RoboCasa: Large-Scale Simulation of
Everyday Tasks for Generalist Robots

Soroush Nasiriany!, Abhiram Maddukuri'**, Lance Zhang'*, Adeet Parikh!,
Aaron Lo', Abhishek Joshi', Ajay Mandlekar?, Yuke Zhu'-?

IThe University of Texas at Austin, 2NVIDIA Research; *Denotes equal contribution

robocasa.ai

CEEEEY

’ il
|

gl

mm
LT [

Fig. 1: Overview of RoboCasa. RoboCasa is a simulation framework for training generalist robot agents. Four pillars underlie RoboCasa: (1) Diverse assets,
including 120 kitchen scenes and 2,500+ 3D objects, created with the aid of generative Al tools; (2) Cross-embodiment support for mobile manipulators and
humanoid robots; (3) Diverse tasks created with the guidance of large language models; (4) Massive training datasets with over 100K trajectories.

Abstract—Recent advancements in Artificial Intelligence (AI)
have largely been propelled by scaling. In Robotics, scaling is
hindered by the lack of access to massive robot datasets. We
advocate using realistic physical simulation as a means to scale
environments, tasks, and datasets for robot learning methods.
We present RoboCasa, a large-scale simulation framework for
training generalist robots in everyday environments. RoboCasa
features realistic and diverse scenes focusing on Kkitchen en-
vironments. We provide thousands of 3D assets across over
150 object categories and dozens of interactable furniture and
appliances. We enrich the realism and diversity of our simulation
with generative Al tools, such as object assets from text-to-3D
models and environment textures from text-to-image models. We
design a set of 100 tasks for systematic evaluation, including
composite tasks generated by the guidance of large language
models. To facilitate learning, we provide high-quality human
demonstrations and integrate automated trajectory generation
methods to substantially enlarge our datasets with minimal
human burden. Our experiments show a clear scaling trend in
using synthetically generated robot data for large-scale imitation
learning and show great promise in harnessing simulation data
in real-world tasks. Videos and open-source code are available
on the project website.

I. INTRODUCTION

Recent breakthroughs in Artificial Intelligence have been
driven by training giant neural network models on Internet-
scale datasets. Unlike computer vision and natural language
processing domains, where massive visual and text data are
abundant from online sources, robotic data is relatively scarce.
A key question in Robotics is how to acquire robotic training
data that captures the vast diversity and complexity of the real
world. Several prominent recent attempts have been made to
create large, diverse datasets for training generalist robot mod-
els [2 9] [5] 20]. While these datasets have advanced robots’
generalization abilities in narrow domains, there remains a
considerable gap between the capabilities achieved thus far
and general-purpose robots that can be reliably deployed in
the wild. It raises the question — what is a viable path forward
toward scaling in robot learning?

As collecting ever-larger datasets in the real world would
require unrealistic amounts of capital and labor, many turn
to simulation as a promising alternative to producing large

https://robocasa.ai

quantities of synthetic data for model training. We expect
simulation to play an integral role in scaling robot learning
for the following reasons. First, once a feature-rich, high-
fidelity simulator is created, we can generate large amounts
of robot data at low cost. This is exemplified by recent
automated data generation methods, such as MimicGen [34]
and Optimus [6l], which exploit the privileged information
of simulation to generate data with minimal human labor.
Second, the creation of realistic simulations has been facil-
itated by rapid advances in generative Al. Today’s generative
Al tools are capable of generating images, synthesizing 3D
assets, and writing source code [38l [35, |42]]. These tools
can be employed to create millions of scenes procedurally,
import novel categories of objects, and program natural tasks
and reward functions. Finally, simulation democratizes and
accelerates robot learning research, enabling rapid prototyping
of new ideas and reproducible research.

To unleash the potential of simulation, it must satisfy three
core criteria. First, the simulator must guarantee realism in
physics, rendering, and underlying models to enable transfer
to the real world. Second, the simulator must satisfy diversity
in the scenes, assets, and tasks it offers. Generative Al will be
crucial in enabling this diversity at scale. Finally, a simulator
alone is not sufficient to train a highly capable generalist robot
agent. The simulation must be accompanied by large robot
datasets that capture the diversity of scenes and behaviors that
it has to offer. Numerous prior attempts at creating simulations
have partially satisfied some of these criteria, yet none have
satisfied all.

We present RoboCasa, a large-scale simulation framework
centered around home environments for training generalist
robots. RoboCasa builds upon RoboSuite [51], a modular,
fast, and easy-to-use framework based in MuJoCo. RoboCasa
inherits these features and goes far beyond by offering a large
array of scenes, objects, and hardware platforms suited for
building a general-purpose home robot. In this initial release,
we focus our efforts on kitchen scenes. To capture realistic and
diverse scenes, we consult numerous architecture and home
design magazines and compile several kitchen layouts and
styles reflecting the diversity of kitchens in homes around the
world. We model these kitchens according to standard size
and spatial specifications and fit them with a large repository
of interactable furniture and appliances spanning cabinets,
stoves, microwaves, coffee machines, and more. Furthermore,
we curate a repository of over 2,500 objects across over 150
categories, the majority of which are generated by text-to-
3D tools. RoboCasa has cross-embodiment support for mobile
manipulators of diverse forms, such as single-arm mobile
platforms, humanoid robots, and quadruped robots with arms.

These assets allow us to simulate a wide range of behaviors
in kitchen scenes. This release includes 100 tasks for sys-
tematic evaluation. The first 25 are atomic tasks that feature
foundational robot skills, such as picking and placing, opening
and closing doors, and twisting knobs. They serve as the basic
building blocks to scaffold complex long-horizon tasks. The
other 75 are composite tasks involving a sequence of robot

skills. We design these composite tasks to capture naturalistic
kitchen activities by soliciting suggestions from large language
models (LLMs). Our key intuition is that LLMs are trained
on human-centered Internet content, effectively capturing the
ecological statistics of human behaviors. We obtain a list of
activities from LLMs, such as washing dishes, frying, and
restocking cabinets. Using these activities to ground our task
design, we prompt the LLM to suggest concrete tasks for each
activity. We look to expand the list of tasks in future releases.

We complement our tasks with high-quality human demon-
strations across all 100 tasks. To augment our datasets, we
extend MimicGen [34] to generate 100K additional trajectories
for our atomic tasks. We train policies with behavioral cloning
on human demonstrations and automatically generated data.
We find that generated data significantly improves general-
ization, hinting at a promising path for scaling in robotics.
Furthermore, we show in a real-world kitchen environment
that co-training with our simulation data significantly increases
task success in real-robot deployment. We summarize our
contributions as follows:

e« We develop the RoboCasa simulation framework fea-
turing diverse, realistic kitchen scenes, thousands of
high-quality object assets, and cross-embodiment mobile
manipulators. We employ generative Al tools to create
environment textures and 3D objects.

o We introduce a set of 100 tasks for systematic evaluation,
including 25 atomic tasks representing foundational sen-
sorimotor skills and 75 composite tasks generated with
the guidance of large language models.

o We provide a large multi-task dataset for model training,
including large-scale synthetically generated trajectories.
We show a clear scaling trend when using generated data
and show the utility of simulation data in real-world tasks.

II. RELATED WORK

Simulation Frameworks for Robotics. Many simulation
frameworks have been built for robotics — we provide a thor-
ough comparison between RoboCasa and popular frameworks
in Table [Some are limited to tabletop manipulation [33]
151 16} 28], but RoboCasa, along with others [21 40, 26} 27,
10, [34], support mobile manipulation. RoboCasa also sup-
ports room-scale scenes, unlike other frameworks that include
mobile manipulation in smaller portions of a room [10} 34].
RoboCasa runs realistic physics for all interactions, including
object grasping and placement, unlike some other mobile
manipulation frameworks such as AI2-THOR [21]] and Habitat
2.0 [40]. RoboCasa is one of the few frameworks to feature
photorealistic rendering [21, 40, 27, [10, |6] and multiple
robot embodiments [21), 26 27, 16, 134]. RoboCasa also has
a large collection of tasks, room-scale scenes, and objects
— only a small number of other works [27 41] offer these
at scale. Meanwhile, recent work in incorporating generative
Al tools have explored Al-generated tasks [44] and scene
configurations [45]. But critically, RoboCasa is the only one
to support a large array of tasks, room-scale scenes, and
objects while incorporating Al-generated tasks and assets,

25 o% s W W R W o &
Feature N 6000 P»O;g‘é - S \G\bgoo ng,e g,e\“ﬁ\o . 6006\ S\‘)‘\\‘5\‘ Q@@\ \)\g& @‘0\0
Mobile Manipulation v 4 4 4 X 4 X 4 X X 4
Room-Scale Scenes v v v v X v X X X X X
Realistic Object Physics v X X 4 v 4 4 4 v v v
Al-generated Tasks 4 X X X X X X X X X X
Al-generated Assets 4 X X X X X X X X X X
Photorealism v v v X X v X v v X X
Cross-Embodiment v 4 X v X v X X 4 X v/
Num Tasks 100 - 3 6 100 1000 8 20 10 130 12
Num Scenes 120 - 1 15 1 50 3 - 4 20 1
Num Object Categories 153 - 46 - 28 1265 - - - X -
Num Objects 2509 3578 169 1217 28 5215 15 2144 72 X 40
Human Data v X X 4 X X 4 X X 4 v
Machine-Generated Dat v X X X 4 X v v v X v
Num Trajectories 3‘ 100K+ - - - - 0 6K 30K 245K 5K 50K

TABLE I: Comparison to Popular Simulation Frameworks used in the Robot Learning Literature.

ensuring potentially limitless diversity in scenes and tasks.
Furthermore, unlike many other simulation platforms (includ-
ing Behavior-1K [27]) we provide large-scale datasets of task
demonstrations through a combination of human teleoperation
and the MimicGen system [34] (more discussion below) and
provide a thorough analysis of agents trained via imitation
learning across our large collection of tasks. The convergence
of diverse scenes, tasks, and assets alongside the extensive
dataset provided by RoboCasa will fulfill a crucial requirement
not addressed by any other simulation frameworks in the robot
learning community.

Datasets and Benchmarks for Robotics. Recently, several
large-scale data collection efforts have been made for robotics.
One approach is self-supervised learning, where trial-and-
error is used to collect data for tasks like grasping and
pushing [24}136, 118,19, 146. [7]. This can take significant time to
generate high-quality data due to the trial-and-error process.
A popular alternative is to collect robot demonstrations via
human teleoperation, where a human controls a robot to guide
it through different tasks [49, 29} 130, 132} |9, [16]. Several recent
efforts have scaled this paradigm up by using teams of human
operators over extended periods of time [9} (1} 16} 2]. However,
most of these efforts focus on collected real-world datasets.
By contrast, we focus on collecting large-scale datasets in
simulation, where results are easier to reproduce and thorough
evaluations are possible due to lower human burdens.

Another approach is to leverage algorithmic trajectory gen-
erators in simulation [[15, 48, 17, 10} [6]], but these efforts often
make use of privileged information and hand-designed heuris-
tics, and can consequently be difficult to apply to arbitrary
tasks without significant human effort. Some recent efforts
have used Large Language Models to generate datasets in
simulation [45}12], but it can still involve carefully engineered
pipelines. To combine the quality and wide applicability of
human teleoperation with the scale of using pre-programmed
demonstrators in simulation, we collect a set of human demon-
strations in simulation and then leverage MimicGen [34].

This recently proposed data generation system synthesizes
additional demonstrations using a set of human demonstrations
to generate a much larger dataset.

Learning from Large Offline Datasets. Behavioral
Cloning [37] is a popular method for learning policies offline
from a set of demonstrations. It trains a policy to imitate the
actions in the dataset. It has been used extensively in prior
works [49, 31} 9, 2, [16 16, 17]. Offline Reinforcement Learn-
ing [25] is an alternative method that tries to prefer certain
dataset actions over others using a reward function. It has
also been used to learn from large offline robot manipulation
datasets [19, 13 [11}, 23|, 22]]. In this work, we use Behavioral
Cloning using a Transformer-based [43] visuomotor policy
similar to other works [6] to train agents on large offline
datasets. We also consider other popular policy architectures,
namely diffusion models [14, 4].

III. ROBOCASA SIMULATION

We outline the core simulation components of RoboCasa.
We highlight our efforts to create diverse and realistic kitchen
scenes, furniture and appliances, and objects.

A. Core Simulation Platform

We adopt RoboSuite [51] as the core simulation platform on
which we develop RoboCasa. We chose RoboSuite because of
its focus on physical realism, high speed, and modular design,
which allows us to scale to large-scale scenes. We directly
inherit several core components of RoboSuite, including the
environment model formats and robot controllers. Crucially, in
order to support room-scale environments, we extend Robo-
Suite to accommodate mobile manipulators, including robots
mounted on wheeled bases, humanoid robots, and quadrupeds
with arms. We obtain and adapt these models from various
robotics repositories [S1 147, [13]]. We also support high-quality
rendering with NVIDIA Omniverse, allowing us to capture
photorealistic images (see Figure [I).

One wall

One wall w/ island

r
— T

U-shaped

b

U-shaped w/ island

L-shaped L-shaped w/ island

Galley

G-shaped G-shaped (large)

Wraparound

*

Fig. 3: Kitchen Floor Plans. We consult home planning and architecture magazines and compile a list of common kitchen floor plans. Our floor plans take
on a variety of shapes and sizes, from basic designs (e.g., one wall) to high-end ones (e.g., U-shaped w/ island).

B. Kitchen Scenes

In this initial release, we focus on household tasks centered
around kitchen activities. We created a large array of kitchen
scenes with fully interactive cabinets, drawers, and appliances.
We consulted online home design and architecture magazines
to compile a diverse list of kitchen floor plans. We model
10 floor plans (Figure [3) ranging from basic designs found
in apartments to more elaborate designs found in high-end
homes. Each kitchen can be configured to take on a custom
architectural style. After consulting architecture magazines, we
compile the popular kitchen styles, including Industrial, Scan-
dinavian, Coastal, Modern, Traditional, Mediterranean, Rustic,
and more. Each style features a unique combination of design
elements, including textures, appliance choices, and cabinet
panels and handles. For example, Scandinavian kitchens em-
ploy light, low-contrast textures and simple, sleek cabinet
panels and appliances. In contrast, Mediterranean kitchens use
ornate appliances, glass panel cabinets, and colorful textures.
In total, we have modeled 12 kitchen styles, and we showcase
these styles across different floor plans in Figure [T} Each
floor plan can be configured to take on any style, resulting
in 120 kitchen scenes. Each scene can be customized further
by replacing textures from a large selection of high-quality
Al-generated textures. We have 100 textures for walls, 100
for the floor, 100 for counters, and 100 for cabinet panels.
We use the popular text-to-image tool MidJourney to generate
these images. We use these textures as a form of domain
randomization to significantly increase the visual diversity of
our training datasets.

C. Assets

We create a large repository of intractable 3D assets to ac-
commodate diverse kitchen activities. Our repository includes
cabinets, drawers, and various kitchen appliances. We source
these assets from 3D model repositories online and convert
them to the MuJoCo MJCF model format. Our postprocess-
ing operation involves segmenting appliances into articulated
entities, for example, segmenting the door of a microwave

Fig. 4: Examples of Interactable Appliances. Our simulation framework
comes with dozens of appliances. Several types of appliances are articulated.
For example, we can open and close doors on microwaves and twist knobs
on stoves. Some appliances can undergo state changes, e.g., when we turn the
knob on the stove, the corresponding burner turns on.

and the knobs on a stove. It allows us to represent rich
interactions, such as closing a microwave door or turning on
a stove. Furthermore, these appliances undergo state changes,
e.g., when we turn a stove knob on, the corresponding burner
turns on to simulate heat. See Figure [] for an illustration of
our appliances.

In addition to appliances, we create a rich library of objects
commonly found in kitchens, spanning fruits and vegetables,
dairy, poultry, drinks, receptacles, tools, and more. We gather
object assets from two sources, the Objaverse [8] dataset and
Luma.ai, an online text-to-3D service. We mine a large set of
candidate objects and filter out defective or low-quality ones.
At the end of this process, we collect 2,509 high-quality assets
spanning 153 unique object categories. The majority of these
assets (1,592) are sourced from Luma.ai. See Figure E] for an
illustration of our objects.

IV. ROBOCASA ACTIVITY DATASET

Our simulator supports a wide array of possible kitchen ac-
tivities, and we represent these activities with a comprehensive
suite of 100 tasks. This section outlines these tasks and our
large multi-task dataset accompanying them.

Fig. 5: Diverse High-Quality 3D Objects. RoboCasa offers 2,509 high-
quality 3D objects across 153 diverse categories spanning vegetables, poultry,
drinks, and more. Here we illustrate a small subset of these objects.

A. Atomic Tasks: Building Blocks of Behavior

For a robot to perform complex tasks, it must master the
foundational skills needed to solve these tasks. We focus on
a set of eight sensorimotor skills that form the basis for the
majority of household activities: 1) Pick and place, 2) Opening
and closing doors, 3) Opening and closing drawers, 4) Twisting
knobs, 5) Turning levers, 6) Pressing buttons, 7) Insertion, and
8) Navigation. These skills do not constitute an exhaustive
list, and including additional skills centered around behaviors
such as deformable manipulation is left for future work. To
effectively learn the skills, we propose a set of 25 tasks that
each involve one of these eight skills. We will refer to these
as atomic tasks. The full breakdown of these tasks is outlined
in the appendix (Figure [TT).

B. Creating Composite Tasks with Large Language Models

Our composite tasks involve sequencing skills to solve se-
mantically meaningful activities such as cooking and cleaning.
Our goal in creating these tasks is to capture diverse tasks that
reflect the ecological statistics of real-world household activ-
ities. We use the guidance of large language models (LLMs)
to define our tasks. This approach offers several key benefits.
First, LLMs encapsulate diverse sources of human knowledge
and can thus effectively communicate diverse ideas grounded
in the real world. In addition, these LLMs can be used at scale
to define thousands of unique tasks, significantly reducing the
human labor involved in task definition. We generate tasks
across two steps (see Figure [6). First, we prompt ChatGPT
(GPT-4 [35]) to list common high-level kitchen activities. We
compile a list of 20 activities: brewing coffee or tea, washing
dishes, restocking kitchen supplies, chopping food, making
toast, defrosting food, boiling water, meat preparation, setting
the table, clearing the table, sanitizing, snack preparation,
tidying cabinets and drawers, washing fruits and vegetables,
frying, reheating food, mixing and blending, baking, serving
food, and steaming vegetables. We then prompt GPT-4 and
Gemini 1.5 [42] to propose representative tasks for each
activity label. The LLMs occasionally exhibit logical flaws,
so we filter or modify some of their outputs. We compile
75 task blueprints in total from the LLM and proceed to

code implementations for them. Except for a select number
of composite tasks designed to work in certain environments,
all tasks are simulatable in any of our kitchen scenes. We
describe in detail our prompts and tasks in the appendix.

C. RoboCasa Datasets

We have outlined a comprehensive set of 100 tasks consist-
ing of 25 atomic tasks (Sec. [V-A) and 75 composite tasks
created with LLMs (Sec. [V-B). This section explains how
we collect our large-scale demonstration dataset across these
tasks. We first use human teleoperation to collect a base set of
demonstrations and then use automated trajectory generation
methods to expand this to a much larger set of demonstrations.

Collecting a base set of demonstrations through human
teleoperation. A team of four human operators collect 50
high-quality demonstrations for each atomic task using a 3D
SpaceMouse [50, [51]]. Each task demonstration is collected in
a random kitchen scene (random kitchen floor plan, random
kitchen style, and random Al-generated textures). This results
in large and diverse simulation datasets through human tele-
operation (1,250 demonstrations). However, our experiments
show that even this scale of human data is insufficient to solve
most of our tasks. This is likely due to the significant scope
and diversity of the tasks and scenes. Consequently, we opt to
use data generation tools to expand our data quantity.

Leveraging automated trajectory generation methods to
synthesize demonstrations. To further scale the dataset’s size
with minimal human effort, we employ MimicGen [34], a
recently developed trajectory generation method. MimicGen
can automatically synthesize rich datasets from a seed set
of human demonstrations by adapting them to new settings.
The core generation mechanism first decomposes each human
demonstration into a sequence of object-centric manipulation
segments. Then, for a novel scene, it transforms each object-
centric segment according to the current pose of the relevant
object, stitches the segments together, and has the robot follow
the new trajectory to collect a new task demonstration.

MimicGen requires some basic assumptions on simulation.
We outline how they are easily satisfied in RoboCasa: Mim-
icGen assumes that tasks consist of a known sequence of
object-centric subtasks — this sequence must be specified
for each new task. Fortunately, the atomic tasks (Sec.
consist of eight core skills. All tasks that correspond to a skill
have the same or similar sequences of object-centric subtasks,
with the main differences coming from the identity of the
reference object. For example, for pick-and-place tasks, the
first stage is a pick subtask with one reference object, and
the second stage is a place subtask with a second reference
object. Consequently, specifying subtask sequences takes min-
imal human effort. In addition, each human demonstration
provided to MimicGen must also be annotated with segments
corresponding to each object-centric subtask. This can be done
with automated metrics that detect the end of each subtask —
these functions only need to be implemented once for each of
the eight core skills and can be re-used across the entire set
of demonstrations.

Activity Prompting

Can you give me 30 simple
everyday kitchen activities?

Task Prompting

-

Your goal is to come up with 15

©) GPT-4

List of activities
1. Chopping Food
2. Frying
3. Serving Food ...

HI Task Generation Process I

pick(vegetable)

place(microwave)

Task: Prepare Microwave Steaming
Goal: Put a bowl of vegetables inside

the microwave to steam them there.

close_door(microwave)

place(bowl)

unique tasks that a robot can
complete that all fall under
{ACTIVITY FROM 1

Available objects and skills: &

Example tasks:

\ J \

Objects: bowl, vegetables
Fixtures: sink, microwave
j Skills (6): —

1. pick(vegetable)

2. put(bowl)

3. pick(bowl)

4. place(microwave)

5. close_door(microwave)
6. press(microwave)

J

Fig. 6: Creating Diverse Tasks with Large Language Models. We employ LLMs to generate diverse tasks. First, we prompt GPT-4 to give diverse high-level
kitchen activities. Subsequently, for each activity, we prompt GPT-4 (or Gemini 1.5) to suggest a diverse set of representative tasks. We illustrate one such
task “Preparing the Microwave For Steaming” for the activity label “Steaming Vegetables”.

MimicGen data generation attempts are not always suc-
cessful. In practice, it employs a rejection sampling scheme
only to keep generation attempts that lead to task success.
Leveraging RoboCasa simulation, we parallelize MimicGen
data generation across multiple simulation processes to speed
up the data generation process.

V. EXPERIMENTS

We aim to explore the following research questions in our
experiments:

1) How effective are machine-generated trajectories from
MimicGen in learning multi-task policies, in comparison
to human demonstrations?

How will the generalization performance of the imitation
learning policy scale with increasing training dataset
sizes?

Can large-scale simulation datasets facilitate knowledge
transfer to downstream tasks within simulation and fa-
cilitate policy learning for real-world tasks?

2)

3)

A. Imitation Learning for Atomic Tasks

First, we perform a systematic study with the atomic tasks.
One question we are interested in is how the performance of
imitation learning policies compare when trained on human
data versus machine-generated data and how the scale of this
data plays a role in performance. We compare the following
four multi-task data settings:

1) Human-50: A dataset of 1250 human demonstrations
spanning all 25 atomic tasks, each with 50 human
demonstrations.

2) Generated-3000: A dataset of 72,000 demonstrations
synthesized by MimicGerﬂ

IThese experiments feature Objaverse objects. We release an additional 28K
trajectories featuring Al-generated objects, forming the full 100K trajectory
dataset.

2We exclude the kitchen navigation task, as MimicGen is not currently able
to generate mobile manipulation trajectories. We leave this to future work.

across 24 atomic taskﬂ

We take the 50 human demonstrations as input for
each task and use them to generate 3,000 trajectories
autonomously.
3) Generated-300: A random !/10 subset of our full gen-
erated dataset, where we generate 300 demos per task.
This results in a total of 7,200 trajectories.
4) Generated-100: A random 1/30 subset of our full gen-
erated dataset, where we generate 100 demos per task.

This results in a total of 2,400 trajectories.

Images in the training datasets are rendered with Al-generated
textures. We evaluate our policies in kitchen scenes with
human-curated textures. In these datasets, our focus is specif-
ically on a Franka Panda robot with an Omron mobile base,
resembling the Omni-Frankie robot [13]. We train a visuo-
motor policy with behavioral cloning on each of these four
multi-task datasets. We specifically use the publicly available
BC-Transformer implementation in RoboMimic [33]. Refer to
Section [X] for additional details.

After training, we perform a comprehensive evaluation of
the model. For each task, we evaluate the model performance
across 50 trials across five fixed evaluation scenes, each with
a distinct floor plan and style. In order to test generalization
capabilities, we only evaluate the policy only on unseen object
instances. Additionally, two of the five scenes encompass
unseen styles that were never encountered in the training data.
We report results in Figure [7] where we group results together
with tasks belonging to the same skill. The overall perfor-
mance on human data is 28.8% success rate, and with the
fully generated dataset, we observe a significant improvement
at 47.6% success rate. Furthermore, we observe a scaling
trend from using machine-generated data: as we increase the
quantity of generated data, the model performance increases
steadily. This offers a promising outlook: data generation tools
enable us to learn significantly more performant agents at a
relatively low cost. We observe several other notable findings
in the results. Some skills are significantly easier to learn (e.g.,

Success Rate (%)
_ N w » n (o2} ~ @
o o o o o o o o

Pick and Place Open/Close Doors Open/Close Drawers

TW|st|ng Knobs

Turning Levers Pressing Buttons Insertion Overall

[- Human-50

Generated-100

I Generated-300 B Generated-3000]

Fig. 7: Comparison between human demonstrations and machine-generated datasets. We present learning results across 24 atomic tasks spanning diverse
robot skills. We compare training on four different multi-task datasets, including a human dataset with 50 demonstrations per task, a machine generated dataset
with 3000 demonstrations per task, and smaller variants with 300 or 100 demonstrations per task. We group task results according to their corresponding
sensorimotor skills (see Figure@for a full breakdown of results by task). We see a clear scaling trend: increasing the size of the generated dataset can yield
consistently higher overall success rates, eventually significantly outperforming performance on human datasets.

opening and closing doors and drawers), while others are quite
challenging (e.g., pick and place). We hypothesize a number
of factors explaining these findings. First, tasks exhibiting
high diversity are significantly more challenging to learn.
One example is the pick and place tasks involving dozens of
different object categories with a wide range of affordances. In
comparison, opening and closing doors involves six different
instances of doors and is thus significantly easier to learn.
Another factor is dexterity, as we see that tasks involving high
levels of dexterity, such as insertion, are challenging to learn.

B. Imitation Learning for Composite Tasks

Next we study learning on our composite tasks. These
tasks are more challenging as they require multiple skills,
which increases the horizon of the task and introduces new
subtleties. Due to the increased difficulty of these tasks and
the challenges of multi-task learning, we opt to learn a single-
task policy for each task. For each task, we collected 50 human
demonstrations and compared the following settings:

e Scratch: learning a policy from scratch on these 50
demonstrations;

o Fine-tuning: taking our pre-trained policy learned on
atomic tasks with the full MimicGen generated dataset
and fine-tuning on these 50 demonstrations.

We independently train models for the following five tasks:

e ArrangeVegetables: This task belongs to the “chop-
ping food” activity. The robot must place two vegetables
from the sink onto the cutting board on the counter;

e MicrowaveThawing: This task belongs to the ‘“de-
frosting food” activity. The robot must place a frozen
food item from the counter inside the microwave and
turn on the microwave;

e RestockPantry: This task belongs to the “restocking
kitchen supplies” activity. The robot must pick and place
multiple cans from the counter to the cabinet. There are
a number of cans already in the cabinet, among other
objects. The robot must locate the existing cans in the

| Scratch | Fine-tuning
ArrangeVegetables| 2.0% 12.0%
MicrowaveThawing 0% 2.0%
RestockPantry 0% 6.0%
PreSoakPan 0% 4.0%
PrepareCoffee 0% 0%

Fig. 8: Learning Results on Composite Tasks. We learn single-task policies
for five representative composite tasks. We compare learning these tasks from
scratch with 50 human demonstrations versus fine-tuning a policy trained on
machine-generated atomic task data. The fine-tuning method performs better
but still struggles to learn robust behaviors.

cabinet (either on the right or left side) and place the
new cans right next to them;

e PreSoakPan: This task belongs to the “washing dishes”
activity. The robot must pick and place a pan and a sponge
into the sink and turn on the water faucet to prepare the
pan for washing;

e PrepareCoffee: This task belongs to the “brewing
coffee of tea” activity. The robot must take a mug out of
the cabinet, place it under the coffee machine, and press
the coffee machine button to serve it into the mug.

See Figure [§] for results. Learning on these composite tasks
is very challenging, with the Scratch baseline failing to achieve
any non-zero success rate on 4/5 tasks. The fine-tuning method
achieves non-zero success rates on 4/5 tasks. Some common
failure modes include difficulty with fine-grained manipulation
and difficulty effectively transitioning to the next stage of
the task. However, we generally observe that the fine-tuned
models perform better qualitatively, with more robust picking
and placing strategies in particular. We attribute this to the
large pretraining dataset of atomic behaviors. Our benchmark
leaves room for significant improvement on these tasks. The
choice of policy architecture, learning algorithm, and fine-
tuning strategy may play a critical role in performance, and
these factors warrant investigation in future work.

/|
Fig. 9: Real-World Experiment Setup. We conduct experiments in a real-
world kitchen environment with a Franka Emika Panda arm on a wheeled
mobile platform. The two pictures illustrate two of the three evaluation tasks:
(left) pick and place an object from the counter to the cabinet, and (right)
pick and place an object from the counter to the sink.

C. Transfer to Real World Environments

We show how large-scale data generated in simulation
can aid in learning tasks in RoboCasa and other domains,
including in the real world. We conduct experiments in a
real-world kitchen environment with a Franka Emika Panda
robot running on the DROID hardware infrastructure [20].
While both the real world and simulated Franka robot are
controlled via workspace end effector control, our simulated
robot uses Operational Space Control while the DROID-based
real robot does not. In addition, our robot controller runs at
20 Hz frequency while the real robot controller runs at 15 Hz.
In addition to controller differences, there are differences in
camera calibration, lighting conditions, and the placement of
the robot base with respect to the scene.

Our experiments include three tasks in the real kitchen
environment: 1) pick and place an object from the counter
to the sink, 2) pick and place an object from the sink to the
counter, and 3) pick and place an object from the counter to the
cabinet. These tasks resemble single-stage tasks in RoboCasa.
For each task, we collected 50 demonstrations, each over five
distinct object categories. We train a policy for each task, and
we compare the following two settings:

« Real only: training on the real-world demos for the target
task only;

o Real + Sim: co-training on real-world demos for the tar-
get task and all of our simulation MimicGen demonstra-
tions over all single-stage tasks.

In Figure [I0] we report policy success rates (mean and stan-
dard deviation, in percentage) averaged over 3 seeds. For each
seed, we evaluate the model over five seen object categories
and 3 unseen object categories (unseen with respect to the
real-world demonstrations). On seen objects, we see that co-
training with simulated data yields a 24.4% average success
rate, compared to 13.6% with using real data only, a relative
improvement of 79%. While performance suffers on unseen
objects, we still see a significant improvement in incorporating
simulation data. We attribute this to the rich diversity and
visual and physical realism of our simulator.

Setting | Task | Real only | Real + Sim (Ours)
Seen Obi Counter to sink 12.7 £ 2.5 22.0 £ 2.8
J|Sink to counter [20.0 & 5.9] 293 + 4.1
Counter to cabinet | 8.0 + 1.6 22.0 £ 5.8
| Task average | 136 | 24.4
Unseen Obi Counter to sink 33 +47 89 +79
) J | Sink to counter 1.1 £1.6 7.8 + 4.2
Counter to cabinet | 3.3 + 4.7 11.1 £+ 11.0
| Task average | 26 | 9.3

Fig. 10: Real Robot Evaluations. In a real-world kitchen domain with
only a handful of demonstrations, we explore co-training policies with our
simulation data. Compared to training policies exclusively on in-domain real-
world demonstrations, co-training substantially improves policy performance.

VI. CONCLUSION

We have presented RoboCasa, a large-scale simulation
framework for training generalist robots in everyday envi-
ronments. RoboCasa features 120 realistic scenes, dozens of
appliances, 2,500+ high-quality 3D objects spanning 150+
categories, 100 diverse tasks, and a large multi-task dataset
of 100K+ trajectories. Generative Al tools play a central role
in our simulation, with object assets from text-to-3D models,
environment textures from text-to-image models, and LLMs
to generate kitchen activities and corresponding tasks. In our
experiments, we show that synthetically generated data in
simulation can be useful in scaling robot policy learning.

We now pinpoint limitations and discuss exciting avenues
for future future. First, our experiments show that fine-tuning
on composite tasks yields relatively low performance, leaving
room for improvement. In the future, we will investigate
more powerful policy architectures and learning algorithms
and improve the quality of our machine-generated datasets.
While the generated trajectories are technically considered
successful, many exhibited undesirable effects, such as jerky
motions and collisions. Many of these behaviors can be
automatically detected by checking simulation states and tra-
jectories exhibiting such behaviors can be discarded. Next,
while we showed how to use LLMs to create tasks, this process
still required human guidance to write the implementations
for these tasks. One interesting research direction is to use
LLMs to propose thousands of new scenes and tasks and
write code to implement these scenes and tasks with minimal
human guidance. We anticipate that this will be possible as
LLMs become more performant. In addition, we would like
to extend the scope beyond kitchen environments and tasks
in future releases. Next, our dataset consists of critical coarse
manipulation behaviors but does not encapsulate highly dexter-
ous skills, deformable manipulation tasks, or tasks that require
bimanual manipulation. Finally, we are interested in exploring
training using a combination of data from our simulation, other
simulators, and diverse sources such as internet videos and real
robot datasets. We envision a future in which these diverse
forms of data complement each other to create a powerful
foundation model for robotics.

ACKNOWLEDGMENTS

We would like to thank Yifeng Zhu for significant con-
tributions in the cross-embodiment efforts. We also thank
Yugqi Xie for rendering support and Roberto Martin-Martin for
discussions on mobile manipulation support. Finally, we thank
all UT Austin Robot Perception and Learning Lab members
for their invaluable feedback on RoboCasa. This work has been
partially supported by the National Science Foundation (FRR-
2145283, EFRI-2318065) and the Office of Naval Research
(N00014-22-1-2204).

(1]

(2]

(3]

(4]

(5]

(6]

(7]

(8]

(9]

REFERENCES

Michael Ahn, Anthony Brohan, Noah Brown, Yevgen
Chebotar, Omar Cortes, Byron David, Chelsea Finn,
Keerthana Gopalakrishnan, Karol Hausman, Alex Her-
zog, et al. Do as i can, not as i say: Grounding language
in robotic affordances. arXiv preprint arXiv:2204.01691,
2022.

Anthony Brohan, Noah Brown, Justice Carbajal, Yev-
gen Chebotar, Joseph Dabis, Chelsea Finn, Keerthana
Gopalakrishnan, Karol Hausman, Alex Herzog, Jasmine

Hsu, et al. RT-1: Robotics transformer for real-world
control at scale. In arXiv preprint arXiv:2212.06817,
2022.

Yevgen Chebotar, Quan Vuong, Karol Hausman, Fei
Xia, Yao Lu, Alex Irpan, Aviral Kumar, Tianhe Yu,
Alexander Herzog, Karl Pertsch, et al. Q-transformer:
Scalable offline reinforcement learning via autoregressive
g-functions. In Conference on Robot Learning, pages
3909-3928. PMLR, 2023.

Cheng Chi, Siyuan Feng, Yilun Du, Zhenjia Xu, Eric
Cousineau, Benjamin Burchfiel, and Shuran Song. Dif-
fusion policy: Visuomotor policy learning via action
diffusion. arXiv preprint arXiv:2303.04137, 2023.
Open X-Embodiment Collaboration et al. Open X-
Embodiment: Robotic learning datasets and RT-X mod-
els. https://arxiv.org/abs/2310.08864, 2023.

Murtaza Dalal, Ajay Mandlekar, Caelan Garrett, Ankur
Handa, Ruslan Salakhutdinov, and Dieter Fox. Imitating
task and motion planning with visuomotor transformers.
arXiv preprint arXiv:2305.16309, 2023.

Sudeep Dasari, Frederik Ebert, Stephen Tian, Suraj Nair,
Bernadette Bucher, Karl Schmeckpeper, Siddharth Singh,
Sergey Levine, and Chelsea Finn. Robonet: Large-scale
multi-robot learning. In Conference on Robot Learning,
2019.

Matt Deitke, Dustin Schwenk, Jordi Salvador, Luca
Weihs, Oscar Michel, Eli VanderBilt, Ludwig Schmidt,
Kiana Ehsani, Aniruddha Kembhavi, and Ali Farhadi.
Objaverse: A universe of annotated 3d objects. arXiv
preprint arXiv:2212.08051, 2022.

Frederik Ebert, Yanlai Yang, Karl Schmeckpeper,
Bernadette Bucher, Georgios Georgakis, Kostas Dani-
ilidis, Chelsea Finn, and Sergey Levine. Bridge data:
Boosting generalization of robotic skills with cross-

(10]

(11]

[12]

(13]

[14]

(15]

[16]

(17]

(18]

[19]

(20]

(21]

domain datasets. In Robotics: Science and Systems (RSS),
2022.

Jiayuan Gu, Fanbo Xiang, Xuanlin Li, Zhan Ling,
Xiqiang Liu, Tongzhou Mu, Yihe Tang, Stone Tao,
Xinyue Wei, Yunchao Yao, et al. Maniskill2: A unified
benchmark for generalizable manipulation skills. arXiv
preprint arXiv:2302.04659, 2023.

Nico Giirtler, Sebastian Blaes, Pavel Kolev, Felix
Widmaier, Manuel Wiithrich, Stefan Bauer, Bernhard
Scholkopf, and Georg Martius. Benchmarking offline
reinforcement learning on real-robot hardware. arXiv
preprint arXiv:2307.15690, 2023.

Huy Ha, Pete Florence, and Shuran Song. Scaling up and
distilling down: Language-guided robot skill acquisition.
In Conference on Robot Learning, pages 3766-3777.
PMLR, 2023.

Jesse Haviland, Niko Siinderhauf, and Peter Corke. A
holistic approach to reactive mobile manipulation. /IEEE
Robotics and Automation Letters, 7(2):3122-3129, 2022.
Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising
diffusion probabilistic models. Advances in neural infor-
mation processing systems, 33:6840-6851, 2020.
Stephen James, Zicong Ma, David Rovick Arrojo, and
Andrew J Davison. Rlbench: The robot learning bench-
mark & learning environment. [EEE Robotics and
Automation Letters, 5(2):3019-3026, 2020.

Eric Jang, Alex Irpan, Mohi Khansari, Daniel Kappler,
Frederik Ebert, Corey Lynch, Sergey Levine, and Chelsea
Finn. Bc-z: Zero-shot task generalization with robotic
imitation learning. In Conference on Robot Learning,
2021.

Yunfan Jiang, Agrim Gupta, Zichen Zhang, Guanzhi
Wang, Yongqgiang Dou, Yanjun Chen, Li Fei-Fei, Anima
Anandkumar, Yuke Zhu, and Linxi Fan. Vima: General
robot manipulation with multimodal prompts. In Inter-
national Conference on Machine Learning, 2023.
Dmitry Kalashnikov, Alex Irpan, Peter Pastor, Julian
Ibarz, Alexander Herzog, Eric Jang, Deirdre Quillen,
Ethan Holly, Mrinal Kalakrishnan, Vincent Vanhoucke,
et al. Qt-opt: Scalable deep reinforcement learning
for vision-based robotic manipulation. arXiv preprint
arXiv:1806.10293, 2018.

Dmitry Kalashnikov, Jacob Varley, Yevgen Chebotar,
Benjamin Swanson, Rico Jonschkowski, Chelsea Finn,
Sergey Levine, and Karol Hausman. Mt-opt: Continuous
multi-task robotic reinforcement learning at scale. arXiv
preprint arXiv:2104.08212, 2021.

Alexander Khazatsky, Karl Pertsch, Suraj Nair, Ash-
win Balakrishna, Sudeep Dasari, Siddharth Karam-
cheti, Soroush Nasiriany, Mohan Kumar Srirama,
Lawrence Yunliang Chen, Kirsty Ellis, et al. Droid: A
large-scale in-the-wild robot manipulation dataset, 2024.
Eric Kolve, Roozbeh Mottaghi, Winson Han, Eli Van-
derBilt, Luca Weihs, Alvaro Herrasti, Matt Deitke, Kiana
Ehsani, Daniel Gordon, Yuke Zhu, et al. AI2-THOR: An
interactive 3d environment for visual ai. arXiv preprint

https://arxiv.org/abs/2310.08864

[22]

[23]

[24]

[25]

[26]

[27]

(28]

[29]

[30]

[31]

[32]

[33]

arXiv:1712.05474, 2017.

Aviral Kumar, Anikait Singh, Stephen Tian, Chelsea
Finn, and Sergey Levine. A workflow for offline model-
free robotic reinforcement learning. arXiv preprint
arXiv:2109.10813, 2021.

Aviral Kumar, Anikait Singh, Frederik Ebert, Mitsuhiko
Nakamoto, Yanlai Yang, Chelsea Finn, and Sergey
Levine. Pre-training for robots: Offline rl enables learn-
ing new tasks from a handful of trials. arXiv preprint
arXiv:2210.05178, 2022.

Sergey Levine, Peter Pastor, Alex Krizhevsky, and
Deirdre Quillen. Learning hand-eye coordination for
robotic grasping with large-scale data collection. In ISER,
pages 173-184, 2016.

Sergey Levine, Aviral Kumar, George Tucker, and Justin
Fu. Offline reinforcement learning: Tutorial, review,
and perspectives on open problems. arXiv preprint
arXiv:2005.01643, 2020.

Chengshu Li, Fei Xia, Roberto Martin-Martin, Michael
Lingelbach, Sanjana Srivastava, Bokui Shen, Kent
Vainio, Cem Gokmen, Gokul Dharan, Tanish Jain,
et al. igibson 2.0: Object-centric simulation for robot
learning of everyday household tasks. arXiv preprint
arXiv:2108.03272, 2021.

Chengshu Li, Ruohan Zhang, Josiah Wong, Cem Gok-
men, Sanjana Srivastava, Roberto Martin-Martin, Chen
Wang, Gabrael Levine, Michael Lingelbach, Jiankai Sun,
et al. Behavior-1k: A benchmark for embodied ai with
1,000 everyday activities and realistic simulation. In
Conference on Robot Learning, pages 80-93. PMLR,
2023.

Bo Liu, Yifeng Zhu, Chongkai Gao, Yihao Feng, Qiang
Liu, Yuke Zhu, and Peter Stone. Libero: Benchmarking
knowledge transfer for lifelong robot learning. arXiv
preprint arXiv:2306.03310, 2023.

Ajay Mandlekar, Yuke Zhu, Animesh Garg, Jonathan
Booher, Max Spero, Albert Tung, Julian Gao, John
Emmons, Anchit Gupta, Emre Orbay, Silvio Savarese,
and Li Fei-Fei. Roboturk: A crowdsourcing platform for
robotic skill learning through imitation. In Conference
on Robot Learning, 2018.

Ajay Mandlekar, Jonathan Booher, Max Spero, Albert
Tung, Anchit Gupta, Yuke Zhu, Animesh Garg, Silvio
Savarese, and Li Fei-Fei. Scaling robot supervision to
hundreds of hours with roboturk: Robotic manipulation
dataset through human reasoning and dexterity. arXiv
preprint arXiv:1911.04052, 2019.

Ajay Mandlekar, Danfei Xu, Roberto Martin-Martin,
Silvio Savarese, and Li Fei-Fei. Learning to generalize
across long-horizon tasks from human demonstrations.
In Robotics: Science and Systems (RSS), 2020.

Ajay Mandlekar, Danfei Xu, Roberto Martin-Martin,
Yuke Zhu, Li Fei-Fei, and Silvio Savarese. Human-in-
the-loop imitation learning using remote teleoperation,
2020. URL https://arxiv.org/abs/2012.06733.

Ajay Mandlekar, Danfei Xu, Josiah Wong, Soroush

[34]

[35]
(36]

(37]

(38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

Nasiriany, Chen Wang, Rohun Kulkarni, Li Fei-Fei,
Silvio Savarese, Yuke Zhu, and Roberto Martin-Martin.
What matters in learning from offline human demonstra-
tions for robot manipulation. In Conference on Robot
Learning, 2021.

Ajay Mandlekar, Soroush Nasiriany, Bowen Wen, Ire-
tiayo Akinola, Yashraj Narang, Linxi Fan, Yuke Zhu,
and Dieter Fox. Mimicgen: A data generation system
for scalable robot learning using human demonstrations.
arXiv preprint arXiv:2310.17596, 2023.

OpenAl et al. GPT-4 technical report, 2024.

Lerrel Pinto and Abhinav Gupta. Supersizing self-
supervision: Learning to grasp from 50k tries and 700
robot hours. In Robotics and Automation (ICRA), 2016
IEEE Int’l Conference on. IEEE, 2016.

Dean A Pomerleau. Alvinn: An autonomous land vehicle
in a neural network. In Advances in neural information
processing systems, pages 305-313, 1989.

Robin Rombach, Andreas Blattmann, Dominik Lorenz,
Patrick Esser, and Bjorn Ommer. High-resolution image
synthesis with latent diffusion models, 2021.

Jiaming Song, Chenlin Meng, and Stefano Ermon. De-
noising diffusion implicit models, 2022.

Andrew Szot, Alexander Clegg, Eric Undersander,
Erik Wijmans, Yili Zhao, John Turner, Noah Maestre,
Mustafa Mukadam, Devendra Singh Chaplot, Oleksandr
Maksymets, et al. Habitat 2.0: Training home assistants
to rearrange their habitat. Advances in Neural Informa-
tion Processing Systems, 34:251-266, 2021.

Andrew Szot, Max Schwarzer, Harsh Agrawal, Bog-
dan Mazoure, Walter Talbott, Katherine Metcalf, Natalie
Mackraz, Devon Hjelm, and Alexander Toshev. Large
language models as generalizable policies for embodied
tasks. arXiv preprint arXiv:2310.17722, 2023.

Gemini Team. Gemini: A family of highly capable
multimodal models, 2024.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz Kaiser,
and Illia Polosukhin. Attention is all you need. In
Advances in Neural Information Processing Systems,
2017.

Lirui Wang, Yiyang Ling, Zhecheng Yuan, Mohit Shrid-
har, Chen Bao, Yuzhe Qin, Bailin Wang, Huazhe Xu, and
Xiaolong Wang. Gensim: Generating robotic simulation
tasks via large language models. In Arxiv, 2023.

Yufei Wang, Zhou Xian, Feng Chen, Tsun-Hsuan Wang,
Yian Wang, Katerina Fragkiadaki, Zackory Erickson,
David Held, and Chuang Gan. Robogen: Towards un-
leashing infinite data for automated robot learning via
generative simulation. arXiv preprint arXiv:2311.01455,
2023.

Kuan-Ting Yu, Maria Bauza, Nima Fazeli, and Alberto
Rodriguez. More than a million ways to be pushed. a
high-fidelity experimental dataset of planar pushing. In
Int’l Conference on Intelligent Robots and Systems, 2016.
Kevin Zakka, Yuval Tassa, and MuJoCo Menagerie Con-

https://arxiv.org/abs/2012.06733

[48]

[49]

[50]

[51]

tributors. MuJoCo Menagerie: A collection of high-
quality simulation models for MuJoCo, 2022. URL
http://github.com/google-deepmind/mujoco_menageriel
Andy Zeng, Pete Florence, Jonathan Tompson, Stefan
Welker, Jonathan Chien, Maria Attarian, Travis Arm-
strong, Ivan Krasin, Dan Duong, Vikas Sindhwani, and
Johnny Lee. Transporter networks: Rearranging the
visual world for robotic manipulation. In Conference
on Robot Learning, 2020.

Tianhao Zhang, Zoe McCarthy, Owen Jow, Dennis Lee,
Xi Chen, Ken Goldberg, and Pieter Abbeel. Deep imita-
tion learning for complex manipulation tasks from virtual
reality teleoperation. In IEEE International Conference
on Robotics and Automation (ICRA), 2018.

Yuke Zhu, Ziyu Wang, Josh Merel, Andrei Rusu,
Tom Erez, Serkan Cabi, Saran Tunyasuvunakool, Janos
Kramar, Raia Hadsell, Nando de Freitas, et al. Rein-
forcement and imitation learning for diverse visuomotor
skills. arXiv preprint arXiv:1802.09564, 2018.

Yuke Zhu, Josiah Wong, Ajay Mandlekar, and Roberto
Martin-Martin. robosuite: A modular simulation frame-
work and benchmark for robot learning. In arXiv preprint
arXiv:2009.12293, 2020.

http://github.com/google-deepmind/mujoco_menagerie

VII. SIMULATOR

We benchmark the speed of our simulator on the
PickPlaceCounterToCab task, running for 10 episodes,
with each episode spawned in a random scene. We use native
MuJoCo rendering on an NVIDIA RTX A5000 GPU which
adds overhead to the simulation speed. The simulation physics
runs on CPUs and we specifically used an AMD EPYC 7543
32-Core Processor. The average time to reset the scene is
9.50 seconds and the average speed of stepping through the
simulator (calling env. step) is 25.2 fps. Without rendering,
the average reset time is 9.46 seconds and the simulator speed
is 31.9 fps. For reference, each timestep in our simulator
corresponds to 0.04 seconds in the world or 25 fps. Our
observed simulation speed with the rendering of 25.2 fps
almost exactly matches this speed, meaning our simulator runs
roughly at real-time speed.

VIII. TASKS AND DATASETS
A. Atomic Tasks

We design 25 atomic tasks representing eight foundational
robot skills: (1) Pick and place, (2) Opening and closing
doors, (3) Opening and closing drawers, (4) Twisting knobs,
(5) Turning levers, (6) Pressing buttons, (7) Insertion, and (8)
Navigation. We outline details for all tasks in Figure [[1] Each
task can come in the form of multiple task variants. These
task variants can disambiguate the task goal with language.
For pick-and-place tasks, there is a task variant for each
object category being manipulated to disambiguate objects in
clutter. For turning on and off the stove, there is a task variant
for each burner being turned on or off, to disambiguate the
relevant burner. For navigation, there is a task variant for each
appliance the robot is navigating to, to disambiguate the target
location.

B. Composite Tasks

We obtain activity labels by asking ChatGPT the following
simple prompt: “Can you give me 30 simple everyday high-
level kitchen activities? Each activity should be unique.” We
obtain a set of candidate responses and manually select 20
activities. We use a more elaborate prompt to obtain task
suggestions. We list the robot skills, relevant object categories
and fixtures, specify constraints of the simulation (eg. small
objects that cannot be grasped, limited support for deformable
manipulation tasks), and highlight example task blueprints as
a form of few-shot prompting. We list all 20 kitchen activities
and representative tasks across all activities in Figure

In selecting composite tasks, we filter out LLM task sug-
gestions that have logical flaws. For a list of examples, see
below:

Using invalid object (no blender exists):

Task: Set Up Blending Station

Goal: Place dairy ingredients next to the
blender for making creamy fillings or batter.
Objects: cheese, milk

Fixtures: counter, blender

Skills (3):
Push (dairy,

Pick_up(dairy), Place (counter),
blender)

Reasoning: Preparing dairy products near a
blender is common when making mixtures for

baking.

Improper use of skills:

Task: Wine Selection for Cooking
Goal:
cabinet for use in a recipe
Objects: drink (wine)
Fixtures: cabinet Skills (5):
Open (cabinet),

Retrieve a bottle of wine from the

Pick_up (drink),
Place (counter), Close (cabinet),
Press (button_on_coffee_machine) (simulating
uncorking)

Reasoning: Wine is occasionally used in baking
recipes and needs to be opened and ready to

use.

Picking up objects that should not be grasped (utensils):
Task: Retrieve Baking Utensils

Goal: Gather all utensils needed for baking
(spoons, ladle) and place them on the
countertop.

Objects: utensils

Fixtures: drawer, counter

Skills (4): Open(drawer), Pick_up(utensils) ,

Place (counter), Close (drawer)
Reasoning: Assembling the correct utensils is

essential before starting to bake.

C. Datasets

In our atomic task experiments, we use human datasets and
machine-generated datasets over 25 tasks. We render images
for these tasks using randomly sampled Al-generated textures,
which replace the native textures for each scene. Due to the
high volume of these datasets and time constraints, we opt
to use the light-weight MuJoCo renderer to render images for
these datasets. For the public release we will provide users the
option to render all datasets with the Omniverse renderer.

IX. POLICY LEARNING IMPLEMENTATION

Our BC-Transformer policy takes as input the history of
the past 10 observations in addition to the language goal
for the text and outputs the next ten actions for the robot
to execute. The agent replans after executing the first action.
We modified the policy to support language conditioning by
encoding language goals using a CLIP sentence encoder. For
each observation in the input, the policy encodes proprio-
ceptive information (end-effector pose and mobile base pose)
and images from three cameras: an eye-in-hand camera, a left
workspace camera, and a right workspace camera. It encodes
each of these images with a dedicated ResNet-18 encoder stack
and fuses the visual representation using FiLM layers. The
encoded observations are passed to a 6-layer Transformer with

~ 20M trainable parameters. We train the model for 500k
gradient steps at a learning rate of le — 4 with a learning rate
warmup.

We also experiment with diffusion policy [4]. We implement
the diffusion policy in RoboMimic for a fair comparison to our
existing BC-Transformer method. The diffusion policy uses
the same observation encoder (ResNet, FILM conditioning)
as the BC-Transformer. We use all recommended hyperpa-
rameters from the official implementation: 2 timesteps for
observation history, a prediction horizon of 16 steps, and an
action horizon of 8 steps. We use DDIM [39]] with 100 train
timesteps and 10 inference timesteps, as recommended by
the Diffusion Policy authors. We found the Diffusion Policy
to underperform the BC-Transformer implementation signifi-
cantly. On the single-stage PickPlaceCounterToSink task, BC-
Transformer achieves a 56% success rate while Diffusion
Policy only achieves 12%. One possible explanation for this is
that our BC-Transformer implementation uses a longer history
length of 10 observations, while diffusion policy uses a history
length of 2 observations (this is the default choice used by
Chi et al. which we also opt to use). Incorporating a longer
observation history may be critical for our tasks.

Task

| Skill Family

| Description

PickPlaceCounterToCabinet

PickPlaceCabinetToCounter

PickPlaceCounterToSink

PickPlaceSinkToCounter

PickPlaceCounterToMicrowave

PickPlaceMicrowaveToCounter

PickPlaceCounterToStove

PickPlaceStoveToCounter

OpenSingleDoor

CloseSingleDoor

OpenDoubleDoor

CloseDoubleDoor

OpenDrawer

CloseDrawer

TurnOnStove

TurnOffStove

TurnOnSinkFacuet

TurnOffSinkFaucet

TurnSinkSpout

CoffeePressButton

TurnOnMicrowave

TurnOffMicrowave

CoffeeSetupMug

CoffeeServeMug

NavigateKitchen

pick and place

pick and place

pick and place

pick and place

pick and place

pick and place

pick and place

pick and place

opening and closing
doors

opening and closing
doors

opening and closing
doors

opening and closing
doors

opening and closing
drawers

opening and closing
drawers

twisting knobs

twisting knobs
turning levers
turning levers

turning levers

pressing buttons
pressing buttons

pressing buttons

insertion

insertion

navigation

Pick an object from the counter and place it inside the cabinet.
The cabinet is already open.

Pick an object from the cabinet and place it on the counter.
The cabinet is already open.

Pick an object from the counter and place it in the sink.

Pick an object from the sink and place it on the counter area
next to the sink.

Pick an object from the counter and place it inside the
microwave. The microwave door is already open.

Pick an object from inside the microwave and place it on the
counter. The microwave door is already open.

Pick an object from the counter and place it in a pan or pot
on the stove.

Pick an object from the stove (via a pot or pan) and place it
on (the plate on) the counter.

Open a microwave door or a cabinet with a single door.

Close a microwave door or a cabinet with a single door.

Open a cabinet with two opposite-facing doors.

Close a cabinet with two opposite-facing doors.

Open a drawer.

Close a drawer.

Turn on a specified stove burner by twisting the respective
stove knob.

Turn off a specified stove burner by twisting the respective
stove knob.

Turn on the sink faucet to begin the flow of water.
Turn off the sink faucet to begin the flow of water.
Turn the sink spout.

Press the button on the coffee machine to pour coffee in to the
mug.

Turn on the microwave by pressing the start button.
Turn off the microwave by pressing the stop button.

Pick the mug from the counter and insert it onto the coffee
machine mug holder area.

Remove the mug from the coffee machine mug holder and
place it on the counter.

Navigate to a specified appliance in the kitchen.

Fig. 11: Atomic Tasks.

Task

| Activity

| Description

PrepareCoffee

DryDishes

RestockPantry

ArrangeVegetables

CheesyBread

MicrowaveThawing

FillKettle

PrepMarinatingMeat

DateNite

BowlAndCup

PrepForSanitizing

MakeFruitBowl

PantryMishap

DrainVeggies

SetupFrying

HeatMug

ColorfulSalsa

OrganizeBakingIngredients

PlaceFoodInBowls

SteamInMicrowave

Brewing coffee or tea

Washing dishes

Restocking kitchen

supplies
Chopping food

Making toast
Defrosting food

Boiling water

Meat preparation

Setting up the table

Clearing the table
Sanitizing
Snack preparation

Tidying cabinets and
drawers

Washing fruits and veg-
etables

Frying

Reheating food

Mixing and blending

Baking
Serving food

Steaming vegetables

Place a mug under the coffee machine nozzle and press the
start button to make coffee.

Set bowls and cups on the counter to dry, after they have been
washed.

Group all canned foods together on a shelf in the cabinet, right
next to existing canned foods.

Place vegetables from the sink onto the cutting board on the
counter, to prepare for chopping them.

Pick up the wedge of cheese and place it on the slice of bread.

Pick frozen food and place in microwave, then turn on mi-
crowave to thaw the food.

Place an empty kettle from the cabinet and place in the sink
to be filled with water.

Place steak and condiments on cutting board for marination.

Pick up candles and a bottle of wine and place them in the
dining area for date night.

An empty bowl and an empty cup are left on the island. Stack
the cup inside the bowl and move the stacked items to the
counter.

Organize cleaning supplies on the counter for easy access.

Gather various fruits into a bowl for serving.

Sort the canned and packaged foods into a drawer while
placing the vegetables on a nearby counter.

Dump the veggies in the pot into the sink to drain. Turn off
the faucet, and place the pot back on the counter.

Retrieve a pan and transport it to the stove, then turn on the
stove.

Place a mug in the microwave and then turn on the microwave.
Create salsa by gathering specific vegetables from a mixed pile
on the counter and placing them onto the cutting board.
Obtain dairy ingredients and place them together for baking.
Arrange bowls on the counter and place an assortment of
vegetable in each bowl.

Put a bowl of vegetables inside the microwave to steam them
there.

Fig. 12: Representative Composite Tasks Across 20 Kitchen Activites.

Human-50

Generated-100

Generated-300

Generated-3000

PickPlaceCabToCounter 0.02 0.04 0.10 0.18
PickPlaceCounterToCab 0.06 0.08 0.16 0.28
PickPlaceCounterToMicrowave | 0.02 0 0 0.18
PickPlaceCounterToSink 0.02 0.02 0.16 0.44
PickPlaceCounterToStove 0.02 0 0 0.06
PickPlaceMicrowaveToCounter | 0.02 0 0.12 0.08
PickPlaceSinkToCounter 0.08 0.02 0.14 0.42
PickPlaceStoveToCounter 0.06 0 0.04 0.28
OpenSingleDoor 0.46 0.42 0.44 0.50
OpenDoubleDoor 0.28 0.12 0.22 0.48
CloseDoubleDoor 0.28 0.18 0.62 0.46
CloseSingleDoor 0.56 0.82 0.86 0.94
OpenDrawer 0.42 0.26 0.40 0.74
CloseDrawer 0.8 0.92 0.98 0.96
TurnOnStove 0.32 0.42 0.44 0.46
TurnOffStove 0.04 0.08 0.12 0.24
TurnOnSinkFaucet 0.38 0.26 0.48 0.34
TurnOffSinkFaucet 0.50 0.48 0.46 0.72
TurnSinkSpout 0.54 0.50 0.58 0.96
CoffeePressButton 0.48 0.48 0.42 0.74
TurnOnMicrowave 0.62 0.36 0.76 0.90
TurnOffMicrowave 0.70 0.70 0.62 0.60
CoffeeServeMug 0.22 0.12 0.24 0.34
CoffeeSetupMug 0 0.02 0.04 0.12
Average 0.288 0.263 0.350 0.476

Fig. 13: Multi-task Learning on Atomic Tasks: Full Results

	Introduction
	Related Work
	RoboCasa Simulation
	Core Simulation Platform
	Kitchen Scenes
	Assets

	RoboCasa Activity Dataset
	Atomic Tasks: Building Blocks of Behavior
	Creating Composite Tasks with Large Language Models
	RoboCasa Datasets

	Experiments
	Imitation Learning for Atomic Tasks
	Imitation Learning for Composite Tasks
	Transfer to Real World Environments

	Conclusion
	Simulator
	Tasks and Datasets
	Atomic Tasks
	Composite Tasks
	Datasets

	Policy Learning Implementation

