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Abstract

While recent advancements in large multimodal models (LMMs) have significantly
improved their abilities in image quality assessment (IQA) relying on absolute qual-
ity rating, how to transfer reliable relative quality comparison outputs to continuous
perceptual quality scores remains largely unexplored. To address this gap, we intro-
duce Compare2Score—an all-around LMM-based no-reference IQA (NR-IQA)
model, which is capable of producing qualitatively comparative responses and effec-
tively translating these discrete comparative levels into a continuous quality score.
Specifically, during training, we present to generate scaled-up comparative instruc-
tions by comparing images from the same IQA dataset, allowing for more flexible
integration of diverse IQA datasets. Utilizing the established large-scale training
corpus, we develop a human-like visual quality comparator. During inference, mov-
ing beyond binary choices, we propose a soft comparison method that calculates
the likelihood of the test image being preferred over multiple predefined anchor
images. The quality score is further optimized by maximum a posteriori estimation
with the resulting probability matrix. Extensive experiments on nine IQA datasets
validate that the Compare2Score effectively bridges text-defined comparative
levels during training with converted single image quality score for inference,
surpassing state-of-the-art IQA models across diverse scenarios. Moreover, we
verify that the probability-matrix-based inference conversion not only improves
the rating accuracy of Compare2Score but also zero-shot general-purpose LMMs,
suggesting its intrinsic effectiveness.

1 Introduction

Image quality assessment (IQA) models aim to establish a quantitative mapping between digital
visual images and human subjective evaluations, playing an indispensable role across various image
processing and computer vision tasks [1]. No-reference IQA (NR-IQA) [2, 3, 4, 5], which evaluate
images without a reference, are particularly valuable for real-world applications. Recently, NR-IQA
has experienced profound improvement through advanced deep neural networks (DNNs) [6, 7, 8, 9,
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Figure 1: Illustrations of the motivation of this work. (a) Images with identical rescaled MOS from
various IQA datasets exhibit significant variations in perceptual quality. (b) Images that cluster at
the same rating level from different IQA datasets display mismatches due to differing subjective
testing methodologies. (c) By comparing MOSs within the same dataset, it facilitates the flexible
combination of multiple IQA datasets.

10]. However, a primary challenge with current models [8, 11, 12] lies in their limited cross-distortion
generalization capability since the training and testing data contain significant distribution shift.

To improve the generalization capability of the NR-IQA, lots of advanced training techniques have
been adopted, such as meta learning [13], domain adaptation [14], test-time adaption [15], and hard
example mining [16]. More capable foundation models, such as CLIP [10] and large multimodal
models (LMMs) [12], are also proven to be effective in improving generalization ability. Despite
these advancements, the gains from such techniques remain constrained due to the persistent data
challenge inherent in IQA. Alternatively, expanding the IQA training datasets—both in terms of the
number of images and the diversity of distortions—emerges as a scalable strategy to augment model
robustness [17]. This data scaling law has also been recognized as one of the key factors in building
effective LMMs [18, 19, 20, 21, 22, 23]. As such, addressing how to effectively combine existing
IQA datasets to meet the extensive data requirements of training LMMs is highly desirable.

As an early attempt of LMMs on IQA, Q-Align [12] proposed to combine different IQA datasets
with absolute quality ratings. While absolute ratings are widely used for collecting human opinions
on different IQA datasets, it is non-trivial to directly fuse them for LMM training. This difficulty
arises because each dataset has different perceptual scales owing to varying subjective testing
methodologies. As shown in Fig. 1 (a), images with identical mean option score (MOS) (2.3, all
rescaled to range [0, 5]) from four datasets [24, 25, 26, 7] differ significantly in perceptual quality.
As a result, despite clustering at the same rating level, these images from different datasets display
distinctly different visual qualities (see Fig. 1 (b)). Therefore, simply scaling up the training data
by mixing existing IQA datasets with rescaled MOS is fundamentally flawed. Instead, the relative
quality ranking (e.g., paired comparison) offers intrinsic simplicity and reliability over absolute
quality rating [27]. As shown in Fig. 1 (c), it is comparable to the images from the same IQA
datasets as their MOSs originate from the same subjective user study, facilitating a more flexible
combination of various IQA datasets. However, the key limitation of the paired comparison method
is its impracticality in deriving individual image quality scores from

(
M
2

)
comparisons when M

is large. Furthermore, the lack of effective and efficient methods to convert relative comparisons
into quantitative absolute ratings makes current comparison-based approaches difficult to apply to
real-world scenarios.

To tackle these challenges, this paper leverages the flexibility and reliability of relative quality
comparisons to introduce Compare2Score—an all-around LMM-based NR-IQA model, which is
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designed to generate human-like qualitative comparisons and compute effective quality scores. Before
delving into detail, we clearly highlight our main contributions as follows.

• [A repurposed training dataset.] We introduce a tailored approach to generate comparative
instructions by comparing MOSs within each IQA dataset. This method categorizes image
pairs into distinct comparative levels (inferior, worse, similar, better, superior)
using the empirical rule, facilitating the flexible integration of diverse IQA datasets. This
specific implementation effectively addresses the challenges posed by differing subjective
testing methodologies and perceptual scales. It produces a comprehensive training dataset
that enables the LMM to handle various distortion scenarios, resulting in a human-like
visual quality comparator.

• [An inference conversion strategy.] We develop an adaptive soft comparison scheme
that efficiently translates discrete comparative levels into continuous quality scores. Unlike
traditional two-alternative forced choice (2AFC) methods, our approach calculates the
likelihood that an input image is preferred over multiple anchor images. This probability is
derived from a weighted summation of the softmax-transformed log probabilities across five
comparative levels. Subsequently, the quality score of the input image is calculated through
maximum a posteriori (MAP) estimation based on the resulting probability matrix.

• [A state-of-the-art framework.] We conduct extensive experiments to validate the effec-
tiveness of teaching the relative quality ranking knowledge to LMM. The proposed model,
namely Compare2Score, consistently outperforms state-of-the-art NR-IQA models on
both synthetic and realistic distortions and shows enhanced generalization capability across
different cross-distortion scenarios. Furthermore, we demonstrate that the probability matrix-
based inference conversion significantly enhances the rating accuracy of Compare2Score
and extends these improvements to zero-shot general-purpose LMMs.

2 Related Work

2.1 NR-IQA Models

Regressing for NR-IQA Traditional learning-to-regress NR-IQA models [28, 29, 30, 31] build
effective quality-aware feature extractors rooted in theoretical principles, which are then mapped to
quality scores through well-trained IQA regressors. In contrast, deep-learning-based IQA models [6,
9, 32, 33] exploit large volumes of IQA data to simultaneously refine DNNs for both feature extraction
and quality regression. By using advanced training techniques, such as domain adaption [5], meta-
learning [13], multi-task learning [34, 10], and contrastive learning [32], NR-IQA models show high
correlation with the HVS. However, these models show limited cross-distortion ability. Additionally,
these models typically produce quantitative quality scores, creating a significant gap from subjective
user studies that prefer learning and assigning text-defined quality levels [35].

Ranking for NR-IQA Beyond learning-to-regress schemes, many models address IQA through a
relative quality ranking setting [36, 37, 38, 17, 10]. Liu et al. [37] synthesized a large IQA dataset
labeled with distortion types and levels to train a Siamese network for precise image quality ranking.
Zhang et al. [17] incorporated probabilistic quality preference for image pairs from diverse datasets
to address inter-dataset incomparable concerns. LIQE utilized a pairwise learning-to-rank training
strategy with both visual and textual inputs [10]. Such ranking-based models mitigate the vulnerability
towards task-agnostic information of regressing-based models, enabling more robust capabilities for
different distortion scenarios [17, 10]. Nevertheless, the application of the learning-to-rank scheme
for LMM is largely under-explored. As such, we present to leverage relative comparisons to develop
an LMM-based NR-IQA model that produces qualitative comparison outcomes and translates the
discreet comparative levels into continuous quality scores effectively.

2.2 LMMs for IQA

Recently, many works have explored the capabilities of LMMs on IQA, covering both benchmark-
ing [39, 40, 41, 42] and refining [39, 12, 43, 44, 45, 46]. Wu et al. laid the groundwork by examining
and instructing of LMMs in low-level vision tasks, through the development of Q-Bench [47] and
Q-Instruct [39], respectively. Wu et al. analyzed LMM’s performance under various standardized
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Figure 2: Training and inference phash of Compare2Score. (a) The LMM is fine-tuned with
instruction-response pairs generated by comparing the MOSs from the same IQA dataset, allowing for
a more flexible combination of various IQA datasets. (b) The trained visual quality comparator (i.e.,
LMM) is utilized to compute the likelihood of a test image being preferred over the anchor images,
and then the quality score is derived using MAP estimation.

prompting settings [42], validating the effectiveness of chain-of-thought prompting in IQA tasks.
Co-Instruct [46] extended the low-level visual capability of the LMM to meet the requirement of
multiple image inputs. Despite demonstrating success, the qualitative outputs of the above LMMs
are hard to transfer to a quantitative score, which often plays an important role in computer vision
tasks [48]. Q-Align [12] made the first attempt by transferring the qualitative rating levels to the
perceptual quality scores. However, as shown in Figs. 1 (a) & (b), it is impractical to expand the
training dataset by simply mixing multiple IQA datasets with rescaled MOS. Therefore, we introduce
a novel relative ranking strategy that allows for the seamless integration of existing IQA datasets into
an expanded training set, which is then utilized to train an LMM-based visual quality comparator.

3 The Compare2Score Framework

In this section, we first describe the preliminaries of paired comparison for humans and LMMs,
respectively. Subsequently, we introduce our methodological framework, which includes generating
the training data with quantitatively comparative instructions (Sec. 3.2), the LMM-based visual
quality comparator (Sec. 3.3), and the soft comparison method for quality score derivation (Sec. 3.4).
Fig. 2 shows the training and testing diagrams of Compare2Score framework.

3.1 Preliminaries

Paired Comparison for Humans. The paired comparison methodology in subjective testing
involves three principal steps: the combination of images, the collection of human judgments,
and the aggregation of these judgments into quality scores. In particular, given a set of images
X = {(x(i), q(i))}Mi=1 where x(i) ∈ RN is the image and q(i) ∈ R represents the ground-truth
quality score, the methodology requires comparing a total of

(
M
2

)
pairs. We assume that a higher q(i)

indicates better perceptual quality. The outcomes of these comparisons are recorded in a count matrix
C ∈ RM×M , where each entry records the number of times one image is preferred over another. The
global ranking scores q̂ = {q̂(i)}Mi=1 can be computed by MAP estimation [49]:

argmax
q̂

L(q̂|C) + log p(q̂), s.t.
∑
i

q̂(i) = 0, (1)

where L(·) denotes the log-likelihood function and p(q̂) is a prior on the scale values. Although
effective [27], the key limitation of paired comparison is the exponential growth in the number of
comparisons, which becomes labor-intensive and costly for large M . Moreover, once the experiment
concludes, incorporating new test images for quality score inference becomes almost infeasible.

Paired Comparison for LMMs. Inspired by the efficacy and reliability of paired comparison ex-
periments with humans, we explore the feasibility of adapting this approach for LMMs. Accordingly,
we adopt a similar pipeline to that used in subjective testing. The framework for training LMMs
and predicting quality scores also involves three core steps: constructing instruction-response pairs,
fine-tuning the LMM with such pairs, and inferring quality scores. To increase the efficiency and
feasibility of the model, we propose an adaptive soft comparison approach by computing the proba-
bility of the test image x(i) being preferred over m representative anchor images. The probability is

4



calculated by a weighted summation of the softmax of the log probabilities across five comparative
levels. The outcome of the LMM is a probability matrix, P ∈ R(m+1)×(m+1) where m ≪ M . The
quality score of the input image is then computed by MAP estimation with the same optimization
problem as Eqn. (1).

3.2 Training Dataset: Comparative Instruction-Response Pairs

To facilitate the reasonability of mixing different IQA datasets, we present to compare the visual
quality of pairs of images within each IQA dataset. It allows a seamless combination of K established
IQA databases for generating large-scale repurposed training dataset (i.e., instruction-response pairs).
This process involves translating MOSs into discrete comparative levels. Utilizing the empirical
rule [50], we define five levels of comparison: inferior, worse, similar, better, superior.
The format of the instruction-response pairs is specified as follows:
USER: Compared with the first image <img1>, how is the quality of the
second image <img2>?
ASSISTANT: The quality of the second image is [Level] to/than the first
image.
Specifically, we randomly sampling nk image pairs {(x(i)

k , x
(j)
k )}nk

i,j=1 from each database. For
each pair {(x(i), x(j))}, relative quality rankings are inferred based on MOS and its standard
deviation. We assume the perceptual quality of each image x(i) as a Gaussian distribution,
characterized by mean q(i) and standard deviation σ(i), derived from subjective testing.

Level =



inferior if q(ij) > 2σ(ij),

worse if σ(ij) < q(ij) ≤ 2σ(ij),

similar if − σ(ij) < q(ij) ≤ σ(ij),

better if − 2σ(ij) < q(ij) ≤ −σ(ij),

superior if q(ij) < −2σ(ij)

(2)

Assuming independence in quality vari-
ability between images, the quality dif-
ferential also follows a Gaussian dis-
tribution with mean q(ij) = q(i) −
q(j) and standard deviation σ(ij) =√
(σ(i))2 + (σ(j))2. This methodology,

summarized in Eqn. (2), introduces sig-
nificance thresholds at ±σ(ij) and ±2σ(ij), effectively categorizing the quality differences into
meaningful comparative levels. These thresholds function similarly to confidence intervals in sta-
tistical hypothesis testing, establishing a robust framework for accurately identifying significant
perceptual differences between images.

3.3 Structure: Multi-image LMM as Visual Quality Comparator

The visual quality comparator forms a central element within the Compare2Score framework and is
tasked with predicting qualitative judgments for pairs of images. As shown in Fig. 3, the architecture
incorporates the advanced mPLUG-Owl2 model [20], which comprises the image encoder (fψ),
the image abstractor (fδ), and the large language model (LLM) decoder (gϕ). The process begins
with the image encoder transforming each image into a visual embedding. This embedding is
then dimensionally reduced by the image abstractor to facilitate the handling of multiple images,
expressed as z(i) = fδ(fψ(x

(i))), where z(i) ∈ RU with U = 65, significantly less than LLaMA-2’s
maximum context length of 2, 048 [51]. These compact visual embeddings are combined with textual
embeddings t ∈ RV from the text tokenizer and projected into a shared semantic space. The LLM
decoder takes the aligned features and interleaved them to produce the qualitative output, formalized
as Output = gϕ(< z(i), t >), where < ·, · > represents the feature alignment.

3.4 Inference Conversion: Adaptive Soft Comparison

Soft Comparison Methodology. After training, the response is determined by selecting the token
with the highest probability from the LLM decoder. This conventional method, while straightforward,
may not fully exploit the nuanced capabilities of LMMs, as it relies solely on the most probable
outcome and disregards other informative probabilities. To overcome this limitation, we propose
a soft comparison method that integrates the logits of all five comparative tokens T = {ti|5i=1} =
{inferior, worse, similar, better, superior}. The probability of each token is achieved by
the softmax function, expressed as peti = eti/

∑5
j=1 e

tj , where peti indicate the probability of i-th
token. Moreover, to enhance the efficiency and feasibility of the model, we do not compare the test
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Figure 3: Architecture of the proposed Compare2Score. Images are initially processed by an image
encoder, followed by token reduction through an abstractor module. The aligned textual and visual
embedding are interleaved and processed by the large language model (LLM) decoder to generate
precise qualitative comparative levels for paired comparisons.

image against every image in the dataset. Instead, we identify a smaller set of anchor images from the
training set, denoted as A = {a(n)}mn=1, where a(n) represents the n-th anchor image. As a result,
the probability of the test image being preferred over the anchor images is computed by the weighted
summation:

Peti (a
(n), x(m+1)) =

5∑
i=1

wipeti (a
(n), x(m+1)), n = 1 . . .m, (3)

where wi are predefined weights {wi|5i=1} = {0, 0.25, 0.5, 0.75, 1}, facilitating nuanced interpreta-
tion and use of the comparative levels.

Anchor Image Selection. We initially partition the IQA dataset into α quality intervals, repre-
sented as X =

⋃α
i=1 X (i). Our objective is to identify β representative images from each quality

interval, characterized by minimal variability in their MOS scores, enhancing the consistency of our
experimental dataset. Images with high variability in human ratings are deemed less suitable for
evaluating the performance of LMMs due to the potential introduction of noise and biases. For each
interval X (i), we aim to select a subset A(i) ⊆ X (i), where the size of A(i) is β. This selection
criterion is formalized through the following optimization problem:

A(i) = argmin
A⊆X (i),|A|=β

∑
x∈A

σ(x)2, (4)

where σ(x)2 denotes the variance of the MOS score for image x, serving as a quantitative measure of
rating consistency. As such, the full set of anchor images can be achieved by A =

⋃α
i=1 A(i)

Probability Matrix Construction. Based on the selected anchor images and visual quality com-
parator, we first construct probability matrix Pa ∈ Rm×m for the anchor images as follows:

Pa =


P (a(1), a(1)) P (a(1), a(2)) · · · P (a(1), a(m))
P (a(2), a(1)) P (a(2), a(2)) · · · P (a(2), a(m))

...
...

...
...

P (a(m), a(1)) P (a(m), a(2)) · · · P (a(m), a(m))

 (5)

Notably, each element P (a(i), a(j)) = 1 − P (a(j), a(i)) and P (a(i), a(i)) = 0.5.
Then, the test image x(m+1) is compared with all anchor images. We use b =[
P (a(1), x(m+1)), P (a(2), x(m+1)), . . . , P (a(m), x(m+1))

]
to denote the resultant vector. There-

fore, we finally form the complete probability matrix P ∈ R(m+1)×(m+1) for the anchor and test

images as P =

[
Pa b

(1− b) 0.5

]
.

Quality Score Estimation. Once obtaining the probability matrix, we compute the quality scores
using MAP estimation under Thurstone’s Case V model [52]. It is expressed as a convex optimization
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problem [49]:

argmax
q̂

Pij log(Φ(q̂
(i) − q̂(j)))−

∑
i

q̂(i)

2
, s.t.

∑
i

q̂(i) = 0, (6)

where Φ(·) is the standard Normal cumulative distribution function, and q̂(m+1) represents the quality
score of the test image.

4 Experiments

4.1 Experimental Setups

IQA Datasets. We conduct comprehensive experiments across six standard IQA datasets. These
datasets are categorized based on the type of distortions they contain: synthetic distortions are featured
in LIVE [53], CSIQ [24], and KADID-10k [26]; realistic distortions are present in BID [25], LIVE
Challenge (denoted as CLIVE) [54], and KonIQ-10k [7]. More details regarding these IQA datasets
can be found in the Appendix A.2. For our experiments, we utilize the ten splits provided by LIQE3,
allocating 70% of images from each dataset for training, 10% for validation, and the remaining 20%
for testing. We combine the training and validation sets in our experiments since Compare2Score are
evaluated at the last optimization iteration without any fine-tuning of the model parameters [12, 46].
For datasets with synthetic distortions, it strictly maintains content independence by splitting datasets
using reference images [10]. The median of the Spearman’s rank correlation coeff icient (SRCC) and
Pearson linear correlation coefficient (PLCC) across the ten splits are reported in the tables.

Implementation Details. Compare2Score utilizes the advanced mPLUG-Owl2 model [20] for its
architecture, leveraging a pre-trained CLIP-ViT-L14 as the vision encoder [55] and LLaMA2-7B [51]
as the LLM decoder. To train the model, we generate 180, 000 image pairs and optimize the whole
architecture with the GPT loss [56], which computes cross-entropy between the predicted logits and
ground-truth labels. Training is conducted with a batch size of 64 across all datasets, a fixed learning
rate of 2× 10−5, and spans two epochs. This process requires seven NVIDIA A40 GPUs to meet the
computational load. During inference, a single NVIDIA RTX3090 GPU is sufficient for executing
the soft comparison (Sec. 3.4). Furthermore, to obtain the anchor images, we divide the training set
of the KonIQ-10k into five (α = 5) quality intervals based on their MOSs [57], from which we select
one (β = 1) representative anchor image per interval using Eqn. (4).

Baselines. We compare the performance of the proposed Compare2Score with the following
state-of-the-art methods, which include (1) three opinion-unaware NR-IQA models: NIQE [2],
ILNIQE [3], and Ma19 [58]; (2) six learning-to-regress NR-IQA models: PaQ2PiQ [6], KonCept [7],
MUSIQ [59], DBCNN [4], HyperIQA [8], and TreS [11]; (3) two learning-to-rank NR-IQA models:
UNIQUE [17] and LIQE [10]; (4) one LMM-based NR-IQA model: Q-Align [12]. All methods are
compared with the same testing sets across ten splits. The UNIQE, LIQE, and Q-Align are jointly
trained on the above six datasets, respectively. The remaining methods are separately trained on each
individual dataset if necessary.

4.2 Main Results

Performance under Intra-Dataset Setting. Table 1 shows the results of media SRCC and PLCC
across ten sessions. It is clear that Compare2Score outperforms the competing methods on both
synthetic and realistic distortions, demonstrating the reliability of the paired comparison strategy can
be smoothly extended to the LMM. While Q-Align [12] is another LMM-based model, it presents
inferior performance on the synthetically distorted datasets [53, 24, 26]. The main reason may
be the perceptual scale ambiguity across different IQA datasets. The pairwise learning-to-rank
approach employed by UNIQUE [17] and LIQE [10] achieves competitive performance against
models [4, 8, 11] trained individually, which further validates the effectiveness of using relative
ranking information to mix different IQA datasets. Additionally, the opinion-unaware models
exhibit subpar performance on the realistic distortions, suffering the potential overfitting issue to the
traditional synthetic distortions [53, 24]. Furthermore, though the learning-to-regress models are

3https://github.com/zwx8981/LIQE/tree/main/IQA_Database
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Table 1: Performance comparison in terms of median SRCC and PLCC on six IQA datasets. The
methods are jointly trained with a mixture of six datasets are represented in italics.

Method LIVE [53] CSIQ [24] KADID-10k [26] BID [25] CLIVE [54] KonIQ-10k [7]

SRCC PLCC SRCC PLCC SRCC PLCC SRCC PLCC SRCC PLCC SRCC PLCC

NIQE [2] 0.908 0.904 0.631 0.719 0.389 0.442 0.573 0.618 0.446 0.507 0.415 0.438
ILNIQE [3] 0.887 0.894 0.808 0.851 0.565 0.611 0.548 0.494 0.469 0.518 0.509 0.534
Ma19 [58] 0.922 0.923 0.926 0.929 0.465 0.501 0.373 0.399 0.336 0.405 0.360 0.398

PaQ2PiQ [6] 0.544 0.558 0.697 0.766 0.403 0.448 0.719 0.700 0.732 0.755 0.722 0.716
KonCept [7] 0.673 0.619 0.631 0.645 0.503 0.515 0.816 0.825 0.778 0.799 0.911 0.924
MUSIQ [59] 0.837 0.818 0.697 0.766 0.572 0.584 0.744 0.774 0.785 0.828 0.915 0.937
DBCNN [4] 0.963 0.966 0.940 0.954 0.878 0.878 0.864 0.883 0.835 0.854 0.864 0.868
HyperIQA [8] 0.966 0.968 0.934 0.946 0.872 0.869 0.848 0.868 0.855 0.878 0.900 0.915
TreS [11] 0.965 0.963 0.902 0.923 0.881 0.879 0.853 0.871 0.846 0.877 0.907 0.924

UNIQUE [17] 0.961 0.952 0.902 0.921 0.884 0.885 0.852 0.875 0.854 0.884 0.895 0.900
LIQE [10] 0.970 0.951 0.936 0.939 0.930 0.931 0.875 0.900 0.904 0.910 0.919 0.908

Q-Align [12] 0.913 0.919 0.915 0.936 0.869 0.927 0.904 0.920 0.931 0.921 0.935 0.934

Compare2Score 0.972 0.969 0.950 0.943 0.952 0.939 0.919 0.939 0.914 0.928 0.931 0.939

Table 2: SRCC results on the three IQA datasets under
the cross-dataset setup. The methods are jointly trained
with a mixture of six datasets are represented in italics.

Method TID2013 SPAQ AGIQA-3K
[24] [60] [61]

NIQE [2] 0.314 0.578 0.562

PaQ2PiQ [6] 0.423 0.823 0.502
MUSIQ [59] 0.584 0.853 0.629
DBCNN [4] 0.686 0.412 0.654
HyperIQA [8] - - 0.629
Tres [62] - - 0.646

UNIQUE [17] 0.768 0.838 0.666
LIQE [10] 0.811 0.881 0.721

Q-Align [12] 0.801 0.813 0.725

Compare2Score 0.823 0.906 0.730

Table 3: SRCC results of probability matrix and count
matrix on four IQA datasets. Prob. stands for probabil-
ity.

LIVE CSIQ BID CLIVE
Method Matrix [53] [24] [25] [54]

IDEFICS2 Count 0.354 0.208 0.198 0.292
[19] Prob. 0.465 0.567 0.389 0.436

LLaVA-1.5 Count 0.214 0.148 0.122 0.015
[21] Prob. 0.386 0.555 0.361 0.292

mPLUG-Owl2 Count 0.408 0.013 0.217 0.221
[20] Prob. 0.449 0.129 0.551 0.355

XComposer- Count 0.199 0.145 0.206 0.332
VL-2 [22] Prob. 0.323 0.301 0.598 0.455
Co-Instruct Count 0.582 0.569 0.820 0.694

[46] Prob. 0.822 0.768 0.866 0.768

Compare2Score Count 0.888 0.875 0.778 0.816
Prob. 0.974 0.942 0.921 0.934

able to achieve promising performance on individual datasets with unique parameters, each dataset
requires a unique set of parameters that hinder the practicality of such models in the real world.

Performance under Cross-Dataset Setting. To assess the generalization capability of Com-
pare2Score against competitive NR-IQA models, we conduct the cross-distortion experiments with
three challenging unseen IQA datasets: TID2013 [63], SPAQ [60], and AGIQA-3K [61]. In particular,
TID2013 contains 24 distortion types, most of which are different from distortions in the training
datasets. SPAQ consists of 11, 125 images captured by 66 smartphones, undergoing abundant realistic
distortions. The images in AGIQA-3K are generated by six advanced text-to-image generative models,
which cast significant challenges to the NR-IQA models. The results are summarized in Table. 2,
from which we can observe that Compare2Score demonstrates the strongest generalization capability
across synthetic, realistic, and generative distortions. We believe the robustness of the proposed
model benefits from 1) the high capacity of the LMM-based model, 2) the proposed soft comparison
mechanism, and 3) the joint training on multiple datasets.

Performance of Probability Matrix and Count Matrix. In order to demonstrate the efficacy of
our proposed soft comparison method, we conducted an evaluation comparing the newly designed
probability matrix against the traditional count matrix [49] with five state-of-the-art LMMs, including
IDEFICS2 [19], LLaVA-1.5 [21], mPLUG-Owl2 [20], XComposer-VL-2 [22], and Co-Instruct [46].
Detailed information about these models is available in the Appendix A.3. The comparative results are
detailed in Table 3. The results reveal that our probability matrix not only enhances the performance
of Compare2Score but also significantly zero-shot the IQA performance across five open-source
LMMs [19, 21, 20, 22, 46]. This consistent outperformance highlights the robustness and utility of
the soft comparison approach in diverse IQA contexts.
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Table 4: Performance comparison in terms of prediction accuracy on six IQA datasets. The best
results are highlighted in boldface.

Method LIVE [53] CSIQ [24] KADID-10k [26] BID [25] CLIVE [54] KonIQ-10k [7]

IDEFICS2 [19] 0.453 0.546 0.521 0.566 0.407 0.687
LLaVA-1.5 [21] 0.170 0.544 0.600 0.579 0.074 0.455
mPLUG-Owl2 [20] 0.484 0.394 0.302 0.613 0.407 0.273
XComposer-VL-2 [22] 0.045 0.662 0.672 0.648 0.067 0.059
Co-Instruct [46] 0.672 0.426 0.391 0.695 0.718 0.849

Compare2Score 0.849 0.720 0.870 0.861 0.788 0.858

Table 5: SRCC results for Compare2Score using
anchor images from KonIQ-10k [7], KADID-10k [26],
and AGIQA-3K [61].

Dataset KonIQ-10k KADID-10k AGIQA-3K
[7] [26] [61]

LIVE [53] 0.972 0.968 0.975
CSIQ [24] 0.950 0.947 0.946
KADID- 0.952 0.957 0.94410k [26]

BID [25] 0.919 0.914 0.916
CLIVE [54] 0.914 0.912 0.915

KonIQ- 0.939 0.931 0.92910k [7]
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Figure 4: Comparisons of SRCC results and running
time with different numbers of anchor image per quality
interval (β).

Performance of Prediction Accuracy. We further compare the prediction accuracy of paired
comparison results of Compare2Score to five open-source LMMs [19, 21, 20, 22, 46]. As shown
in Table 4, Compare2Score significantly surpasses these advanced open-source LMMs, providing
high accuracy of quantitative outputs. Notably, Co-Instruct achieves competitive accuracy across
the six IQA datasets, benefiting from a specialized visual quality comparison training corpus. The
models (e.g., IDEFICS2, LLaVA-1.5, mPLUG-Owl2, and XComposer-VL-2) rely on high-level
instruction-tuning datasets showing poor performance in terms of prediction accuracy, suggesting an
inferior quality comparison capability of these LMMs.

4.3 Ablation Studies

Impact of the Source of Anchor Images. Although KonIQ-10k [7] serves as the default source
for anchor images, we demonstrate the robustness of our results across diverse sources of anchor
images. Utilizing the same anchor image selection strategy outlined in Eqn. (4), we selected anchor
images from three distinct datasets: KADID-10k [26], featuring synthetic distortions; KonIQ-10k [7],
with realistic distortions; and AGIQA-3K [61], containing generative distortions. As shown in
Table 5, Compare2Score consistently shows superior performance across all IQA datasets, showing
remarkable robustness to the varying types of distortions of the anchor images. The anchor images
selected from the three datasets are shown in Appendix A.5.

Impact of the Anchor Selection Methods To evaluate the efficacy of the proposed anchor image
selection method (referring to Eqn. (4)), We compare the proposed minimum variance anchor image
selection method to the maximum variance and random selection methods. The results are shown
in Table 6, from which we can observe that Compare2Score achieves the best result among all the
testing IQA datasets. This improvement indicates that selecting anchor images with low variability in
human ratings is crucial, as high variability tends to introduce noise and biases, compromising the
effectiveness of LMMs in performance evaluations. In addition. the other anchor selection methods
also demonstrate competitive performance compared with the state-of-the-art NR-IQA model in
Table 1, which further verifies the effectiveness of the proposed Compare2Score framework.
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Table 6: SRCC results of the different anchor selection schemes on KonIQ-10k [7] dataset.

Method LIVE [53] CSIQ [24] KADID-10k [26] BID [25] CLIVE [54] KonIQ-10k [7]

Random Selection 0.954 0.939 0.944 0.881 0.890 0.915
Maximum Variance 0.958 0.940 0.926 0.885 0.879 0.919

Compare2Score 0.972 0.950 0.952 0.919 0.914 0.931

Impact of the Number of Anchor images. The number of anchor images within each quality
interval (β in Eqn. (4)) crucially affects the efficacy of Compare2Score. We systematically explore
the influence of β and present the SRCC results and running times in Fig. 4. Notably, all experiments
were carried out on the same testing platform equipped with an NVIDIA RTX3090 GPU. The
results illustrated in Fig. 4 indicate that increasing the number of anchor images does not enhance
performance across the evaluated IQA datasets. β = 1 suffices for achieving promising and state-
of-the-art performance. In addition, it is expected that the average running time (red line in Fig. 4)
linearly increases as β becomes large. As a result, β = 1 has been set as the optimal configuration to
achieve a practical balance between model efficiency and computational expense.

5 Conclusion and Discussion

In this paper, we introduced Compare2Score, a novel NR-IQA model utilizing LMM to bridge
the gap between discrete comparative levels and continuous quality scores. By using the robust
capabilities of LMMs to interpret and integrate complex textual and visual inputs, our model excels
in translating scaled-up comparative instructions into reliable, human-like quality assessments. We
propose an innovative soft comparison method that effectively and efficiently converts discrete textual
responses to continuous quality scores. Extensive validation on standard IQA datasets demonstrates
that the proposed model significantly outperforms existing NR-IQA models across different distortion
scenarios. Moreover, our probability-matrix-based improves both our model and general-purpose
LMMs, showcasing the broad applicability and intrinsic effectiveness of our methods.

Limitation. Despite promising, our study has several limitations that highlight areas for future
research. While the soft comparison method is effective, it involves computational complexities
that may not scale linearly with the increase in the number of images and comparisons. In addition,
though LMM provides advanced capabilities in generating human-like quality assessments, the
interpretability of this model remains limited. As such, exploring more efficient algorithms and
enhancing the interpretability of the LMM is crucial for broader acceptance and trustworthiness in
critical applications.
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A Appendix

A.1 Broader Impacts

The social impact of our research on an LMM-based NR-IQA model is substantial. By integrating
diverse IQA datasets more effectively, this model promotes enhanced consistency and reliability
in image quality evaluations across different real-world applications. Particularly in fields such as
image processing, computer vision, and computer graphics, the ability to accurately assess image
quality is paramount. As these sectors increasingly rely on visual content, ensuring high-quality,
reliable assessments directly influences consumer satisfaction and operational efficiency. Moreover,
by advancing the capabilities of LMMs in interpreting and integrating complex, varied data sources,
our approach not only improves the precision of image quality scoring systems but also contributes to
the broader adoption of responsible AI technologies. This innovation holds promise for setting new
benchmarks in the automation of quality control, fostering trust and dependability in digital media
and related technologies, ultimately benefiting society at large.

A.2 More Details on IQA Datasets

The details of the utilized IQA datasets are described as follows.

• LIVE [53]: The LIVE database contains 29 reference images and 779 distorted images
with the 5 distortions, including JPEG compression, JPEG2000 compression, additive white
Gaussian noise, Gaussian blur, and fast-fading transmission distortion. The single-stimulus
continuous quality rating is used to collect human opinions. The difference MOSs (DMOS)
spread from 0 to 100.

• CSIQ [24]: The CSIQ database contains 30 reference images and 866 distorted images
with 6 distortions of JPEG compression, JPEG2000 compression, Gaussian blur, Gaussian
white noise, Gaussian pink noise, and contrast change. The subjective testing method is the
single-stimulus absolute category rating. The DMOSs span from 0 to 1.

• TID2013 [24]: The TID2013 database contains 25 reference images and 3, 000 distorted
images with 24 distortions such as noise (e.g., additive Gaussian, masked, high frequency
noise), compression (e.g., JPEG, JPEG2000 compression), contrast change, etc. Paired
comparison is the subjective user study methodology. The MOSs spread from 0 to 9.

• KADID-10k [26]: The KADID-10k database contains 81 reference images and 10, 125
distorted images by adding 25 distortion types with 5 distortion levels such as blur, color
distortions, noise, spatial distortions, etc. The subjective testing method is the double-
stimulus continuous quality rating by crowdsourcing. The DMOSs range from 1 to 5.

• BID [25]: The BID database collects a total of 586 realistic distortion images with profession
digital single-lens reflex cameras. The single-stimulus continuous quality rating is applied
to collect human opinions. The MOSs range from 0 to 5.

• CLIVE [54]: The LIVE Challenge (denoted as CLIVE) database contains 1, 162 images
with realistic distortions captured by multiple mobile devices. The subjective experiment
methodology is the single-stimulus method with crowdsourcing. The MOSs range from 0 to
100.

• KonIQ-10k [7]: The KonIQ-10k database consists of 10, 073 images with aboundent
realistic distortions. Those are selected from the YFCC100M database [64]. Single-stimulus
absolute category rating is the method of subjective testing. The MOSs range from 1 to 5.

• SPAQ [60]: The SPAQ database consists of 11, 125 in-the-wild pictures taken by 66
smartphones. Each picture is annotated with quality, attributes, and scene categories using
the single-stimulus methodology. The MOSs range from 0 to 100.

• AGIQA-3K [61]: The AGIQA-3K consists of 2, 982 AI-generated images derived from 6
advanced text-to-image generation models, which includes AttnGAN [65], DALLE2 [66],
GLIDE [67], Midjourney [68], Stable Diffusion [69], and Stable Diffusion XL [70]. The
single-stimulus continuous quality rating is used to collect human opinions. The MOSs
range from 0 to 5.

15



Table 7: Overview of the baseline open-sourced LMMs compared with the proposed Compare2Score.
MLP stands for the multilayer perceptron. MAM is the modality-adaptive module.

Model Visual Model Visual-Language Alignment Language Model

IDEFICS2 [19] CLIP-ViT-Large/14 MLP Mistral-7B
LLaVA-1.5 [23] CLIP-ViT-Large/14 MLP Vicuna-7B
mPLUG-Owl2 [20] CLIP-ViT-Large/14 MAM LLaMA-7B
XComposer-VL-2 [22] CLIP-ViT-Large/14 Perceive Sampler InternLM2-7B
Co-Instruct [46] CLIP-ViT-Large/14 MAM LLaMA-7B

Compare2Score CLIP-ViT-Large/14 MAM LLaMA-7B

A.3 More Details on Competing LMMs

We evaluated the image quality prediction performance of the proposed Compare2Score against
five LMMs: IDEFICS2 [19], LLaVA-1.5 [21], mPLUG-Owl2 [20], XComposer-VL-2 [22], and
Co-Instruct [46]. Typically, LMMs consist of three core components: a modality encoder, a language
model, and a modality interface for cross-modal interactions. Detailed information on these models
is provided below and summarized in Table 7:

• IDEFICS2 [19]: The IDEFICS2 model utilizes a CLIP-based vision encoder and Mistral-
7B [71] as the language model, with a visual-text alignment module that facilitates cross-
modal interaction, enabling it to handle a variety of multimodal tasks such as image cap-
tioning and visual question answering, guided by instruction-tuning on diverse multimodal
datasets.

• LLaVA-1.5 [21]: The LLaVA-1.5 model incorporates the pretrained CLIP-ViT-L14 [55] as
the vision encoder, Vicuna-7B [72] as the LLM and an multilayer perceptron (MLP) as a
visual-language connector. LLaVA-1.5 employs the single response formatting prompt in
instruction-tuning as formatting control in order to regulate the answering layout.

• mPLUG-Owl2 [20]: The mPLUG-Owl2 model integrates the CLIP-ViT-L14 [55] for visual
input and LLaMA2-7B [51] as the LLM, with a visual abstractor serving as the cross-modal
interface. It emphasizes semantic consistency by decoupling visual-language representations
into a shared semantic space, trained on multimodal instructions and image-text pairs.

• XComposer-VL-2 [22]: The Intern-XComposer-VL-2 (denoted as XComposer-VL-2)
model utilizes the pretrained CLIP-ViT-L14 [55] as the vision encoder, the InternLM-2 [73]
as the LLM, and a perceive sampler to connect modalities.

• Co-Instruct [46]: The Co-Instruct is built on the mPLUG-Owl2 framework [20], tailored
for visual quality comparison using a specialized visual instruction dataset. It employs an
image-text interleaved format to enhance the fidelity of information integration, making it
highly effective for IQA tasks involving multiple images.

A.4 Inference Latency

The training process utilizes advanced models like mPLUG-Owl2 and requires substantial computa-
tional resources. It takes approximately 20 hours of training on 180, 000 image pairs with a batch
size of 64 across all datasets, spans two epochs, and demands seven NVIDIA A40 GPUs. During
inference, a single NVIDIA RTX3090 GPU is sufficient for executing the soft comparison, which is
more cost-efficient compared to the training phase. We compute the inference latency of our method
with different batch sizes. All experiments are conducted on the same device with a single RTX3090
GPU. The results are shown in Table 8, from which we can observe that the latency of the inference
process increases with the batch size. For instance, the latency for a batch size of 1 is 0.931 seconds,
while for a batch size of 64, it is 45.263 seconds. This demonstrates the scalability of our model
during inference, allowing for flexible adaptation based on the available computational resources and
required processing speed.
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Table 8: Inference latency of the Compare2Score with different batch sizes on RTX3090.

Batch size 1 2 4 8 16 32 64

Latency (s) 0.931 1.739 3.644 6.581 11.125 23.365 45.263

(a) (b) (c) (d) (e)
Figure 5: Illustration of the five anchor images selected from KonIQ-10k [7]. (a) MOS = 1.09,
σ = 0.29; (b) MOS = 2.02, σ = 0.39; (c) MOS = 2.96, σ = 0.38; (d) MOS = 3.21, σ = 0.41; (e)
MOS = 4.01, σ = 0.34.

(a) (b) (c) (d) (e)
Figure 6: Illustration of the five anchor images selected from KADID-10k [26]. (a) MOS = 1.00,
σ = 0.00; (b) MOS = 1.80, σ = 0.40; (c) MOS = 2.84, σ = 0.51; (d) MOS = 3.97, σ = 0.41; (e)
MOS = 4.90, σ = 0.30.

(a) (b) (c) (d) (e)
Figure 7: Illustration of the five anchor images selected from AGIQA-3K [61]. (a) MOS = 0.73,
σ = 0.10; (b) MOS = 0.95, σ = 0.12; (c) MOS = 2.27, σ = 0.14; (d) MOS = 3.41, σ = 0.16; (e)
MOS = 3.96, σ = 0.17.

A.5 Illustrations of Anchor Images

Herein, we present the selected anchor images from KonIQ-10k [7], KADID-10k [26], and AGIQA-
3K [61] in Figs. 5, 6, and 7, respectively. We can observe the selected images cover a wide range
of visual quality, and the contents of the images are diverse. This robustness of the selection of
anchor images effectively supports the model’s ability to generalize across different types of visual
distortions, enhancing its applicability in real-world IQA scenarios.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The main contribution of Compare2Score are highlighted in both abstract and
introduction.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: The limitations are summarized in Sec. 5. The proposed soft comparison
method relies on five anchors, which increases the computational complexities, leaving the
improvement of a more efficient model for future work

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [NA]

4. Experimental Result Reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: The implementation details of the proposed model are described in Sec. 4.1.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: The source codes and instructions are attached to the supplementary material.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: The detailed experimental settings are given at Sec. 4.1.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: The results in the tables are calculated using the median of ten splits to avoid
prediction bias and ensure statistical significance.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: The details of the compute resources are described in Sec. 4.1.
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9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]
Justification: The broader impacts can be found in the Appendix A.1.

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [NA]
Justification: The databases and codes for IQA are freely available online.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [Yes]
Justification: The source codes of the proposed model and associated training corpus are
provided in an anonymized zip file attached in the supplementary materials.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
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