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Abstract001

Recent advances in Large Language Models002
(LLMs) have achieved strong performance, yet003
their internal reasoning remains opaque, lim-004
iting interpretability and trust in critical appli-005
cations. We propose a novel Multi-Scale Man-006
ifold Alignment framework that decomposes007
the latent space into global, intermediate, and008
local semantic manifolds—capturing themes,009
context, and word-level details. Our method010
introduces cross-scale mapping functions that011
jointly enforce geometric alignment (e.g., Pro-012
crustes analysis) and information preservation013
(via mutual information constraints like MINE014
or VIB). We further incorporate curvature regu-015
larization and hyperparameter tuning for stable016
optimization. Theoretical analysis shows that017
alignment error, measured by KL divergence,018
can be bounded under mild assumptions. This019
framework offers a unified explanation of how020
LLMs structure multi-scale semantics, advanc-021
ing interpretability and enabling applications022
such as bias detection and robustness enhance-023
ment.024

1 Introduction025

1.1 Background and Motivation026

Large language models (LLMs) such as GPT-027

4 (OpenAI, 2023), LLaMA (Touvron et al., 2023)028

and PaLM (Chowdhery et al., 2022) have achieved029

human-level performance across a range of NLP030

tasks (Brown et al., 2020), yet their growing com-031

plexity renders them opaque and limits trust in032

high-stakes applications like healthcare and fi-033

nance (Bommasani et al., 2021). Prior interpretabil-034

ity efforts—attention visualization (Vig, 2019),035

neuron activation analysis (Gurnee et al., 2023)036

and probing tasks (Tenney et al., 2019)—provide037

layer-specific insights but fail to capture how se-038

mantic information is transmitted and integrated039

across layers (Geva et al., 2023). While studies040

have traced inter-layer information flow (Hahn and041

Jurafsky, 2023; Belinkov and Riedl, 2022), a unify- 042

ing theoretical framework remains absent. 043

Empirical and theoretical work shows that Trans- 044

former representations organize hierarchically: 045

lower layers encode lexical and syntactic details, in- 046

termediate layers capture local semantic relations, 047

and higher layers model global discourse (Zhang 048

et al., 2023; Seo et al., 2023), mirroring stages 049

in human language processing (Friederici, 2011). 050

Manifold-based analyses (Daxberger et al., 2023) 051

and alignment techniques (Wang et al., 2023; Li 052

et al., 2023), grounded in information geome- 053

try (ichi Amari and Nagaoka, 2007) and representa- 054

tion learning principles (Bengio et al., 2013), sug- 055

gest modeling these semantic strata as nested mani- 056

folds. Building on these insights, we propose Multi- 057

Scale Manifold Alignment, a unified framework 058

that learns cross-scale geometric and information- 059

theoretic mappings to analyze and control LLM 060

internals. 061

1.2 Contributions 062

We propose a multi-scale manifold alignment the- 063

ory that provides a unified framework for analyz- 064

ing LLM information processing across semantic 065

scales. Our key contributions include: 066

• Hierarchical Decomposition: We decom- 067

pose LLM hidden spaces into three seman- 068

tic manifolds—global (document-level), in- 069

termediate (sentence-level), and local (word- 070

level)—demonstrating this structure emerges 071

naturally across architectures. 072

• Cross-Scale Alignment: We develop novel 073

mapping functions combining geomet- 074

ric alignment (Procrustes analysis) with 075

information-theoretic constraints (mutual 076

information), enabling precise tracking of 077

information flow. 078

• Theoretical Guarantees: We establish error 079
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bounds for alignment quality using KL di-080

vergence, grounded in information geometry081

principles.082

• Practical Framework: We provide complete083

implementation including layer identifica-084

tion, cross-model adaptation, and optimiza-085

tion strategies, with applications in bias detec-086

tion and robustness enhancement.087

Compared to single-scale approaches, our frame-088

work offers a comprehensive view of LLM infor-089

mation organization, advancing interpretability and090

control.091

The remainder of the paper is organized as fol-092

lows. Section 2 reviews related work. Section 3093

presents the proposed multi-scale manifold align-094

ment framework. Section 4 reports experimental095

results. Section 5 concludes the paper and outlines096

future directions.097

2 Related Work098

2.1 Explainability of Large Language Models099

Understanding the internal mechanisms of large100

language models (LLMs) has become a major re-101

search topic in natural language processing. As102

model scale and complexity grow, developing ef-103

fective interpretability methods is increasingly cru-104

cial.105

2.1.1 Attention Mechanism Analysis106

The attention mechanism of Transformer architec-107

tures offers an intuitive lens on model internals.108

Vig (2019) pioneered visualising attention as an109

explanatory tool, spurring this area of research. Re-110

cently, Sarti et al. (2023) analysed whether atten-111

tion in large language models reflects linguistic112

structure, finding clear correspondence to syntac-113

tic dependency relations. Focusing on the relia-114

bility of attention weights, the Attention Attribu-115

tion method proposed by Chefer et al. (2021) com-116

bines gradients and attention to more accurately117

identify key input components driving model de-118

cisions. The latest work also explores functional119

differences among multi-head attentions: Xie et al.120

(2023) show that distinct attention heads in GPT-3121

and PaLM form specialised clusters responsible for122

particular linguistic tasks.123

2.1.2 Representation Analysis and Probing124

Neural probes allow researchers to detect what in-125

formation is encoded in model representations. Re-126

cently, Meng et al. (2022) introduced a locating- 127

and-extracting method that pinpoints specific neu- 128

rons and attention heads storing knowledge in large 129

language models, markedly improving explain- 130

ability. In representation-space analysis, Li et al. 131

(2023) explored how fine-tuning and prompt learn- 132

ing reshape model topology, finding that even mini- 133

mal fine-tuning can significantly reconfigure repre- 134

sentational geometry. Liu et al. (2023) analysed the 135

“thought process” of LLMs, proposing hidden-state 136

tracing to follow reasoning paths. Notably, Gurnee 137

et al. (2023) recently introduced a representation- 138

space decomposition method that projects hidden 139

states onto specific semantic features, offering a 140

new tool for understanding representation organi- 141

sation. 142

2.1.3 Information-theoretic and Causal 143

Analyses 144

An information-theoretic perspective provides a 145

principled framework for understanding informa- 146

tion flow in language models. Ghandeharioun et al. 147

(2023) proposed PatchScores, which quantifies 148

mechanism importance via causal interventions, 149

revealing how different components contribute to 150

performance. For mutual-information analysis, Xu 151

et al. (2023) introduced a new method that explains 152

compositionality by measuring information trans- 153

fer among components. Hahn and Jurafsky (2023) 154

recently proposed information-trajectory analysis 155

to track how specific information fragments propa- 156

gate through model hierarchies, offering fresh in- 157

sight into inter-layer information exchange. 158

2.2 Multi-scale Representations and 159

Hierarchical Analysis 160

2.2.1 Hierarchical Representation Learning 161

Language is inherently hierarchical—from char- 162

acters to words, syntax, semantics, and discourse. 163

Recent studies show that LLMs form similar hier- 164

archies internally. Zhang et al. (2023) revealed lay- 165

ered representation patterns in Transformers: shal- 166

low layers process word-level features, mid-layers 167

capture syntax, and deep layers integrate semantics. 168

In this area, Seo et al. (2023) demonstrated through 169

large-scale experiments that features extracted at 170

different layers align closely with stages in the tra- 171

ditional NLP pipeline, reflecting a shallow-to-deep 172

processing logic. Singh and III (2023) systemati- 173

cally evaluated hierarchical capability across model 174

sizes, finding that larger models reinforce this hier- 175

archy. 176
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2.2.2 Cross-scale Information Transfer177

Understanding information transfer across rep-178

resentation levels is vital for explaining model179

reasoning. Hernandez et al. (2023) used care-180

ful experimental design to show how information181

flows from shallow to deep layers—from local182

to global—forming a coherent information net-183

work. Recently, manifold alignment has made184

notable progress in cross-modal learning. Wang185

et al. (2023) proposed an alignment framework that186

connects semantic structures across modalities or187

representation spaces, offering valuable ideas for188

aligning different semantic scales.189

2.3 Information Geometry and Manifold190

Theory191

2.3.1 Applications of Information Geometry192

to Neural Networks193

Information geometry offers a rigorous mathe-194

matical framework for analysing neural networks.195

Raghu et al. (2022) pioneered using the Fisher in-196

formation matrix to analyse LLMs, demonstrating197

how pre-training shapes representational geometry.198

In theoretical advances, Gromov–Monge optimal199

transport was applied to representation-space anal-200

ysis by Chuang et al. (2023), providing new met-201

rics for geometric similarity between representa-202

tions—laying a solid foundation for studying map-203

pings among manifolds.204

2.3.2 A Manifold View of Language-model205

Representations206

Viewing language-model representations as mani-207

folds has yielded several breakthroughs. Recently,208

Daxberger et al. (2023) used manifold analysis209

to reveal semantic organisation in representation210

space, finding separable sub-manifolds for different211

concepts. Of particular note, the seminal work of212

Elhage et al. (2022) proposed treating internal rep-213

resentations as nested manifolds, offering theoreti-214

cal tools for feature decomposition and information215

transfer. Grover et al. (2023) further combined the216

manifold view with geometric deep learning, intro-217

ducing methods to analyse curvature and topology218

of embedding spaces.219

2.4 Research Gaps220

Despite rich research on LLM explainability, crit-221

ical gaps remain. First, there is a lack of a uni-222

fied multi-scale theoretical framework. Existing223

studies often focus on a single semantic level224

or merely analyse inter-layer differences; a for- 225

mal framework describing and analysing cross- 226

scale semantic organisation and transfer is missing. 227

Second, there is a separation between geometric 228

and information-theoretic methods. Although geo- 229

metric (distance/structure-based) and information- 230

theoretic (mutual-information/entropy-based) ap- 231

proaches have advanced separately, no framework 232

unifies them. Third, cross-scale mapping mech- 233

anisms remain under-explored. Prior work has 234

not systematically investigated mapping functions 235

across semantic scales—especially how to preserve 236

geometric structure and semantic information si- 237

multaneously. 238

3 Theory and Framework 239

This section develops the theoretical foundation for 240

multi-scale manifold alignment in large language 241

models (LLMs), systematically unifying geometric, 242

information-theoretic, and practical aspects. We 243

first motivate our approach with information geom- 244

etry, then formalize multi-scale semantic decompo- 245

sition, introduce cross-scale mappings, and present 246

the overall optimization framework. 247

3.1 Theoretical Foundations: Multi-Layered 248

Nature of LLM Representations 249

Large language models naturally develop hierar- 250

chical internal representations as a result of both 251

model architecture and the intrinsic layered struc- 252

ture of human language. Attention patterns and 253

hidden feature distributions reveal that each model 254

layer progressively aggregates and abstracts seman- 255

tic information, giving rise to distinct strata in rep- 256

resentation space. 257

In the lens of information geometry, each hid- 258

den state can be viewed as a point in a high- 259

dimensional space, collectively forming a statis- 260

tical manifold—the space of parameterized proba- 261

bility distributions associated with each state. 262

Definition 1 (Statistical Manifold). Given a fam- 263

ily of distributions {p(x | θ)} parameterized by 264

θ ∈ Θ with observed data x ∈ X , the statistical 265

manifold M is the set of all such distributions, each 266

corresponding to a unique representation. 267

The Fisher information matrix gives a Rieman- 268

nian metric for M, quantifying how infinitesimal 269

changes in parameters affect the probability distri- 270
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bution:271

Fij(θ) = Ep(x|θ)

[
∂ log p(x|θ)

∂θi

∂ log p(x|θ)
∂θj

]
.

(1)272

This metric enables us to quantify geometric and se-273

mantic relationships between representations. For274

a small parameter shift dθ, the KL divergence is275

locally quadratic:276

DKL(p(x|θ)∥p(x|θ + dθ)) ≈ 1

2
dθ⊤F (θ)dθ. (2)277

Thus, the representation space of an LLM can be278

understood and analyzed through the lens of Rie-279

mannian geometry, with the Fisher metric capturing280

the structure and sensitivity of its internal represen-281

tations.282

Theorem 1 (Layered Submanifolds). Represen-283

tations at different semantic levels in LLMs form284

nested submanifolds within the statistical manifold,285

each induced by the Fisher information metric and286

corresponding to a specific granularity of semantic287

abstraction.288

3.2 Multi-Scale Semantic Decomposition289

Building on this analysis, we propose that the hid-290

den space of an LLM can be decomposed into three291

interrelated semantic levels: global, intermediate,292

and local semantics.293

• Global semantic level: Encodes macro-level294

features such as document topic, overall sen-295

timent, discourse structure, and writing style.296

This level is typically captured by deep model297

layers and supports the generation of coherent298

and consistent long-form text.299

• Intermediate semantic level: Focuses on300

inter-sentential relationships, logical transi-301

tions, and mid-range contextual dependencies.302

Usually represented in the middle layers, this303

level bridges the global context with local de-304

tails, supporting logical flow and structured305

exposition.306

• Local semantic level: Captures micro-level307

details, including word choice, phrase struc-308

ture, and fine-grained syntax. Primarily han-309

dled by shallow layers, this level determines310

fluency, grammatical correctness, and lexical311

accuracy.312

Although the precise boundaries may vary across 313

architectures, this hierarchical semantic decompo- 314

sition is ubiquitous. In practice, we identify these 315

levels by analyzing attention spans, inter-layer mu- 316

tual information, and diagnostic probing tasks.Each 317

manifold encodes language information at a dis- 318

tinct granularity, enabling both fine-grained and 319

high-level understanding. 320

• Global manifold (MG): Captures document- 321

level semantics, discourse structure, and ab- 322

stract concepts, typically represented by deep 323

layers: 324

MG = {hG ∈ Rd | hG = fG(x1:T , c)}.
(3) 325

• Intermediate manifold (MI ): Encodes 326

paragraph/sentence-level relationships, logi- 327

cal links, and local discourse, often found in 328

middle layers: 329

MI = {hI ∈ Rd | hI = fI(x1:T , c)}. (4) 330

• Local manifold (ML): Focuses on lex- 331

ical/syntactic information and micro-level 332

structure, primarily in shallow layers: 333

ML = {hL ∈ Rd | hL = fL(x1:T , c)}. (5) 334

These manifolds are hierarchically nested: ML ⊂ 335

MI ⊂ MG, with increasing dimensionality kG < 336

kI < kL, reflecting the principle that more abstract 337

representations are often lower-dimensional. 338

Theorem 2 (Emergent Layer Stratification). 339

For deep Transformer models, there exist bound- 340

aries 1 ≤ l1 < l2 ≤ L such that: 341

1. Layers [1, l1] primarily encode local seman- 342

tics (ML); 343

2. Layers (l1, l2] encode intermediate semantics 344

(MI ); 345

3. Layers (l2, L] encode global semantics (MG). 346

These boundaries can be identified by sharp 347

changes in attention span, mutual information be- 348

tween layers, and performance in targeted probing 349

tasks. 350
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Information-Theoretic Perspective. To math-351

ematically characterize information flow and se-352

mantic organization, we use mutual information353

between representations:354

I(h1;h2) =

∫
p(h1, h2) log

p(h1, h2)

p(h1)p(h2)
dh1dh2.

(6)355

For a cross-scale mapping f : h1 7→ h2, we seek356

to maximize target-relevant information while min-357

imizing redundancy:358

max
f

I(h2; y)− βI(h1;h2), (7)359

where y is the target output and β balances reten-360

tion and compression.361

3.3 Cross-Scale Mapping: Bridging Semantic362

Layers363

The central challenge of multi-scale alignment is364

to construct mappings between semantic mani-365

folds that faithfully preserve both geometric struc-366

ture and semantic content. These mappings elu-367

cidate how LLMs transform micro-level details368

into macro-level abstractions, revealing informa-369

tion flow and reasoning processes within the model.370

Definition 2 (Cross-Scale Mapping). We define371

two key mappings: fGI : MG → MI (global to372

intermediate), and fIL : MI → ML (intermedi-373

ate to local). Each mapping consists of a geomet-374

ric component (fgeo), which maintains topological375

relationships and minimizes distortion, and an in-376

formation component (finfo), which maximizes the377

retention of critical semantic information (often378

via mutual information maximization). The overall379

mapping is given by f = fgeo ◦ finfo.380

For practical construction, we offer three real-381

izations of increasing expressiveness: (1) Linear382

projection (solve for W via least squares), (2) Or-383

thogonal mapping (Procrustes analysis to preserve384

distances/angles), and (3) Nonlinear alignment385

(multi-layer neural networks for complex relation-386

ships). The information component may be instan-387

tiated by maximizing mutual information (MINE),388

applying a variational bottleneck (VIB), or enforc-389

ing contrastive learning objectives.390

3.4 Optimization Framework for Alignment391

To achieve robust cross-scale alignment, we pro-392

pose a multi-objective optimization framework393

that balances all desired properties. The total loss394

is defined as: 395

Ltotal =λgeo Lgeo + λinfo Linfo + λcurv Lcurv,

(8)

396

Lgeo = ∥fGI(hG)− hI∥2 + ∥fIL(hI)− hL∥2,
(9)

397

Linfo = − I(hG; fGI(hG))− I(hI ; fIL(hI)),
(10)

398

Lcurv =

∫
M

K2dV ≈
∑
i

K2
i ∆Vi. (11) 399

Here, the hyperparameters λgeo, λinfo, and λcurv 400

control the trade-off among structural preservation, 401

information fidelity, and geometric regularity. 402

Theorem 3 (Bound on Alignment Error). If the 403

mapping functions are Lipschitz-continuous with 404

geometric and information errors bounded by εgeo 405

and εinfo, then the total KL divergence satisfies: 406

DKL(ptrue∥paligned) ≤ C(εgeo + εinfo) (12) 407

where C is a constant depending on the manifold’s 408

dimension and the local Lipschitz constant. 409

3.5 Summary 410

Our framework reveals LLMs’ hierarchical infor- 411

mation processing across lexical, syntactic and dis- 412

course levels, enabling both interpretation and con- 413

trol. Unlike flat approaches, it captures LLMs’ true 414

multi-scale nature, with applications in model opti- 415

mization and safety. 416

4 Experiments 417

This section presents a systematic empirical valida- 418

tion of the multi-scale manifold alignment theory 419

and its practical value. We design three main ex- 420

perimental groups to assess: (1) the existence and 421

architecture-dependence of semantic stratification; 422

(2) the alignment quality and representational im- 423

provements of our multi-scale mapping method; 424

and (3) the effects of interventions and downstream 425

applications. Results confirm the theory’s effec- 426

tiveness and reveal new insights into the internal 427

mechanisms of large language models (LLMs). 428

4.1 Empirical Analysis of Semantic 429

Stratification 430

Models and Experimental Setup. We evaluate 431

representative LLMs with varying architectures,In 432

our experiments, we compare four prominent pre- 433

trained models: GPT-2 (an autoregressive decoder 434
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Figure 1: Multi-Scale Manifold Alignment Framework

with 1.5 B parameters), BERT (a bidirectional en-435

coder with 340 M parameters), RoBERTa (an en-436

hanced encoder with 355 M parameters), and T5437

(an encoder–decoder architecture with 11B param-438

eters). Experiments use 20,000 documents from439

the Brown and Reuters corpora, covering various440

genres and topics. Analyses integrate three met-441

rics: attention span, inter-layer mutual information,442

and functional probing. All experiments are re-443

peated five times with statistically significant re-444

sults (p<0.05).445

Table 1: Semantic Layer Distribution across Models

Model Local Intermediate Global

GPT-2 0–2 (25%) 3–8 (50%) 9–12 (25%)
BERT 0–4 (42%) 5–8 (29%) 9–12 (29%)
RoBERTa 0–4 (42%) 5–8 (29%) 9–12 (29%)
T5 0–2 (50%) 3–4 (33%) 5–6 (17%)

Layer Distribution and Architectural Features.446

As Table 1 shows, autoregressive models (GPT-2)447

devote half their layers to intermediate scales, while448

bidirectional models (BERT/RoBERTa) emphasize449

local processing (>40%). Average attention span450

grows monotonically with depth, mutual informa-451

tion heatmaps show block structure, and probing452

tasks reveal sharp layer specialization. In BERT,453

local layers (0-4) excel at POS tagging (F1=0.77),454

intermediate layers (5-8) peak in sentence relation455

tasks, and global layers (9-12) dominate topic clas-456

sification (accuracy >0.82).457

Stability of Semantic Boundaries. Cross- 458

validation and perturbation tests confirm boundary 459

stability: semantic boundary locations shift 460

minimally (std<0.5 layers) across datasets, input 461

lengths, and injected noise. All three detection 462

methods (attention, mutual information, prob- 463

ing) are consistent, with GPT-2 showing clear 464

boundaries at layers 2→3 (local→intermediate) 465

and 8→9 (intermediate→global); BERT ex- 466

hibits similar breaks at 4→5 and 8→9. Thus, 467

semantic stratification is intrinsic to Transformer 468

architectures. 469

4.2 Cross-Scale Intervention Experiments 470

Intervention Methods and Metrics. We design 471

four intervention types at each scale: (1) translation 472

(h′ = h+∆), (2) amplification/scaling (h′ = αh), 473

(3) Gaussian noise (h′ = h + ϵ), and (4) atten- 474

tion modification. Metrics include lexical diver- 475

sity, sentence count, mean sentence length, max 476

dependency depth, coherence, and sentiment. Each 477

model-scale-intervention is repeated 30 times, with 478

Wilcoxon tests and Cliff’s Delta for effect size. 479

Scale-Specific Response Patterns. Findings (see 480

Table 3) reveal strong scale-specific effects: lo- 481

cal interventions shift lexical choices (δ=+0.342); 482

intermediate interventions alter sentence struc- 483

ture (sentence count +25%, mean length −19%); 484

global interventions impact both lexical diversity 485

(+7.39%) and discourse coherence (δ=−0.238). 486

These patterns confirm functional specialization 487
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across scales.488

Architecture Dependency and Nonlinear Effects.489

GPT-2 is highly sensitive to interventions, BERT490

displays structural robustness, and XLM-R shows491

unique resilience in sentiment. Notably, nonlin-492

ear effects emerge: (1) interventions affect metrics493

asymmetrically, (2) scales interact (weakening one494

can strengthen another), and (3) responses satu-495

rate or reverse at high intervention strengths. This496

demonstrates intricate cross-scale regulatory mech-497

anisms.498

4.3 Evaluation of Multi-Scale Alignment499

Methods500

Ablation and Setup. Our MSMA framework501

combines geometric alignment, information align-502

ment, and curvature regularization. We conduct ab-503

lation with baselines and component removals (see504

Table 2). Adam optimizer, lr=2×10−5, batch=128,505

15 epochs, on GPT-2/BERT.506

Table 2: Ablation Settings

Group Geom. Info. Curv. λgeo λinfo λcurv

baseline × × × 0 0 0
full_msma ✓ ✓ ✓ 0.1 0.1 0.01
no_geo × ✓ ✓ 0 0.1 0.01
no_info ✓ × ✓ 0.1 0 0.01
no_curv ✓ ✓ × 0.1 0.1 0
only_geo ✓ × × 0.1 0 0
only_info × ✓ × 0 0.1 0
only_curv × × ✓ 0 0 0.01

Alignment Quality Results. We report KL di-507

vergence (distributional difference), mutual infor-508

mation, and distance correlation (geometry preser-509

vation) in Table 4. Geometric alignment is crucial510

for structure preservation, information alignment511

for content, and curvature for optimization stability.512

Single components alone are insufficient; multi-513

objective optimization is essential. BERT, under514

MSMA, achieves lower KL than GPT-2, indicating515

a more alignable representation space.516

4.4 Summary517

The experimental results provide comprehensive518

validation for the three central hypotheses of the519

multi-scale manifold alignment theory:Semantic520

Stratification: Large language models sponta-521

neously organize their internal representations into522

local, intermediate, and global semantic layers,523

each exhibiting distinct functional specialization;524

Table 3: Significant Intervention Effects (p<0.05,
|δ|>0.10)

Model Scale Interv. Metric Median ∆% Cliff δ p

GPT-2 Global Amplify LexDiv +7.4 +0.23 0.020
Amplify Coher. 0.00 -0.24 0.007

Inter. Translate LexDiv +6.6 +0.32 0.014
Amplify SentCt +25 +0.24 0.028
Amplify MeanSL -19 -0.27 0.004
Amplify MaxDep -11 -0.20 0.030

Local Amplify LexDiv +7.3 +0.34 0.005
Amplify Sentim -72 -0.21 0.020

BERT Inter. Attn. SentCt 0.00 +0.27 0.003
XLM-R Global Noise Sentim -14 +0.24 0.005

Architecture-Dependent Characteristics: differ- 525

ent model architectures show unique layer distribu- 526

tions and intervention response patterns, reflecting 527

the influence of pre-training objectives and architec- 528

tural design choices; and Benefits of Multi-Scale 529

Alignment: integrating geometric and information- 530

theoretic constraints within multi-scale alignment 531

leads to significant improvements in model per- 532

formance, robustness, and interpretability.Beyond 533

offering a new lens for understanding the inner 534

workings of large language models, the multi-scale 535

manifold alignment theory also provides practical 536

tools for enhancing model capability and reliability. 537

The methods and findings in this study open new 538

pathways for developing more transparent and con- 539

trollable language models, representing an impor- 540

tant step toward trustworthy artificial intelligence. 541

5 Conclusion 542

Key Contributions and Insights. This work 543

presents the Multi-Scale Manifold Alignment 544

(MSMA) framework, a unified theory for interpret- 545

ing and controlling large language models (LLMs) 546

by decomposing their internal representations into 547

local, intermediate, and global semantic manifolds. 548

Our key findings include: 549

• Hierarchical Semantic Organization: LLMs 550

inherently structure their representations into 551

three distinct semantic scales—local (word- 552

level), intermediate (sentence-level), and 553

global (discourse-level)—each governing dif- 554

ferent aspects of language understanding and 555

generation. 556

• Universal Yet Architecture-Dependent: While 557

semantic stratification emerges universally 558

across models (GPT-2, BERT, RoBERTa, T5), 559

the distribution of layers across scales varies 560
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Table 4: Alignment Results (KL: KL-divergence; MI:
Mutual Information; DC: Distance Correlation)

(a) GPT-2

Group KLg→m KLm→l MIg→m MIm→l DCg→m DCm→l

baseline 6955 1.5e4 0.23 0.20 0.97 0.91
full-msma 33 35 1.25 1.49 1.00 1.00
no-curv 39 35 1.35 1.35 1.00 1.00
no-geo 3.4e4 4.2e6 1.29 0.36 0.99 0.97
no-info 57 36 0.80 0.87 1.00 1.00
only-curv 8132 11694 0.24 0.23 0.97 0.90
only-info 5.7e4 5.5e6 1.37 0.38 1.00 0.99
geo-0.1 52 44 0.89 1.08 1.00 1.00
geo-0.2 113 131 0.62 0.78 1.00 1.00
geo-0.3 57 37 1.07 0.80 1.00 1.00
geo-0.4 52 44 0.90 0.74 1.00 1.00
geo-0.5 54 47 0.93 0.84 1.00 1.00
geo-0.6 51 39 0.75 1.07 1.00 1.00
geo-0.7 52 45 0.89 1.09 1.00 1.00
geo-0.8 51 48 0.87 0.84 1.00 1.00
geo-0.9 48 42 1.11 0.79 1.00 1.00
geo-1 70 43 0.92 0.87 1.00 1.00

(b) BERT

Group KLg→m KLm→l MIg→m MIm→l DCg→m DCm→l

baseline 403 3840 0.06 0.13 0.87 0.82
full-msma 0.51 1.29 2.89 2.64 1.00 1.00
no-curv 0.83 1.04 2.79 2.63 1.00 1.00
no-geo 3146 12367 0.03 0.05 0.82 0.86
no-info 0.42 1.30 2.75 2.51 1.00 1.00
only-curv 423 4310 0.07 0.11 0.87 0.86
geo-0.1 0.43 1.61 2.65 2.48 1.00 1.00
geo-0.2 0.49 0.80 2.62 2.64 1.00 1.00
geo-0.3 0.37 0.87 2.55 2.48 1.00 1.00
geo-0.4 0.50 1.59 2.61 2.48 1.00 1.00
geo-0.5 0.70 1.07 2.69 2.48 1.00 1.00
geo-0.6 0.65 0.85 2.67 2.49 1.00 1.00
geo-0.7 0.39 0.75 2.58 2.36 1.00 1.00
geo-0.8 0.39 1.86 2.71 2.50 1.00 1.00
geo-0.9 0.48 0.98 2.67 2.52 1.00 1.00
geo-1 0.50 0.89 2.78 2.53 1.00 1.00
only-info 3008 11534 0.03 0.04 0.86 0.88

with architecture (e.g., autoregressive models561

prioritize intermediate semantics, while bidi-562

rectional models emphasize local features).563

• Alignment Enables Control: Our framework564

successfully bridges semantic scales via ge-565

ometric preservation, information retention,566

and manifold smoothness, achieving near-567

perfect alignment (99% KL reduction, 5–7×568

mutual information gain) and enabling pre-569

cise interventions (e.g., editing lexical choice570

without disrupting coherence).571

• Functional Specialization Proven: Interven-572

tions confirm scale-specific roles—local ma-573

nipulations alter word choice, intermediate574

adjustments reshape sentence structure, and575

global modifications impact both discourse576

and fine-grained features.577

Broader Implications. The MSMA framework578

bridges the gap between theoretical interpretabil-579

ity and practical control in LLMs by elucidating580

cross-scale information flow, enabling three key581

applications: (1) bias mitigation through targeted 582

manifold editing of stereotypical associations, (2) 583

robustness enhancement via curvature-constrained 584

regularization that preserves model stability, and 585

(3) controlled generation with fine-grained manip- 586

ulation of output properties such as formality and 587

discourse coherence. This unified approach trans- 588

forms theoretical insights into actionable model 589

improvement strategies. 590

6 Limitations 591

Despite the significant progress afforded by the 592

Multi-Scale Manifold Alignment (MSMA) frame- 593

work in elucidating the internal mechanisms of 594

large language models, several limitations remain. 595

First, the computational cost of MSMA is substan- 596

tial: estimating mutual information and manifold 597

curvature across every layer of models with hun- 598

dreds of billions of parameters (e.g., GPT-4, PaLM) 599

demands considerable resources. Second, the se- 600

mantic boundaries we detect may blur in architec- 601

tures that employ hybrid or sparse attention mecha- 602

nisms, necessitating tailored boundary-detection 603

strategies for non-standard designs. Third, al- 604

though our experiments used general-purpose text 605

corpora, the layerwise semantic organization may 606

differ in highly specialized domains (e.g., medi- 607

cal or legal texts) or in fine-tuned models, calling 608

for cross-domain validation and adaptation of the 609

framework. 610

Moreover, our theoretical analysis relies on sim- 611

plifying assumptions—such as Markovian transi- 612

tions and conditional independence among repre- 613

sentation scales—that hold only approximately in 614

practice, especially in the presence of residual con- 615

nections and cross-attention. We have not yet es- 616

tablished a direct correspondence between model 617

representations and human cognitive processes; in- 618

tegrating insights from neuroscience and psycholin- 619

guistics could strengthen this link. In our interven- 620

tion studies, we observed that effect sizes some- 621

times attenuate or behave non-linearly over long 622

generation sequences, a dynamic phenomenon not 623

fully captured by the current theory. 624

Finally, while we evaluated alignment quality 625

using KL divergence, mutual information, and 626

distance-based metrics, these measures may not 627

fully reflect the richness of semantic content or 628

downstream task performance. Likewise, exist- 629

ing visualization tools struggle to convey high- 630

dimensional structure to non-technical audiences. 631
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Developing more comprehensive evaluation met-632

rics and interactive visual interfaces will be critical633

for broadening MSMA’s applicability and inter-634

pretability.635
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Research Questions: We test three central hy- 841
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form identifiable local/intermediate/global seman- 844
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10



objectives influence these scales? (3) Do targeted846

interventions yield the scale-specific effects pre-847

dicted by MSMA?848

A.1.1 Models849

We evaluate representative large language models850

as shown in Table 5:851

Table 5: Evaluated models.

Model Architecture Params Pretrain
Objec-
tive

GPT-2 Autoregressive Decoder 1.5B Next-
token
Predic-
tion

BERT Bidirectional Encoder 340M Masked
LM

RoBERTa Enhanced BERT Encoder 355M Dynamic
Masked
LM

T5 Encoder–Decoder 11B Sequence-
to-
Sequence

A.1.2 Data Resources852

We construct a balanced corpus of 20,000 samples853

from three sources (Table 6):854

Table 6: Corpus composition and average sample length.

Source # Samples Avg. Length (tokens)

Brown (15 genres) 6,667 293.5
Reuters (8 topics) 6,667 318.2
GPT-2 academic synth 6,666 352.8

Brown: 15 genres, classic written English;855

Reuters: 8 topic categories, global news; GPT-856

2: Academic-style synthetic documents generated857

from 68 field prompts and manually filtered for858

quality.859

A.1.3 Feature Hierarchies860

Global: Genre, source, LDA topic, stylistic mark-861

ers.862

Intermediate: Mean sentence length, clause count,863

lexical complexity, topic coherence.864

Local: Token length variance, function word ratio,865

POS/dependency distribution, sentiment score.866

A.1.4 Scale Identification Methods867

• Attention Patterns: Compute mean span868

d
(ℓ)
attn = 1

H

∑
h

∑
i,j Ai,j |i − j| and entropy869

H
(ℓ)
attn.870

(a) Mean attention span by layer across models.

(b) Attention span distance heatmap.

(c) Attention entropy by layer.

Figure 2: Comprehensive attention profile analysis for
four Transformer models: (a) Layerwise mean attention
span, (b) Attention span heatmap, (c) Entropy of atten-
tion by layer.

• Representation Similarity: KL divergence, 871

mutual information (k-NN, PCA to 50D). 872

• Probing Tasks: Layerwise SVMs 873

for POS/dependency (local), next- 874

sentence/paragraph (intermediate), 875

topic/genre (global). 876

• Voting Integration: Sscale = 0.4Probe + 877

0.4Attn + 0.2MI, followed by continuity 878

smoothing. 879

A.2 Layered Structure Revealed by Attention 880

Patterns 881

Fig. 2b(a) shows the mean attention span by layer. 882

In GPT-2, span rises from 12.5 (layer 0) to 36.2 883

(layer 12), clustering as local (0–2, median <15), 884
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(a) Mutual Information across models.

(b) KL divergence across models.

Figure 3: Comparative analysis of information metrics:
(a) mutual information and (b) KL divergence for differ-
ent Transformer models.

intermediate (3–8, 15–30), global (9–12, >30).885

BERT/RoBERTa show a smooth span rise, from886

17.3 (layers 0–4) to above 30 (layers 9–12). T5 (six887

layers) exhibits clear separation: encoder spans888

grow from 12.4 to 27.8; decoder from 14.2 to 31.5.889

Spearman correlations (span vs. depth) all exceed890

0.85 (p < 0.01), confirming span as a semantic891

scale indicator.892

Fig. 2c(b) plots attention entropy per layer. GPT-893

2 shows a “U-shaped” curve: peak entropy in894

layers 0–1, sharp drop at 7, then global expan-895

sion. BERT/RoBERTa have entropy dips in 5–8,896

matching intermediate layers. T5’s curve is flat-897

ter but shows encoder dip. These profiles confirm898

model-specific functional hierarchies as predicted899

by MSMA.900

(a) Probing performance result across models.

(b) Probing performance by layer across models.

Figure 4: Comparative analysis of probing performance:
(a) overall results across models, (b) results by layer.

A.3 Representation Similarity Confirms 901

Semantic Boundaries 902

Fig. 3a(b): Layerwise KL divergence for each 903

model, with light colors (low KL) marking high 904

similarity, dark (high KL) marking sharp tran- 905

sitions. GPT-2 shows three clear blocks (lo- 906

cal/intermediate/global): KL jumps from 9.1 to 907

19.6 (layers 2→3), and from 6.7 to 17.9 (8→9). 908

BERT and RoBERTa display similar boundaries. 909

All jumps are significant (Z > 2.0, p < 0.01). 910

Fig. 3(a): Layerwise MI, quantifying shared in- 911

formation. BERT’s MI matrix forms three modules 912

{0–4, 5–8, 9–12}, with within-module MI ∼40% 913

higher than between-module MI. RoBERTa/T5 are 914

similar; GPT-2’s MI estimates are noisier but con- 915

sistent with its KL blocks. These results confirm 916

three functional modules per model. 917

A.4 Probing Tasks Validate Functional 918

Specialization 919

Fig. 4a(a) shows layerwise probing. BERT exhibits 920

three regimes: layers 0–4 excel on local tasks (F1 921

rises 0.18→0.77), 5–8 peak on intermediate, 9– 922

12 on global (acc. >0.82). GPT-2 achieves near- 923

perfect local F1 (∼0.99), but lower global accu- 924
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racy (∼0.53), reflecting its autoregressive nature.925

RoBERTa and T5 show architecture-specific strat-926

ification. Across all models, probing peaks align927

closely with attention/MI boundaries, verifying that928

each semantic scale fulfills its predicted function.929

A.5 Intervention Experiments930

We test MSMA’s causal predictions by perturb-931

ing hidden representations at three scales (lo-932

cal/intermediate/global) in each model, using:933

Translation (h′(ℓ) = h(ℓ) +∆), Scaling (h′(ℓ) =934

αh(ℓ)), Noise (h′(ℓ) = h(ℓ) + ϵ, ϵ ∼ N (0, σ2I)),935

Attention modification (A′(ℓ,h)
i,j = fatt(A

(ℓ,h)
i,j )).936

We measure effects on: lexical diversity, sentence937

count, mean sentence length, max dependency938

depth, coherence, and sentiment.939

A.5.1 Statistical Analysis940

Each model–scale–intervention is repeated 30941

times (over 5,000 samples). We use Wilcoxon942

signed-rank tests (p < 0.05, FDR-corrected) and943

Cliff’s delta (small effect |δ| > 0.147). Bootstrap944

(1,000), leave-one-out, and power analysis confirm945

robustness.946

Note: *p<0.05, **p<0.01 (FDR). Cliff’s delta:947

+=increase, −=decrease.948

A.5.2 Intervention Effect Analysis949

Multi-dimensional interventions reveal unique re-950

sponses by architecture. GPT-2 shows marked lexi-951

cal sensitivity: local scaling gives largest diversity952

effect (δmax = +0.342, p < 0.01); global scal-953

ing increases diversity by +7.39% but reduces co-954

herence (δ = −0.238). Intermediate translation955

increases diversity +6.60%, scaling increases sen-956

tence count +25%, and shortens mean sentence957

length −19%. All are as MSMA predicts: local958

controls lexicon, intermediate controls sentence959

structure, global controls discourse. Even small960

perturbations shift GPT-2’s output, showing its au-961

toregressive nature and reliance on precise repre-962

sentations.963

In contrast, BERT is structurally rigid: only sen-964

tence count responds (δ = +0.269, p < 0.01),965

while other metrics stay constant, reflecting sta-966

ble bidirectional encoding. XLM-R is sentiment-967

robust—global noise shifts sentiment by −13.6%968

(δ = +0.243), compared to GPT-2’s −70%: mul-969

tilingual pre-training yields more abstract, noise-970

resistant representations.971

Perturbation effects are directionally asymmet-972

ric: scaling can have opposing effects within a met-973

ric (e.g., global scaling increases diversity, lowers 974

syntactic complexity); scaling down at one scale 975

can enhance another’s properties; increasing at- 976

tention may suppress some attributes, revealing 977

nonmonotonic attention-content relationships. 978

Across all models, we confirm MSMA’s five 979

core predictions: scale-specific effects (e.g., lo- 980

cal diversity δ = +0.342, intermediate structure 981

δ = +0.239, global coherence δ = −0.238); 982

architecture-dependent sensitivity; nonlinear satu- 983

ration and cross-scale interaction; directional asym- 984

metry; and consistent local-to-global hierarchy. 985

These convergent findings validate MSMA as an 986

explanatory and predictive framework for Trans- 987

former language generation. 988

A.6 MSMA Method Implementation Details 989

We detail implementation and hyperparameters for 990

multi-scale manifold alignment. The process is 991

multi-stage: first, semantic boundaries are detected; 992

next, cross-scale mappings are constructed and op- 993

timized. 994

A.6.1 Layer Identification Algorithm 995

We employ an ensemble approach, integrating at- 996

tention, mutual information, and probing evidence. 997

For model M with L layers: 998

B Multi-Scale Manifold Alignment 999

Theory Proofs 1000

This appendix provides the complete mathemati- 1001

cal proofs for the multi-scale manifold alignment 1002

theory. Proofs are organized into six main parts: in- 1003

formation geometry preliminaries, KL divergence 1004

upper bound, mutual information lower bound, lo- 1005

cal convergence, mapping implementation, and hi- 1006

erarchical Markov properties with error decompo- 1007

sition. 1008

B.1 Preliminaries and Assumptions 1009

B.1.1 Information Geometry and Statistical 1010

Manifolds 1011

Definition B.1.1 (Statistical Manifold). Given a 1012

family of probability distributions {p(x|θ)} param- 1013

eterized by θ ∈ Θ, with x ∈ X , the statistical 1014

manifold M is defined as: 1015

M = {p(x|θ) : θ ∈ Θ} 1016

Definition B.1.2 (Fisher Information Matrix). For 1017

p(x|θ), the Fisher information matrix is: 1018

gij(θ) = Ep(x|θ)

[
∂ log p(x|θ)

∂θi

∂ log p(x|θ)
∂θj

]
1019
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Table 7: Significant intervention effects across models (p < 0.05, |δ| > 0.10). Median changes (%) are relative to
baseline.

Model Scale Intervention Metric Median Change (%) Cliff’s δ p-value Sig.

GPT-2 Global Scale up Lexical diversity +7.39 0.232 0.020 *
GPT-2 Global Scale up Coherence score 0.00 −0.238 0.007 **
GPT-2 Global Scale down Lexical diversity +6.78 0.272 0.017 *
GPT-2 Intermed. Translate Lexical diversity +6.60 0.316 0.014 *
GPT-2 Intermed. Scale up Sentence count +25.00 0.239 0.028 *
GPT-2 Intermed. Scale up Mean sent. length −19.04 −0.266 0.004 **
GPT-2 Intermed. Scale up Max dep. depth −11.11 −0.203 0.030 *
GPT-2 Intermed. Scale down Lexical diversity +5.84 0.211 0.016 *
GPT-2 Intermed. Scale down Max dep. depth −11.11 −0.192 0.037 *
GPT-2 Intermed. Attn Lexical diversity +4.55 0.195 0.028 *
GPT-2 Intermed. Attn Sentiment score −80.09 −0.246 0.004 **
GPT-2 Local Translate Coherence score 0.00 −0.180 0.020 *
GPT-2 Local Scale up Lexical diversity +7.27 0.342 0.005 **
GPT-2 Local Scale up Sentiment score −71.84 −0.206 0.020 *
GPT-2 Local Scale down Lexical diversity +5.62 0.276 0.015 *
GPT-2 Local Scale down Coherence score 0.00 −0.180 0.037 *
BERT Global Noise Sentence count 0.00 0.154 0.046 *
BERT Intermed. Translate Sentence count 0.00 0.154 0.033 *
BERT Intermed. Attn Sentence count 0.00 0.269 0.003 **
XLM-R Global Noise Sentiment score −13.58 0.243 0.005 **
XLM-R Intermed. Scale up Sentiment score −1.03 0.104 0.046 *
XLM-R Local Attn Sentiment score −10.79 0.149 0.043 *

The Fisher matrix induces a Riemannian metric1020

on M, enabling distances, geodesics, and curva-1021

ture. For infinitesimal dθ, the KL divergence is1022

locally quadratic:1023

Lemma B.1.1. For parameter θ and small dθ,1024

DKL(p(x|θ)∥p(x|θ+dθ)) =
1

2
dθT g(θ)dθ+O(∥dθ∥3)1025

Proof sketch. By Taylor expansion and1026

Ep(x|θ)

[
∂ log p(x|θ)

∂θi

]
= 0, this follows from1027

the Fisher matrix definition and KL divergence1028

Taylor expansion.1029

B.1.2 Multi-Scale Representation in1030

Transformers1031

Assumption B.1.1 (Representation Hierarchy).1032

For a Transformer with L layers, there exist 1 ≤1033

l1 < l2 ≤ L such that:1034

• Layers [1, l1]: local semantics, manifold ML1035

• Layers (l1, l2]: intermediate, MI1036

• Layers (l2, L]: global, MG1037

Assumption B.1.2 (Hierarchical Information1038

Flow). Information primarily flows ML →1039

MI → MG, with local computation at each layer,1040

consistent with residual-based Transformer design1041

and confirmed experimentally.1042

Assumption B.1.3 (Conditional Independence). 1043

Given hG, intermediate representation hI is condi- 1044

tionally independent of unrelated factors; likewise, 1045

given hG and hI , local hL is conditionally inde- 1046

pendent: 1047

p(hI |hG, z) ≈ p(hI |hG), p(hL|hG, hI , z) ≈ p(hL|hG, hI)1048

where z denotes external nuisance variables. 1049

B.2 Proof of KL Divergence Upper Bound 1050

Consider mappings fGI (global-to-intermediate) 1051

and fIL (intermediate-to-local). 1052

Lemma B.2.1 (Local Mapping Error Decomposi- 1053

tion). For fGI , total error decomposes as: 1054

EG→I = Egeo
G→I + E info

G→I 1055

with Egeo
G→I = ∥fGI(hG) − hI∥2, E info

G→I = 1056

DKL(p(hI |hG)∥p(fGI(hG)|hG)). 1057

Proof sketch. By the chain rule of KL and Fisher 1058

norm local approximation, as in Lemma A.1, the to- 1059

tal error splits into a geometric and an information- 1060

theoretic part. 1061

Assumption B.2.1 (Lipschitz Continuity). Map- 1062

pings fGI , fIL are Lipschitz: ∥fGI(h
1
G) − 1063

fGI(h
2
G)∥ ≤ LGI∥h1G − h2G∥, and similarly for 1064

fIL. 1065
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Algorithm 1: Semantic Boundary Detec-
tion
Input: Model M , number of layers L, test

corpus D
Output: Boundaries l1

(local→intermediate), l2
(intermediate→global)

for each layer l ∈ {1, . . . , L} do
Compute mean attention span Sl;

for each l ∈ {1, . . . , L− 1} do
Compute difference ∆Sl = Sl+1 − Sl;

for each pair (i, j) of layers do
Compute mutual information Iij ;

Build MI matrix I;
for each layer l and each task t do

Evaluate task accuracy P t
l ;

Compute gradient ∇P t
l = P t

l+1 − P t
l ;

for each l do
Compute boundary score

Bl = α∆Sl + β∆Il + γ
∑

twt∇P t
l ;

Identify two highest Bl as boundaries l1, l2;
Parameters: α = 0.4, β = 0.4, γ = 0.2,

wt is task-specific weight.
Apply smoothing and 5-fold

cross-validation for stability;

Theorem B.1 (KL Divergence Upper Bound). Un-1066

der the above, for true and aligned distributions,1067

DKL(ptrue∥paligned) ≤ C(εgeo + εinfo)1068

where εgeo, εinfo sum geometric and information1069

errors; C depends on manifold dimension and Lip-1070

schitz constants.1071

Proof sketch. Apply KL chain rule, triangle in-1072

equality, error propagation under Lipschitz con-1073

tinuity, and Lemma A.2 to bound each mapping’s1074

KL by geometric and information terms.1075

B.3 Mutual Information Lower Bound1076

B.3.1 MINE and VIB Variational Bounds1077

Theorem B.2 (MINE Lower Bound). For X,Y ,1078

I(X;Y ) ≥ EpXY [Tϕ(x, y)]− logEpXpY [e
Tϕ(x,y)]1079

with Tϕ a neural network. (Proof: Donsker-1080

Varadhan representation for KL divergence.)1081

Theorem B.3 (VIB Lower Bound). Given encoder1082

p(z|x),1083

I(X;Z) ≥ Ep(x)p(z|x)[log q(z|x)]−Ep(z)[log q(z)]1084

where q(z|x), q(z) are variational approximations. 1085

(Proof: KL non-negativity and standard VIB deriva- 1086

tion.) 1087

B.3.2 Information Preservation in Cross-Scale 1088

Mapping 1089

Theorem B.4 (Mutual Information Preserva- 1090

tion). Minimizing information loss Linfo = 1091

−I(hG; fGI(hG))− I(hI ; fIL(hI)) ensures: 1092

• Conditional entropy H(hG|fGI(hG)), 1093

H(hI |fIL(hI)) minimized; 1094

• Critical information for predicting y is pre- 1095

served across mappings. 1096

Proof sketch. By mutual information defini- 1097

tion, maximizing I(hG; fGI(hG)) minimizes 1098

H(hG|fGI(hG)). Data-processing inequality 1099

shows I(hG; y) ≥ I(fGI(hG); y); minimizing 1100

their difference ensures fGI(hG) preserves hG’s 1101

information about y. 1102

B.4 Proof of Local Convergence 1103

B.4.1 Existence of Local Minimum 1104

Theorem B.5 (Existence of Local Minimum). 1105

For total loss Ltotal = λgeoLgeo + λinfoLinfo + 1106

λcurvLcurv, if Ltotal is smooth with bounded sec- 1107

ond derivatives, stochastic gradient descent with 1108

proper step size converges to a local minimum with 1109

high probability. 1110

Proof sketch. By standard stochastic optimization 1111

analysis: for parameter θt, learning rate ηt = 1112

η0/
√
t, bounded gradient variance, and Lipschitz 1113

gradients, we have 1114

E[∥∇θLtotal(θ̄T )∥2] → 0 as T → ∞. 1115

1116

B.4.2 Effect of Curvature Regularization 1117

Theorem B.6 (Stability of Curvature Regular- 1118

ization). The curvature regularization Lcurv = 1119∫
MK2dV improves loss landscape smoothness 1120

and bounds total alignment distortion by control- 1121

ling the maximum curvature Kmax via λcurv. 1122

Proof sketch. By Rauch comparison, for points 1123

p, q ∈ M with geodesic γ, 1124

d(f(p), f(q)) ≤ d(p, q) exp

(∫
γ
K(s)ds

)
. 1125
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Cauchy-Schwarz gives1126

|
∫
γ
K(s)ds| ≤ L1/2

(∫
M

K2dV

)1/2

1127

where L is geodesic length. Thus, minimizing1128

Lcurv tightens distortion bounds and improves con-1129

vergence by conditioning the Hessian.1130

Curvature regularization is especially important1131

for generalization and stability in cross-scale map-1132

ping, as demonstrated by smoother training curves1133

and improved robustness.1134

B.5 Proof of Mapping Function1135

Implementation (Continued)1136

Corollary A.1 (MINE Implementation). Us-1137

ing the MINE framework, information mapping1138

is achieved by maximizing:1139

max
θ,ϕ

Ep(hG,finfo(hG;θ)) [Tϕ(hG, finfo(hG; θ))]1140

− logEp(hG)p(finfo(hG;θ))

[
eTϕ(hG,finfo(hG;θ))

]
1141

where Tϕ is a neural network estimator for mutual1142

information.1143

Proof: This is a direct application of Theorem A.2,1144

using MINE’s variational lower bound with our1145

representations and mappings. Both θ and ϕ are1146

optimized jointly to preserve maximal information.1147

□1148

B.6 AHierarchical Markov Properties and1149

Error Decomposition1150

Theorem A.9 (Hierarchical Markov Property).1151

Suppose the joint distribution of Transformer rep-1152

resentations decomposes as:1153

p(hG, hI , hL|C) = p(hG|C) · p(hI |hG, C) · p(hL|hI , hG, C)1154

where C is the context. Then, given hG, hI is con-1155

ditionally independent of irrelevant factors; simi-1156

larly, given hG, hI , hL is conditionally independent1157

of other factors.1158

Proof: By information-theoretic conditional inde-1159

pendence and the hierarchical processing structure,1160

information mainly flows along layers, with each1161

abstracting its input.1162

For irrelevant factors Z,1163

I(hI ;Z|hG) = H(hI |hG)−H(hI |hG, Z) ≈ 01164

since hG is an information bottleneck; thus, Z con-1165

tributes little to hI . Similarly, I(hL;Z|hG, hI) ≈1166

0. Hence, the Markov structure enables decompo- 1167

sition into local mappings, simplifying alignment. 1168

□ 1169

Theorem A.10 (Error Accumulation Theo- 1170

rem). Let mapping errors at each level be εG, εI , 1171

εL. Under the hierarchical Markov assumption, 1172

total KL divergence error is: 1173

Etotal ≈ εG + εI + εL 1174

Proof: Consider the total mapping KL error: 1175

Etotal = DKL(p(hG, hI , hL)∥p(hG, fGI(hG), fIL(fGI(hG))))1176

By the chain rule and Markov property: 1177

Etotal = DKL(p(hG)∥p(hG)) 1178

+ EhG
[DKL(p(hI |hG)∥p(fGI(hG)|hG))] 1179

+ EhG,hI
[DKL(p(hL|hG, hI)∥p(fIL(hI)|hI))] 1180

The first term is 0, the second is εG, and the third 1181

simplifies to εI by conditional independence. Error 1182

from fGI propagates through fIL, but is bounded 1183

by Lipschitz continuity, and can be absorbed into 1184

εL. Hence, total error is approximately additive. □ 1185

B.7 Theoretical Summary and Discussion 1186

Main Results Our theoretical analysis yields: 1187

• KL upper bound (Thm. A.1): Alignment KL 1188

error is bounded by a weighted sum of geo- 1189

metric and informational errors, supporting 1190

multi-objective optimization. 1191

• Mutual information preservation (Thm. A.4): 1192

Maximizing mutual information ensures that 1193

critical semantic information for prediction is 1194

retained across scales. 1195

• Local convergence (Thm. A.5, A.6): Multi- 1196

objective optimization converges locally; cur- 1197

vature regularization improves stability. 1198

• Optimal mapping construction (Thm. A.7, 1199

A.8): Theoretically optimal constructions for 1200

geometric and information mappings, with 1201

practical implementation. 1202

• Error decomposition (Thm. A.10): Under the 1203

Markov structure, total error decomposes into 1204

the sum of scale-wise mapping errors. 1205

These provide a rigorous mathematical foundation 1206

for multi-scale manifold alignment. 1207

Key Assumptions and Limitations Our proofs 1208

rely on several key assumptions: 1209

16



• Lipschitz continuity: Assumed for mappings,1210

usually satisfied locally for neural networks,1211

reinforced via regularization and gradient clip-1212

ping.1213

• Hierarchical Markov assumption: Condi-1214

tional independence is assumed; real models1215

may have residual dependencies, but experi-1216

ments show the approximation is sufficiently1217

accurate.1218

• Curvature regularization: The choice of λcurv1219

is crucial. Over-regularization may cause un-1220

derfitting, under-regularization may not im-1221

prove stability. Empirically, we tune this via1222

validation.1223

Future work may relax these assumptions or extend1224

the theory to richer dependency structures.1225

Experimental Correspondence Our theoretical1226

predictions closely match empirical results:1227

• KL divergence scales linearly with geomet-1228

ric/information errors (Thm. A.1); full1229

MSMA (multi-objective) outperforms single-1230

objective baselines.1231

• Curvature regularization improves optimiza-1232

tion stability, especially early in training.1233

Methods without it show higher oscillation.1234

• Different architectures exhibit varying hierar-1235

chical boundaries and mappings, but all are1236

consistent with the basic Markov structure,1237

explaining MSMA’s robustness.1238

B.8 Automatic Detection of Hierarchical1239

Boundaries1240

We provide a practical algorithm to detect semantic1241

hierarchy boundaries, critical for applying MSMA.1242

Algorithm A.1 (Semantic Boundary Detection):1243

1. Input: Model M with L layers, corpus D.1244

2. Compute attention span: For each layer l, cal-1245

culate mean span Sl and difference ∆Sl =1246

Sl+1 − Sl.1247

3. Compute inter-layer mutual information: For1248

each pair (i, j), compute Iij and construct the1249

matrix I .1250

4. Functional probing: For each l, evaluate lin-1251

guistic task accuracy P t
l and compute perfor-1252

mance gradient ∇P t
l = P t

l+1 − P t
l .1253

5. Boundary integration: Integrate evidence into 1254

a boundary score Bl = α∆Sl + β∆Il + 1255

γ
∑

twt∇P t
l . Identify two peaks as bound- 1256

aries l1, l2. 1257

6. Output: Boundaries l1 (local→intermediate) 1258

and l2 (intermediate→global). 1259

This robustly identifies semantic boundaries for 1260

subsequent manifold alignment. Experiments show 1261

this ensemble method is more reliable than any 1262

single metric. 1263

B.9 Conclusion 1264

This appendix gives a complete mathematical foun- 1265

dation for multi-scale manifold alignment, from 1266

information geometry to KL bounds, mutual infor- 1267

mation preservation, and error decomposition. Our 1268

results support the main paper’s conclusions and 1269

provide new theoretical insights. 1270

Key innovations include: (1) explicit KL connec- 1271

tion to geometric/information errors; (2) proof of 1272

mutual information retention across mappings; (3) 1273

theoretical role of curvature regularization; (4) how 1274

hierarchical Markov structure enables error decom- 1275

position. These results are consistent with experi- 1276

ments, validating MSMA as a unified and broadly 1277

applicable LLM interpretability framework. 1278

C Experimental Setup and Analysis for 1279

Multi-Scale Alignment Methods 1280

C.1 MSMA Model Architecture 1281

The Multi-Scale Semantic Alignment (MSMA) 1282

framework integrates hierarchical feature extrac- 1283

tion with joint optimization, consisting of three 1284

main components: 1285

Local Layers: Shallow Transformer blocks cap- 1286

ture token-level semantics and syntactic patterns, 1287

mainly handling lexical choice, part-of-speech fea- 1288

tures, and local dependencies, laying the founda- 1289

tion for higher-level semantic abstraction. 1290

Intermediate Layers: These model phrase- 1291

level compositionality via mid-depth attention 1292

mechanisms, focusing on inter-sentence relations, 1293

logical transitions, and local discourse structure, 1294

thereby connecting micro-level word features to 1295

macro-level topics. 1296

Global Layers: Deep Transformer modules ag- 1297

gregate document-level context, handling topic con- 1298

sistency, discourse structure, and global stylistic 1299

coherence, ensuring overall textual fluency. 1300
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Each scale produces a semantic vector by mean1301

pooling and layer aggregation, reflecting the em-1302

pirical disentangling of information observed in1303

intervention studies.1304

Parallel classifiers operate on hierarchical repre-1305

sentations:1306

Global: fglobal : Rhidden_size → R62 (softmax)1307

Intermediate: fmid : Rhidden_size → R3 (softmax w/ temperature)1308

Local: flocal : Rhidden_size → R3 (label smoothing)1309

The joint classification loss combines weighted1310

cross-entropy:1311

Lcls =
1

3

(
H(yglobal, ŷglobal)+H(ymid, ŷmid)+H(ylocal, ŷlocal)

)
1312

where H denotes cross-entropy, and y, ŷ are ground1313

truth and predictions. This encourages the model1314

to learn effective representations at all semantic1315

scales.1316

C.2 Semantic Alignment Optimization1317

Three complementary methods are used in MSMA,1318

each targeting a different aspect of alignment:1319

Geometric Alignment. Enforces structural con-1320

sistency by minimizing the Euclidean dis-1321

tance between representations at different scales.1322

For global-to-intermediate mapping fGI and1323

intermediate-to-local mapping fIL:1324

Lgeo = ∥fGI(hG)− hI∥2 + ∥fIL(hI)− hL∥21325

Both linear (least-squares) and nonlinear (MLP)1326

mappings were explored; linear suffices in most1327

cases.1328

Information Alignment. Maximizes mutual in-1329

formation (MI) between source and mapped repre-1330

sentations:1331

Linfo = −I(hG; fGI(hG))− I(hI ; fIL(hI))1332

MI is estimated via MINE:1333

I(X;Y ) ≈ Ep(x,y)[Tθ(x, y)]−logEp(x)p(y)[e
Tθ(x,y)]1334

where Tθ is a neural network scoring joint vs.1335

marginal samples.1336

Curvature Regularization. Penalizes high-1337

curvature regions on the representation manifold1338

for smoother optimization:1339

Lcurv =

∫
M

K2dV ≈
∑
i

K2
i ∆Vi1340

K is Riemannian curvature; computed via finite 1341

differences in practice. 1342

The regularization coefficients λgeo = 0.1, 1343

λinfo = 0.1, λcurv = 0.01 are tuned by grid 1344

search. Empirically, geometric alignment is most 1345

critical for output quality, so λgeo was varied in 1346

{0.1, 0.2, . . . , 1.0} for further study. 1347

C.3 Ablation Setup 1348

Default configuration uses Adam (lr=2e−5), batch 1349

size 128, 15 epochs, with the multi-scale classifier 1350

(output dims: 62/3/3). 1351

Table 8: Ablation Group Configurations

Name Geo Info Curv λgeo λinfo λcurv

baseline × × × 0 0 0
full_msma ✓ ✓ ✓ 0.1 0.1 0.01
no_geo × ✓ ✓ 0 0.1 0.01
no_info ✓ × ✓ 0.1 0 0.01
no_curv ✓ ✓ × 0.1 0.1 0
only_info × ✓ × 0 0.1 0
only_curv × × ✓ 0 0 0.01
only_geo_0.1 ✓ × × 0.1 0 0
only_geo_0.2 ✓ × × 0.2 0 0
· · · · · · · · · · · · · · · · · · · · ·
only_geo_1 ✓ × × 1.0 0 0

Metrics: KL divergence (lower is better), Mu- 1352

tual Information (MI) (higher is better), Distance 1353

Correlation (D-Corr) (closer to 1 is better). 1354

C.4 Results and Analysis 1355

Training Loss Analysis. Figures 5 and 6 (not 1356

shown here for brevity) compare loss trajectories 1357

for each group, confirming: (1) geometric align- 1358

ment is critical for stability; (2) BERT is more 1359

stable overall; (3) curvature regularization is ef- 1360

fective early in training; (4) groups with geometry 1361

converge faster. 1362

Hyperparameter Sensitivity 1363

Effect of λgeo. On GPT-2, KL is stable for 0.1 ≤ 1364

λgeo ≤ 0.9 but increases slightly at 1.0. MI peaks 1365

at intermediate values. D-Corr remains above 1366

0.999 for all values. 1367

On BERT, KL is minimized at λgeo = 0.3 or 1368

0.7, while MI follows a U-shape, peaking at 1.0. 1369

Default λgeo = 0.1 works well for most cases; 1370

BERT may benefit from higher weights. 1371

Other Hyperparameters. λinfo is stable in 1372

[0.05, 0.2], with higher values harming KL. λcurv 1373

is optimal in [0.005, 0.02]; too small gives little 1374

regularization, too large restricts flexibility. Learn- 1375

ing rate 2e−5 is best—higher values destabilize 1376

training, lower values slow convergence. 1377
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Figure 5: Training Loss Curves of Different Experimental Groups for GPT2
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Figure 6: Training Loss Curves of Different Experimental Groups for BERT
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These analyses guide robust MSMA application1378

across models and tasks.1379
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