
Benchmarking Debiasing Methods for LLM-based Parameter Estimates

Anonymous ACL submission

Abstract001

Large language models (LLMs) offer an in-002
expensive yet powerful way to annotate text,003
but are often inconsistent when compared with004
experts. These errors can bias downstream esti-005
mates of population parameters such as regres-006
sion coefficients and causal effects. To mitigate007
this bias, researchers have developed debias-008
ing methods such as Design-based Supervised009
Learning (DSL) and Prediction-Powered In-010
ference (PPI), which promise valid estimation011
by combining LLM annotations with a limited012
number of expensive expert annotations.013

Although these methods produce consistent es-014
timates under theoretical assumptions, it is un-015
known how they compare in finite samples of016
sizes encountered in applied research. We make017
two contributions: First, we study how each018
method’s performance scales with the num-019
ber of expert annotations, highlighting regimes020
where LLM bias or limited expert labels sig-021
nificantly affect results. Second, we compare022
DSL and PPI across a range of tasks, finding023
that although both achieve low bias with large024
datasets, DSL often outperforms PPI on bias025
reduction and empirical efficiency, but its per-026
formance is less consistent across datasets. Our027
findings indicate that there is a bias-variance028
tradeoff at the level of debiasing methods, call-029
ing for more research on developing metrics for030
quantifying their efficiency in finite samples.031

1 Introduction032

Large language models (LLMs) are transforming033

disciplines that use text as a form of evidence in034

testing theories, something particularly evident in035

computational social science (Ziems et al., 2024;036

Törnberg, 2024; Bail, 2024; Argyle et al., 2023).037

LLMs can be used to extract features that are im-038

portant for substantive research questions, such as039

theoretical constructs (e.g., political ideology; Sim040

et al., 2013) or stylistic properties of the text (e.g.,041

tone; El-Haj et al., 2016 and politeness; Priya et al.,042

2024), and epidemiology (Kino et al., 2021). The 043

use of LLMs promises to speed up the process of 044

annotating these variables, which would previously 045

have required hand-annotation by experts. This 046

shift has led to more agile research workflows in 047

which researchers can use larger amounts of data 048

and more variation in their analyses. 049

However, although powerful, these models do 050

not annotate in a way that is fully consistent with 051

expert annotators (Lin and Zhang, 2025); the dis- 052

tribution of errors can be heterogeneous or corre- 053

lated with other variables of interest. This means 054

that the estimates derived from the LLM annota- 055

tions are likely to be biased, resulting in misleading 056

substantive interpretations (McFarland and McFar- 057

land, 2015). To handle these biases, debiasing 058

methods have been developed, most prominently 059

Prediction-Powered Inference (PPI) (Angelopoulos 060

et al., 2023) and Design-based Supervised Learn- 061

ing (DSL) (Egami et al., 2023, 2024). Both frame- 062

works produce an unbiased downstream model by 063

combining the LLM annotations with a smaller set 064

of expert annotations. The biases in LLM-based 065

estimates are then compensated for by a rectifier 066

created by comparing the two sets of annotations 067

for the samples that have both. 068

There is a lack of knowledge about when and 069

how much debiasing methods provide added value 070

in finite samples. There are no closed-form expres- 071

sions that relate their efficacy to the allocation of 072

expert versus model-generated annotations, leaving 073

practitioners without analytic guidance on when 074

one should prefer DSL or PPI over simply col- 075

lecting more expert annotations. Accordingly, our 076

research questions are the following. 077

RQ1: When is a debiased, large-scale LLM an- 078

notation dataset statistically preferable to a finite 079

expert-only dataset for unbiased estimation of a 080

population parameter? 081

RQ2: What are the performance differences be- 082

1



Figure 1: The reference model (top-left) is estimated
from expert annotations for all samples in the dataset;
the classical model (top-right) only from the expert sam-
ples available to the debiasing frameworks; the imputa-
tion model (bottom-left) only from the generated anno-
tations for all samples. The debiased models (bottom-
right) are estimated from both LLM annotations for all
samples and expert annotations for a subset.

tween the debiasing methods and how do they vary083

across datasets and LLM-based annotators?084

We tackle these questions by comparing PPI and085

DSL across four datasets and four annotation pro-086

cedures. To our knowledge, ours is the first effort087

to compare debiasing methods directly.088

2 Background: Debiasing Methods089

Let D = {(di,xi, ŷi)}Ni=1 be a corpus of docu-090

ments di, with associated independent variables091

xi ∈ X = {xi}Ni=1 and LLM annotations ŷi ∈092

Ŷ = {ŷi}Ni=1. A subset of D also has additional093

expert annotations yj ∈ Y† = {yj}nj=1, n ≤ N .094

Expert annotations are taken to be the ground truth095

and are generally costly (Gilardi et al., 2023).096

Next, we focus on a general parameter of interest097

θ, which represents the result of the downstream098

statistical analysis. For example, this could be a re-099

gression coefficient or a class prevalence rate. The100

goal of the debiasing methods is to create an esti-101

mator f which estimates θ based on X, Ŷ , and Y†.102

Ideally, the estimator should be consistent, mean-103

ing that f(X, Ŷ , Y†) → θ as N → ∞, and precise,104

meaning that we want to keep the variance and105

confidence intervals as small as possible.106

One way to achieve this would be to ignore Ŷ107

entirely and only use the unbiased expert anno-108

tations Y†. We call this the classical estimator109

θ† = f(X, Y†), which is usually generated by min-110

imizing a loss. Although this estimator produces 111

unbiased estimates, it can have a large variance 112

if we have few expert annotations. We call the 113

classical estimator trained with expert annotations 114

for all samples the reference estimator, θ∗, which 115

corresponds to the ideal but costly model that the 116

debiasing methods are aiming towards. 117

Another approach would be to only use LLM 118

annotations Ŷ and ignore the expert annotations Y†. 119

We call this the imputation estimator, θ̃ = f(X, Ŷ ). 120

Here, we rely on the assumption that we can ex- 121

change the expert annotations for the LLM an- 122

notations. The hope is that, while LLM annota- 123

tions might be noisier than expert annotations, we 124

can counteract the noise by simply generating as 125

many labels as needed, given a large enough corpus. 126

However, the LLM may exhibit systematic biases 127

different from those of the expert human annota- 128

tors, meaning that |θ̃ − θ∗| > 0 as N → ∞, and 129

therefore this assumption does not hold in general. 130

In turn, this leads to a biased downstream estimate, 131

and one runs the risk of being “precisely inaccurate” 132

(McFarland and McFarland, 2015). 133

A third approach claims to be both unbiased 134

and more precise than θ†. Such methods typically 135

work by estimating parameters on LLM annota- 136

tions, with a rectifier constructed from the differ- 137

ence between the generated and expert annotations 138

for the subset of the corpus for which we have both 139

(see Figure 1). In this paper, we investigate PPI and 140

DSL as two of the most prominent among these 141

methods. 142

PPI offers a protocol for integrating LLM pre- 143

dictions into downstream statistical inference via 144

first-order debiasing (Angelopoulos et al., 2023). It 145

begins by treating the LLM predictions as if they 146

were true labels and forming the “imputation esti- 147

mate”: θ̃ = argminθ
1
N

∑N
i=1 ℓθ

(
xi, ŷi

)
, where 148

ℓθ is the loss defining our estimand, such as the 149

binary cross-entropy for a logistic regression. In 150

general θ̃ is biased, so PPI introduces the rectifier, 151

which, in the one parameter case equals 152

rθ = E
[
∇θℓθ(xi, yi) − ∇θℓθ

(
xi, ŷi

)]
, 153

the gradient terms capturing the systematic distor- 154

tion from substituting ŷi for the true yi (the gradient 155

difference reveals the bias direction in parameter 156

space, which we then offset to debias). We esti- 157

mate rθ on the labeled sample and estimate the 158

imputed gradient on the unlabeled set using plugin 159

estimators. The final, first-order debiased estimate 160
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Figure 2: Setup for Experiments 1 and 2.

is then θ̃− r̂θ. Because r̂θ is estimated from sample161

averages, confidence sets can be readily obtained.162

DSL (Egami et al., 2023, 2024) adopts a163

design-based sampling scheme, which assumes164

π(ŷi,xi) = Pr(ri = 1 | ŷi,xi) > 0, where165

ri ∈ {0, 1} denotes whether document i is labeled166

by experts and where π(·) is known. The data is167

partitioned into K folds and used to cross-fit ĝk, a168

model to predict yi as a function of ŷi and xi:169

ỹki = ĝk(ŷi,xi) +
ri

π(ŷi,xi)

(
yi − ĝk(ŷi,xi)

)
.170

Then, E
[
ỹi | ŷi,xi

]
= E

[
yi | ŷi,xi

]
regardless of171

misspecification of ĝk via double robustness.172

Many estimands admit a moment equation173

form: E
[
m(yi,xi; θ)

]
= 0 (e.g., maximum like-174

lihood). DSL solves the empirical analogue of175

the moment condition with the debiased ŷi, us-176

ing
∑N

i=1m
(
ỹi,xi; θ

)
= 0, where each ỹi is con-177

structed as above. Cross-fitting and M-estimation178

theory then yield consistent “sandwich” estimators179

of variance, giving valid confidence intervals.180

3 Methodology181

Our analysis focuses on two experiments, which182

we use to benchmark and contrast the θ†, PPI,183

and DSL estimators (see Figure 2). In both ex-184

periments, we focus on a particular parameter of185

interest θ — the coefficients of a binary logistic re-186

gression. Specifically, for each dataset, we create a187

substantive task relating four independent variables188

x1...x4 to a binary outcome, y. The independent189

variables are either categorical or integers com-190

puted from text features. Each logistic regression,191

therefore, produces four coefficients β1...β4 and192

a y-intercept β0 for a total of five parameters.See193

Appendix D for package use details.194

Experiment 1. Our first experiment involves195

varying the number of expert annotations while196

keeping the total number of samples constant (see197

Figure 2, left). Our goal here is to answer the ques-198

tion: how do the debiasing methods improve with199

an increasing proportion of expert annotations? In 200

other words, if one has a fixed number of data sam- 201

ples, how much budget should one allocate towards 202

the expert annotations for debiasing? 203

For this experiment, we vary the number of ex- 204

pert samples logarithmically. We use a minimum 205

of 200 expert annotations (below that threshold, 206

debiasing methods became unstable). We addi- 207

tionally report the proportion of expert samples ni
N 208

rather than the absolute number in order to compare 209

datasets of different sizes. For each entry, dataset, 210

and annotation procedure, we run 250 repetitions; 211

we report 2σ confidence intervals over repetitions. 212

Experiment 2. In our second experiment, we in- 213

stead vary the total number of samples while keep- 214

ing the number of generated annotations constant 215

(see Figure 2, right). We seek to answer: given 216

a fixed expert annotation budget, how much does 217

the effective sample size increase as one increases 218

the number of generated annotations? We repeat 219

experiments with 200, 1000, and 5000 annotations. 220

Like Experiment 1, we vary the number of total 221

samples logarithmically. The minimum number of 222

total samples is defined by the number of available 223

expert samples. The maximum number of total 224

samples is determined by the size of the available 225

dataset, which varies. We report the proportion of 226

total samples with respect to the total number of 227

available samples to compare datasets. We use 250 228

repetitions to estimate the 2σ confidence interval. 229

Datasets and Annotations. We replicate our ex- 230

periments over four datasets: Multi-domain Sen- 231

timent, Misinfo-general, Bias in Biographies, and 232

Germeval18 (see Appendix A). We also com- 233

pare performance across four LLM-model classes: 234

BERT, DeepSeek v3, Phi-4, and Claude 3.7 Son- 235

net (see Appendix C). Input variables are either 236

additional annotations available from the original 237

dataset or quantities derived from the text, such 238

as the text length in characters. We compare PPI, 239

DSL, and θ† with the same number of annotations. 240

Evaluation Metrics. We evaluate performance 241

of debiasing methods by comparing the respective 242

models against reference model θ∗. Comparison 243

between models is done using a standardized Root 244

Mean Squared Error (sRMSE), which captures both 245

bias and variance for a holistic performance assess- 246

ment (see Appendix B). We standardize by scaling 247

according to the reference model coefficients. 248
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Figure 3: Results from the set of experiments varying the total number of samples, averaged over datasets and
annotation methods. The x-axis shows the total number of samples (N ) as a proportion of the total available samples
in each dataset. The y-axis shows the sRMSE. The plots show results for n = 200, n = 1000, and n = 5000.
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Figure 4: Results for Experiment 1 averaged over all
datasets and annotation methods.

4 Results249

In our experiments we contrasted θ†, PPI, and DSL250

with the reference model θ∗. The only difference251

between θ† and the reference model θ∗ is that they252

are trained on a different number of expert anno-253

tations — θ† is trained on only Y†, the expert an-254

notations that would have been given to one of the255

debiasing methods . Accordingly, the smaller the256

proportion of expert annotations given to the de-257

biasing methods, the more inaccurate θ† becomes,258

which is reflected as a high sRMSE. As we increase259

the proportion of expert annotations, θ† converges260

towards θ∗, and we observe a monotonically de-261

creasing sRMSE. At a proportion of 1, there is no262

difference between θ† and θ∗ (the sRMSE is 0).263

Results of Experiment 1 are displayed in Figure264

4. We observe that PPI has a lower sRMSE than θ†265

for all data points. This is expected and guaranteed266

by theory under assumptions. DSL exhibits a sig-267

nificantly lower sRMSE than both PPI and θ† for268

almost all data points, showing that it is able to use269

the expert annotations more efficiently than both.270

However, the crossing at the end, when virtually all271

expert annotations contribute to the debiasing pro-272

cedure, is curious: why do the DSL and θ† curves 273

cross? When analyzing the performance of DSL by 274

dataset (see Appendix F), we notice that the cross- 275

ing phenomenon in the performance of DSL seems 276

dataset-dependent. In particular, for the Misinfo- 277

general dataset, DSL performs worse than both PPI 278

and θ† for all samples. 279

The exact reasons for this phenomenon are cur- 280

rently unknown. We have ruled out hypotheses re- 281

lated to poor convergence in optimization or prepro- 282

cessing (e.g., centering); we have not identified ob- 283

vious properties of the dataset that predict anoma- 284

lous DSL estimates (e.g., agreement between ex- 285

pert and LLM annotations). One remaining expla- 286

nation is that, although PPI debiasing via subgradi- 287

ents leverages less information compared to DSL 288

(which uses external sampling design knowledge), 289

it avoids instabilities commonly associated with 290

weighting estimators (Zubizarreta, 2015). Future 291

work may explore these and related explanations. 292

The results of Experiment 2 are displayed in 293

Figure 3. Since θ† does not use generated annota- 294

tions, its sRMSE remains constant as the dataset 295

size grows. We also observe that, in each of the 296

three cases, PPI and DSL both outperform θ†; per- 297

formance of both tends to improve as we increase 298

the total dataset size. 299

5 Conclusion 300

This study has investigated the performance of two 301

LLM debiasing methods. On average, both debias- 302

ing methods produce models closer to a reference 303

model than just using a small number of expert 304

annotations. We also observe that DSL seems to 305

significantly outperform PPI across datasets and 306

annotation methods. However, DSL performance 307

appears more inconsistent and dataset-dependent. 308
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Limitations309

Our study focuses on two specific debiasing meth-310

ods, DSL and PPI, leaving out several other emerg-311

ing techniques such as the recently proposed312

predict-then-debias (e.g., Kluger et al., 2025). We313

only consider scenarios where the outcome vari-314

able requires annotation, restricting the scope to315

single-task classification. In addition, we limit our316

downstream analysis to logistic regression, which317

does not capture more complex relationships or318

generalize to other statistical estimators such as319

survival or hierarchical models.320

Moreover, our experiments also concentrate on321

four datasets with relatively short texts in English322

or German, so further evaluation is needed in other323

languages, domains, and text lengths. Lastly, we324

assume expert-labeled data to be the ground truth;325

in practice, human annotations can also be noisy or326

unreliable. Future work should examine how to ex-327

tend or adapt these methods when the expert labels328

themselves may be subject to significant measure-329

ment error or domain shifts.330
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A Datasets Description454

We here present information about the datasets used455

in the analysis. All datasets are publicly available.456

The annotations and tabular data from the exper-457

iments will be made available on Github after re-458

view.459

Multi-domain Sentiment: The Multi-domain Sen-460

timent dataset is a corpus of product reviews taken461

from Amazon (Blitzer et al., 2007). The dataset462

was originally used to investigate domain adapta-463

tion in sentiment classifiers. We used a subset taken464

from 6 domains, consisting of 11 914 reviews with465

two sets of annotations: a binary sentiment label466

(positive or negative) and a domain label (books,467

camera, DVD, health, music, or software). The468

dataset is balanced both in sentiment and topic la-469

bels.470

For the substantive task, we use the sentiment 471

label as the outcome variable. The independent 472

variables are: the domain label (transformed to 473

numeric values 0-5), the number of characters in 474

the review, the number of space-separated words 475

in the review, and the number of repetitions of the 476

word “I” in the review. 477

Misinfo-general: The Misinfo-general dataset is 478

a large corpus of British newspaper articles (Ver- 479

hoeven et al., 2024) originally used to benchmark 480

out-of-distribution performance of misinformation 481

models. For our experiments, we selected arti- 482

cles from 2022 that were published in one of two 483

venues: The Guardian UK or The Sun. We then 484

balanced the dataset to have 5000 articles in each 485

class. 486

For the substantive task, we use the venue as 487

the binary outcome variable. The independent vari- 488

ables are: the number of characters in the article, 489

the number of space-separated words in the article, 490

the number of capital letters in the article, and the 491

number of characters in the title of the article. 492

Bias in Biographies: The Bias in Biographies 493

dataset is a corpus of short biographies originally 494

used to study gender bias in occupational classifi- 495

cation (De-Arteaga et al., 2019). The corpus con- 496

sists of English-language online biographies from 497

the Common Crawl, annotated with self-identified 498

binary gender and occupation labels (with 28 cate- 499

gories), enabling analysis of implicit gender biases 500

in textual representations. Here, N = 10000. 501

For the substantive task, we use the gender label 502

as the outcome variable. This variable is balanced. 503

Independent variables are: the occupation label 504

(transformed to numeric value, 0-27), the number 505

of characters in the biography, the number of space- 506

separated words in the biography, and the number 507

of capital letters in the biography. 508

Germeval18: The Germeval18 dataset is a corpus 509

of German tweets. It was used in the GermEval 510

shared task on the identification of offensive lan- 511

guage in 2018 (Wiegand et al., 2018). It is com- 512

posed of a training and test set of documents with 513

an associated toxicity label, for a total of 5676 doc- 514

uments. We use a balanced subset of the data. 515

For the substantive task, we use the binary toxic- 516

ity label as the outcome variable. The independent 517

variables are: the number of characters in the tweet, 518

the number of space-separated words in the tweet, 519

the number of capital letters in the tweet, and the 520

number of “@” characters in the tweet. 521
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B Details of Evaluation Metrics522

We define:523

RMSE(θ; d) =

√√√√E

[(
θ − θ∗d
θ∗d

)2
]
.524

where θ are the coefficients from the model under525

test and θ∗d are the coefficients from the reference526

model for dataset d.527

C Model Details528

BERT + logistic regression. As a representa-529

tive of supervised approaches, we fine-tune a pre-530

trained BERT encoder (Devlin et al., 2019) on the531

expert-labeled subset to obtain contextual represen-532

tations hi = BERT(di), which are then passed to533

a logistic regression head trained to predict yi.534

Large Language Models. We also generate an-535

notations with three language models: Microsoft536

Phi-4 (Abdin et al., 2024), DeepSeek v3 (Liu et al.,537

2024), and Claude 3.7 Sonnet (Anthropic, 2025).538

Phi-4 is a 14B open-weights model which we ran539

locally. We used the paid DeepSeek and Anthropic540

APIs to access DeepSeek v3 and Claude 3.7 Son-541

net, respectively. We paid approximately 10$ for542

the DeepSeek API and approximately $100 for the543

Anthropic API. The prompts used to generate the544

labels are available in Appendix E. In some cases,545

the annotations generated for a small number of546

the documents did not fit the annotation schema.547

These samples were ignored.548

D Package and Code Details549

For the classical logistic regression we use the550

scikit-learn Python package. We use no regu-551

larization and set the maximum iterations to 1000.552

For DSL, we use the dsl R package from the553

original paper authors for both experiments. We554

leave the parameters to their default settings.555

For PPI, we use the ppi_py Python package556

from the original paper authors for both experi-557

ments. We also leave the parameters to their default558

settings.559

The source code for the experiments will be560

made available on Github after review.561

E Prompts562

Figures 5, 6, 7, and 8 show the prompt templates563

used to make prompts for LLM annotation. The564

prompt templates were specialized for each dataset565

since each dataset corresponds to a different annota- 566

tion task. However, the structure of the prompt tem- 567

plates was kept the same: first, a short description 568

of the task, then an explanation of the formatting 569

with two simple examples, and finally the docu- 570

ment to classify. For each dataset, we also include 571

a system prompt (see Table 1). 572

F Results by Dataset 573

Figure 9 showcases the results for Experiment 1 574

broken down by dataset. 575
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Classify the following review as either:
- POSITIVE if the review indicates an overall positive sentiment
- NEGATIVE if the review indicates an overall negative sentiment

Give no other explanation for your classification, only output the label.

Here are two examples of the formatting I would like you to use, where
< REVIEW_TEXT > is a stand-in for the article text:

< REVIEW_TEXT >

CLASSIFICATION: POSITIVE

< REVIEW_TEXT >

CLASSIFICATION: NEGATIVE

Here's the review to classify:

{text}

CLASSIFICATION:

Figure 5: The prompt template used to annotate documents from the Multi-domain Sentiment dataset, where {text}
is substituted with the document in question.

Classify the following article as either:
- THESUN if it is likely to have been published in the British tabloid newspaper

The Sun
- THEGUARDIAN if it is likely to have been published in the British daily

newspaper The Guardian

Give no other explanation for your classification, only output the label.

Here are two examples of the formatting I would like you use, where
< ARTICLE_TEXT > is a stand-in for the article text:

< ARTICLE_TEXT >

CLASSIFICATION: THESUN

< ARTICLE_TEXT >

CLASSIFICATION: THEGUARDIAN

Here's the article I would like you to classify:

{text}

CLASSIFICATION:

Figure 6: The prompt template used to annotate documents from the Misinfo-general dataset, where {text} is
substituted for the document in question
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Classify the following textual biographies as either:
- MALE if the subject is likely to be male
- FEMALE if the subject is likely to be female

Give no other explanation for your classification, only output the label.

Here are two examples of the formatting I would like you use, where < BIOGRAPHY_TEXT >
is a stand-in for the textual biography:

< BIOGRAPHY_TEXT >

CLASSIFICATION: MALE

< BIOGRAPHY_TEXT >

CLASSIFICATION: FEMALE

Here's the textual biography I would like you to classify:

{text}

CLASSIFICATION:

Figure 7: The prompt template used to annotate documents from the Bias in Biographies dataset, where {text} is
substituted for the document in question

Classify the following German tweets as either:
- OFFENSIVE if the tweet is likely to contain an offense or be offensive
- OTHER if the tweet is _not_ likely to contain an offense or be offensive

Give no other explanation for your classification, only output the label.

Here are two examples of the formatting I would like you use, where < TWEET_TEXT >
is a stand-in for the text of the tweet:

< TWEET_TEXT >

CLASSIFICATION: OFFENSIVE

< TWEET_TEXT >

CLASSIFICATION: OTHER

{make_examples(examples)}

Here's the German tweet I would like you to classify:

{text}

CLASSIFICATION:

Figure 8: The prompt template used to annotate documents from the Germeval18 dataset, where {text} is
substituted for the document in question
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Dataset System Prompt
Multi-domain Sentiment “You are a perfect sentiment classification system”
Misinfo-general “You are a perfect newspaper article classification system”
Bias in Biographies “You are a perfect biography classification system”
Germeval18 “You are a perfect German tweet classification system”

Table 1: The system prompts used to annotate the various datasets
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Figure 9: Results from the set of experiments varying the proportion of expert samples, aggregated per dataset.
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