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ABSTRACT

This paper introduces a novel benchmark for evaluating the logical reasoning ca-
pabilities of Large Language Models (LLMs), grounded in the polynomial ana-
logue of Gandy’s classical fixed point theorem. Since this theorem can be used to
describe the P-complete HornSAT problem, and our benchmark is based on this
theorem, our benchmark thus covers all problems from class P and shows that se-
rious problems have already arisen in this class, not to mention those benchmarks
whose complexity classes are NP-complete and NP-hard. Drawing on concepts
from mathematical logic, we design a parameterized set of recursively definable
problems where the objective is for LLMs to predict whether a problem belongs
to an inductively definable set of polynomial complexity. By varying the param-
eters, we generate problem instances of differing complexity. Our experiments
reveal that current state-of-the-art LLMs with zero-shots promts fail to reliably
solve even the most straightforward cases despite an effective deterministic al-
gorithm existing. Even advanced models like GPT-4 exhibit significant biases in
solving benchmark problems. These findings highlight the limitations of modern
LLMs as code interpreters, even in basic scenarios, and underscore the necessity
for hybrid LLM/interpreter systems. Furthermore, they emphasize the importance
of developing quantitative tests for reasoning, given the increasing reliance on
LLM-based systems in decision-making applications.

1 INTRODUCTION

1.1 MOTIVATION

The question of whether large language models (LLMs) can think has been a subject of intense de-
bate for many years (Mirzadeht et al., 2024), and it is only getting hotter as large language models
solve more and more problems. To address this question, researchers are designing increasingly
complex tests and challenges for LLMs, which allow us to assess the cognitive capabilities of these
models more precisely. From a logical perspective, a key component of any intelligent system being
able to think is the ability to reason and construct proofs from basic axioms, as well as the ability
to work with recursive definitions (Goncharov & Nechesov, 2021b) If we look at the problems from
the other side, all problems can be divided into complexity classes P, NP-complete, NP-hard, etc.
Many benchmarks try to cover all of these classes at once(Lizhou Fan et al., 2024), but if LLMs
cannot solve problems from class P well, then it is pointless to try to study questions in the more
complex classes NP-complete and NP-hard. These findings are supported by the results obtained
from most studies that aim to tackle problems spanning across different complexity levels simulta-
neously. When we approach problems from the perspective of formalization, the majority of them
can be articulated through non-recursive descriptions with first-order logic formulas. However, when
a problem permits a recursive representation, its formulation in logical terms becomes significantly
more compact. It is convenient to work with such recursive descriptions of problems and send them
to the input of LLMs together with the objects for which these problems need to be solved.

In this paper, we propose to focus on a unique combination of problems that lie in the class P and
at the same time admit a recursive description. If LLMs cannot solve these problems, then most
often it is pointless to move on to more complex problems from the NP-complete and NP-hard
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classes, since their complexity becomes higher and at the same time most of them also admit a
recursive description. To navigate through recursive structures while remaining within the confines
of class P, the PAG theorem (Appendix A) and FPAG theorem (Nechesov & Goncharov, 2024) prove
invaluable, enabling us to define sets and functions that can be described recursively with polynomial
complexity. In this investigation, we focus on the PAG theorem, demonstrating that even within this
framework, LLMs encounter significant difficulties in determining whether an object belongs to an
inductively defined collection of entities. The uniqueness of the benchmark is achieved due to its
unique properties - in essence, we are trying to solve recursively defined problems, but at the same
time do not jump out of the class P.

The HornSAT problem (Adebayo et al., 2022), which lies in the class P and is a simplification of
the NP-complete SAT problem, also falls under the recursive description. The HornSAT problem
can be solved using a modified PAG theorem, where we can to transfer the main concepts of the
PAG theorem from nested lists to the set of horn formulas, and also had to abandon generating
families in favor of the set of horn formulas. This was achieved by redefining the function γ, which
now takes some horn formula as input and produces another shorter horn formula according to a
recursive P-computable algorithm for Horn satisfiability (hor). The operator ΓHF acts on the set
of all subsets of horn formulas in the set of all subsets of horn formulas. In this case, the smallest
fixed point Γ∗ of the operator ΓHF is P-computable. Without loss of generality, we can assume
that the HornSAT problem is a special case of a modified polynomial analogue of Gandy’s theorem.
A similar approach can be used to describe the 2-SAT problem using a modified PAG theorem.
Since the 2-SAT problem reduces to a 2N×2N adjacency matrix, a transitive closure is iteratively
constructed for it using a modified version of the Floyd-Warshall algorithm. (2sa). Due to the fact
that the HornSAT problem is p-complete, we can assume that our benchmark based on the PAG
theorem covers all problems from the class P. This is its uniqueness and universality.

Large language models have a transformative effect on various domains of science, including lan-
guage processing and understanding (Ouyang et al., 2022), music and speech processing (Agostinelli
et al., 2023), smart cities and digital twins of complex objects, and even drug and protein de-
sign (Madani et al., 2023). These models, such as GPT-4 (Achiam et al., 2023), Claude (cla) and
their open-source competitors like Llama (Dubey et al., 2024) and Mistral (Jiang et al., 2023), have
demonstrated remarkable capabilities in tasks ranging from simple text generation to complex math-
ematical problem-solving. The remarkable advancements of LLMs were enabled by the abundance
of unlabelled text data (Penedo et al., 2024) and the effective unsupervised training at scale (Kaplan
et al., 2020).

Despite these successes, there are notable limitations in the current methodologies for evaluating the
reasoning capabilities of LLMs. Standardized benchmarks (Hendrycks et al., 2020; Yue et al., 2024;
Zheng et al., 2023) have shown that LLMs excel in few-shot and zero-shot tasks, often outperforming
previous state-of-the-art models by large margins. However, these benchmarks may not fully capture
the models’ ability to generalize and reason logically, as evidenced by various studies highlighting
often unexpected failures Nezhurina et al. (2024) that contradict the claimed strong capabilities.

Addressing these limitations is crucial for applying LLMs in real-world scenarios, where accurate,
logical reasoning is essential. For instance, in fields like healthcare, legal services, and automated
decision-making, the reliability of AI models can have significant implications for outcomes and
trustworthiness. Therefore, there is an urgent need for new evaluation frameworks Gao et al. (2023);
Guha et al. (2024); Wang (2024) that can more accurately assess the logical capabilities of LLMs in
different settings.

In response to this need, we introduce a new benchmark designed to evaluate the reasoning abilities
of LLMs in recursive problems. Our approach involves generating [object, condition] pairs, where
objects are nested lists of elements (for example, numbers) and conditions are expressed with recur-
sive functions. The task of the LLM is to determine whether the object satisfies all conditions. This
setup, expressed in Python language, leverages the extension of fixed-point Gandy’s theorem (Gon-
charov & Nechesov, 2021b), ensuring that the check can be performed efficiently at most quadratic
times relative to the object’s size. Despite an efficient verification algorithm, our findings indicate
that all tested LLMs fail to solve even simple instances of these problems, highlighting a signif-
icant gap in their logical reasoning capabilities. The source code of the benchmark is available
at https://anonymous.4open.science/r/logic-lm-0B9C.
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2 RELATED WORK

As the capabilities of large language models themselves increase, so does the number of various
benchmarks that test their capabilities in various areas including the ability to solve mathematical
and logical problems. Most often, the problems that arise when testing LLMs can be divided into
complexity classes: P, NP-complete, and NP-hard.

In our research, we primarily focus on problems from the P class, as we rely on the PAG (Gon-
charov & Nechesov, 2021b) and FPAG theorems (Nechesov & Goncharov, 2024) the powerful tools
for constructing polynomially computable sets of inductively defined objects and also for defining
recursive functions of polynomial complexity. This allows us to see how the larger language models
handle these constructions.

The complexity arises from LLMs’ need to effectively handle recursive operations that inevitably
emerge when tackling such problems. Recursive definitions serve as a key factor in increasing
complexity. By carefully managing recursion, we can either maintain operations within the P class
or transition to NP-complete or NP-hard classes.

As our research shows, even within the complexity class P, there exist tasks that pose a challenge
for large language models, suggesting that higher-level classes such as NP-complete and NP-hard
become simply unsolvable in most cases. It is futile to engage in experimentation with issues in these
domains unless one possesses a comprehensive understanding of the root causes for tasks from class
P.

In the work under consideration Lizhou Fan et al. (2024), attention is directed towards tasks span-
ning various complexity levels, encompassing P, NP-complete, and NP-hard classes. The research
aims to comprehensively explore these diverse complexity classes, rather than focusing narrowly on
a specific aspect. However as we noted earlier in the context of this work, where researchers try
to solve problems belonging to the NP-complete and NP-hard classes without having fully compre-
hended the intricacies of problems within the class P.

In another work (Rishi Hazra et al., 2024) the solution of the 3-SAT problem using LLM occurred
with a small number of free variables (no more than 10). That is a 3-SAT problem in which it
is possible to find a solution manually by enumeration. It turned out that even with such a small
number of parameters, LLMs cope poorly with them. As expected, with an increase in parameters,
their capabilities sharply decrease.

If we look at benchmarks that have made a lot of noise in the LLM community, then of course this
is the Alice problem. (Nezhurina et al., 2024) This problem can be solved by an 8-year-old child,
but most of the leading LLMs could not do it. If we want to build trusted AI algorithms based on
LLMs, then it is very important to start with the simplest problems to understand where they make
mistakes and where they do not. The most acceptable complexity class for these problems is in class
P. That is why it is so important to study this complexity class in as much detail as possible, which
is what we do in this work.

3 BACKGROUND

The idea of our benchmark is to use a parametric class of problems that can be efficiently generated
and solved, yet the complexity of individual problem instances can be tuned. We revert to the
Polynomial Analogue of Gandy’s Fixed Point Theorem (Goncharov & Nechesov, 2021b), or PAG-
theorem, to define such a class. In this section, we describe how to define this class of problems in
simple terms and refer the readers interested in stricter descriptions to Appendix A.

Let us introduce notation for a class of polynomially solvable problems F . Each problem consists
of a pair (P, x), where P ∈ F is a recursively defined boolean function (a predicate), and x is a
candidate object. The objective is to determine whether or not x belongs to P , e.g. if

P (x) == 1 (1)

here 1 in Eq. 1 means logical True, and 0 means False, the symbol == means a comparison
operation.

3
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The objects x ∈ X are arbitrarily nested lists of elements e. To be concrete, in this work, we consider
lists of natural numbers e ∈ N , but any elements can be used. We inductively denote a nested list x
as follows:

x = ⟨x0, . . . , xN ⟩
xk = ek or ⟨xk,0, . . . , xk,M ⟩, k ∈ [0, . . . , N ]

(2)

We use composite indices of length d to describe elements x at the d-th level of nesting.

The boolean functions inF must adhere to certain structures imposed by the PAG theorem. Consider
a set of predicates {P0(x), . . . , PI(x)}. As objects x are lists, the structure of P ∈ F will depend
on how it is applied to individual elements of the list. In this work we consider boolean functions on
lists x = ⟨x0, . . . , xN ⟩ of the following form:

Φj(x0, . . . , xN ) = Qj,0(x0) ∗ · · · ∗Qj,N (xN )

Qj,i(xi) =

{
Pj,i(xi)

(xi == ei)

(3)

The symbol ∗ denotes a generic logical operator, which can be either a conjunction (and, ∧) or a
disjunction (or, ∨). The function Φk(x) is thus a logical formula, where predicates Pj,i ∈ F are
applied to individual elements of x.

As nested lists xk ∈ X may have different number of elements at each level of nesting, we need to
specify how the action of P ∈ F depends on the length of xk = ⟨xk,0, . . . , xk,Nk

⟩. We do so by
introducing the operators γi[x], i ∈ [0, . . . , I]:

γi[xk] =

{
ΦNk

(xk,0, . . . , xk,Nk
), if γi(xk) is defined for length Nk

0, otherwise
(4)

Based on the length of xk, the operators γi either produce some logical formula ΦNk
(which in turn

consists of some possibly recursive logical functions Pk,l ∈ F) or False. We denote the set of
all predicates that can be produced by γi as Fi, which is also called a generating family. Note that
Fi(xk) is also (a possibly recursive) logical function. Given xj ∈ X

Fi(xk) = γi[xk] =

{
ΦNk

(xk,0, . . . , xk,Nk
) = QNk,0(x0) ∗ · · · ∗QNk,Nk

(xNk
)

0
(5)

The generating family Fi(xk) in Eq. 5 is a recursive function if QNk,l may take a value of Fi(xk,l),
for example.

We are now ready to formulate the PAG theorem. Given a set of polynomially computable non-
recursive boolean functions P = {P0, . . . , PJ}, given a set of boolean functions F = {F0, . . . , FI}
with the structure defined by Eq. 5, where

QNk,l(x) = Fk,l(x) ∈ F or Pk,l(x) ∈ P or (xl == el) (6)

and each ΦNk
(x0, . . . , xNk

) may contain no more than one copy of Fk(xj),∀k ∈ [0, . . . , I] for each
xj , j ∈ [0, . . . , Nk] in its definition. If x ∈ X is a list with finite depth and width, then the equation

Fi(x) == 1 (7)

can be decided in a polynomial number of steps for any Fi ∈ F . We will use this result to build a
test system for large language models.

4 METHODS

Based on the results of the PAG theorem, we build a generator of problem instances with varying
complexity. Each problem has the form of a set of generating families F , a test object x ∈ X
and the equality Fi(x) == 1, Fi ∈ F . We call the set of generating functions a condition and the
test object x the probe. In the following sections, we will show how to express the condition as a
Python program and present a probe generator algorithm, which allows the building of probes of any
depth and any desired result when substituted in Eq. 7. The resulting Python code can be directly
supplied to LLMs, and the response can be evaluated without human intervention, thus providing an
automatic benchmark system.

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

4.1 CONDITION GENERATOR

The setup of the PAG theorem has to be mapped to a Python program to make a condition generator.
We start by expressing logical formulas Φ in Eq. 3. Consider an input list with N = 3 elements x =
⟨x0, x1, x2⟩ of size 3. We first need to specify element-wise functions Qi, i ∈ [0, 1, 2]. According
to the requirements of the PAG-theorem, they can be either constant comparisons, non-recursive
predicates P or possibly recursive generating families F (see Eq. 6). For simplicity, we do not use
non-recursive predicates P here (an example of such predicate would be a Python function bool(),
which returns True for any non-zero input or some other non-recursive function). We define I = 2
generating families called is_member_0() and is_member_1(). An example of the function ΦN

for N = 3 is shown below:

1 res = is_member_0(x[0]) and (x[1] == 2) and is_member_1(x[2])

Listing 1: Φ3 function example

To define a generating family, one must map inputs x to different Φ functions based on the input
length. An example of a set of two generative families called is_member_0() and is_member_1
() is shown below. Notice that these functions may be mutually recursive.

1 def is_member_0(x):
2 if len(x) == 2:
3 res = (x[0] != 15) and (x[1] != 61)
4 elif len(x) == 3:
5 res = (is_member_1(x[0])) and (is_member_0(x[1])) and (x[2] ==

49)
6 else:
7 return False
8 return res

1 def is_member_1(x):
2 if len(x) == 2:
3 res = (is_member_1(x[0])) and (is_member_0(x[1]))
4 elif len(x) == 3:
5 res = (x[0] != 46) and (x[1] == 95) and (x[2] != 7)
6 else:
7 return False
8 return res

Listing 2: An example set of generating families

We made several design choices to translate the requirements of the PAG theorem into concrete
Python functions. Our code generator produces a set of I recursive functions as shown in Lst. 2.
Each function has if-blocks, which map inputs starting from length Ni = 2 to length Nmax

i to a
corresponding logical formula QNi . We use only and operators in logical formulas. Every logical
formula can contain up to bi, bi ≤ Ni generating families Fj ∈ F in its definition, which is selected
at random; the rest of the entries in QNi

are defined as argument comparisons to random integer
constants. Finally, each generating family Fi has a logical formula of length NT

i , which does not
contain any calls to generating formulas Fj ∈ F , e.g., completely composed of comparisons of
the arguments to constants. In the example in Lst. 2 NT

0 = 2 for F0 = is_member_0() and
accordingly NT

1 = 3 for F1 = is_member_1(). We found that having a terminal block in every
Fi ∈ F is necessary for solving solutions of different nesting depths in Eq. 7.

We implemented the condition generator as described above using the template library
Jinja2 (Ronacher, 2008). The generator produces random Python functions acting on lists x. The
second half of the benchmark system is a probe generator, which is described in the next section.

4.2 PROBE GENERATOR

In this section, we devise an algorithm to build nested lists x ∈ X satisfying Eq. 7. Notice that there
are usually multiple solutions. For example, both x0 and x1 in Lst. 3

1 x0 = [-39, 21]

5
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2 x1 = [[137, 95, -7], [93, 97], 49]

Listing 3: Solution examples

return True when passed to is_member_0() from Lst. 2, but the evaluation will take a different
number of steps due to the different depth of the lists. To have an efficient benchmark, one would
need to generate x ∈ X with a depth of nesting d, which will yield a desired result in Eq. 7. Such x
can be efficiently built.

To describe the algorithm, let us first consider a logical formula QT
Ni

completely made for comparing
its arguments to constants. We call this formula a terminal formula.

QT
Ni

= (x0 == e0) ∧ · · · ∧ (xNi
== eNi

) (8)

It is easy to find the argument which satisfies QT
Ni

:

x = ⟨e0, . . . , eNi
⟩ (9)

By changing a single entry in Eq. 9, one can build a non-solution. In general, terminal formulas can
be composed of non-recursive predicates Pj ∈ P provided it is possible to solve Pj(x) = 1.

If a generating family Fi produces QT
Ni

, then x from Eq. 9 is also a solution to Fi(x) = 1. Now
consider a generating family Fj , which produces a logical formula QNk

containing Fi:

QNk
= Fi(xm) ∧ Q̃Nk−1(x0, . . . , xm−1, xm+1, . . . , xNk

) (10)

here Q̃Nk−1 is a subformula of QNk
without the term Fi(xm). If x̃ =

⟨ẽ0, . . . , ẽm−1, ẽm+1, . . . , ˜eNk
⟩ satisfies Q̃Nk−1, then

y = ⟨ẽ0, . . . , ẽm−1, ⟨e0, . . . , eNi
⟩, ẽm+1, . . . , ˜eNk

⟩ (11)
is a solution of depth one of Fj(x) = 1. In general, the solution of depth d can be constructed with
an algorithm outlined in Alg. 1.

Algorithm 1 Probe generator

1: function SOLVETERMINAL(QT , r) ▷ Solves QT (x) = r
2: x← ⟨e0, . . . , eN ⟩, s.t. QT (x) = r

return x
3: end function

4: function GENERATESOLUTION(F , Fi ∈ F , d, r) ▷ Finds x of nesting level d, s.t. Fi(x) = r
5: if d = 0 then ▷ x is a shallow list, solve terminal formula QT

6: Find QT ∈ Fi

7: x← SOLVETERMINAL(QT , r)
8: return x
9: else ▷ x is a nested list, recurse into a random non-terminal formula Qk

10: Find a random Qk ∈ Fi, s.t. Qk = Fj0 ∧ · · · ∧ Fjb ∧ Q̃k

11: y ←SOLVETERMINAL(Q̃k, 1) ▷ Solve a non-recursive part of the formula
12: for j ∈ [j0, . . . , jb] do ▷ Breadth-first search-like iteration
13: yj ←GENERATESOLUTION(F , Fj , d− 1, r)
14: end for
15: x← ⟨yj0 , . . . , yjb , y⟩
16: return x
17: end if
18: end function

The algorithm 1 is a breadth-first search-like recursive algorithm. Recall that every Fi ∈ F has
a terminal formula QT

i by our design choice a; hence we can always generate a shallow solution
x = ⟨e0, . . . , eN ⟩ such that Fi(x) = 1. If we have to generate a nested solution of depth d, then
we choose a non-terminal formula Qk ∈ Fi, Qk = Fj0 ∧ · · · ∧ Fjb ∧ Q̃k at random, solve a non-
recursive part Q̃k of Qk, and recurse into corresponding generating families Fj , j ∈ [j0, . . . , jb]
until a required depth d is reached. Notice that when generating non-solutions x̄, Fi(x̄) = 0, we
choose not to satisfy only the terminal formulas at depth d. The latter guarantees that in order to
verify Fi(x̄) == 1, the evaluator will take at least d steps to check the nested elements of x̄.

6
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4.3 EVALUATION

Having introduced the algorithms for data generation, we need to specify how they will be supplied
to language models. In this work, we considered two kinds of models: conversational LMs and the
models trained specifically for code completion. For conversational models, we used the following
prompt:

1 What is the result of the following Python code?
2 ‘‘‘python
3 {condition}
4 x = {probe}
5 print(is_member_0(x))
6 ‘‘‘
7 Answer only ‘True‘ or ‘False‘

Listing 4: Prompt for conversational LMs

In Lst. 4 the placeholder condition takes the definitions of the generative families F , and probe takes
the value of x. For code-specific models, there is no clear way to ask the model to evaluate some
expressions. Instead, we relied on the ability of these models to enforce the correctness of Python
expressions:

1 {condition}
2 x = {probe}
3 assert is_member_0(x) ==

Listing 5: Prompt for code completion LMs

The response of the language models is easy to verify automatically using the proposed prompts.

5 RESULTS

5.1 SETUP

We selected several state-of-the-art general purpose and code completion LMs for the experimental
evaluation listed in Tab. 1. In the experiments, we compared the accuracy of LMs concerning each

Table 1: Tested models along with their versions

Conversational LMs Code completion LMs
GPT-3.5 [turbo-0125] (Ouyang et al., 2022) PolyCoder [2.7B] (Xu et al., 2022)

GPT-4-turbo [2024-04-09] (Achiam et al., 2023) CodeLlama [7B-Python-hf] (Roziere et al., 2023)
GPT-4o [2024-05-13] (gpt) Starcoder-2 [3B] (Lozhkov et al., 2024)

Llama-3 [8B] (Dubey et al., 2024) Stable Code [3B] (Pinnaparaju et al., 2024)

parameter of the condition and probe generators. The combinations of parameters we used are listed
in Tab. 2.

Table 2: Parameters of the example generator used in experiments. I - total number of functions,
Nmax

i - number of if-blocks in each function, bi - maximal number of calls to recursive functions in
each if-block (branching number), NT

i - size of the terminal if-block, d - nesting depth of the test
list x.

I Nmax
i bi NT

i d Varying parameters
2 2 1 2 2 I,Nmax

i , d
11 2 1 2 2 bi
2 12 1 2 2 NT

i

We generated 160 random problem instances with Fi(x) = 1 (positive instances) and the same
number of instances with Fi(x) = 0 (negative instances) for each parameter combination of the

7
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generator. We found that with this sample size, the standard deviation of all metrics is within 10%.
Each model was tested using the same data. Additionally, we used the Bernoulli distribution as a
baseline.

We used four binary classification metrics to compare the behavior of language models in the
experiments: true positive rate (sensitivity, TPR = true positives/total predicted positives), true
negative rate (specificity, TNR = true negatives/total predicted negatives), balanced accuracy
BA = TPR+TNR

2 and the Youden’s J statistic J = TPR + TNR − 1. Youden’s statistic estimates
the probability of an informed decision.

5.2 MODEL COMPARISON

We observed poor performance of every tested LLM in the benchmark across a wide range of gener-
ator parameters. Even for the simplest problem instances Lst. 6, balanced accuracy never exceeded
75%, despite the relative simplicity of the underlying verification process. Note that as each answer
is either True or False, a simple random guess already achieves 50% accuracy. The accuracy of
most small-scale models rapidly approached 50% with the increase of the probe’s depth, the number
of functions, and the number of if-blocks, with low sensitivity to the length of the terminal block. We
also found that the accuracy of stronger models (GPT-3.5 and Codellama) increases with the number
of recursive branches in functions Fi(x), presumable because it makes easier to verify the probe x
by not checking the result of most of the if-blocks. The accuracy’s dependence on the benchmark
parameters is provided in Fig. 1.

1 What is the result of the following Python code?
2 ‘‘‘python
3 {def is_member_0(x):
4 if len(x) == 2:
5 res = (x[0] != -20) and (x[1] != 1)
6 elif len(x) == 3:
7 res = (is_member_1(x[0])) and (x[1] == 20) and (x[2] == 30)
8 else:
9 return False

10 return res
11 def is_member_1(x):
12 if len(x) == 2:
13 res = (x[0] == 65) and (is_member_0(x[1]))
14 elif len(x) == 3:
15 res = (x[0] != 24) and (x[1] != -15) and (x[2] == 37)
16 else:
17 return False
18 return res}
19 x = {[3, -44]}
20 print(is_member_0(x))
21 ‘‘‘
22 Answer only ‘True‘ or ‘False‘

Listing 6: An example set of a simple problem

Surprisingly, we found that an advanced model GPT-4-turbo performed worse than random and
worse than its simpler versions, see Fig. 1. The observation that GPT-4-turbo is strongly biased on
benchmark problems motivated us to check the behavior of LMs on positive and negative instances
separately (TPR and TNR metrics). We found that every model in the benchmark demonstrated
a significantly biased behavior on ”True” and ”False” subsets of problems, with some models
(PolyCoder, StarCoder) generating a constant answer regardless of the condition used. GPT-3.5
demonstrated the slightest bias of all tested LLMs, followed by LLama3 and GPT-4o. Again, GPT-
4-turbo demonstrates a strange bias towards incorrect answers. An example of model behavior with
varying probe depth on separate problem subsets is shown in Fig. 2, and additional examples can
be found in Appendix B. In all experiments, Youden’s J statistic did not exceed 0.45, with typical
values of around 0.2, suggesting that LLMs can barely use the condition part of the problem to
predict the answer.
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Figure 1: Sensitivity of LLM’s balanced accuracy to different parameters of the benchmark
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Figure 2: TPR, TNR and Youden’s J statistic dependence on the depth of probe x. Despite having
almost perfect TPR, StarCoder, Polycoder, and StableCode have zero TNR, suggesting a highly
biased behavior.
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6 DISCUSSION

The construction of benchmark systems is essential steps in the evaluation of LLMs performance.
Our reasoning benchmark is based on the results of the polynomial analog of Gandy’s classical fixed
point theorem and provides means for principled LLMs evaluation. We found that even smallest
problem instances are challenging for state of the art LLMs.

The unexpected finding was a significant bias inherent to every tested LM. No model demonstrated
an expected Bernoulli distribution-like behavior when tested on uniform positive or negative prob-
lem instances, with GPT-3.5 coming closer to the expected distribution. This observation suggests
that LLMs may have difficulty with the generation of random data. As the most extreme case, biased
behavior renders GPT-4-turbo the worst performer in our test, suggesting that bias increases with
the model scale.

Contrary to what may be expected, models trained to understand code demonstrated worse perfor-
mance than general-purpose LLMs. We plan to adapt our benchmark to natural language formulation
to make it even more natural for general purpose LLMs.

Overall, our experiments demonstrate an unusual behavior of LLMs for recursive code-
understanding tasks. None of the models can consistently solve even simple problem instances
despite the existence of a deterministic algorithm with quadratic complexity (Depth-First search
with backtracking). Our findings stipulate the revision of language model training procedures to
eliminate biases we observed, particularly in contexts where high accuracy and reliability in reason-
ing are required.
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A THE POLYNOMIAL ANALOGUE OF GANDY’S FIXED POINT THEOREM

The polynomial analog of Gandy’s fixed point theorem (PAG-theorem) (Goncharov & Nechesov,
2021b; Nechesov, 2023) is based on the classical Gandy’s fixed point theorem (Ershov, 1996), which
is important not only in mathematical logic but also in programming. The classical Gandy’s theorem
states that if we have a fixed model:

Ω = ⟨N , 0,+, ·,≤⟩ of the signature σ0 = ⟨0,+2, ·2,≤2⟩

Denote by σ∗ the extension of the signature σ0 obtained by adding symbols for all Σ-functions (Er-
shov, 1996) on Ω and constant symbols for all elements fromN , and let Ω∗ denote the corresponding
enrichment of Ω.

Define the operator ΓΩ∗

Φ[x] as next:

ΓΩ∗

Φ[x](Q) = {(e1, . . . , ek−1) | ⟨Ω∗, Q⟩ |= Φ(e0, . . . , ek−1)} ∪Q (12)

where |= symbol means checking the truth of the formula Φ(e0, . . . , ek−1) with initialized variables
on the model ⟨Ω∗, Q⟩, and Q ⊆ N k is a truth set of an extendable predicate, (e1, . . . , ek−1) ∈ Q.

We associate the next sequence of the sets of the truth of predicates:

Γ0,Γ1, . . . ,Γα where α is an ordinal.

with the monotone operator ΓΩ∗

Φ[x] as follows:

Γ0 = ∅,Γα+1 = ΓΩ∗

Φ[x](Γα) for none limit ordinal, . . . ,Γα = ∪β<αΓβ for limit ordinal

Let α be the smallest ordinal such that Γα+1 = Γα then Γ∗ = Γα is a smallest fixed point.

Theorem 1 (Gandy’s fixed point theorem)
Let Φ(P+) be a Σ-formula of the signature σ∗ ∪ {P (k)} in which the predicate symbol P enters
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positively and x0, . . . , xk−1 be a list of the different free variables of the formula Φ then the smallest
fixed point Γ∗ of the operator ΓΩ∗

Φ[x] is a Σ-predicate on Ω∗.

In the PAG-theorem, several conditions from the classical Gandy’s fixed point theorem were mod-
ified or strengthened so that the fixed point of the operator remains a polynomially computable
(P-computable) predicate.

To prove this, a P-computable hereditary-finite list superstructure HW (M) of signature σ was cho-
sen as the basic model (Goncharov & Nechesov, 2021b). The base set HW (M) contains hereditary-
finite lists, which are inductively constructed from the basic elements of the base set M of the model
M of the signature σ0 ⊂ σ. The basic list operations for HW (M) are:

• head(x) - operation of taking the last element of a list x

• tail(x) - operation of removing the last element from a list x

• cons(x, y) - operation of adding to the end of a list x of a list y

• conc(x, y) - concatenation operation of two lists x and y respectively

There are also relations:

• x ∈ y - ”x is an element of y”

• x ∈ y - ”x is an initial segment of y”

Formulas of the first-order logic are considered only with the bounded quantifiers ∀x ∈ t, ∃x ∈ t,
∀x ⊆ t, ∃x ⊆ t, where t is a standard term.

In order to apply the PAG theorem generally, it is necessary to construct a P-computable GNF system
based on the following components:

• A finite alphabet Σ.

• An extended alphabet Ω.

• A special logical language L where L-formulas and L-programs are defined

• P-computable hereditary-finite list superstructure HW(M) of the signature σ.

• Finite sets of extendable predicates P1, . . . , Pn.

• Generating families of formulas FP1 , . . . , FPn .

• P-computable functions γ1, . . . , γn that, given an element of HW(M), construct suitable
generating formulas or return False.

• and other conditions from (Goncharov & Nechesov, 2021b)

Theorem 2 (Polynomial analogue of Gandy’s fixed point theorem)
Let G be a p-computable GNF-system then the smallest fixed point Γ∗ of the operator ΓHW (M)

FP1
,...,FPn

is P-computable.

The results obtained in the PAG-theorem allow us to inductively define sets of objects of varying
complexity using generating families of L-formulas and, at the same time, guarantee their recog-
nizability in polynomial time. Inductivity upwards essentially defines recursivity downwards, i.e.,
the algorithm that checks whether an object belongs to a class of objects, working with various list
encoded objects, each time splits the list into elements and recursively checks each element for con-
sistency with one of the families of generating formulas. This entire process can be programmed so
that the question of whether an element belongs to a set is solved in polynomial time (Goncharov &
Nechesov, 2021a; 2022).

Corollary 1 Let G is a P-computable GNF-system. Let the computational complexity of all ba-
sic functions, predicates, and functions γi(x) in G be at most O(|x|p). Then the computational
complexity of the smallest fixed point Γ∗ is at most O(|x|p+2).
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B ADDITIONAL DATA

Here, we provide additional benchmark data. Pairs of TPR and TNR plots for various benchmark
parameters are listed in Fig. 3.

Figure 3: Pairs of TPR and TNR plots concerning different parameters of the benchmark

Youden’s statistic behavior depending on the parameters of the benchmark is shown in Fig. 4
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Figure 4: Youden’s J depending on the parameters of the benchmark

16


	Introduction
	Motivation

	Related work
	Background
	Methods
	Condition generator
	Probe generator
	Evaluation

	Results
	Setup
	Model comparison

	Discussion
	The polynomial analogue of Gandy's Fixed Point Theorem
	Additional data

