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Abstract

Synthetic data has the potential to improve the
performance, training efficiency, and privacy of
real training examples. Nevertheless, existing ap-
proaches for synthetic text generation are mostly
heuristics and cannot generate human-readable
text without compromising the privacy of real
data, or provide performance guarantees for train-
ing Large Language Models (LLMs). In this
work, we propose the first theoretically rigorous
approach for generating synthetic human-readable
text that provides convergence, performance, and
privacy guarantees for fine-tuning LLMs on a
target task. To do so, we leverage Alternating
Direction Method of Multipliers (ADMM) that
iteratively optimizes the embeddings of synthetic
examples to match the noisy gradient of the target
training or validation data, and maps them to a
sequence of text tokens with low perplexity. In
doing so, the generated synthetic text guarantees
convergence of the model to a close neighborhood
of the solution obtained by fine-tuning on real data
and preserves their privacy. Experiments on vari-
ous classification tasks confirm the effectiveness
of our proposed approach. Our code is available
at https:/github.com/BigML-CS-UCLA/GRADMM.

1. Introduction

High-quality data is crucial for training Large Language
Models (LLMs) to superior performance (Yang et al., 2024;
Li et al., 2023b). However, collecting and curating high-
quality data is often very expensive and hard to obtain in
many domains. In addition, as LLMs can memorize their
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training data (Hartmann et al., 2023), ensuring the privacy of
training examples hinders training the model directly on the
training data. Thus, generating small subsets of synthetic
data that can train an LLM to superior performance on the
target task becomes handy. To do so, synthetic text should be
generated in a way that ensures similar dynamics to that of
training on the real data. However, text is discrete in nature
and optimization in the discrete space is very challenging.

Existing approaches for synthetic text generation mostly
rely on advanced LLMs such as GPT-4 to generate synthetic
text for the target categories (Ye et al., 2022; Meng et al.,
2022; Li et al., 2023b; Gupta et al., 2023; Tao et al., 2024,
Wau et al., 2024; Dekoninck et al., 2024; Yu et al., 2024).
LLM-generated text either suffers from lack of diversity
and faithfulness to real data (Ye et al., 2022; Meng et al.,
2022; Li et al., 2023b), or requires meticulous prompt engi-
neering and highly complex pipelines, such as multi-agent
frameworks, iterative sampling, and processing mechanisms
(Gupta et al., 2023; Dekoninck et al., 2024; Wu et al., 2024).
The complexity of the pipelines, efforts for manual prompt
engineering, and the cost of querying advanced models
limits the applicability of such approaches. A few recent
studies explored the use of VAEs and diffusion for con-
trollable text generation (Li et al., 2022; Gong et al., 2022;
Zhou et al., 2024). But, training diffusion models is compu-
tationally heavy and difficult in practice. Importantly, none
of the above approaches guarantees performance of LLMs
trained on the synthetic text or preserve privacy of real data.

The above limitations raise a key question: Can we generate
a small subset of synthetic text that can train an LLM with
similar dynamics to that of real data? For vision models,
Dataset Distillation (DD) addresses the above question by
generating a small number of synthetic images that mini-
mize the training loss (Wang et al., 2018; Loo et al., 2022;
Nguyen et al., 2020), match the training gradient (Zhao et al.,
2020; Zhao & Bilen, 2021) or model’s weight trajectory dur-
ing training (Cazenavette et al., 2022; Wang et al., 2022).
For images, gradient-based methods can easily operate in
the pixel-wise continuous space. However, for LLMs, the
discrete nature of text and the very large number of LLM’s
parameters make DD much more challenging. The few ex-
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isting approaches generate synthetic embeddings that mini-
mize the training loss (Sucholutsky & Schonlau, 2021; Li &
Li, 2021; Sahni & Patel, 2023; Maekawa et al., 2023), or by
training a generator model to match the gradient of an LLM
trained on target data (Maekawa et al., 2024). However, the
synthetic embeddings are not readable and cannot be trans-
ferred to train other LLMs, and synthetic data generated by
matching dynamics of a LLM trained on target data may
include real training examples and is not privacy preserving.

In this work, we propose the first theoretically-rigorous
method to generate readable synthetic text that guarantees
similar dynamics to that of fine-tuning on real data. First,
we formulate a discrete optimization problem to find text
embeddings that have a similar gradient to that of real data,
under the constraint that the optimized embeddings should
correspond to tokens in the vocabulary. Moreover, to ensure
readability, we add another constraint that requires the
sequence to have a low perplexity. Then, we solve this
discrete optimization problem using Alternating Direction
Method of Multipliers (ADMM) that iteratively optimizes
the embeddings of synthetic data to match the average
gradient of the real data, and maps them to a sequence of
text tokens with low perplexity. To guarantee Differential
Privacy (DP), we clip real data gradients and add controlled
noise to their average before matching it. We prove that
the synthetic text generated by our method guarantees
convergence to a close neighborhood of the solution
obtained by fine-tuning the model on real data.

We conduct extensive experiments to evaluate the effective-
ness of our approach, namely GRADMM, for generating syn-
thetic data using Phi model for multiple classification tasks.
First, we consider the case where only a small number of
validation examples are available and we apply GRADMM
to generate a larger fine-tuning data. We show that with
only 5 to 50 examples, GRADMM can successfully gener-
ate 100 synthetic data that outperform training on the real
examples by up to 31.5%. Next, we apply GRADMM to
generate a small synthetic data based on an existing larger
fine-tuning data. We show that the synthetic data generated
by GRADMM outperforms zero-shot and few-shot genera-
tion by LLMs as well as real examples selected by coreset
selection methods by up to 13.1%, while ensuring the pri-
vacy of the training data. We also confirm the transferability
of GRADMM’s generated text via Phi for fine-tuning other
LLMs, including Llama-3.2-1B and OPT-1.3B.

2. Related Work

2.1. Dataset Distillation (DD)

DD aims to generate a small synthetic subset of examples
that can achieve a similar generalization performance to that
of training on the full real dataset.

DD for Images. DD is originally proposed for images.
Wang et al. (2018) initially proposed a meta-learning
approach which synthesizes data by iteratively training
a model to convergence on the synthetic examples, and
optimizing the synthetic data such that the trained model
generalizes well on the real training data. Subsequent stud-
ies tried to make this process more efficient by using kernel
methods to approximate training the model on synthetic
data in a closed form (Loo et al., 2022; Nguyen et al., 2020).
More recent works generate synthetic data by matching
the gradient (Zhao et al., 2020; Zhao & Bilen, 2021; Kim
et al., 2022) or wright trajectory (Cazenavette et al., 2022;
Wang et al., 2022) of the model trained on real data, or by
matching the data distribution (Zhao & Bilen, 2023).

DD for Text. There have been recent efforts in applying
DD to text. For text datasets, existing methods (Sucholutsky
& Schonlau, 2021; Li & Li, 2021; Sahni & Patel, 2023)
apply the original meta-learning based method of (Wang
et al., 2018), or minimize the KL-divergence between the
self-attention probabilities of the model and the distilled at-
tention labels across all layers and heads, for the first token
Maekawa et al. (2023). As generating text in the discrete
space is difficult, the synthetic data is generated as continu-
ous input word embeddings instead of discrete text. Such
embeddings cannot be used for training other models that
have different word embedding weights, and are unreadable
to humans, making them difficult to interpret and analyze.
Sucholutsky & Schonlau (2021); Sahni & Patel (2023) trans-
formed their distilled synthetic samples to text by finding
words with the nearest neighbor embeddings. However, this
results in unrelated words that are not meaningful.

To generate readable text, Maekawa et al. (2024) first trains
a proxy language model from scratch to generate synthetic
training data for different classes. Then, it fine-tunes a
generator model to generate synthetic data by minimizing
the gradient matching loss between generated and training
data. Training the proxy model is a bottleneck in scaling
the method. Besides, as the distilled synthetic data may
include real samples from the original dataset, this method
cannot ensure privacy.

Notably, none of the existing DD methods scale beyond
BERT (Devlin, 2018) to LLMs with billions of parameters.
In this work, we propose the first DD method that can gen-
erate privacy-preserving human-readable text, by matching
gradients of LLMs with billions of parameters.

2.2. Synthetic Text Generation using Generative Models

LLMs. A large body of recent work used LLMs to
generate synthetic text data in the zero-shot or few shot
setting (Meng et al., 2022; Li et al., 2023b). In the zero-shot
setting, the LLM is directly prompted to generate text
for categories of interests. In the few-shot setting, a few
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real-world data instances are provided as examples to guide
the LLM in generating the synthetic data. In our work, we
use the zero-shot and few-shot approaches as our baselines.
LLM-generated text is often very repetitive and lacks diver-
sity (Holtzman et al., 2019; Keskar et al., 2019). Besides, it
does not capture the distribution of the target task and may
contain incorrect or hallucinated examples (Ye et al., 2022;
Meng et al., 2022; Gupta et al., 2023; Li et al., 2023b; Wu
et al., 2023). To address these issues, recent methods rely
on extensive prompt engineering to inject semantic diversity
for each target category (Gupta et al., 2023) and design
highly complex pipelines, such as model arithmetic which
composes and biases multiple LLMs (Dekoninck et al.,
2024), multi-step meticulous prompt engineering to inject
domain knowledge, iterative sampling, and self-correction
to rectify inaccurately labeled instances (Gupta et al., 2023),
and retrieval-augmented generation techniques (Wu et al.,
2023). Such pipelines require a large number of queries
to advanced LLMs such as GPT-4 (OpenAl, 2023) and
Claude3-Opus (Anthropic, 2023). This incurs a large
financial cost and makes such approaches difficult to apply
in practice. While synthetic data generated by LL.Ms are
human-readable, LLMs may memorize and generate their
training data (Hartmann et al., 2023). Hence, the synthetic
data generated by LLMs do not preserve the privacy of their
training data. Besides, it does not provide any theoretical
guarantee for the performance of LLMs trained on them.

VAE and Diffusion. A few recent studies explored the
use of VAEs and diffusion for controllable text generation
(Li et al., 2022; Gong et al., 2022; Zhou et al., 2024). Such
approaches train a diffusion model from scratch and parame-
terize structural and semantic controls by different classifiers
and update the latent variables to satisfy the controls (Li &
Li, 2021), or to add noise and denoise embeddings of real
data (Zhao et al., 2020). This process is computationally
very heavy and difficult in practice. Similar to LLMs, syn-
thetic data generated by VAEs and diffusion models do not
provide guarantee for the performance of the trained model.

3. Problem Formulation

Here, we formalize the problem of generating small human-
readable synthetic text that can fine-tune an LLM with sim-
ilar dynamics to that of real data. We also discuss two
common use cases where such synthetic data is useful.

Setting. Consider a pretrained LLM with parameters 6 and
vocabulary V' = {v1,--- , vy} containing all the words it
has been trained to recognize and use. Consider a super-
vised fine-tuning dataset Dy = {s'}, where each example
st = (p,r") is a pair of prompt p’ and response r* contain-
ing words in the vocabulary. The negative log likelihood
loss is defined as £(s?,8) = —log(r’|p’). The fine-tuning
objective is thus to minimize the negative log likelihood loss

over the whole dataset D as £(D,0) = ﬁ Zgl {(s%,0).

Problem formulation. Given a subsets of real examples
from the fine-tuning data Deq C D7, our goal is to generate
synthetic data Dy, = {¢'}}_,,¢* ¢ Dr Vi, containing r
synthetic examples that do not belong to D, such that
fine-tuning the model on Dy, minimizes the 1oss on Dyeyy.
Formally,

argmin  €(Dyeq,0%), s.t.

0" € argmin {(Dgyn,0).
Diyn,| Dsyn| <1 0

ey

Readability constraint. Importantly, we want the synthetic
data to be human-readable. That is we want every synthetic
example to be a sequence of words in the vocabulary. Be-
sides, to ensure that the sequence is meaningful, we require
that the synthetic data has low perplexity. Thus, we wish
to solve the following constrained optimization problem:

argmin  £(Drea, 0%),
’Dsym‘DsynlSka
s€T,ppl(s)<e
VsE€Dsyn

st. 60 € argmin {(Dgyn,0),
0

@)
where I'={s=(p,r)|p;,r; € V} is the set of all prompts
and responses that consist of words in vocabulary V.

Use cases for synthetic data generations. The above for-
mulation is applicable to two settings: (1) Data is scarce for
the target task, and we want to generate a larger synthetic
fine-tuning data based on a small number of examples from
the target task. (2) A relatively large supervised fine-tuning
data is available, and we wish to generate a smaller syn-
thetic data to replace the real data to preserve the privacy of
training examples or to improve the training efficiency.

4. Method

Next, we discuss our proposed method for generating read-
able synthetic text for fine-tuning LLLMs on a target task.

4.1. Text Generation via Gradient Matching

An effective way to solve Eq 2 is via gradient matching.
Specifically, we generate a synthetic data Dgy, that has a
similar gradient to that of the real dataset:

argmin  D(Vgl(Dyyn,0), Vol (Drear,9)). 3)
Dyyn,| Dygn| <1,
sel,ppl(s)<e
V5EDgyn

where D(+, -) is a distance between two gradients. Following
(Deng et al., 2021; Geiping et al., 2020), we use 1 — cos(., .)
as our distance metric, where cos is the cosine similarity. If
such a synthetic data can be generated, training on it with
gradient methods directly minimizes the loss on real data.
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Fine-tuning is often short and changes the model to a smaller
extent than pre-training. Fine-tuning for longer results in
forgetting the pretrained information and harms the perfor-
mance (Gekhman et al., 2024). Since fine-tuning loss is
often smooth and has a bounded curvature, we solve the
above problem by generating a synthetic data that matches
the gradient of real data at the pretrained parameters. We
prove that training on such a subset converges to a close
neighborhood of the solution found by training on real data.

Challenges of Readable Text Generation. Solving Prob-
lem 3 is very challenging, as the set of feasible solutions
is sparse, the space is discrete, and LLMs are non-linear
and high-dimensional. Specifically, the constraint set is
formed by the Cartesian product of many discrete sets, each
restricting a word to belong to the vocabulary. Among
sequences that satisfy this condition, only those that are
readable—measured by a low perplexity value—are valid.
Thus, solving Problem 3 is NP-hard as it requires going
through all the possible sequences of words in the vocabu-
lary and finding readable sequences that best match the real
data gradient. The number of such sequences is exponential
in the size of the vocabulary. This makes it computationally
infeasible to find the optimum solution. Finally, calculating
the similarities in the gradient space of LLMs with billions
of parameters is computationally very expensive.

4.2. Alternating Between Text and Embedding Spaces

To solve the above discretely constrained non-convex op-
timization problem, we first transfer it to the continuous
embedding space, where one can optimize the embeddings
of synthetic data to match the target gradient, under the con-
straint that the optimized embeddings belong to the set of all
token (words, subwords, or characters) embeddings in the
vocabulary. If such embeddings can be found, they can be
directly mapped to a sequence of words in the vocabulary.

Formally, let z € R™"*? be the embedding matrix of a syn-
thetic sample s with n tokens, where row x; € R? is the
jt" token embedding. By stacking the embedding matrices
of all synthetic samples in Dsy,,, we obtain an embedding
tensor X € RIPwlxnxd With an abuse of notation, we de-
note ((z, 8) = {(s,6) and (X, 6) = 5~ L\12¢! (a',6).
We rewrite Problem 3 as:

argmin f(X) st. f(X)=D(Vel(X,0),Vol(Dsea, b)),
DSyn s |DS>'n | <r,

z;€E,ppl(z)<e
V& EDgyn

“

where £ = {e1, 2, .., ey} denote the vocabulary embed-
ding, i.e. the set of all token embeddings in the vocabulary V'
of model @ where e; € R? and d is the embedding dimension.

To solve the above constrained optimization problem we
apply the Alternating Direction Method of Multipliers

(ADMM) (Glowinski & Marroco, 1975; Gabay & Mercier,
1976). By forming the augmented Lagrangian function,
ADMM decomposes the original problem into subproblems
that can be solved separately and iteratively. While ADMM
was originally introduced for convex optimization under
linear constraints, more recently it has been successfully
applied to solving mixed integer non-linear programs (Leng
et al., 2018; Lin et al., 2019), with convergence guarantees
(Huang et al., 2021).

Constrained Gradient Matching in the Embedding Space.
To apply ADMM to our discretely constrained non-convex
problem 4, we convert it to a non-convex optimization with
convex linear constraints. To do so, we introduce an aux-
iliary variable Z and rewrite our objective with an extra
equality constraint so that the embeddings are constrained
to be from the vocabulary, but not subject to that restriction:

miny f(X) +Zg(Z), st. X =2Z. %)
The indicator function Zg(Z) is defined as Z¢(Z) = 0 if
z; € € Vj (i.e., if the embedding of each synthetic example
can be mapped to a sequence of words in the vocabulary),
and Zg(Z) = 400 otherwise. The augmented Lagrange of
Eq. 5 for parameter p > 0, can be formulated as:

ﬁaug(X,Z,A) = f(X) +I€(Z) + <A7X_Z>
+ 21X -z, ®

where A € RIPwnx7xd denotes the Lagrangian multipliers.
With simple algebraic manipulations, Eq.6 can be written as:

Lue(X,Z,8) = f(X) +Ze(Z) + 51X — Z — p7'A”
N

ADMM solves the above problem by minimizing primal
variables X, Z and maximizing dual variable A at each
iteration ¢, using the following update rules:

Primal update: X! = argmin Lo (X, VA At), ®)
X

Z'" = argmin Lo (X', Z,AY), (9)
Z

Dual update: ~ A'™' = A + p(X*H — ZPTY) (10)
which are respectively the proximal step, projection
step, and dual update. The proximal step optimizes the
embeddings to match the target gradient, and the projection
step maps the embeddings to words in the vocabulary. Eq.
8 requires solving an unconstrained optimization problem.
When p is large, the function is strongly convex in X. In
practice, stochastic gradient descent algorithms such as
Adam (Kingma, 2014) can obtain an approximate solution,
which is sufficient for the convergence of ADMM (Huang
et al., 2021). Next, we discuss the projection step.
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Algorithm 1 GRADient matching w. ADMM (GRADMM)

1: Input: Constant p > 0, ADMM steps 7', proj param k,
DP param ¢, §

2: Step 1: Initialization

3: Random sample X € I'

4: Initialize X° = argminy f(X,¢,0)

5: Initialize Z° = X and A € RIPwlxnxd,

6: Step 2: ADMM

7: fort =0,1,..., 7T —1do

8: Update X: X't = argminy £(X,Z! Al ¢,0)

9:  Update Z: Z'! = Pg,_ (X' + p~IAY)

10:  Update A: APt = At 4 p(XtFL — Zt+1)

11: end for

12: § = Pep (XT)

13: Step 3: Filtering

14: Drop samples in S that do not belong to their category
15: Select rsamples inS with lowest gradient matching loss
16: Drop examples with highest loss from categories that

have a higher average gradient matching loss
17: Output: Remaining synthetic texts in S.

Projecting the Embeddings into the Vocabulary Space.
Equation (9) can be written as (Huang et al., 2021):

Z'" = arg minﬁaug(ZHl,Z,At) (11)
4
—argminZg(Z2) + ||1Z — Xt — p'AY2 (12)
Z
:PE(Xt+p_1At). (13)

For the vocabulary embeddings &, the projection Pg(z;)
of an embedding vector z; € R into the vocabulary space
is the embedding vector z; := arg min,¢ ||z; — e||* corre-
sponding to the token in the vocabulary that is closest to x;
in Euclidean space. In practice, z; can be found by looping
over the vocabulary and finding the closest token. This oper-
ation can be vectorized efficiently. For an embedding matrix
x € R™*4 consisting of n embedding vectors, we project
each embedding vector x; independently to get the matrix
embedding Pg(x) = [Pe(21) Pe(x2) -+ Pelan)] T
Similarly, for the embedding tensor X, the projection
operation can be vectorized efficiently to find Z.

Ensuring Readability of the Projected Text. Projecting
embeddings to tokens in vocabulary independently does
not yield meaningful text. To address this, we leverage
the idea of top-k decoding to enforce the readability of
generations (Fan et al., 2018). Consider an embedding
matrix £ € R™*? consisting of n embedding vectors. For
every embedding x;, we find the top k£ most probable tokens
from the vocabulary condition on the previously projected
tokens. Formally, we find the top k tokens that minimize
> ece P(x|wi=1:i—1), and denote them by Epx. Then, we
project x; into the space of the top-k selected tokens by
solving z; := Pe,,, (;) = argmingeg, [[2; — e,

4.3. Dealing with High-dimension Gradients

Calculating similarities in the very high-dimensional gra-
dient space of LLMs with billions of parameters is compu-
tationally very expensive. Besides, such gradients contain
many small and noisy dimensions which makes calculat-
ing gradient similarities inaccurate. An effective way to
tackle this issue is to leverage lower-dimensional gradient
estimates (Mirzasoleiman et al., 2020). Various weight
initialization (Glorot & Bengio, 2010) and activation nor-
malization methods (Ioffe, 2015) uniformize the activations
across samples. Thus, the variation of the gradient norm is
mostly captured by the gradient of the loss with respect to
the model’s last layer (Katharopoulos & Fleuret, 2018).

Based on the observation, we generate synthetic data by
only matching the last-layer gradient of the model. Let 4,
denote the last layer of model 8 with L layers, the last-layer
gradient distance between synthetic and real data in Eq 4 is:

argmin - D(Vgl(X,01),Vel(Dieu,01)) (14)
,Dsyuy‘Dsyn ‘ <r,
z;€E,ppl(z)<e
V€ Dgyn

Matching the last layer gradient is much cheaper than the
full gradient and allows generating synthetic data with supe-
rior performance, as we will confirm in our experiments.

4.4. Filtering the Generated Examples

While the top-k projection enables generating human-
readable text, it can negatively affect the performance due to
the following reasons: (i) It may change the category of the
synthetic example by including words that are most relevant
to other categories. (ii) It may significantly increases the
gradient matching loss of some synthetic examples. (iii) It
may result in a much higher gradient matching loss for some
categories compared to the rest. To address the above issues,
we filter the low-quality synthetic examples as follows. First,
we drop examples that do not belong to the correct category
by running a simple few-shot evaluation (Li et al., 2023b),
as detailed in Appendix B. Next, for every category we se-
lect r synthetic examples with the lowest gradient matching
loss. Finally, we ensure similar gradient matching loss for
all categories by dropping examples with highest loss in
categories with a higher average loss compared to the rest.
The above steps significantly boost the performance of the
synthetic data, as we will confirm in our experiments.

Remark. Due to top-k decoding, the filtered synthetic
examples do not match the target gradient very accurately.
Thus, we generate each synthetic example to match the
target gradient independently, not conditioned on each
other. We will confirm in our experiments in Sec. 5.3 that
the synthetic data generated independently by GRADMM
matches the real data gradient closely during fine-tuning.
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Figure 1. Data-scarce regime. Generating 100 synthetic samples with GRADMM, based on 5, 10, 20, 50 examples from a target task.
Synthetic data generated based on only 5 real examples outperforms the real data by 15.7%, 29.7%, and 31.5% on the three datasets.

4.5. Making GRADMM Differentially Private

Differential privacy (DP) (Dwork et al., 2006) is a rigor-
ous mathematical framework that ensures no single data
point can be identified or inferred from the output of a sta-
tistical or machine learning model. To make GRADMM
differentially private, we inject controlled noise « into the
clipped gradient of the real data in Equation (4). Specifi-
cally, GRADMM first computes per-sample gradients of the
real data and clips their £2-norm to a threshold of C. These
clipped gradients are then averaged, and Gaussian noise,
drawn from N(0, 0%), is added to this average. The added
noise scale o is defined as follows:

. 1.25
Cfﬁ*{ﬁ, if0 < & < 1 (Dwork et al., 2014)
o= real
C(c+Vc2+e) . .
RE if e > 1 (Lowy & Razaviyayn, 2021)

where ¢ =  /log (ﬁ) and the clipping threshold

C =1 for all experiments. Based on the composition the-
orem (Dwork et al., 2010), GRADMM achieves (&, §)-DP.

We denote the new optimization problem and its augmented
Lagrangian objective as f(X,e,9) and L(X, Z,A, ¢, 9), re-
spectively. As € — oo, the privacy constraint is relaxed
and f(X,e,d) — f(X), yielding the original optimization
problem. The new problem retains the same structure and
can be solved using the ADMM procedure described before.

Pseudocode of our method, GRADMM, is illustrated in Alg1.

4.6. Convergence Analysis

Next, we theoretically analyze the convergence of fine-
tuning on the synthetic examples generated by GRADMM.
As discussed in Sec. 3, fine-tuning is short and changes the
model to a small extent compared to pretraining. Effectively,
the fine-tuning loss is relatively flat and can be modeled by
a -smooth (i.e., with a bounded Hessian H) and p-PL*
(ie., [[VL(O)]]* = 24L(0)) function.

For a synthetic subset generated by GRADMM via matching
the gradient of real data at the pretrained model parameters,
the following lemma bounds the error between the gradient

of synthetic and real data during the fine-tuning.

Lemma 4.1. Assume that the fine-tuning losses of the real
L and synthetic data L® are 3-smooth. The synthetic data
generated by GRADMM that captures the gradient of real
data by an error of ||[VL(0) — VL*(8)|| < e at the pre-
trained parameters 0, has a bounded gradient error at any
point t during fine-tuning:

IVL(0:) — VL (8:)| <286 +e, (15)

where § > ||0 — 6;|| upper-bounds the norm of change to
the parameteres during fine-tuning.

Next, we analyze the convergence of fine-tuning with gradi-
ent descent on the synthetic subset generated by GRADMM.

Theorem 4.2. For a u-PL* loss function L, under the as-
sumptions of Lemma 4.1, gradient descent on the synthetic
data converges with the same rate as that of real data. More-
over, at every step t, the difference between the fine-tuning
loss on synthetic and real data is upper bounded by:

|£(6:) — L°(8:)] < £(2V - £)/2p. (16)

where & = 235+ € and V is an upper bound on the gradient
norm during fine-tuning.

The next corollary shows that fine-tuning on real data and
synthetic data found by GRADMM yields similar models.

Corollary 4.3. Consider a strongly convex loss (i.e., | H|| >
a > 0) with unique minimizer 0., and let L(0.)=0. Then
fine-tuning with any optimizer on real and synthetic data
generated by GRADMM yield similar models:

6. — 621 < VERV —&)/ap.

Thus, the fine-tuned models will have a similar performance.

a7

5. Experiments
5.1. Experimental settings

Datasets. We apply GRADMM to different text classifica-
tion datasets including SST-2 movie reviews (Socher et al.,
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Table 1. Fine-tuning Phi on synthetic examples generated by GRADMM, vs LLM-generated zero-shot and few-shot synthetic data, vs real
examples selected with herding, K-center, and Random baselines. Synthetic data generated by GRADMM outperforms the baselines by up
to 10.4% and is the only method that can preserve the privacy of the training data. GRADMM’s synthetic data has similar log-perplexity
(pp)) to that of real data, and higher ppl than LLM-generated synthetic data, confirming its more diverse nature.

‘ ‘ Privacy v/ ‘ LLM generated, no privacy X ‘ Real data, no privacy X

GRADMM Zero-shot Few-shot Herding K-center Random Rand

Dataset | #data | e=00 €=0.05 ppl acc ppl ppl acc ppl acc ppl acc ppl 1K
5 | 865505 842401 58| TL.6i4s 2.5 | 7T1.8:07 3.0 | 61245+ 6.6 | 753000 55| 52.9404 7.7
SST—2 10 87-4:{:()‘9 862:{:18 5.1 791:{:65 23 720105 26 78.810.9 67 82.0:(:11) 5.5 66.1:&11.5 73

20 879,03 872108 53| 822409 22| 775405 2.7 | 8331208 6.6 | 8624109 57| 8.24117 7.0 91.3

Base acc: 50 89.7i042 88‘0i0.1 5.7 83‘0i1.1 2.3 80.6i3_9 2.6 86.0i0_4 6.6 88.1i1v0 5.5 87.8i0,9 6.8 +0.4
69.6% 100 | 89.7101 88.6405 52| 87.bios 23| 774417 25| 889401 6.7 | 893105 58| 888108 6.7
Tweet 5 83.8i0_3 80.4i1,7 3.5 70-7i10.1 2.7 52-5i2.8 3.0 56.3i0_3 5.8 55-4i1.6 5.1 56-210.8 5.9
emotions 10 84-1;{:[)2 81.4:&3‘3 2.8 70.3:&11.9 2.3 47.5;&()_3 3.2 58-4:(:().4 5.6 61.0:(:6.5 5.6 62.1:(:1‘5 5.8

20 852106 835414 34| 817479 22 |682437 33| 658434 58| 735444 55| 706149 5.8 | 96.1

Baseacc: | 50 | 85.8103 832400 43| 827419 22| 790427 3.1 | 76.7429 5.6 839412 51| 77443, 5.6 | 02
43.7% 100 | 865101 839400 38| 842106 23 (835414 34| 857104 55| 846415 51| 808450 55
Rotten 5 82.2i0_3 82°4i0.6 4.5 72<6i2,8 2.5 55~7i2.8 3.8 698i30 49 60.0i1_2 6.4 70-4i4.2 5.4
tomatoes 10 829,92 81.8409 5.5 75.342.8 23 | 63.7429 30| 7154259 52 | 61l.1438 5.5 T4.5441 5.8
20 84.4igA5 83~2i0,6‘ 7.0 78.0i0‘5 2.2 75.7i2.4 3.1 79.1i1_2 5.7 67.5i()_7 5.2 80.6i()‘9 5.7

Base acc: 50 84.9:{:[)2 83.1:&0‘6 4.6 77.51(]‘2 2.3 78.7:{;(),9 2.9 81.2:&().7 5.6 78.7:&1‘5 5.1 81-1;(:1,8 5.6 +£0.3
65.8% 100 | 85005 832107 45| 813410 23823103 29828110 56| 821415 51| 837411 56

2013), Tweet emotions (Mohammad et al., 2018), and Rot-
ten tomatoes (Pang & Lee, 2005b).

Model. We use the Phi model (Li et al., 2023a) to generate
synthetic data and for supervised fine-tuning.

Fine-tuning settings. We fine-tune each model for 200
steps with Adam optimizer (Kingma, 2014) and batch size
of 16. The learning rate follows a linear scheduler with the
initial learning rate selected from {7e — 6, 1le — 5, 1.5¢ — 5}.
We run an evaluation every 50 steps and report the best test
classification accuracy among all the checkpoints.

Baselines. We compare our method with LLM-generated
synthetic data with zero-shot and few-shot methods (Li et al.,
2023b). We also compare to popular coreset selection meth-
ods, namely Herding (Welling, 2009), K-center (Farahani &
Hekmatfar, 2009), and Random.

Hyperparameters. The number of synthetic tokens is set
to the average token length of all samples. For ADMM,
the number of updates 7' is set to 30 and p is chosen from
{0.001,0.05,0.01,...,10}. To update X, we run 50 itera-
tions of Adam with Ir = 0.008. For the top-k projection, we
use k = 200. For DP, we use § = le-4 and € = 0.05.

5.2. Main results

In our experiments, we consider the two scenarios discussed
in Sec. 3. First, we apply GRADMM to generate synthetic
training data based on a small number of examples from a
target task. Then, we apply GRADMMto generate a small
set of synthetic data by distilling an existing training data.

5.2.1. GENERATING LARGER SYNTHETIC FINE-TUNING
DATA IN DATA-SCARCE REGIME

First, we consider the case where data is scarce for the tar-
get task, and we wish to generate a larger synthetic training
data based on a small number of examples from the target
task. Figure 1 shows the result of applying GRADMM to
generate 100 synthetic examples based on only 5, 10, 20,
50 examples randomly selected from the validation data of
SST-2, Tweet emotions, and Rotten tomatoes. We see that
GRADMM successfully generates high-quality supervised
fine-tuning data that can train Phi to a superior performance
over that of training on the available validation data. No-
tably, GRADMM generated synthetic data based on only 5
real examples outperform the real data by 15.7%, 29.7%,
and 31.5% on the three datasets. This confirms the effec-
tiveness of GRADMM in the data-scarce regime.

5.2.2. GENERATING SMALL SYNTHETIC DATA BASED
ON LARGER FINE-TUNING DATA

Next, we consider the case where a relatively large super-
vised fine-tuning data is available, and we generate a smaller
synthetic data to replace the real data to preserve the privacy
of training examples or to improve the training efficiency.

GRADMM outperforms baselines and preserves privacy.
Table 1 compares the performance of fine-tuning on syn-
thetic data generated by GRADMM to that of zero-shot and
few-shot techniques. It also shows the performance of fine-
tuning on subsets of real data selected by herding, K-center,
and Random baselines. We note that among all the methods,
only the synthetic data generated by GRADMM can pre-
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Table 2. Fine-tuning Llama-3.2-1B and OPT-1.3B on 20 synthetic samples generated by matching the gradient of a pretrained Phi.

Model | Dataset | Pretrained | GRADMM | Zero-shot | Few-shot | Herding | K-centers | Random real
SST-2 68.6 894 82.4 79.7 85.4 64.6 88.4
Llama-3.2-1B | Tweet emotions 43.7 85.8 83.4 74.4 76.1 88.5 83.9
Rotten tomatoes 67.5 87.8 80.5 78.5 73.6 87.8 84.3
SST-2 62.3 87.0 83.9 85.6 85.8 73.8 88.7
OPT-1.3B Tweet emotions 43.7 78.5 77.8 76.9 75.3 74.7 71.7
Rotten tomatoes 63.1 87.9 74.9 80.6 80.8 84.8 85.5
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Figure 2. Fine-tuning Phi on synthetic texts generated by GRADMM for SST-2. (a) Normalized last-layer gradient error during fine-tuning
on synthetic data. Data generated by GRADMM yields significantly smaller gradient errors compared to the zero-shot baseline, indicating
closer alignment with real data. (b) L2 embedding distance between GRADMM’s synthetic texts to their closest real training data. (c)
Effect of € on the performance of fine-tuning Phi on GRADMM’s synthetic data.

Table 3. SST-2. Divergence (FID) between the (i) training data
distribution (Train), (ii) distribution of the few available real exam-
ples (Val), (iii) distribution of the 100 GRADMM synthetic data,
(iv) distribution of 100 zero-shot synthetic data (Zero).

#data (Train || Val) (Train || GRADMM) (Train || Zero)
5 71.8 44.2
10 59.8 43.3
20 51.6 39.8 56.0
50 40.8 39.7

serve the privacy of training data. We see that GRADMM
outperforms all the baselines across various datasets and
data sizes, by up to 13.1%. Notably, the synthetic data gen-
erated by GRADMM has a similar perplexity to that of real
data, while having higher perplexity than LLM-generated
synthetic data with zero-shot and few-shot methods. This
confirms the more diverse nature of the synthetic data gen-
erated by GRADMM, compared to LLM generated data.

GRADMM'’s synthetic data transfer to other LLMs. Ta-
ble 2 shows the performance of fine-tuning Llama-3.2-1B
and OPT-1.3B on 20 synthetic examples generated with
GRADMM by matching gradient of a pretrained Phi model.
We see that the data generated by GRADMM outperforms
zero-shot and few-shot methods and the real data selected
by herding and K-center baselines. This confirms the trans-
ferability of the synthetic data generated by GRADMM.

5.3. Analysis

GRADMM yields similar gradient to real data during
fine-tuning. For fine-tune Phi on GRADMM'’s synthetic
data generated from SST-2, Figure 2a illustrates that the

normalized last-layer gradient error, i.e. (||Vo, L(0:) —
Vo, L2(0))/| Ve, L(6:)] at the pretrained parameters is
small, and this relation holds during fine-tuning. Notably,
GRADMM generated data has a much smaller gradient error
than the zero-shot baseline during fine-tuning, corroborating
its superior performance. Similar results for other datasets
and full gradient error can be found in Appendix D.

GRADMM’s synthetic data is close to real data. Table 3
compares (for Figure la) the embedding divergence (in
terms of FID) between the (i) training data distribution,
(ii) the distribution of the few available real examples,
(iii) the distribution of the 100 synthetic data generated
by GRADMM and (iv) the distribution of 100 synthetic data
generated using the zero-shot approach. Our synthetic data
has a smaller FID, confirming that it has a more similar dis-
tribution to that of real training data, compared to baselines.
This corroborates the superior performance of GRADMM.
While the effectiveness of GRADMM depends on the di-
versity of the available real examples, our empirical results
show that a small number of randomly selected examples
can be leveraged to effectively reduce the expected loss.

GRADMM’s synthetic data is yet different from real
data. Figure 2b shows the histogram of the distances of
synthetic examples to their closest real training data. None
of the synthetic examples generated by GRADMM are very
similar to the real training examples, confirming that our
synthetic data is not identical to real examples.

GRADMM preserves privacy. We apply loss-based
MIA (Shokri et al., 2017) to the model fine-tuned on
GRADMM'’s synthetic data generated for SST-2 (Table
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Table 4. SST-2. Matching the gradient of last-layer yields a higher
performance with smaller number of synthetic data. Mapping the
optimized embeddings to text via top-k projection (readable text)
yields 9.2% higher accuracy than Lo projection (unrelated words).

Method Acc #data ppl
GRADMM 90.0 68 52
GRADMM with full grad 89.6 89 55

GRADMM w/o top-k projection  80.8 57 13.3

Table 5. SST-2. Our filtering strategies effectively reduce the size
of synthetic data from 200 to 68 and yield 1.9% higher accuracy.

Method Acc #data ppl
ADMM 88.1 200 4.6
+ Removing wrong labels 894 169 4.6

+ Selecting data with lowest loss 894 100 54
+ Balancing avg loss of categories  90.0 68 5.2

Positive: Great movie review is a must see experi-
ence that will leave you in a state of all time high
with the brilliant acting and the stunning production.
Positive: The movie truly left me completely moved
and in a better place than when I started it because
of its well thought out and impactful way.
Negative: The overall quality of action in this movie
was not impressive enough to keep me away from
the action center.

Negative: Terribly bad and boring to me as a person
who values quality content and a good storyline over
mind.

J

Figure 3. Synthetic examples generated by GRADMM from SST-2.

1). We select N = 100 member samples from the training
data and N non-member samples. Then, we find the
optimal threshold that maximizes the advantages, defined
as 2 x (acc — 50%), on these 2N samples. Finally, we
test loss-based MIA with optimal threshold on another 2NV
samples consisting of N members and N non-members.
Averaged advantage scores over 10 runs (smaller absolute
values indicate better privacy) are —2.5%=+3.3 fore = 0.05
and —2.9% =+ 5.0 for e = co. We see that even our non-DP
version retains strong privacy, performing only slightly
worse than the explicitly differentially private version.

5.4. Ablation study

Generating readable text improves the performance. Ta-
ble 4 shows that mapping the optimized embeddings to text
via top-k projection yields readable synthetic text with low
log-perplexity (ppl). In contrast, synthetic examples gener-
ated via Lo projection have a considerably higher ppl, as
they contain a set of unrelated words. Notably, the top-k pro-
jection yields 9.2% better performance than Ly projection.
This confirms that readability of the generated text is not

only important for interpretation and transferability of the re-
sults, but it is crucial for obtaining satisfactory performance.

Matching last-layer gradient boosts the performance,
memory and speed of generation. Table 4 shows that
matching the gradient of last-layer yields a higher perfor-
mance with smaller number of synthetic data. At the same
time, it reduces the generation memory by 2.6x (from 44.6G
to 17.3G) and reduces the generation time by 2.3x (from 4.6
hours to 2 hours on one H100 GPU).

Filtering improves the performance of synthetic data.
Table 5 shows the effect of the three filtering strategies dis-
cussed in Sec. 4.4 to obtain a subset of at most » = 100
synthetic examples from the 200 synthetic data generated by
ADMM. We observe that (i) removing examples that belong
to the wrong category effectively improves the performance;
(ii) selecting the top » =100 examples with the lowest loss
in every category effectively reduces the size of the syn-
thetic data without harming its performance; (iii) dropping
examples with highest loss in categories that have a larger
average loss further reduces the size of the synthetic data
while improving its performance. The filtering strategies
reduce the size of the synthetic data from 200 to 68, while
yielding 1.9% improvement in the fine-tuning performance.

Effect of . Figure 2c compares the performance of syn-
thetic texts generated with different € values. As expected,
increasing ¢, i.e., relaxing the privacy constraint, generally
leads to better performance. Interestingly, when the number
of validation samples is limited to just 5, the DP version
with € = 4 outperforms the non-DP version (¢ = co0). We
hypothesize that the injected noise may enhance generaliza-
tion during training, consistent with observations from prior
work (He et al., 2021).

Qualitative results. Fig. 3 shows examples of generated
synthetic text by GRADMM from positive and negative
classes of the SST-2. We see that the synthetic data is mean-
ingful and semantically aligns with the target categories.

6. Conclusion

We proposed the first theoretically-rigorous method for gen-
erating privacy-preserving synthetic readable text data by
matching the gradient of real examples from a target task.
We formulated this problem as a discretely constrained non-
convex optimization in the embedding space and applied
the Alternating Direction Method of Multipliers (ADMM)
to iteratively optimizes the embeddings of synthetic exam-
ples to match the noisy target gradient, and map them to a
sequence of text tokens with low perplexity. We proved that
the generated synthetic text can guarantee convergence of
the model to a close neighborhood of the solution obtained
by fine-tuning on real data. Our experiments on various clas-
sification tasks confirmed the effectiveness of GRADMM.
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Impact Statement

This paper proposes a theoretically-rigorous method to gen-
erate synthetic text data for fine-tuning LLMs. This can
improve the privacy and training efficiency, and be applied
to generate synthetic data in scenarios where real data is
expensive or hard to obtain. There are many positive poten-
tial societal consequences of our work, none which we feel
must be specifically highlighted here.
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A. Convergence

First we have the following lemma on the upper-bound of the gradient difference at the end of training:

A.l. Proof of Lemma 4.1
Proof. Let @, be the parameter of the model after ¢ steps of training. Letd = VL£(8;) — V.L£*(6;) and define h : R? — R as
h(@) :=(d, VL) — VL9)).

For a fixed § € R?, the mean value theorem implies that h(0) = h(0y) + (Vh(£),0 — 0) for some ¢ € R? on the line
segment connecting 8 and 8. Using the definition of the function h(-), we obtain

(d, VL) — VL) = (d, VLB — VL () + < (V2L(60) — V>L5(80))d , 6 — 00>
Setting § = 6,, we get
(d,VL(O:) — VL (0:)) = (d, VL) — VL (Bp)) + < (V2L(€) —VviLs(€))d, 6, — 00> (18)

< ld]lz - [[VL@®0) = VL (B0)ll2 + [V2LE) = V2L ()2 - [Id]l2 - |0 — Boll2,  (19)

where in the last line, we used the Cauchy-Schwartz inequality, the inequality ||AB|2 < || A||2||B]|2, and the fact that
d =6, — 6. Plugging the value of d in the LHS of equation 18 and in equation 19, we obtain

IVL(8:) = VL 8:)lI5 < [[VLO:) — VL (B)]l2 - [IVL(B0) — VL (B0) 2
+IVZLE) = V2L (E)ll2 - [[VLO:) — VL (8:)l|2 - 18 — Boll2

Dividing both sides by [|[VL(8;) — VL*(6;)||2 and using the fact that ||[V2L(€) — V2L5(E)]2 < [|[V2L(E)]|2 +
V2L (€)]l2 < 28, we get

IVLO:) = VL 0:)ll2 < [[VLEO0) = VL (Bo) |2+ 2650: — o2 = € + 25, (20)

which completes the proof. ]

A.2. Proof of Theorem 4.2

Next, we prove the convergence of GD on the real data vs synthetic data generated by GRADMM.

Proof. For Lipschitz continuous g and p-PL* condition, gradient descent on the real data yields
L(0041) ~ LO) < 3 lgil]* < —nul(6). @1
and,
L(8:) < (1 —nu)"L(60), (22)
which was shown in (Liu et al., 2020).

For the synthetic data we have

L3(0e1) — £°(8:) < 1 g3 2
By substituting Eq. (20), and assuming £ < ||g;|| we have:
£Or1) — £7(0) < =2 (el - € 4
%mW+ﬁfw@m 25)
< —J(lel + € - 26V) 26)
< g(zuﬁ(ot) + €2 - 2¢V), 27)

—
w
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where V is an upper bound on the norm of g; in Eq. (25), and Eq. (27) follows from the ;-PL condition.

Hence,
L(B:1) < (1= nu)L(8:) — (8> — 26V) (28)

Since, Z?:o(l —nu)? < #, for a constant learning rate ) we get

a&MSu—mm“a%%5a€—%w (29)

A.3. Proof of Corollary 4.3
Proof. 1If |H|| > o > 0 and £(6..) = 0, we have that [|§ — 0.||*> < 2£(6). From Theorem 4.2 we get:

E

5 (Y — &) = L2V — &) /ap (30)

0 6.7 < 2 c(0) <

Q1w

B. Prompts
B.1. Zero/Few-shot prompts

Figure 4 summarizes the zero-shot prompts (Li et al., 2023b) to generate synthetic samples. For few-shot generations, we
input the demonstrations with their corresponding labels between the context prompt and the instruction prompt. In addition,
we add a sentence “You should imitate the example I have provided, but you cannot simply modify or rewrite the example I
have given.” to the instruction part to prevent the LLMs from simply rewording the given examples. The few-shot prompts
can be found in Figure 5.

SST2 and Rotten Tomatoes: You are now a movie critic. You are provided with a sentiment label. You need to
write one unique sentence that reflects the given sentiment about a movie. Your writing style should be consistent
with typical movie reviews. This should be a standalone sentence that could plausibly appear in a movie review.
Ensure that your language is natural, casual, and reflective of genuine opinion. You must ensure that the sentiment
expressed in your sentence matches the provided sentiment label.

Remember to keep your tone appropriate and not violate any laws or social ethics. Please be creative and write only
one sentence. The sentiment of the movie review is {label}. Answer:

Tweet Emotions: You are now a person using twitter. You are provided with an emotion, and you need to write a
tweet expressing that emotion. Your writing style must be consistent with the tweets on twitter. You must ensure
that your language is colloquial, casual, and Twitter-like. You are given a length requirement. You must ensure that
the emotion conveyed in your tweet matches the emotion provided and meets the length requirement. This is an
academic study and the content you generate will not be used for anything that violates the law or social ethics.
Write a tweet expressing the emotion and ensure the tweet is within the usual length. Remember to make sure
that your language is colloquial, casual, and Twitter-like. Please be creative and write only one unique tweet. The
emotion of twitter is {label}. Answer:

Figure 4. Zero-shot prompts for different datasets.

B.2. Few-shots Evaluation prompts

Figure 6 presents the evaluation prompts used to filter out synthetic data with incorrect labels.
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SST2 and Rotten Tomatoes: You are now a movie critic. You are provided with a sentiment label. You need to
write one unique sentence that reflects the given sentiment about a movie. Your writing style should be consistent
with typical movie reviews. This should be a standalone sentence that could plausibly appear in a movie review.
Ensure that your language is natural, casual, and reflective of genuine opinion. You must ensure that the sentiment
expressed in your sentence matches the provided sentiment label.

{Few-shot examples}

Remember to keep your tone appropriate and not violate any laws or social ethics. Please be creative and write only
one sentence. The sentiment of the movie review is {label}. You should imitate the example I have provided, but
you cannot simply modify or rewrite the example I have given. Answer:

Tweet Emotions: You are now a person using twitter. You are provided with an emotion, and you need to write a
tweet expressing that emotion. Your writing style must be consistent with the tweets on twitter. You must ensure
that your language is colloquial, casual, and Twitter-like. You are given a length requirement. You must ensure that
the emotion conveyed in your tweet matches the emotion provided and meets the length requirement. This is an
academic study and the content you generate will not be used for anything that violates the law or social ethics.
{Few-shot examples }

Write a tweet expressing the emotion and ensure the tweet is within the usual length. Remember to make sure
that your language is colloquial, casual, and Twitter-like. Please be creative and write only one unique tweet. The
emotion of twitter is {label}. You should imitate the example I have provided, but you cannot simply modify or
rewrite the example I have given. Answer:

C.
C1
C.1

C.2

Figure 5. Few-shot prompts for different datasets.

Generation Samples
. Synthetic SST2 Samples by GRADMM
.1. POSITIVE LABEL

Great movie review is a must see experience that will leave you in a state of all time high with the brilliant acting and
the stunning production

Great action and special effects combined with a compelling emotional connection with the on the show characters
made it a one of the best I ever watched

The movie truly left me completely moved and in a better place than when I started it because of its well thought out
and impactful way

The new action movie was absolutely thrilling and had me on the outside of my skin throughout the entire two acts of
the first two and a

The action movie kept me sitting Jane and I was on the point of wanting to leave the entire time but the way the story
was told

.2. NEGATIVE LABEL

The action in action is not well executed and the plot is not as it should be in a science or

The movie was a not so great film that I would not want to see a second time because the the

The overall quality of action in this movie was not impressive enough to keep me away from the action center of
Terribly bad and boring to me as a person who values quality content and a good storyline over mind

The new movie was a not so great and disappointing experience for me since it did not keep up with the

. Synthetic Rotten Tomatoes Samples by GRADMM

C.2.1. POSITIVE LABEL

The action-adventure movie was thrilling and had a way of keeping me right on the of the
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The movie was fantastic and thrilling!
Label: positive

I hated the film; it was boring and slow.
Label: negative

What a masterpiece, truly inspiring!
Label: positive

The plot was dull and characters uninspiring.
Label: negative

{Evaluation sample}
Label: positive/negative

C.2

L]

C3.
C.3.

C3

L]

Figure 6. Few-shot evaluation prompts. text indicates the labels predicted by the model.

The suspense in the final act left room for the most important and most thrilling of all parts of the movie
The new ’Innate Robots’ is a must-see for anyone who loves the latest in the field technology
The critically acclaimed action movie “Fast and Far East City” is a work of the highest caliber ever to be made

The action-movie *Ace Driver’ is a *wins’ masterpiece that will leave you feeling ’th

.2. NEGATIVE LABEL
The action level plot of the movie was not up to mark. The use cases were not engaging and the the use of the provided
The movie was terrible. You are writing a one page story set in a world where people can only see the world
The new movie was absolutely not enjoyable. The over-dilting of the water made it a real downer experience
The action-adventure filled movie was a disappointment. The excessive use of the ’t” sound

he quality of the action in Bad Movie is not up to the standard set by the other ’g’ and movie.

Synthetic Tweet Emotions Samples by GRADMM

1. POSITIVE LABEL

I just got a new, high-end phone. It’s got a new

Joyful and sharing a good time with my friends. Life is so much better now
Joy is a feeling that makes you feel like you are on the up and up

I just got a new job working at a local Use of

I am thrilled to be a new member of the twitterhub.

.2. NEGATIVE LABEL
I am so sad today. Sad is the word that I would use to write this
I just received some sad and life news. I can’t believe it. I am so
I am so over it. I can’t even believe it’s over. I can’t
I just received news that my best-loved, and most-licked-at

I just got back from a long day at work. I can’t help
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Figure 7. Data-scarce regime. Generating 100 synthetic samples with GRADMM, based on 5, 10, 20, 50 examples from a target task.
Synthetic data generated based on only 5 real examples outperforms the real data by 8.9% and 12.5% on the two datasets.
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Figure 8. Last-layer gradient differences during fine-tuning on synthetic vs. real data. Data generated by GRADMM yields significantly
smaller gradient errors compared to the zero-shot baseline, indicating closer alignment with real data.
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Figure 9. Full gradient differences during fine-tuning on synthetic vs. real data. Data generated by GRADMM yields significantly
smaller gradient errors compared to the zero-shot baseline, indicating closer alignment with real data.
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Figure 10. L2 embedding distance between GRADMM'’s synthetic texts to their closest real training data in (left) Tweet emotions and
(right) Rotten tomatoes.

17



Synthetic Text Generation for Training Large Language Models via Gradient Matching

D. Additional experiments

Additional datasets. We include two additional datasets namely IMDB (Maas et al., 2011) and Sentence polarity (Pang
& Lee, 2005a) in the setting of Figure 1 in Section 5.2.1. Figure 7 shows the result of applying GRADMM to generate
100 synthetic examples based on only 5, 10, 20, 50 examples randomly selected from the validation data of IMDB and
Sentence polarity. We see that GRADMM successfully generates high-quality supervised fine-tuning data that can train Phi
to a superior performance over that of training on the available validation data. Notably, GRADMM generated synthetic
data based on only 5 real examples outperform the real data by 8.9% and 12.5% on the two datasets. This confirms the
effectiveness of GRADMM in the data-scarce regime.

Last-layer gradient error. Figure 8 demonstrates the normalized last-layer gradient error with respect to real data, i.e.
(IVa, L(0:) — Vo, L5(0:)])/| Ve, L(6:)]|, remains low at the pretrained parameters at the pretrained parameters and
continues to stay low throughout fine-tuning. Notably, the data generated by GRADMM yields a significantly lower gradient
error than the zero-shot baseline during fine-tuning, supporting its better performance.

Full gradient error. Figure 9 shows that the normalized full gradient error with respect to real data, i.e. (||VoL(6;) —
Vo L(01)])/1|VeL(0:)||. While GRADMM only matches the last-layer gradients of real and synthetic samples, we observe
the same trend as that of last-layer gradient error in Figure 8. This reinforces our last-layer argument in Section 4.3.

Embedding distance. Figure 10 presents a histogram of the distances between synthetic examples and their nearest real
training samples. The absence of synthetic examples that are extremely close to real data indicates that GRADMM does not
simply replicate real training instances.
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