µ
+ ρσ

√
1− µ

1 + µ
.

16



864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

Proof. Let M ′
k = (1− µ)Mk. We have,

∇f(Xk)−M ′
k = ∇f(Xk)−

[
µM ′

k−1 + (1− µ)Gk

]
= ∇f(Xk)− µM ′

k−1 − (1− µ)Gk

= ∇f(Xk)−Gk − µM ′
k−1 + µGk

= ∇f(Xk)−Gk + µ∇f(Xk−1)− µM ′
k−1 + µGk − µ∇f(Xk−1)

= ∇f(Xk)−Gk + µ∇f(Xk−1)− µM ′
k−1 + µGk − µ∇f(Xk) + µ∇f(Xk)− µ∇f(Xk−1)

= (1− µ) (∇f(Xk)−Gk) + µ(∇f(Xk−1)−M ′
k−1) + µ (∇f(Xk)−∇f(Xk−1)) .

Let Ek = ∇f(Xk)−M ′
k, Sk = ∇f(Xk)−Gk, and Rk = ∇f(Xk)−∇f(Xk−1). Then the above

is,

Ek = µEk−1 + (1− µ)Sk + µRk

= µkE0 +

k−1∑
j=0

µj [(1− µ)Sk−j + µRk−j ] .

Now observe that

∥Rk−j∥∗ = ∥∇f(Xk−j)−∇f(Xk−j−1)∥∗ ≤ L∥Xk −Xk−j−1∥ = Lηk∥Zk∥ ≤ LA.

Therefore

E [∥Ek∥∗] ≤ µkE [∥E0∥∗] + E

∥∥∥∥∥∥
k−1∑
j=0

µj [(1− µ)Sk−j + µRk−j ]

∥∥∥∥∥∥
∗


≤ µkE [∥E0∥∗] +

k−1∑
j=0

µj+1E
[
∥Rk−j∥∗

]
+ E

∥∥∥∥∥∥
k−1∑
j=0

µj(1− µ)Sk−j

∥∥∥∥∥∥
∗


≤ µkE [∥E0∥∗] + LA

k−1∑
j=0

µj+1 + ρE

∥∥∥∥∥∥
k−1∑
j=0

µj(1− µ)Sk−j

∥∥∥∥∥∥
2



≤ µkE [∥E0∥∗] +
LAµ

1− µ
+ ρ

√√√√√√E


∥∥∥∥∥∥
k−1∑
j=0

µj(1− µ)Sk−j

∥∥∥∥∥∥
2

2

 (5)

We have

E


∥∥∥∥∥∥
k−1∑
j=0

µj(1− µ)Sk−j

∥∥∥∥∥∥
2

2

 = E

k−1∑
j=0

k−1∑
i=0

µj(1− µ)2µi ⟨Sk−j , Sk−i⟩


=

k−1∑
j=0

µ2j(1− µ)2E
[
∥Sk−j∥2

]

≤ σ2(1− µ)2
k−1∑
j=0

µ2j

≤ σ2(1− µ)2

1− µ2

=
σ2(1− µ)2

(1− µ)(1 + µ)

=
σ2(1− µ)

1 + µ
. (6)

17



918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

Using eq. (6) back in eq. (5) we get

E [∥Ek∥∗] ≤ µkE [∥E0∥∗] +
LAµ

1− µ
+ ρσ

√
1− µ

1 + µ
. (7)

For the first term,

E [∥E0∥∗] = E [∥∇f(X0)− (1− µ)M0∥∗]
= E [∥∇f(X0)− (1− µ)G0∥∗]
= E [∥(1− µ)(∇f(X0)−G0) + µ∇f(X0)∥∗]
≤ (1− µ)E [∥∇f(X0)−G0∥∗] + µ∥∇f(X0)∥∗.

By Lemma 6 we have ∥∇f(X0)∥∗ ≤
√

2L (f(X0)− f∗) and by Assumptions 2 and 3 we have
E [∥∇f(X0)−G0∥∗] ≤ ρσ. Plugging this back in gives

E [∥E0∥∗] ≤ (1− µ)ρσ + µ
√

2L∆0,

where ∆0 = f(X0)− f∗. Using the last equation in Equation (7) yields

E [∥Ek∥∗] ≤ µk(1− µ)2ρσ + µk+1
√

2L∆0 +
LAµ

1− µ
+ ρσ

√
1− µ

1 + µ
.

Proof of Theorem 1. By Lemmas 5 and 7 we have

E [f(Xk+1)] ≤ E [f(Xk)]− ηE [∥∇f(Xk)∥∗] + 2ηE [∥∇f(Xk)− (1− µ)Mk∥∗] +
Lη2

2

≤ E [f(Xk)]− ηE [∥∇f(Xk)∥∗] + 2ηµk(1− µ)2ρσ + 2ηµk+1
√
2L∆0

+
2Lη2µ

1− µ
+ 2ηρσ

√
1− µ

1 + µ
+

Lη2

2
.

Rearranging,

E [∥∇f(Xk)∥∗] ≤
1

η
[E [f(Xk)]− E [f(Xk+1]] + 2µk(1− µ)2ρσ + 2µk+1

√
2L∆0

+
Lηµ

1− µ
+ ρσ

√
1− µ

1 + µ
+

Lη2

2
.

Summing up both sides as k = 0, 1, . . . , T − 1 and telescoping

T−1∑
k=0

E [∥∇f(Xk)∥∗] ≤
1

η
[f(X0)− E [f(XT ]] + 2(1− µ)2ρσ

T−1∑
k=0

µk + 2µ
√

2L∆0

T−1∑
k=0

µk

+
LηµT

1− µ
+ ρσT

√
1− µ

1 + µ
+

Lη

2
.

≤ ∆0

η
+ 2(1− µ)ρσ +

2µ
√
2L∆0

1− µ
+

LηµT

1− µ
+ ρσT

√
1− µ

1 + µ
+

Lη

2
.

Dividing both sides by T and lower bounding the average on the left hand side by the minimum
yields the theorem’s statement.

Proof of Theorem 2. Let Assumption 3 hold for both norms with constants ρop and ρblock respec-
tively and let ρBP =

ρop

P + P−1
P ρblock. We will later show that ρop, ρblock, and ρBP are all bounded

by 1. Let k ≤ T − 1. If k is divisible by P , then by Lemma 5 we have

E [f(Xk+1)] ≤ E [f(Xk)]− ηfullE [∥∇f(Xk)∥op,∗]

+ 2ηfullE [∥∇f(Xk)− (1− µ)Mk∥op,∗] +
Lopη

2
full

2
.

(8)

18



972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

To apply Lemma 7 with the operator norm, we need to ensure that the updates Zτ = Xτ−Xτ−1

η

always satisfy ∥Zτ∥opητ ≤ A for all τ ≤ k, where ητ is the stepsize used on the τ -th iteration.
Observe that on all τ such that τ%P = 0, this is trivially true with A = ηfull. On steps where τ
is not divisible by P , we have ∥Zτ∥op ≤

√
rcB(Zτ ) ≤

√
rc (see Appendix A.1), since on those

steps ητ = ηblock we therefore have ∥Zτ∥opητ ≤ ηblock
√
rc. Therefore in all cases, ∥Zτ∥opητ ≤

max(ηblock
√
rc, ηfull) and we can apply Lemma 7 to get

E [∥∇f(Xk)− (1− µ)Mk∥op,∗] ≤ µk(1− µ)2ρopσ + µk+1
√

2Lop∆0

+
Lopµ

1− µ
max(ηfull, ηblock

√
rc) + ρopσ

√
1− µ

1 + µ
.

We can then use this to bound the third term on the right hand side of Equation (8) to get

E [f(Xk+1)] ≤ E [f(Xk)]− ηfullE [∥∇f(Xk)∥op,∗] + 2ηfullµ
k(1− µ)2ρopσ

+ 2ηfullµ
k+1
√

2Lop∆0 +
2Lopη

2
√
rcµ

1− µ
+ 2ηρopσ

√
1− µ

1 + µ
+

Lopη
2

2
.

(9)

Alternatively, if k is not divisible by P , then similar to the above we first use Lemma 5 and the fact
that B∗(∇f(Xk)) ≥ ∥∇f(Xk)∥op,∗ to get

E [f(Xk+1)] ≤ E [f(Xk)]− ηblockE [∥∇f(Xk)∥op,∗] + 2ηblockE [B∗(∇f(Xk)− (1− µ)Mk)]

+
LBη

2
block

2
.

(10)

We now apply Lemma 7 to the block norm. Note that if τ is not divisible by P , B(Zτ )ητ =
B(Zτ )ηblock ≤ ηblock. If τ is divisible by P , then B(Zτ )ητ = B(Zτ )ηfull ≤ ∥Zτ∥opηfull ≤ ηfull.
Therefore by Lemma 7 we have

E [B∗(∇f(Xk)− (1− µ)Mk)] ≤ µk(1− µ)2ρblockσ + µk+1
√

2LB∆0 +
LB max(ηblock, ηfull)µ

1− µ

+ ρblockσ

√
1− µ

1 + µ
.

(11)
Using Equation (11) in Equation (10) we obtain

E [f(Xk+1)] ≤ E [f(Xk)]− ηblockE [∥∇f(Xk)∥op,∗] +
LBη

2
block

2

+ 2ηblock

[
µk(1− µ)2ρblockσ + µk+1

√
2LB∆0 +

LB max(ηblock, ηfull)µ

1− µ
+ ρblockσ

√
1− µ

1 + µ

]
.

(12)

Let SP = {k < T | k (mod P ) = 0} and SB = {k < T | k (mod P ) ̸= 0}. By rearranging the
one-step descent inequalities and using Equations (9) and (12) we sum over k = 0, . . . , T − 1:

T−1∑
k=0

(1k∈SP
ηfull + 1k∈SB

ηblock)E [∥∇f(Xk)∥op,∗] ≤
T−1∑
k=0

(E [f(Xk)]− E [f(Xk+1)])

+
∑
k∈SP

(Errorfull
k ) +

∑
k∈SB

(Errorblock
k ),

(13)

where

Errorfull
k = 2ηfullµ

k(1− µ)2ρopσ + 2ηfullµ
k+1
√
2Lop∆0 +

2Lopηfull max(ηblock
√
rc, ηfull)µ

1− µ

+ 2ηfullρopσ

√
1− µ

1 + µ
+

Lopη
2
full

2
,

Errorblock
k = 2ηblockµ

k(1− µ)2ρblockσ + 2ηblockµ
k+1
√

2LB∆0 +
2LBηblock max(ηblock, ηfull)µ

1− µ

+ 2ηblockρblockσ

√
1− µ

1 + µ
+

LBη
2
block

2
.

19



1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

The first term on the right hand side of eq. (13) is a telescoping sum bounded by ∆0 = f(X0)− f∗.
For the error terms dependent on µk, we can form a simple upper bound by summing over all k and
using the larger constants (LB, ρblock):
Momentum-dependent error

=
∑
k∈SP

[
2ηfullµ

k(1− µ)2ρopσ + 2ηfullµ
k+1
√

2Lop∆0

]
+
∑
k∈SB

[
2ηblockµ

k(1− µ)2ρblockσ + 2ηblockµ
k+1
√

2LB∆0

]

≤ 4

T−1∑
k=0

(
µk(1− µ)2 max(ηfullρop, ηblockρblock)σ + µk+1 max(ηfull

√
Lop, ηblock

√
LB)

√
2LB∆0

)
≤ 4

(
(1− µ)max(ηfullρop, ηblockρblock)σ +

µmax(ηfull
√
Lop, ηblock

√
LB)
√
2∆0

1− µ

)
.

For the other terms, we sum them proportionally. Observe that |SP | = T/P and |SB | = T (P −
1)/P , as we assume that T is divisible by P . Therefore,

Constant error =
∑
k∈SP

(
Lopη

2
full

2
+

2Lop max(ηfullηblock
√
rc, η2full)µ

1− µ
+ 2ηfullρopσ

√
1− µ

1 + µ

)

+
∑
k∈SB

(
LBη

2
block

2
+

2LB max(ηfullηblock, η
2
block)µ

1− µ
+ 2ηblockρblockσ

√
1− µ

1 + µ

)

= T
(η2fullLop

2P
+

LBη
2
block(P − 1)

2P
+

+
2µ

1− µ

[Lop max(ηfullηblock
√
rc, η2full)

P
+

LB max(ηfullηblock, η
2
block)(P − 1)

P

]
+ 2σ

√
1− µ

1 + µ

[
ηfullρop

P
+

ηblockρblock(P − 1)

P

])
Observe that,
T−1∑
k=0

(1k∈SP
ηfull + 1k∈SB

ηblock)E [∥∇f(Xk)∥op,∗] ≥ T

[
ηfull
P

+
ηblock(P − 1)

P

]
min
k

E [∥∇f(Xk)∥op,∗]

= T η̄min
k

E [∥∇f(Xk)∥op,∗] .

Observe that for the operator norm and the block spectrum norm, we have ρop ≤ 1 and ρblock ≤ 1
by Lemma 3. Using this and combining all the error parts we get

η̄T min
k

E [∥∇f(Xk)∥op,∗] ≤ ∆0 + 4(1− µ)σηmax +
6µ
√
∆0

1− µ
max(ηfull

√
Lop, ηblock

√
LB)

+ T

(
η2fullLop

2P
+

LBη
2
block(P − 1)

2P
+ 2σ

√
1− µ

1 + µ
η̄

+
2µ

1− µ

[Lopηfull max(ηblock
√
rc, ηfull)

P
+

LBηblock max(ηfull, ηblock)(P − 1)

P

])
.

Dividing both sides by η̄T yields

min
k<T

E [∥∇f(Xk)∥op,∗] ≤
∆0

η̄ T
+

4(1− µ)σ ηmax

η̄ T
+

6µ
√
∆0

1− µ
·
max{ηfull

√
Lop, ηblock

√
LB}

η̄ T

+
1

η̄

[
Lop η

2
full

2P
+

LB η2block(P − 1)

2P

+
2µ

1− µ

(Lop ηfull max{ηblock
√
rc, ηfull}

P
+

LB ηblock max{ηfull, ηblock}(P − 1)

P

)]
+ 2σ

√
1− µ

1 + µ
,

20



1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

where

η̄ =
ηfull
P

+
P − 1

P
ηblock, ηmax = max{ηfull, ηblock}.

B ADDITIONAL ALGORITHMS, RESULTS, AND EXPERIMENTAL DETAILS

The orthogonalization via Newton Schulz iterations procedure is stated as Algorithm 2.

Algorithm 2: Orthogonalize-via-NS(G, K, ε = 10−7)
1 a← 2, b← −1.5, c← 0.5;
2 X ← G/(∥G∥+ ε);
3 for t← 1 to K do
4 A← XX⊤;
5 B ← bA+ cA2;
6 X ← aX +BX;
7 return X;

All the architectural hyperparameters and learning rates used are given in Table 4 below. We used
the learning rates from (Liu et al., 2025) as a starting point for each run. We found at a smaller scale
that the learning rates recommended therein could be increased by a factor of ≈ 3 with no harm to
convergence for the baseline (Muon) algorithm, and we scaled the other learning rates accordingly.
Nevertheless, we do two experiments with smaller learning rates. We use GQA (Ainslie et al.,
2023), RoPE (Su et al., 2024), bf16 mixed-precision training, and a weight decay value of 0.1. We
also apply gradient clipping with value 1.0 to the parameters optimized by AdamW (mainly 1D
parameters and the input embedding). We use cosine decay with no warmup for the 960M and 1.2B
experiments and the Warmup-Stable-Decay (WSD) schedule (Hägele et al., 2024) with linear decay
to 4.2× 10−5 for the 8B model.

Table 4: Section 4.2 experiments hyperparameters (sequence length = 8K, Batch size=128 sequences
for 960M/1.2B models and 256 sequences for 8B models).

Model Layers Heads Query Groups Hidden Size (DP, TP) LR (×10−3) Tokens (B)

960M 12 16 4 1536 (2, 4) 3.503 9.503
1.2B 14 16 4 1792 (2, 4) 3.291 14.143
1.2B (3x long, larger lr) 14 16 4 1792 (2, 4) 3.291 42.143
1.2B (3x long, smaller lr) 14 16 4 1792 (2, 4) 0.86 42.143
8B (smaller lr) 32 32 8 4096 (4, 8) 0.6 9.99
8B (larger lr) 32 32 8 4096 (4, 8) 1.2 9.99

We report the training curves for the 960M model in Figure 4, for the 1.2B model in Figure 5, for
the 1.2B model trained to 3x Chinchilla with smaller learning rate in Figure 7, with larger learning
in Figure 6, and for the 8B model in Figure 10 (smaller learning rate) and Figure 9 (larger learning
rate). Our main observation here is that even after doing RMS norm adjustment (i.e. update is scaled
by
√
max(A,B) where A and B are the dimensions of the update matrix, which scale inversely with

blocking), BlockMuon can become unstable with larger learning rates. On the contrary, MuonBP
does not.

A reason why this might be the case is that BlockMuon almost always causes the parameter norms
to grow larger over time compared to Muon or MuonBP, as can be seen in Table 5. This holds even
when we use small learning rates and learning rate adjustment.

21



1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

(a) Training loss vs. steps (b) Validation loss vs. steps (c) Validation loss vs. runtime

Figure 4: 960M model. Comparison of baseline, block, and periodic orthogonal block methods
across training steps and wall-clock time.

(a) Training loss vs. steps (b) Validation loss vs. steps (c) Validation loss vs. runtime

Figure 5: 1.2B model. Comparison of baseline, block, and periodic orthogonal block methods across
training steps and wall-clock time.

(a) Training loss vs. steps (b) Validation loss vs. steps (c) Validation loss vs. runtime

Figure 6: 1.2B model (larger lr), trained to 3x Chinchilla. Comparison of baseline, block, and
periodic orthogonal block methods across training steps and wall-clock time.

(a) Training loss vs. steps (b) Validation loss vs. steps (c) Validation loss vs. runtime

Figure 7: 1.2B model (smaller lr), trained to 3x Chinchilla. Comparison of baseline, block, and
periodic orthogonal block methods across training steps and wall-clock time.

22



1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

Figure 8: Comparison of parameter norms using Muon, BlockMuon, and MuonBP over training on
960M model (left), 1.2B model 3x-Chinchilla with smaller lr (center), and 8B model (right).

(a) Training loss vs. steps (b) Validation loss vs. steps (c) Validation loss vs. runtime

Figure 9: 8B model (larger lr). Comparison of baseline, block, and periodic orthogonal block meth-
ods across training steps and wall-clock time.

(a) Training loss vs. steps (b) Validation loss vs. steps (c) Validation loss vs. runtime

Figure 10: 8B model (smaller lr). Comparison of baseline, block, and periodic orthogonal block
methods across training steps and wall-clock time.

(a) Training loss vs. steps (b) Validation loss vs. steps (c) Validation loss vs. runtime

Figure 11: 160M model training with 2-way FSDP2 and 4-way TP. Comparison of Baseline, Block-
Muon, MuonBP, and Dion across training steps and wall-clock time.

23



1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

Table 5: Validation/Training perplexity (lower is better) and average parameter norm. Best perplex-
ities within each model size are in bold.

Model Method Val PPL Train PPL Param Norm

960M
Muon 15.33 13.44 2680
BlockMuon 20.29 18.08 5702
MuonBP 15.12 13.21 2648

1.2B
Muon 14.13 12.83 4237
BlockMuon 16.28 14.86 7225
MuonBP 13.78 12.44 4195

1.2B (3×, large lr)
Muon 12.62 10.88 2681
BlockMuon 13.29 11.51 5521
MuonBP 12.45 10.71 2868

1.2B (3×, small lr)
Muon 13.26 11.40 1602
BlockMuon 13.22 11.29 3242
MuonBP 13.30 11.39 1571

8B
Muon 12.90 11.74 4369
BlockMuon 13.68 12.62 6680
MuonBP 12.77 11.59 4471

8B (large lr)
Muon 13.40 12.39 6841
BlockMuon 24.68 23.17 11 496
MuonBP 12.97 11.93 7063

24


	Introduction
	Background and Related Work
	Algorithms and Convergence
	Block orthogonalization
	Block-periodic orthogonalization

	Experiments
	Training with dim-0 data sharding
	Training with Layerwise-Sharding

	Conclusion
	Main Proofs
	Norm equivalences
	Convergence proofs

	Additional Algorithms, Results, and Experimental Details

