Under review as a conference paper at ICLR 2026

MUONBP: FASTER MUON VIA BLOCK-PERIODIC OR-
THOGONALIZATION

Anonymous authors
Paper under double-blind review

ABSTRACT

Gradient orthogonalization is a simple strategy that shows great utility in speed-
ing up gradient descent. The Muon optimizer (Jordan et al., 2024b) combines
gradient orthogonalization with first-order momentum and achieves significant
improvement in data efficiency over Adam/AdamW for language model training.
However, when using model parallelism, gradient orthogonalization introduces
additional overhead compared to coordinate-wise optimizers (such as AdamW)
due to additional gather and scatter operations on gradient matrix shards from
different devices. This additional communication can amount to a throughput
hit of 5%-10% compared to Adam/AdamW. To remedy this, we propose Muon
with Block-Periodic Orthogonalization (MuonBP), which applies orthogonaliza-
tion independently to matrix shards on each device and periodically performs full
orthogonalization to maintain training stability at scale. We show how to ad-
just the learning rate from the baseline to MuonBP and give convergence guar-
antees for this algorithm. Crucially, our theory dictates that we use two stepsizes:
one for the blockwise orthogonalization steps, and one for the full orthogonaliza-
tion steps. Our method is simple, requires minimal hyperparameter adjustments,
and achieves competitive iteration complexity compared with the baselines Muon
and Dion while providing per-iteration throughput comparable to coordinate-wise
methods such as AdamW. When training an 8B model with eight-way tensor par-
allelism and ZeRO optimizer state sharding, MuonBP achieves 8% throughput
increase compared to Muon with no degradation in performance.

1 INTRODUCTION

First order optimization methods have been the staple in the success of deep learning in the last
decade. In particular, Adam (Kingma & Ba, 2015; Loshchilov & Hutter, 2019a) has become the
de facto standard across both industry and academia. Despite numerous attempts to improve upon
Adam’s performance, it has remained unchallenged as the optimizer of choice for training large-
scale neural networks. But this wall might be starting to crack. A recent newcomer, Muon (Jor-
dan et al., 2024b), consistently outperforms Adam on various LLM training tasks ranging from
small scale benchmarks to larger LLM training setting with up to 1T model parameters Team et al.
(2025). Muon is more data efficient than Adam, requiring fewer tokens to reach the same valida-
tion loss (Liu et al., 2025). It also enjoys a higher critical batch size, which allows for further use
of parallelism (Essential Al et al., 2025) to accelerate training. Both of these aspects are critical
in large-scale LLM pretraining, where even marginal efficiency gains can translate into substantial
computational and financial savings.

Muon orthogonalizes the update matrix for each layer before using it in a descent step, and it
can be seen as a form of steepest descent (Bernstein, 2025) or as a Non-Euclidean Trust Region
method (Kovalev, 2025). A key disadvantage of Muon, compared to Adam, is that orthogonal-
ization is not a coordinate-wise operation. Rather, it requires gathering the gradient matrix from
different devices whenever model parallelism is used. This introduces additional throughput over-
head compared to Adam (Essential Al, 2025). Although Muon is more foken efficient, it is strictly
slower than Adam on a per-iteration basis under model parallelism.

The goal of this work is to bridge this throughput gap while preserving the data efficiency of Muon.
To this end, we propose Muon with Block-Periodic orthogonalization (MuonBP, Algorithm 1).
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MuonBP block-orthogonalizes the matrix shards on each device independently and periodically
gathers the shards for a full orthogonalization. In the off-period iterations, MuonBP does not require
any additional communication, recovering the communication efficiency of Adam. However, or-
thogonalizing shards only is not enough for a competitive performance. We observe this block-only
variant (BlockMuon, (Boreiko et al., 2025)) suffers from a potentially worse convergence guaran-
tee and fails as the models scale up. Hence, we introduce periodic global orthogonalization steps.
Combined, MuonBP recovers the performance of Muon with a drastic reduction in communication
overhead. Our main contributions are as follows.

* We propose MuonBP, a variant of Muon with local orthogonalization interleaved with periodic
full orthogonalization. In the off-period iterations, MuonBP treats each tensor parallel shard in-
dependently and orthogonalizes it separately. In the on-period iterations we gather the tensors
and do a full orthogonalization. Our experiments with a period of 5 indicate that we recover the
performance of Muon with 5x reduction in the optimizer step communication volume.

* We provide a theoretical analysis of the algorithm (Theorem 2) that shows (a) the blocking period
P smoothly interpolates between the convergence rate of Muon and BlockMuon, that (b) we
should use two different learning rates in the blocking vs full iterations, and finally (c) gives us
guidance on how to scale the learning rate when using block orthogonalization.

* Empirically, we show that MuonBP converges faster than the baseline (non-blocking) Muon algo-
rithm (Jordan et al., 2024b), Dion (Ahn et al., 2025), AdamW (Kingma & Ba, 2015; Loshchilov
& Hutter, 2019b), and BlockMuon (Boreiko et al., 2025) in practical pretraining tasks in terms of
the wall-clock time. We observe that our method recovers the original Muon’s performance with
a up to 8% increase in throughput under layerwise sharding and tensor parallelism.

We briefly outline the rest of this paper. In Section 2, we provide necessary background for a steepest
descent view of Muon, which will be useful for other sections. We discuss related work and compare
our work to few others who examined orthogonalized updates in large scale distributed settings. In
Section 3, we discuss our algorithm with convergence analysis, our goal is to analyze the effect of
periodicity in the behaviour of our algorithm. Finally, in Section 4, we examine our algorithm in
billion-scale training settings and compare to other baselines in terms of accuracy and throughput.

2 BACKGROUND AND RELATED WORK

Optimizers as steepest descent. Bernstein & Newhouse (2024b) argued for viewing different opti-
mizers as steepest descent under different norms. This perspective is very useful in analyzing Muon
as it (a) clarifies what Muon is optimizing for, and (b) gives a common template to compare Muon,
its blockwise variants, and coordinate-wise methods like Adam. For example, when EMA is turned
off in Adam, it reduces to sign descent. We may observe that for any € R and a differentiable
function f

Mggn(v f@), O

where |u||,, = max;—; . q|u;|. The steepest descent view results in the additional scaling by
IV f(x)||; in the numerator. This scaling factor results in different parameter update norm every
iteration (o ||V f(x)||,). We can instead explicitly control the parameter update norm by using the
Non-Euclidean Trust Region (NTR) formulation. This is the formulation used by Kovalev (2025):
at iterate z, NTR minimizes the first-order model of f over a norm ball {A :|| A ||[< 1/A}, which
yields the steepest-descent direction in that norm. For ||| this recovers (unscaled) sign descent.
The NTR formulation also allows for elegant theoretical analysis, including incorporating algorith-
mic techniques such as momentum (Kovalev, 2025). For these reasons, we will adopt the NTR
framework as our algorithmic template in Section 3.

arg minn , cpa (f(x) +(Vf(z),z+ Az) + %HAzHio) S

Muon. Changing the norm used from ||-|| ., to any other norm opens up a large design space of
optimization algorithms. For example, we may use different norms for different parameters in a

neural network. If the parameter X of a certain layer is a matrix of dimensions m X n, using the

— X2 ;
operator norm || X ||, = sup_cg» Tz instead gives

argmins xjjax),, <4 (F(X) + (VF(X), X +AX) = —1OMh(VA(X)), @)
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where Orth(U) = (UU ")~ $U. If we use Newton-Schulz iterations (Algorithm 2) to approxi-
mately compute the orthogonalization and apply the maximization to a running momentum buffer in-
stead of the gradient directly, we obtain Muon (Jordan et al., 2024b). Bernstein & Newhouse (2024a)
argue for using layer-dependent norms depending on the expected norm for the input vs output of
each layer. In practice, the choice of norm is also motivated by empirical performance (Jordan et al.,
2024b). If we instead use the /1 — ¢5-induced norm, we obtain column normalization. That is, given

i i = . — 1 Gia . G.n
a stochastic gradient G = [G.1 G.2 G.nl, we set AX = —5 [”G:J” e -

This was used for the first layer in Scion (Pethick et al., 2025) and for every layer save the last in
SCALE (Glentis et al., 2025). Glentis et al. (2025) show that this using column normalization with
momentum on the last layer allows for training transformers competitive with Adam and Muon for
up to 1B parameters scale.

The choice of norm dictates the operation to be done at every step and its structure (e.g. coordinate-
wise vs. matrix-wise). This, in turn, determines both the computational cost of the update and
whether distributed execution requires cross-device collectives.

Computational costs. For a parameter matrix of size m x n, the per-step cost of SGD with Momen-
tum is just 2mn floating point operations and 4mn FLOPs for Adam. In comparison, orthogonaliza-
tion is more expensive. Using K Newtow-Schulz iterations (Algorithm 2 in the Appendix), the total
is 2mn + 2K (2nm? + m3) FLOPs assuming without loss of generality that m < n (Jordan et al.,
2024b). Some approaches to reducing the computational cost of orthogonalization include tuning
a, b, c in Algorithm 2 to reduce the number of steps needed (Jordan et al., 2024b) or using adaptive
per-step a, b, ¢ (Amsel et al., 2025). Note that this computational cost might be small relative to the
forward and backward passes in backpropagation. A common rule of thumb is fwd+bwd computa-
tion ~ 6 NT FLOPs for a dense network with N params and input size of 7" tokens. For larger batch
sizes, this becomes more dominant as the optimizer step is independent of the input size.

Communication costs. Modern neural networks are trained with a combination of data and model
parallelism. Data Parallelism (DP) replicates model parameters, gradients, and optimizer states
across the communication network but passes different data batches to each DP group. The gradi-
ents are synchronized across the different devices before applying the optimizer step. While this
replicates the optimizer step computation across different DP groups, it adds no additional com-
munication cost. In contrast, model parallelism typically will shard some or all of these tensors.
Tensor Parallelism (Shoeybi et al., 2019) (TP) shards the model parameters for both storage and
computation; This sharding is done along one or more dimensions (e.g. row, column) of each ten-
sor. Pipeline Parallelism (Huang et al., 2018) (PP) also shards model parameters for both storage
and computation, but does so by dividing the layers among different PP groups. The Zero Redun-
dancy Optimizer (Rajbhandari et al., 2019) (ZeRO), Fully Sharded Data Parallelism (Zhao et al.,
2023) (FSDP), and FSDP2 (Liang et al., 2024) shard model parameters either by layer or on the
first dimension, but do that for the purpose of saving memory. Before doing the forward/backward
computation involving a certain layer, ZeRO/FSDP2 undo the sharding they apply first.

Communication cost of Muon. There are several strategies for parallelizing Muon and they deter-
mine the communication costs involved (Essential Al, 2025). If we use TP or FSDP2, we have to
do an additional all-gather across the TP/FSDP2 groups to gather the model parameters. A naive
all-gather would force us to orthogonalize the same matrix in parallel which is redundant. A better
alternative is to use two all-to-all communications to redistribute different layer tensors. This suffers
from two issues: (a) we still have to do two additional collective operations, and (b) if the number of
matrices to be orthogonalized is larger than the number of GPUs, some GPUs would sit idle. If we
use ZeRO, then the fact that the optimizer states, parameters, and gradients are already sharded lay-
erwise helps greatly: we do not need to do an all-gather across the distributed optimizer groups and
can apply orthogonalization layerwise in parallel. In this case, the only extra communication cost
we suffer from comes from all-gathering across the TP groups. For an 8B parameter LlaMa-style
transformer, this gives a throughput reduction of 8%-10%

This additional communication burden has motivated the development of Dion (Ahn et al., 2025)
and, concurrently to our work, Boreiko et al. (2025) introduce a variant of BlockMuon (Algorithm 1
with P = oc0). Dion (Ahn et al., 2025) maintains a low-rank approximation of the momentum matrix
and distributes the orthogonalization process. For large enough batch sizes, Dion’s computational
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cost is perfectly divided by the number of devices and its communication cost scales with the smaller
rank.

Other preconditioning algorithms. Many of the same computational and communication con-
straints discussed above also apply to other gradient preconditioning algorithms, e.g. Sham-
poo (Gupta et al., 2018), K-FAC (Martens & Grosse, 2015), and ASGO/One-Sided Shampoo (An
et al., 2025; Xie et al., 2025). Distributed Shampoo (Shi et al., 2023) uses blocking, intermittent
preconditioner updates, and layer-wise sharding similar to ZeRO-1/FSDP to reduce the amount of
communication.

3 ALGORITHMS AND CONVERGENCE

Our starting point is the observation that column- or row-wise normalization can be viewed as or-
thogonalization applied on a submatrix of size m x 1 or 1 X n. An intermediate method between
row-wise normalization and column-wise normalization would be orthogonalizing submatrices of
dimensions p x g each where p < m and ¢ < n. This has two benefits,

 We reduce the amount of floating point operations per Newton-Schulz step from 2(2nm? + m?)

to 2(2pq® + ¢3) x o= 2(2mng + quQ) floating point operations (assuming without loss of
generality that p < ¢). For example, the MLP layers in LlaMa 3 405B (Grattafiori et al., 2024)
have m, n € {53248,16384}. Here, orthogonalizing submatrices with 8-way TP gives a speedup
of = 2.36x for the up-projection and ~ 9.06 x for the down-projection per Newton—Schulz step
relative to full orthogonalization.

* If we use blocks corresponding to the model parallelism used, we can entirely eliminate orthogo-

nalization’s communication overhead under any regime. We discuss this in more detail below.

How blocks align with model-parallel shards. We divide each parameter, gradient, and opti-
mizer state tensor into blocks and define each of these blocks to be exactly the tensor shard that
resides on a device under the chosen model-parallelism layout. This makes the communication
pattern explicit and ensures that a “block”™ step never requires cross-device traffic.

* Tensor Parallelism (TP). In Megatron-style (Shoeybi et al., 2019) column-parallel linear layers, a
weight W € R™*™ is split by columns across ¢ TP ranks, so each rank holds W) ¢ Rm*(n/¢)
and produces a local gradient shard G() € R™*("/¢) A block is G'9); block-orthogonalization
acts on m x (n/c) matrices and needs no gather/scatter. In row-parallel layers, W is split by
rows across 7 ranks, so each shard is ((m/r) x n) and the block is G(Y) € R(™/") %" For hybrid
2D TP (row x column), the global W is partitioned into an r X c grid of rectangular shards
((m/r) x (n/c)). TP is often applied not just to the linear layer but also to the attention weights
as well, and the same discussion applies.

* FSDP2 (dim-0 sharding). When parameters are sharded only for memory (layer/dim-0), each
rank holds a contiguous slice along the first dimension. During the optimizer step, block denotes
this local slice; thus block-orthogonalization again requires no parameter all-gather. The same
definition applies under TP+FSDP: the block is the intersection of the TP and FSDP partitions,
i.e., a single (% X %) shard.

In order to develop algorithms that minimize communication, we want to do block-wise operations
as much as possible and keep “global” operations to a minimum. To this end, we analyze the variant
of Muon that only does blockwise operations in Section 3.1. Our analysis shows that in the worst
case, the convergence of this variant might be much worse than full Muon. To remedy this, we
develop and analyze our block-periodic variant in Section 3.2.

3.1 BLOCK ORTHOGONALIZATION

BlockMuon (Algorithm 1 with P = oc0) applies orthogonalization to these blocks, in parallel, on
different devices (Boreiko et al., 2025). This removes the need for any added communication and
reduces the computational cost of orthogonalization. To better understand the convergence of Block-
Muon, we analyze the algorithm under the assumptions of smoothness, bounded stochastic gradient
variance, and norm equivalence characterized by p. We state our assumptions more clearly below.
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Assumption 1 (Smoothness). We assume that f : R™*"™ — R is L-smooth with respect to a norm
I-Il. That is, let ||-||, be the corresponding dual norm, then for all X, Y € R™*" — R we assume
[VA(X) = VY, < LIX =Y.

Assumption 2 (Bounded Variance). Suppose that the stochastic gradients G(X ) are (a) unbiased,
E¢ [G(X;€)] = Vf(X), and (b) have bounded variance E; {HG(X;{) - Vf(X)||2} < o2

Assumption 3 (Norm Equivalence). The norm ||-|| satisfies | X || < p|| X || for some p > 0.

As mentioned before, we will use the Non-Euclidean Trust Region (NTR) template (provided next)
to analyze both algorithms.

Mt = /,[,Mt_l + Gt7 Xt-‘,—l = arg min <Mt; X - Xt> , (NTR)
X[ X =X <n

where G is a stochastic gradient with expectation V f(X;). This framework was adopted for the
convergence analysis of Muon by Kovalev (2025) and the next theorem is a slight modification of
Theorem 2 in their work. The proof is also similar to (Li & Hong, 2025, Theorem 2.1).

Theorem 1. Suppose that the function [ satisfies Assumptions 1 to 3 and that f is lower bounded
by f«. Then for any n > 0 and p € [0, 1] the iterates generated by equation NTR satisfy

f(Xo)—f*+3 L(f(Xo) — f+) n
nT T 1—p

E [ming—o,...7-1 [[Vf(Xo)[] <

3)
2(1 —ppo | Lnp L—p  Lny
+ T —&-l_u—i—pa 1+/~L+2'
Theorem 1 applies to Muon, since under ||-|| = ||-|lop, €q. (NTR) reduces to orthogonalizing mo-

mentum. The next lemma shows that Block-Muon can also be studied in the same framework.

Lemma 1 (Dual of the Block-Spectral Norm). Let X € R™*"™ be partitioned into v X ¢ blocks.
Define the block-spectral norm as B(X) = maxi<i<r, 1<j<c || Xi jllop- Its dual norm is B*(X) =
>l Xijllop, where || - ||« is the nuclear norm.

BlockMuon is just eq. (NTR) with ||-|| = B(-). To compare between the convergence of Muon and
BlockMuon, we consider the simplified setting when o = 0 and apply Theorem 1. Minimizing

2(f(Xo)=f.)

Equation (3) over 1) and p yields 7gp, « = and ;¢ = 0 and the convergence guarantee

TLop
IV (X ) |lop,x < Mw, where Ly, is the smoothness constant of f with respect to the
operatorwnorm. Similarly, the best guarantee for BlockMuon is achieved by ny1ock,« = %

and is B*(Vf(X.)) <4/ % where 7/ = arg min, B*(V f(X})) and Lg is the smooth-

ness constant of f in the block norm B(-). To compare the two guarantees for BlockMuon and
Muon, we use the facts that ||-||op,« < B*(-) and Lg < rcLop (proved in Appendix A.1) to get

V(XL ) op,s < 4/ w < reyf w Thus, under the same operator norm

metric, BlockMuon’s best point X, has a gradient dual norm that is at most a y/rc factor worse than
Muon’s best point X in the worst case; when L ~ L, (e.g., curvature well captured by blocks),
the two bounds match up to constants. Note that in the former case, we would have Lp ~ (1"4:)LOp

Nop, * _ LB _ . . . ~ .
and e S AT = v/rc. Whereas, in the ideal scenario when 7)o, « = plock,«, the optimal

learning rate would be the same for both algorithms. Thus the optimal ratio of the learning rate of
Block-Muon and Muon is between 1 and 1/+/rc.

The picture we see is thus clear: BlockMuon is faster on a per-step basis, as we do not need to
perform any additional communication over coordinate-wise methods, but this comes at the cost
of a worse convergence guarantee (by a factor of y/7c¢ in the worst case). It seems straightforward
then that we should minimize wall-clock time by choosing block sizes r and c that balance this
tradeoff. While this is theoretically plausible, in practice the block sizes are naturally a function of
network topology (i.e. FSDP or TP degrees) and changing them would add more latency and require
redistributing tensors to and from their original layouts.
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3.2 BLOCK-PERIODIC ORTHOGONALIZATION

We instead offer another alternative to tuning block sizes that (a) has a simple implementation, and
(b) gives us a clear tunable knob that smoothly interpolates between BlockMuon and Muon. Given a
period P, Muon with Block-Periodic orthogonalization instead uses BlockMuon for % steps and
then uses full orthogonalization for one step. If P = 1 we get Muon, while if P — oo we get Block-
Muon. Using P in between both extremes allows us to balance out the tradeoff between iteration
complexity and per-step communication cost. We state the algorithm in full below as Algorithm 1.
Note that we use two stepsizes, N1 and Np1ock, depending on whether we communicate during that

step or not. We will later show this gives a better convergence rate than just using one stepsize.

The next theorem studies the convergence of this algorithm and allows us to make the above intuition
rigorous.

Theorem 2 (Convergence of MuonBP). Suppose that f satisfies Assumption 1 with respect to both
the operator norm || - ||op with constant Loy, and the block-spectral norm B(-) with constant Ly,
and that Assumption 2 holds. Assume [ is lower bounded by f,. and let Ag = f(Xo) — f+. Fix
a period P > 1, momentum p € [0,1), and two stepsizes gy > 0 and nuiock > 0. Define

= _ Mblock (P—1) _
n= % + Oc#y Thmax = max(nfulla nblock); and

Loon? Lgn? P-1
A= maX{"?full Lop7 TIblock \/g}v Q = ;’qull + Bnblog}:() )’
R 2 <L0p Ml MAX{ Nblock v/7'C; Nrun } 4 LB mtoc max{mn, Mtoci} (2 — 1))
-1 D P '

Then for any horizon T divisible by P, the iterates of Algorithm 1 satisfy
ming—y, 71 E[[VF(X0)llop,e] < 2p + A7 4 fBon 4 DL 400, [ (&)

To simplify the comparison we consider the noiseless case where o = 0 and the optimal momentum
parameter is then © = 0. To minimize Equation (4), we define the harmonic-average smoothness

Lgp by Lgp = $Lg) + ©5* Ly'. The optimal stepsizes are then 7, = 71—/*2 Lpp and

Mok = 71]3, / %EBP and the convergence rate is min, 7 ||V f(X¢)|lop,« < \/%. There-
fore, the convergence of BlockMuon, Muon, and MuonBP is proportional to v/Lg, v/ Lop, and

v/ Lgp, respectively. It is easy to see that L,, < Lgp < Lg and thus the convergence rate of
MuonBP is in between Muon and BlockMuon. The period P acts as a tunable knob that lets us slide
between the two extremes and this is directly reflected in the convergence rates we obtain. Observe
that to get this rate, it is crucial that we use two stepsizes ng,11 and 7Mplock depending on whether
we are applying full orthogonalization or block-wise orthogonalization. On the contrary, if we were

to force using a single stepsize for all steps 17; = 1, the optimal choice becomes n* = TQEAB"PQ
with Lgps = LIE‘) + £51 Lp, yielding a convergence rate proportional to Lgp, rather than Lgp.

Since Lpp is the weighted harmonic mean and Lyps is the weighted arithmetic mean of the same
constants, we have Lgp < Lppy with strict inequality unless Lo, = Lg, so tying the stepsizes
generally yields worse convergence. Observe that, as in our previous comparison, the optimal ratio
between np1ock and neyy i between 1 and 1/4/re.

AdamW learning rate transfer. Liu et al. (2025) introduce a learning rate scaling rule that allows
reusing the AdamW learning rate for Muon by matching the root-mean square norm of the updates
to be the same as AdamW. To ensure that the updates have RMS S, they scale the update matrices
by 8 - y/max(m,n) where m X n are the update matrix dimensions. Following our theorem above,
which shows using different learning rates for the blocking and non-blocking matrices is ideal, we
also adopt this rule and scale the updates by the dimensions of the smaller matrix on block steps and
the dimensions of the full matrix on non-blocking steps.

Communication cost of MuonBP. On a block step, MuonBP performs orthogonalization on the
local shard and updates the local parameter slice; no optimizer-state all-gather/scatter is needed.
Only the usual DP gradient all-reduce (already required by the training stack) occurs. On a full
step, MuonBP temporarily gathers shards to materialize M; (or G;) per tensor, performs global
orthogonalization, then scatters back.
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Choice of period. Ideally the period P should

Algorithm 1: MuonBP be chosen to minimize the wall-clock time to

MST) < (0 for all devices m reach a certain accuracy ¢, defined as the prod-
fort «— O0toT — 1 do uct of number of iterations to reach this ac-
for each device m do in parallel %l}llracy Tit;;(@ f; )h(WhiCh caré be ?lerilve(lj( from
(m) eorem and the expected wall-clock time
Get ldo.cal sé;ard Gy of the full per iteration Ty, (P). The latter is a function
gr(iq)lent ¢ (m) (m) of network communication speed, the model
M pMy "7 + Gy parallelism used, and tensor dimensions. This
if £t mod P = 0 then can be difficult to model in closed form, and
Gather { Mt(m) }m to form full M, in practice we resort to trying out different val-
U, «+ Orthogonalize-via-NS(M;) ues of P for shorter runs first. We found that
Xit1 + Xt — U the simple choice P = 5 balanced this tradeoff
else well in most of our experiments.
for each device m do in parallel
U™ 4 EXPERIMENTS
Orthogonalize-via-NS (M ™) We conduct experiments in two main settings
Xt(rl) — Xt(m) _ UblockUt(m) both of which are Llama-style language model
return X pretraining setups. Firstly, we use a setting

with FSDP2 and TP where we study the effect
of varying blocking degree and orthogonaliza-
tion period on convergence under extensive hy-
perparameter tuning. Then, we benchmark our
method with a small 160M model setup from (Ahn et al., 2025); and compare MuonBP to AdamW,
Muon (with full all-gather at every step), BlockMuon, and Dion. FSDP2 shards optimizer states in
Oth dimension to different workers, resulting in increased communication for Muon. In the second
setting we use ZeRO layer-wise (Rajbhandari et al., 2019) optimizer state sharding and TP. Here, we
primarily compare MuonBP (Algorithm 1), BlockMuon (Algorithm 1 with P = o0), and baseline
Muon (with full all-gather every step), under billion scale model sizes and longer tokens. Both ex-
periment groups are meant to showcase the accuracy and throughput improvements brought about
by our algorithm in realistic pretraining settings.

4.1 TRAINING WITH DIM-0 DATA SHARDING

Experimental setting and hyperparameters. We aug-
ment the Modded-NanoGPT codebase (Jordan et al.,
2024a) with SimpleFSDP (Zhang et al., 2024) and ss70 | 33635 [T P

TP (Shoeybi et al., 2019) via the DTensor API integrated 346
into PyTorch 2.0 (Liang, 2023). We use the FineWeb
dataset (Penedo et al., 2024) for the experiments in this
section.

2
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33649 33737 33769  3.3832

4

©
=
S
Validation Loss

Block Muon Degree
8

3.40

Figure 1 shows the effect of varying both the TP degree
and the period of orthogonalization on the final validation
loss achieved. We use the modernized GPT-style archi-
tecture of Modded-NanoGPT (Jordan et al., 2024a) for 2o - o
this experiment. We use 12 layers, 6 attention heads, and ' Block Period
a model dimension of 768. We use the smaller model

size (280M) in order to run an extensive grid search. Fol- Figure 1: Validation loss as a function
lowing the codebase, we use separate learning rates for of orthogonalization period for different
Adam (applied to 1D parameters and the input embed- TP degrees (280M model).

ding) and Muon, and do not use the RMS norm matching

trick of Section 4.2. We tune the Adam/Muon learning

rates over the grid (0.0001,0.001,0.01,0.1,0.5, 1,2, 4, 8) * base where base = 0.012 for Adam
and base = 0.08 for Muon. We see that decreasing the block period directly decreases the loss for
all the degrees we consider, with the effect most pronounced at the highest degrees.

-3.38

16

-3.36
16.0

We use the Dion codebase (Ahn et al., 2025) for the second comparison and train a 160M pa-
rameter model with a batch size of 1024, sequence length 1024, model dimension 768, 12 layers
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and 12 attention heads per attention layer. We use the WSD schedule with no warmup and a 20%
cooldown. The learning rate is 0.02 for all methods (with AdamW rms norm matching) except for
AdamW, where we found by a grid search that 0.008 performed better. We use TP degree of 2 and
FSDP degree of 4, and use Lion as the scalar optimizer in line with the codebase. The throughputs
for all the methods were similar at this scale, although they were significantly lower compared to
throughputs on Megatron-LM with layerwise sharding. We believe more experiments are needed to
compare against Dion, particularly to integrate it into widely used open source frameworks such as
Megatron-LM. We also plot the loss curves in Figure 11 in Appendix B.

Muon BlockMuon MuonBP Dion AdamW

Min Validation Loss 3.36 3.36 3.34 3.37 3.62
Min Training Loss 3.02 297 2.94 2.95 321
Throughput (TFLOP/s/GPU)  50.90 51.77 51.40 45.64 52.80

Table 1: Training/validation losses and throughput on 160M model trained with TP=2 and FSDP=4.

4.2 TRAINING WITH LAYERWISE-SHARDING

Experimental setting and hyperparameters. We built upon the Distributed Muon implemen-
tation of (Liu et al., 2025) in the Megatron-LM framework (Shoeybi et al., 2019) and mod-
ified it to support block-wise tensor parallel orthogonalization with periodic full orthogonal-
ization. We used Llama-style model architecture (Touvron et al., 2023a;b) with RoPE (Su
et al., 2024), SwiGLU activation (Shazeer, 2020), and mixed-precision training (bf16 compu-
tations with fp32 master weights). We use the Llama 3 tokenizer (Grattafiori et al., 2024)
on the OpenWebText dataset (Gokaslan et al., 2019) for experiments at the 0.9-1.2B scale
and the FineWeb data (Penedo et al., 2024) for experiments at the 8B scale. For the ex-
periments in this section, we used nodes that have 8xA100 GPUs with 40GB of RAM each.

o= Muon

We train models in the following scales and settings: 960M and 4y, g
1.26B, 1.26B with extended training (3x Chinchilla tokens), and 8B = LiE
parameters with large (1.2 x 10~2) and small (0.6 x 10~2) learn-
ing rates. The models below 8B in scale use a batch size of 128
sequences and each run takes place on a single node with 2 DP
groups and 4 TP nodes per group. The 8B model uses a batch size

of 256 sequences with 4 DP groups distributed across 4 nodes and ™ ;" 06 200 w0 00 5000
8 TP nodes per group. As discussed in Section 3.2, we use AdamW ranngsieps

RMS norm matching for learning rate scaling (Liu et al., 2025). All

of the architectural details are provided in Table 4 in the supple- Figure 2: Parameter norm vs
mentary material and more details on our choices of hyperparam- iteration of competing meth-
eters, learning rate, and learning rate scheduling are found in the 0ds.
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Results. Resulting perplexities are summarized in Table 2. The loss curves for all models are
deferred to Appendix B. Table 2 shows that BlockMuon performs worse in both training and valida-
tion loss across all model scales considered. This still holds true for relatively long ( 3x Chinchilla)
training, as the parameter norms grow a lot more for the fully blocked version of Muon compared
to either baseline or blocking with intermittent orthogonalization. Note that this happens despite
the fact that we use AdamW RMS norm matching scaled with the dimensions of the sliced blocks
(as outlined in Section Section 3). We observe that we have to use smaller learning rates to keep
BlockMuon stable compared to Muon and MuonBP and is potentially a symptom of the instability
we observe when using BlockMuon. We do not observe instability when using smaller learning rates
(Figure 10), but then baseline Muon, BlockMuon, and MuonBP all lead to the same suboptimal per-
formance. In Figure 3, we plot the validation ppl vs wall-clock time. We characterize our method’s
performance with respect to two related metric: firstly, given a target ppl value our method reaches
considerably faster in wall-clock time; secondly given a runtime budget our method results in lower
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Figure 3: 8B model validation perplexities. Comparison of Muon, BlockMuon, and MuonBP across
wall-clock time. For a target validation perplexity our method is ~ 10 — 13% faster in terms of the
wall-clock time to reach it, and for a given time point before the learning rate decay our method
results in ~ 5 — 7% lower perplexity compared to the baseline.

Table 2: Validation and training perplexity (lower is better). Columns show models; each model has
validation and training sub-columns. Best perplexities within each model size are in bold.

960M 1.2B 1.2B? 8B 8BP
Method Val Train Val Train Val Train Val Train Val Train
Muon 15.33 13.44 14.13 12.83 12.62 10.88 12.90 11.74 13.40 12.39

BlockMuon 20.29 18.08 16.28 14.86 13.29 11.51 13.68 12.62 24.68 23.17
MuonBP 1512 1321 13.78 1244 1245 1071 12,77 11.59 1297 11.93

* Three-times data with large learning rate. ® Large learning rate.

validation ppl (we give exemplary points in Figure 3). These two views indicate the usefulness of
MuonBP in practical scenarios.

Interestingly, overall, our method outperforms Muon despite doing

less number of full orthogonalization, we believe this may be due Table 3: Average through-
to a regularization effect due to intermittency, we leave the analysis put (TFLOP/s/GPU) for each
of this behavior as future work. method and model.

Throughput. We report throughput numbers in table 3. We ob- _Method oM 128 8B
serve similar throughput across methods in smaller scale experi- e A
ments as layer-wise sharding results in minimal all-gathers for the  MuonBP 113.54 138.95 113.37
Muon. However, as the model scale increases the effect of all-
gathers makes its presence felt. Consequently, in 8B model setting we observe a ~ 8% increase
in throughput for our method compared to the Muon without any degradation in performance. This
translates to hundreds of thousands of dollars saved in training costs in today’s large-scale pretrain-
ing runs.

5 CONCLUSION

We have introduced a new algorithm, MuonBP, and analyzed its convergence properties. MuonBP
shows promising performance in training models up to the 8B parameter scale compared to Muon
and BlockMuon. There are many questions still left: for example, we did not explore varying
the period P over the duration of training, or how we might adaptively tune it based on observed
properties. Exploring the use of block orthogonalization with expert parallelism is also an important
topic we leave to future work.
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REPRODUCIBILITY STATEMENT

Section 3 and the Appendix provide all details necessary to reproduce the theoretical results
presented in this paper. Our code-base is built upon publicly available frameworks (Megatron-
LM (Shoeybi et al., 2019) and Modded NanoGPT (Jordan et al., 2024a)). Section 4 and the Ap-
pendix describe the experimental settings and hyperparameters in detail. To further support repro-
ducibility, we will release our implementation and training scripts upon publication.
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Appendix

A MAIN PROOFS

A.1 NORM EQUIVALENCES

Lemma 2 (Dual of the block-spectral norm). Let X € R™*™ be partitioned into r X ¢ blocks
Xij € R™ ™ (not necessarily square). Define

B(X)=_ _ max _ [ Xy,

1<i<r, 1<j<c
With the Frobenius inner product (X,G) = tr(XTG) = Do tr(X%Gij), one has

sup (X, G) = )| Xij [ls -

B(G)<1 i=1 j=1
Moreover, if X;; = UijZijVJ is an SVD, then
g5 _ UiiVij, Xij #0,
L0, Xij =0,

is feasible with B(Z*) < 1 and attains the supremum:
(X, 2 => | Xij |« -
4,3
Consequently the dual norm of B(+) is B*(Y) = 3_, . || Yij [+

Proof. For any feasible G with B(G) < 1, Cauchy-Schwartz gives us
(X35, Gig) <Il Xij 1+ | Gij Nlop<Il Xij I« -
Summing over blocks,
(X,G) = (X, Gij) < Y || Xij I+ -
0,J i,
Taking the supremum over feasible G yields

sup (X,G) < Xii |« -
B(G)§1< ) %:H i |

We now show the above upper bound is achieved by Z*. Let X;; = U;;3;; VJ be an SVD and
define Z* blockwise by Z}; = U;;V;] if X;; # 0 and Z}; = 0 otherwise. Then || Z; |lop= 1 when
Xi; # 0and 0 when X;; = 0, so B(Z*) < 1. Moreover,

(Xij, 25) = tr (Ui Si;Vi) ) T (UiVi ) = tr(Si5) = Xij |1« -
Summing over blocks gives (X, Z*) = Z” || Xi; ||+, which matches the upper bound, hence Z*
is optimal and the stated supremum value holds. O

Lemma 3. The norm equivalence constants in Assumption 3 for the operator norm and block-
spectral norm are both equal to one. That is,

Pop = 1 and Pblock = 1.
Proof. The operator norm || X|o, (the largest singular value) is always less than or equal to

the Frobenius norm ||.X || (the root-sum-square of all singular values), hence pop, = 1. The
block-spectral norm is a maximum of block operator norms, B(X) = max;;||X; llop <

max; j || Xijllp < /D5 ||X”||fD = || X|| z, which implies ppiock = 1 as well. O
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Lemma 4. (Relations of norms) Suppose that B(+) is the block-norm corresponds to a partitioning
a matrix of size m X n into r X c blocks of size my x ny, each. Then the following relations hold

B(G) < ||Gllop < VreB(G),
1Gllop.» < B*(G) < VrellGllop.«

Moreover; if a function f is Lop-smooth with respect to the operator norm and Ly-smooth with
respect to the block-norm, we have

Lop < Lp < (r¢) - Lop.

Proof. Write G as an r x c¢ block matrix with blocks G;; € R™*™ and recall B(G) =
max; ;||Gijllop. We first prove that B(G) < ||G|lop. Let R; € 0,1™**™ select the i-th block
of rows and C; € 0,1"*™ select the j-th block of columns, so G;; = R;GC;. Because R; and C,
are partial isometries, || R;|lop = ||Cjllop = 1. By submultiplicativity,

1Gijllop = 1RiGCjllop < [[Rillopl| Gllopl|Cillop = G llop-
Taking the maximum over (i, ) yields B(G) < ||G|op-

Now we prove the upper bound on ||G||op. Let u € R™, v € R™ be unit vectors and partition them
asu=[ur ... u),v=I[v1 ... v]withu; € R™ andv; € R™. Then

T c
|’LLTG’U| = ‘ZZU:G”’UJ‘

i=1 j=1

s C
<D |ul Giguyl

i=1 j=1

T (6]
<D0 sl Gigllop ol

i=1 j=1

<50 (St (S

< BOWVF, | lullive, | vl
— VreB(Q),

where we used Cauchy—Schwarz applied to the vectors of blockwise ¢2 norms. Taking the supremum
over unit u, v gives ||G|lop < /reB(G).

For the dual norm bounds, observe that if norms || - ||, and || - || satisfy | - [|o < || |ls < BI| - |la>
then their duals satisfy

1 1
<< =1 11E
il -lla =11l = 2l lla
Applying this with || - ||o = B(), || - |lo = [|llop» @ = 1, 8 = /rc yields
1Gllop.« < B(G) < Vre||Gllop,s-

Finally, for the smoothness bounds, we have for any X # Y
IVF(X) = Vi) ops . B(VI(X) = VIV))

[ X = Yllop - X = Ylop
B*(VI(X) = V[(Y)) _ Vrel[V(X) = VIV )llop,
= B(X —Y) = B(X —Y)
< () [V = 9Tl
X = Ylop

Taking the supremum over X, Y such that X # Y immediately yields Lo, < L < (r¢)Lop. O

15



Under review as a conference paper at ICLR 2026

A.2 CONVERGENCE PROOFS

Lemma 5 (Descent Lemma). Suppose that Assumptions 1 and 2 hold for f : R™*™ — R. Then the
iterations of the algorithm without a regularizer satisfy:

F(Xkt1) < FOXG) =1V + 20V F(X0) = (L= )M, + 5 Lo

Proof. By smoothness,

F(Xiar) < FOXR) + (VX0 Ko = Xi) + 2 | Xeon — Xl

Ln?
< f(Xk) =1 (Vf(X), Orth(Mi)) + —-
2
= F(Xe) ~ n{VF(Xe) ~ (1~ )My, Oxth(My) — (1 ~ o) (My. Orth(M)) + “o-
2
< f(Xk) +0lIVF(Xe) = (1 = p) M| [ Orth(Mp) || — n(L — p) [ M|, + LTU
2
< FO6) +allVF(X) — (L= A, —nll (1= )M, + T
2
< F(6) + 20V F(X) — (= )Ml — VS (K, + T
O
Lemma 6. Suppose that f satisfies Assumption I in some norm ||-|| and is lower bounded by f.,
then
IVFCOI < 2L (F(X) = ).
Proof. Define
Xy = argmin | f(X) + (VF(X), ¥ = X) + gIIY - X[} =X =nlVi(X).Z,
where Z satisfies || Z]] < 1and (Vf(X), Z) = ||[Vf(X)||,. By smoothness,
FX1) < OO +{VF(X), Xy = X) + 21X, - XP
L 2
= J(X) =l VX2 + SV O]
L
= 3= (1- Z)Iv s
Plugging n = % gives
2
o< 1) < 0x) - VO
Therefore,
IVFOIZ < 2L (F(X) = 1)
O

Lemma 7. Let f satisfy Assumptions 1 to 3 in some norm ||-|| with smoothness constant L, stochastic
gradient variance o2, and {5-norm ratio p. Let M, be defined as

M‘r = )LLM’T—l + GT7
XT+1 =X; — Uer
where || Z;||n; < A forall T < k. Then,

LA =
E[|Vf(Xk) = (1 = p)Mp|,] < ¥ (1 = p)?po + p* 1/ 2LA¢ + ﬁ +po ﬁ

16
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Proof. Let M,’C = (1 — p) My. We have,

Vf(Xk) = Vf(Xk) = [pM_y + (1 = )Gy
= Vf(ch) pMy_y — (1= p)Gy,
= Vf(Xk) — G — uMj,_; + pGy,
= V[(Xx) = G+ uV f(Xp—1) — pMj_y + pGr — pV f(Xj-1)
= V(Xk) = Gr + pV f(Xp-1) — pMj_y + pGy, — pNV f(Xy) + pV f(Xy) — pV f(Xp-1)
=1 —p) (VA Xk) = Gr) + p(V(Xp—1) = My_q) + p(V(Xy) = VI (Xg-1)) -
Let By, = Vf(Xy) — M, S, = Vf(Xk) — Gk, and Ry, = V f(Xy) — V f(Xk—1). Then the above

is,

Ep=pEr_1+ (1 — p)Sk + pRy
k—1
= 1*Eo+ Y p! [(1— @) Sk—j + pRy—).
=0

Now observe that

| Ri—jll, = IV f(Xk—j) = VI (Xp—j—)ll, < LI Xk — Xi—j—1ll = Lng[| Zi|| < LA.

Therefore
k—1
E [|Ekll,] < #"E [ Eoll,] + E | D 47 [(1 = ) Sk—j + nRi—;]
=0 .

k—1

Do (1 = p)Si—;

Jj=0
J

k—1
< WE[|Boll,)+ D> W E [|Re—;l,] +E [
=0

|

k—

Z 1) Sk

k—1
< WE[|Eoll, ]+ LAY w ™! + pE [

=0 =0
2
LA
k
SMEHIEoll]Jrﬁer E Zuﬂl— )Sk—j %)
2
We have
2
k—1 . k—1k—1
E D w1 -mSk,| | =E (1= )" (S—j, Sk—i)
7=0 9 7=0 i=0
k—1
=311 = )% [|ISk7]
§=0
k—1
<o?(1—p)* Yy pu¥
§j=0
o*(1 —p)?
1—p?
__o*(l—p)?
(L=pw) (A +p)
2
1—
Sl (©)
Ty
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Using eq. (6) back in eq. (5) we get

LA
|Eoll,] + = + pory [ L. (7

E [|Bill] < 4B T oy [

For the first term,

Efl[Eoll.] = E[I[VF(Xo) = (1 — p)Moll.]
)= (

E
E[[IVf(Xo) = (1 = p)Goll,]
E
(1-

(1 = p)(Vf(Xo) = Go) + uV f(Xo)ll.]
wE[[[Vf(Xo) = Goll,] + ullVf(Xo)l,-

By Lemma 6 we have ||V f(Xo)|, < +/2L (f(Xo) — f+) and by Assumptions 2 and 3 we have
E[||Vf(Xo) — Goll,] < po. Plugging this back in gives

E[|[Eol.] < (1 — oo + u/2L0,

where Ag = f(Xo) — f«. Using the last equation in Equation (7) yields

. LAp 1—p
E[|Exll,] < 1F(1 = p)?po + " \/20A0 + = + poy | ——.
Ek.] < p" (1 = p)po +p 0ot T TP T,

IA

O
Proof of Theorem 1. By Lemmas 5 and 7 we have
Ln?
E [f(Xk+1)] < E[f(X0)] = B [V F(Xe) L]+ 20E [[VF(Xx) = (1 = p) Ml ]+ ==
E [£(X0)] - nE [IV X014+ 2008 (1 — )2 po + 2mp* ' /2LA,
2L p [1-—p  Ln*
2 Y el
+ - + 2npo 1+H+ 9
Rearranging,
1
E[IVf(X)l,] < p [E [£ (X)) = E [f(Xpra]] + 205 (1 = p)*po + 20571/ 2LA,
L /11— Ln
+ -4 + po T 4 -|- 9
Summing up both sides as k = 0,1,...,T — 1 and telescoping
1
ZE IVFXWIL) < L [F(Ko) — E L (Xrl] +2(1 - paZu +2p\/2LA Zu
k=0
LnpT I—p  Ln
— Ty ——+ —.
+ -5 + po T+ + 5
Ag 2u\2LAy  LnyuT 1—p Ln
< —+4+2(1— T ——+ —
,n—&-( w)po + = +1_M+pa ,/1+ +2
Dividing both sides by 7" and lower bounding the average on the left hand side by the minimum
yields the theorem’s statement. O

Proof of Theorem 2. Let Assumption 3 hold for both norms with constants p,, and ppiock respec-

tively and let pgp = 2 = + £ pblock We will later show that pgp,, pbiock, and ppp are all bounded
by l.Letk <T —1. If kis d1v1s1b1e by P, then by Lemma 5 we have

E [f(Xk+1)] < E[f(Xe)] = neanE [V f(Xk)lop,]

Lopni, @®)
+ 200 [|VF(Xk) — (1 = o) Milop] + =200

2

18



Under review as a conference paper at ICLR 2026

To apply Lemma 7 with the operator norm, we need to ensure that the updates Z, = Xr—Xrog

always satisfy || Z; ||opn- < A for all 7 < k, where 7, is the stepsize used on the 7-th iteration.
Observe that on all 7 such that 7%P = 0, this is trivially true with A = ngy. On steps where 7
is not divisible by P, we have || Z,|op < v/rcB(Z;) < \/rc (see Appendix A.1), since on those
steps 7y = Tblock We therefore have || Z- |lopnr < Mplocky/rc. Therefore in all cases, || Z-||opnr <

max(Nplock/7C, Nran ) and we can apply Lemma 7 to get
E [V f(Xk) = (1 = ) Milop.+] < (1 = 1)?popo + 1" /2 Lep Ao

Lopit —
+ ﬁ max(Nsull, Molock V7€) + PopT \/;

We can then use this to bound the third term on the right hand side of Equation (8) to get

E [f(Xi+1)] < E[f(X0)] = 0t [V f (Xk)llop,] + 20ranpe® (1 = 1)* popor
2Lopn?\/rep M—u Ly O
2t /2L 0p A L YT 4 2np, — 2
+ 20pan p pQo + 1= + 2NpopT 1+N+ 5

Alternatively, if k is not divisible by P, then similar to the above we first use Lemma 5 and the fact
that B*(V f(Xy)) > [[Vf(Xk)lop,» to get

E[f(Xk+1)] < E[f(X5)] = ook E IV f (Xk)llop,«] + 2np10ckE [B*(V f (Xk) — (1 — ) My)]

+ LB ThQ)lock

(10)

We now apply Lemma 7 to the block norm. Note that if 7 is not divisible by P, B(Z,)n, =
B(Z:)Mblock < Mblock- If 7 is divisible by P, then B(Z;)n, = B(Z;)ntun < | Z7 |lopfiun < M-
Therefore by Lemma 7 we have

Ly max(nplock, Neull ) 1

E [B*(Vf(Xk) — (1 — p)My)] < pF(1 = )2 polocko + 1" y/2Lp Ao +

L—p
I1—p
+ PblockTy | T——-
Pblock 1+ 4
1D
Using Equation (11) in Equation (10) we obtain
Lenioc
E [f(X1)] < E [F(X8)] = MotoakE [|VF(Xr)llop,] + =37
Lp max ocks '/Tu 1-
+ 2biock ﬂk(l — )2 pbiockd + (2L Ay + B (Tblocks Meant ) 1 ¥ Polock® 1THL
1—p 14+
12)
Let Sp ={k < T |k (mod P) =0} and Sp = {k < T | £ (mod P) # 0}. By rearranging the
one-step descent inequalities and using Equations (9) and (12) we sum over k =0,...,7T — 1:
T-1 T-1
D (Lkespmrun + LiessMiod)E [V F(Xi)lop,«] < D (E [f(Xk)] = E [f(Xk41)])
k=0 13)

k=0
+ Z (Error™) + Z (Error81o®k),
keSp keSp

where

full 2 LopNtanl MAX (1block v/TC, Nl ) [

Error)™ = 2npanp® (1 — 1) popo + 20panpt™ /2 LopAg +

L—p
+ 2Nt PopO Tia + %ﬂ,
2L ocC. OCK» u
Error** = 2001001 (1 — 1) pbioccd + 2tocci™ /2L g 4 Z 2 TPlock max (o, Tt )

I—p

1- Lpn?
+ 277blockpblock0' T Z + 772block )
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The first term on the right hand side of eq. (13) is a telescoping sum bounded by Ay = f(Xg) — fs.
For the error terms dependent on ¥, we can form a simple upper bound by summing over all k and
using the larger constants (Lp, Pblock):

Momentum-dependent error

= Z |:27]full/1/k(1 — 1) popo + 2npapt* Ty 2L0pAO:|

keSp
+ ) [QWblockuk(l — 1) Pblockd + 2block ™ T/ 2LBA0}
kESB
<4 Z ( )2 max (Nfull Pop, Mlock Pblock )0 + 1 max(runy/Lop; Molock VL)V 2LBA0)

pmax(nean/Lop, Mbiock vV LB ) V20
<4 ((1 — ) Max(Ntall Pop, Molock Pblock )T + P )

I—p

For the other terms, we sum them proportionally. Observe that |Sp| = T/P and |Sg| = T(P —
1)/ P, as we assume that T is divisible by P. Therefore,

L n2 2 Lop max(NeanMblock /T 77 ) L—p
C tant _ op full op u oc full D) 1o
onstant error E ( > 1= + 20t Pop0 T+

keSp

L 2L max N2 1-—
+ Z < BnblOCk B (nfiui]b;Ck Thiodc) ! + 27block PblockT { | T +Z>

keSp

2 2
NianLop | LBMhoa (P — 1)
_ T(
2P + 2P *
2p LOp max(nfulmblock\/ﬁv 77f2u11) Ly max(nfulmblocka 711;2,1ock)(P - 1)
1—p P + P

[1— 1 [ ranpop . MblockPblock (P — 1) )
2
e 1+p [ P + P

Observe that,
= n Mblock (P — 1)
full lock (P — )
Z(lkESPnfull + liess Molock ) E [[|VF(Xi) llop,«] = T [ » bOCP] mkaE IV £ (Xk) llop,]
k=0

= TinminE [[|Vf(Xk)lop,] -

Observe that for the operator norm and the block spectrum norm, we have po, < 1 and ppjocx < 1
by Lemma 3. Using this and combining all the error parts we get

. 61/ A
T_’T m]gnE [”vf(Xk)Hop,*} S A0 + 4(1 - N)O—Tlmax + /1~L 0 max(nfull Lopa TIblock LB)
2 2
NianLop | LBMhoa (P — 1) T—p_
T 2
" ( 2P 2P L

+

2u [Lopnfun max (Mblock VTC Neull) . LBNblock MaX(Mgull, Molock ) (P — 1) } >
+ .
1—p P P

Dividing both sides by 77 yields

min E [V (X)) < o - LRIt Op/Bo ety oo, Mhioe L)
Wllop ) =g nT 1—u 0T

1] Lop anl + Lp 1100 (P — 1)
7|l 2P 2P
2 ( Lop Nral MaxX{Nblockv/7C, Nt} | LB Mblock MaX{Ngult, Molock } (P — 1) 1-
+ + + 204/ ——
1—p P P 1+pu
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where

u P-1
7_7 - 77;11 T Mblocky Mmax = max{nfulla 7/]block}~

B ADDITIONAL ALGORITHMS, RESULTS, AND EXPERIMENTAL DETAILS

The orthogonalization via Newton Schulz iterations procedure is stated as Algorithm 2.

Algorithm 2: Orthogonalize-via-NS(G, K, e = 1077)
a2, b+ —1.5, ¢+ 0.5
X « G/(|G|| + ¢);
for ¢t < 1to K do
A« XXT,;
B < bA + cA?;
X < aX + BX;
return X;

All the architectural hyperparameters and learning rates used are given in Table 4 below. We used
the learning rates from (Liu et al., 2025) as a starting point for each run. We found at a smaller scale
that the learning rates recommended therein could be increased by a factor of ~ 3 with no harm to
convergence for the baseline (Muon) algorithm, and we scaled the other learning rates accordingly.
Nevertheless, we do two experiments with smaller learning rates. We use GQA (Ainslie et al.,
2023), RoPE (Su et al., 2024), bf16 mixed-precision training, and a weight decay value of 0.1. We
also apply gradient clipping with value 1.0 to the parameters optimized by AdamW (mainly 1D
parameters and the input embedding). We use cosine decay with no warmup for the 960M and 1.2B
experiments and the Warmup-Stable-Decay (WSD) schedule (Higele et al., 2024) with linear decay
to 4.2 x 1073 for the 8B model.

Table 4: Section 4.2 experiments hyperparameters (sequence length = 8K, Batch size=128 sequences
for 960M/1.2B models and 256 sequences for 8B models).

Model Layers Heads Query Groups Hidden Size (DP,TP) LR (x1073) Tokens (B)
960M 12 16 4 1536 2,4 3.503 9.503
1.2B 14 16 4 1792 2,4) 3.291 14.143
1.2B (3x long, larger Ir) 14 16 4 1792 2,4) 3.291 42.143
1.2B (3x long, smaller Ir) 14 16 4 1792 2,4) 0.86 42.143
8B (smaller Ir) 32 32 8 4096 4,8) 0.6 9.99
8B (larger Ir) 32 32 8 4096 4,8) 1.2 9.99

We report the training curves for the 960M model in Figure 4, for the 1.2B model in Figure 5, for
the 1.2B model trained to 3x Chinchilla with smaller learning rate in Figure 7, with larger learning
in Figure 6, and for the 8B model in Figure 10 (smaller learning rate) and Figure 9 (larger learning
rate). Our main observation here is that even after doing RMS norm adjustment (i.e. update is scaled
by y/max(A, B) where A and B are the dimensions of the update matrix, which scale inversely with
blocking), BlockMuon can become unstable with larger learning rates. On the contrary, MuonBP
does not.

A reason why this might be the case is that BlockMuon almost always causes the parameter norms
to grow larger over time compared to Muon or MuonBP, as can be seen in Table 5. This holds even
when we use small learning rates and learning rate adjustment.
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Figure 4: 960M model. Comparison of baseline, block, and periodic orthogonal block methods
across training steps and wall-clock time.
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Figure 5: 1.2B model. Comparison of baseline, block, and periodic

training steps and wall-clock time.
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Figure 6: 1.2B model (larger Ir), trained to 3x Chinchilla. Comparison of baseline, block, and
periodic orthogonal block methods across training steps and wall-clock time.
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Figure 7: 1.2B model (smaller Ir), trained to 3x Chinchilla. Comparison of baseline, block, and
periodic orthogonal block methods across training steps and wall-clock time.
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Figure 8: Comparison of parameter norms using Muon, BlockMuon, and MuonBP over training on
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Figure 9: 8B model (larger Ir). Comparison of baseline, block, and periodic orthogonal block meth-
ods across training steps and wall-clock time.
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Figure 10: 8B model (smaller Ir). Comparison of baseline, block, and periodic orthogonal block
methods across training steps and wall-clock time.
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Figure 11: 160M model training with 2-way FSDP2 and 4-way TP. Comparison of Baseline, Block-
Muon, MuonBP, and Dion across training steps and wall-clock time.
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Table 5: Validation/Training perplexity (lower is better) and average parameter norm. Best perplex-
ities within each model size are in bold.

Model Method Val PPL  Train PPL  Param Norm
Muon 15.33 13.44 2680
960M BlockMuon 20.29 18.08 5702
MuonBP 15.12 13.21 2648
Muon 14.13 12.83 4237
1.2B BlockMuon 16.28 14.86 7225
MuonBP 13.78 12.44 4195
Muon 12.62 10.88 2681
1.2B (3%, large Ir)  BlockMuon 13.29 11.51 5521
MuonBP 12.45 10.71 2868
Muon 13.26 11.40 1602
1.2B (3%, small Ir) BlockMuon 13.22 11.29 3242
MuonBP 13.30 11.39 1571
Muon 12.90 11.74 4369
8B BlockMuon 13.68 12.62 6680
MuonBP 12.77 11.59 4471
Muon 13.40 12.39 6841
8B (large Ir) BlockMuon 24.68 23.17 11496
MuonBP 12.97 11.93 7063

24



	Introduction
	Background and Related Work
	Algorithms and Convergence
	Block orthogonalization
	Block-periodic orthogonalization

	Experiments
	Training with dim-0 data sharding
	Training with Layerwise-Sharding

	Conclusion
	Main Proofs
	Norm equivalences
	Convergence proofs

	Additional Algorithms, Results, and Experimental Details

