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Abstract

Recent advances in Large Language Models
(LLMs) have achieved strong performance, yet
their internal reasoning remains opaque, lim-
iting interpretability and trust in critical appli-
cations. We propose a novel Multi-Scale Man-
ifold Alignment framework that decomposes
the latent space into global, intermediate, and
local semantic manifolds—capturing themes,
context, and word-level details. Our method
introduces cross-scale mapping functions that
jointly enforce geometric alignment (e.g., Pro-
crustes analysis) and information preservation
(via mutual information constraints like MINE
or VIB). We further incorporate curvature regu-
larization and hyperparameter tuning for stable
optimization. Theoretical analysis shows that
alignment error, measured by KL divergence,
can be bounded under mild assumptions. This
framework offers a unified explanation of how
LLMs structure multi-scale semantics, advanc-
ing interpretability and enabling applications
such as bias detection and robustness enhance-
ment.

1 Introduction

1.1 Background and Motivation

Large language models (LLMs) such as GPT-
4 (OpenAl, 2023), LLaMA (Touvron et al., 2023)
and PaLM (Chowdhery et al., 2022) have achieved
human-level performance across a range of NLP
tasks (Brown et al., 2020), yet their growing com-
plexity renders them opaque and limits trust in
high-stakes applications like healthcare and fi-
nance (Bommasani et al., 2021). Prior interpretabil-
ity efforts—attention visualization (Vig, 2019),
neuron activation analysis (Gurnee et al., 2023)
and probing tasks (Tenney et al., 2019)—provide
layer-specific insights but fail to capture how se-
mantic information is transmitted and integrated
across layers (Geva et al., 2023). While studies
have traced inter-layer information flow (Hahn and

Jurafsky, 2023; Belinkov and Riedl, 2022), a unify-
ing theoretical framework remains absent.

Empirical and theoretical work shows that Trans-
former representations organize hierarchically:
lower layers encode lexical and syntactic details, in-
termediate layers capture local semantic relations,
and higher layers model global discourse (Zhang
et al., 2023; Seo et al., 2023), mirroring stages
in human language processing (Friederici, 2011).
Manifold-based analyses (Daxberger et al., 2023)
and alignment techniques (Wang et al., 2023; Li
et al., 2023), grounded in information geome-
try (ichi Amari and Nagaoka, 2007) and representa-
tion learning principles (Bengio et al., 2013), sug-
gest modeling these semantic strata as nested mani-
folds. Building on these insights, we propose Multi-
Scale Manifold Alignment, a unified framework
that learns cross-scale geometric and information-
theoretic mappings to analyze and control LLM
internals.

1.2 Contributions

We propose a multi-scale manifold alignment the-
ory that provides a unified framework for analyz-
ing LLM information processing across semantic
scales. Our key contributions include:

* Hierarchical Decomposition: We decom-
pose LLM hidden spaces into three seman-
tic manifolds—global (document-level), in-
termediate (sentence-level), and local (word-
level)—demonstrating this structure emerges
naturally across architectures.

* Cross-Scale Alignment: We develop novel
mapping functions combining geomet-
ric alignment (Procrustes analysis) with
information-theoretic constraints (mutual
information), enabling precise tracking of
information flow.

e Theoretical Guarantees: We establish error



bounds for alignment quality using KL di-
vergence, grounded in information geometry
principles.

* Practical Framework: We provide complete
implementation including layer identifica-
tion, cross-model adaptation, and optimiza-
tion strategies, with applications in bias detec-
tion and robustness enhancement.

Compared to single-scale approaches, our frame-
work offers a comprehensive view of LLM infor-
mation organization, advancing interpretability and
control.

The remainder of the paper is organized as fol-
lows. Section 2 reviews related work. Section 3
presents the proposed multi-scale manifold align-
ment framework. Section 4 reports experimental
results. Section 5 concludes the paper and outlines
future directions.

2 Related Work
2.1 Explainability of Large Language Models

Understanding the internal mechanisms of large
language models (LLMs) has become a major re-
search topic in natural language processing. As
model scale and complexity grow, developing ef-
fective interpretability methods is increasingly cru-
cial.

2.1.1 Attention Mechanism Analysis

The attention mechanism of Transformer architec-
tures offers an intuitive lens on model internals.
Vig (2019) pioneered visualising attention as an
explanatory tool, spurring this area of research. Re-
cently, Sarti et al. (2023) analysed whether atten-
tion in large language models reflects linguistic
structure, finding clear correspondence to syntac-
tic dependency relations. Focusing on the relia-
bility of attention weights, the Attention Attribu-
tion method proposed by Chefer et al. (2021) com-
bines gradients and attention to more accurately
identify key input components driving model de-
cisions. The latest work also explores functional
differences among multi-head attentions: Xie et al.
(2023) show that distinct attention heads in GPT-3
and PalLM form specialised clusters responsible for
particular linguistic tasks.

2.1.2 Representation Analysis and Probing

Neural probes allow researchers to detect what in-
formation is encoded in model representations. Re-

cently, Meng et al. (2022) introduced a locating-
and-extracting method that pinpoints specific neu-
rons and attention heads storing knowledge in large
language models, markedly improving explain-
ability. In representation-space analysis, Li et al.
(2023) explored how fine-tuning and prompt learn-
ing reshape model topology, finding that even mini-
mal fine-tuning can significantly reconfigure repre-
sentational geometry. Liu et al. (2023) analysed the
“thought process” of LLMs, proposing hidden-state
tracing to follow reasoning paths. Notably, Gurnee
et al. (2023) recently introduced a representation-
space decomposition method that projects hidden
states onto specific semantic features, offering a
new tool for understanding representation organi-
sation.

2.1.3 Information-theoretic and Causal
Analyses

An information-theoretic perspective provides a
principled framework for understanding informa-
tion flow in language models. Ghandeharioun et al.
(2023) proposed PatchScores, which quantifies
mechanism importance via causal interventions,
revealing how different components contribute to
performance. For mutual-information analysis, Xu
et al. (2023) introduced a new method that explains
compositionality by measuring information trans-
fer among components. Hahn and Jurafsky (2023)
recently proposed information-trajectory analysis
to track how specific information fragments propa-
gate through model hierarchies, offering fresh in-
sight into inter-layer information exchange.

2.2 Multi-scale Representations and
Hierarchical Analysis

2.2.1 Hierarchical Representation Learning

Language is inherently hierarchical—from char-
acters to words, syntax, semantics, and discourse.
Recent studies show that LLMs form similar hier-
archies internally. Zhang et al. (2023) revealed lay-
ered representation patterns in Transformers: shal-
low layers process word-level features, mid-layers
capture syntax, and deep layers integrate semantics.
In this area, Seo et al. (2023) demonstrated through
large-scale experiments that features extracted at
different layers align closely with stages in the tra-
ditional NLP pipeline, reflecting a shallow-to-deep
processing logic. Singh and III (2023) systemati-
cally evaluated hierarchical capability across model
sizes, finding that larger models reinforce this hier-
archy.



2.2.2 Cross-scale Information Transfer

Understanding information transfer across rep-
resentation levels is vital for explaining model
reasoning. Hernandez et al. (2023) used care-
ful experimental design to show how information
flows from shallow to deep layers—from local
to global—forming a coherent information net-
work. Recently, manifold alignment has made
notable progress in cross-modal learning. Wang
et al. (2023) proposed an alignment framework that
connects semantic structures across modalities or
representation spaces, offering valuable ideas for
aligning different semantic scales.

2.3 Information Geometry and Manifold
Theory

2.3.1 Applications of Information Geometry
to Neural Networks

Information geometry offers a rigorous mathe-
matical framework for analysing neural networks.
Raghu et al. (2022) pioneered using the Fisher in-
formation matrix to analyse LLMs, demonstrating
how pre-training shapes representational geometry.
In theoretical advances, Gromov—-Monge optimal
transport was applied to representation-space anal-
ysis by Chuang et al. (2023), providing new met-
rics for geometric similarity between representa-
tions—laying a solid foundation for studying map-
pings among manifolds.

2.3.2 A Manifold View of Language-model
Representations

Viewing language-model representations as mani-
folds has yielded several breakthroughs. Recently,
Daxberger et al. (2023) used manifold analysis
to reveal semantic organisation in representation
space, finding separable sub-manifolds for different
concepts. Of particular note, the seminal work of
Elhage et al. (2022) proposed treating internal rep-
resentations as nested manifolds, offering theoreti-
cal tools for feature decomposition and information
transfer. Grover et al. (2023) further combined the
manifold view with geometric deep learning, intro-
ducing methods to analyse curvature and topology
of embedding spaces.

2.4 Research Gaps

Despite rich research on LLM explainability, crit-
ical gaps remain. First, there is a lack of a uni-
fied multi-scale theoretical framework. Existing
studies often focus on a single semantic level

or merely analyse inter-layer differences; a for-
mal framework describing and analysing cross-
scale semantic organisation and transfer is missing.
Second, there is a separation between geometric
and information-theoretic methods. Although geo-
metric (distance/structure-based) and information-
theoretic (mutual-information/entropy-based) ap-
proaches have advanced separately, no framework
unifies them. Third, cross-scale mapping mech-
anisms remain under-explored. Prior work has
not systematically investigated mapping functions
across semantic scales—especially how to preserve
geometric structure and semantic information si-
multaneously.

3 Theory and Framework

This section develops the theoretical foundation for
multi-scale manifold alignment in large language
models (LLMs), systematically unifying geometric,
information-theoretic, and practical aspects. We
first motivate our approach with information geom-
etry, then formalize multi-scale semantic decompo-
sition, introduce cross-scale mappings, and present
the overall optimization framework.

3.1 Theoretical Foundations: Multi-Layered
Nature of LLM Representations

Large language models naturally develop hierar-
chical internal representations as a result of both
model architecture and the intrinsic layered struc-
ture of human language. Attention patterns and
hidden feature distributions reveal that each model
layer progressively aggregates and abstracts seman-
tic information, giving rise to distinct strata in rep-
resentation space.

In the lens of information geometry, each hid-
den state can be viewed as a point in a high-
dimensional space, collectively forming a statis-
tical manifold—the space of parameterized proba-
bility distributions associated with each state.

Definition 1 (Statistical Manifold). Given a fam-
ily of distributions {p(x | #)} parameterized by
0 € © with observed data x € X, the statistical
manifold M is the set of all such distributions, each
corresponding to a unique representation.

The Fisher information matrix gives a Rieman-
nian metric for M, quantifying how infinitesimal
changes in parameters affect the probability distri-



bution:
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This metric enables us to quantify geometric and se-
mantic relationships between representations. For
a small parameter shift df, the KL divergence is
locally quadratic:

1
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Thus, the representation space of an LLM can be
understood and analyzed through the lens of Rie-
mannian geometry, with the Fisher metric capturing
the structure and sensitivity of its internal represen-
tations.

Theorem 1 (Layered Submanifolds). Represen-
tations at different semantic levels in LLMs form
nested submanifolds within the statistical manifold,
each induced by the Fisher information metric and
corresponding to a specific granularity of semantic
abstraction.

3.2 Multi-Scale Semantic Decomposition

Building on this analysis, we propose that the hid-
den space of an LLM can be decomposed into three
interrelated semantic levels: global, intermediate,
and local semantics.

* Global semantic level: Encodes macro-level
features such as document topic, overall sen-
timent, discourse structure, and writing style.
This level is typically captured by deep model
layers and supports the generation of coherent
and consistent long-form text.

* Intermediate semantic level: Focuses on
inter-sentential relationships, logical transi-
tions, and mid-range contextual dependencies.
Usually represented in the middle layers, this
level bridges the global context with local de-
tails, supporting logical flow and structured
exposition.

* Local semantic level: Captures micro-level
details, including word choice, phrase struc-
ture, and fine-grained syntax. Primarily han-
dled by shallow layers, this level determines
fluency, grammatical correctness, and lexical
accuracy.

Although the precise boundaries may vary across
architectures, this hierarchical semantic decompo-
sition is ubiquitous. In practice, we identify these
levels by analyzing attention spans, inter-layer mu-
tual information, and diagnostic probing tasks.Each
manifold encodes language information at a dis-
tinct granularity, enabling both fine-grained and
high-level understanding.

* Global manifold (M ): Captures document-
level semantics, discourse structure, and ab-
stract concepts, typically represented by deep
layers:

Mg = {hg € R | hg = fa(z1r, )}
3)

e Intermediate manifold (M;): Encodes
paragraph/sentence-level relationships, logi-
cal links, and local discourse, often found in
middle layers:

M ={h; €RY| hy = fr(z1i7,0)}. (D)

* Local manifold (Mp): Focuses on lex-
ical/syntactic information and micro-level
structure, primarily in shallow layers:

My ={hy €RY | hy, = fr(z1.1,0)}. (5)

These manifolds are hierarchically nested: M C
M C Mg, with increasing dimensionality kg <
k; < kr, reflecting the principle that more abstract
representations are often lower-dimensional.

Theorem 2 (Emergent Layer Stratification).
For deep Transformer models, there exist bound-
aries 1 <l < ly < L such that:

1. Layers [1,11] primarily encode local seman-

tics (Mp);

2. Layers (l1, 2] encode intermediate semantics

(My);
3. Layers (l2, L] encode global semantics (Mg).

These boundaries can be identified by sharp
changes in attention span, mutual information be-
tween layers, and performance in targeted probing
tasks.



Information-Theoretic Perspective. To math-
ematically characterize information flow and se-
mantic organization, we use mutual information
between representations:

p(hlv h2)

— = _dhqdhs.
p(h)p(ha)

Imﬁm>=/¢mhmn%

For a cross-scale mapping f : h; +— ho, we seek
to maximize target-relevant information while min-
imizing redundancy:

max I(ha;y) — BI(h1; ha), (7)

where y is the target output and 3 balances reten-
tion and compression.

3.3 Cross-Scale Mapping: Bridging Semantic
Layers

The central challenge of multi-scale alignment is
to construct mappings between semantic mani-
folds that faithfully preserve both geometric struc-
ture and semantic content. These mappings elu-
cidate how LLMs transform micro-level details
into macro-level abstractions, revealing informa-
tion flow and reasoning processes within the model.

Definition 2 (Cross-Scale Mapping). We define
two key mappings: fgr : Mg — M (global to
intermediate), and fr;, : M; — M (intermedi-
ate to local). Each mapping consists of a geomet-
ric component ( fgeo), Which maintains topological
relationships and minimizes distortion, and an in-
formation component ( finf,), which maximizes the
retention of critical semantic information (often
via mutual information maximization). The overall
mapping is given by f = fgeo © finfo-

For practical construction, we offer three real-
izations of increasing expressiveness: (1) Linear
projection (solve for W via least squares), (2) Or-
thogonal mapping (Procrustes analysis to preserve
distances/angles), and (3) Nonlinear alignment
(multi-layer neural networks for complex relation-
ships). The information component may be instan-
tiated by maximizing mutual information (MINE),
applying a variational bottleneck (VIB), or enforc-
ing contrastive learning objectives.

3.4 Optimization Framework for Alignment

To achieve robust cross-scale alignment, we pro-
pose a multi-objective optimization framework
that balances all desired properties. The total loss

is defined as:

ﬁtotal = )\geo Egeo + )\info ﬁinfo + )\curv Ecurva

(8)
Leeo = || far(he) = hi|l* + |1 fro(hr) — ke,
9
Linto = — I(hg; far(ha)) — I(hr; fio(hr)),
(10)
Lewry = / K2dV = > KAV (11)
M i

Here, the hyperparameters Ageo, Ainfo, and Acury
control the trade-off among structural preservation,
information fidelity, and geometric regularity.

Theorem 3 (Bound on Alignment Error). Ifthe
mapping functions are Lipschitz-continuous with
geometric and information errors bounded by €y,
and einfo, then the total KL divergence satisfies:

Dk, (ptrueraligned) < C’(Egeo + 5inf0) (12)

where C' is a constant depending on the manifold’s
dimension and the local Lipschitz constant.

3.5 Summary

Our framework reveals LLMs’ hierarchical infor-
mation processing across lexical, syntactic and dis-
course levels, enabling both interpretation and con-
trol. Unlike flat approaches, it captures LLMs’ true
multi-scale nature, with applications in model opti-
mization and safety.

4 Experiments

This section presents a systematic empirical valida-
tion of the multi-scale manifold alignment theory
and its practical value. We design three main ex-
perimental groups to assess: (1) the existence and
architecture-dependence of semantic stratification;
(2) the alignment quality and representational im-
provements of our multi-scale mapping method;
and (3) the effects of interventions and downstream
applications. Results confirm the theory’s effec-
tiveness and reveal new insights into the internal
mechanisms of large language models (LLMs).

4.1 Empirical Analysis of Semantic
Stratification

Models and Experimental Setup. We evaluate
representative LLLMs with varying architectures,In
our experiments, we compare four prominent pre-
trained models: GPT-2 (an autoregressive decoder
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with 1.5 B parameters), BERT (a bidirectional en-
coder with 340 M parameters), ROBERTa (an en-
hanced encoder with 355 M parameters), and T5
(an encoder—decoder architecture with 11B param-
eters). Experiments use 20,000 documents from
the Brown and Reuters corpora, covering various
genres and topics. Analyses integrate three met-
rics: attention span, inter-layer mutual information,
and functional probing. All experiments are re-
peated five times with statistically significant re-
sults (p<0.05).

Table 1: Semantic Layer Distribution across Models

Model Local Intermediate Global

GPT-2 0-2 (25%) 3-8 (50%) 9-12 (25%)
BERT 04 (42%) 5-8129%) 9-12 (29%)
RoBERTa 0-4 (42%) 5-8(29%) 9-12(29%)
T5 0-2 (50%) 3-4 (33%) 5-6 (17%)

Layer Distribution and Architectural Features.
As Table 1 shows, autoregressive models (GPT-2)
devote half their layers to intermediate scales, while
bidirectional models (BERT/RoBERTa) emphasize
local processing (>40%). Average attention span
grows monotonically with depth, mutual informa-
tion heatmaps show block structure, and probing
tasks reveal sharp layer specialization. In BERT,
local layers (0-4) excel at POS tagging (F1=0.77),
intermediate layers (5-8) peak in sentence relation
tasks, and global layers (9-12) dominate topic clas-
sification (accuracy >0.82).

Stability of Semantic Boundaries. Cross-
validation and perturbation tests confirm boundary
stability:  semantic boundary locations shift
minimally (std<0.5 layers) across datasets, input
lengths, and injected noise. All three detection
methods (attention, mutual information, prob-
ing) are consistent, with GPT-2 showing clear
boundaries at layers 2—3 (local—intermediate)
and 8—9 (intermediate—global); BERT ex-
hibits similar breaks at 4—5 and 8—9. Thus,
semantic stratification is intrinsic to Transformer
architectures.

4.2 Cross-Scale Intervention Experiments

Intervention Methods and Metrics. We design
four intervention types at each scale: (1) translation
(h/ = h+ A), (2) amplification/scaling (h’ = ah),
(3) Gaussian noise (h’ = h + €), and (4) atten-
tion modification. Metrics include lexical diver-
sity, sentence count, mean sentence length, max
dependency depth, coherence, and sentiment. Each
model-scale-intervention is repeated 30 times, with
Wilcoxon tests and Cliff’s Delta for effect size.

Scale-Specific Response Patterns. Findings (see
Table 3) reveal strong scale-specific effects: lo-
cal interventions shift lexical choices (0=+0.342);
intermediate interventions alter sentence struc-
ture (sentence count +25%, mean length —19%);
global interventions impact both lexical diversity
(+7.39%) and discourse coherence (6=—0.238).
These patterns confirm functional specialization



across scales.

Architecture Dependency and Nonlinear Effects.
GPT-2 is highly sensitive to interventions, BERT
displays structural robustness, and XLM-R shows
unique resilience in sentiment. Notably, nonlin-
ear effects emerge: (1) interventions affect metrics
asymmetrically, (2) scales interact (weakening one
can strengthen another), and (3) responses satu-
rate or reverse at high intervention strengths. This
demonstrates intricate cross-scale regulatory mech-
anisms.

4.3 Evaluation of Multi-Scale Alignment
Methods

Ablation and Setup. Our MSMA framework
combines geometric alignment, information align-
ment, and curvature regularization. We conduct ab-
lation with baselines and component removals (see
Table 2). Adam optimizer, lr=2 x 102, batch=128,
15 epochs, on GPT-2/BERT.

Table 2: Ablation Settings

Group Geom. Info. Curv. Ageo Ainfo  Acury
baseline X X X 0 0 0
full_msma Ve Ve Ve 0.1 0.1 0.01
no_geo X v v 0 0.1 0.01
no_info ve X Ve 0.1 0 0.01
no_curv v v X 0.1 0.1 0
only_geo v X X 01 0 0
only_info X v X 0 0.1 0
only_curv X X v 0 0 0.01

Alignment Quality Results. We report KL di-
vergence (distributional difference), mutual infor-
mation, and distance correlation (geometry preser-
vation) in Table 4. Geometric alignment is crucial
for structure preservation, information alignment
for content, and curvature for optimization stability.
Single components alone are insufficient; multi-
objective optimization is essential. BERT, under
MSMA, achieves lower KL than GPT-2, indicating
a more alignable representation space.

4.4 Summary

The experimental results provide comprehensive
validation for the three central hypotheses of the
multi-scale manifold alignment theory:Semantic
Stratification: Large language models sponta-
neously organize their internal representations into
local, intermediate, and global semantic layers,
each exhibiting distinct functional specialization;

Table 3: Significant Intervention Effects (p<0.05,
|6]>0.10)

Model  Scale Interv.  Metric Median A% Cliff§ p
GPT-2 Global Amplify LexDiv +7.4 +0.23  0.020
Amplify  Coher. 0.00 -0.24  0.007
Inter. Translate LexDiv +6.6 +0.32 0.014
Amplify  SentCt +25 +0.24 0.028
Amplify MeanSL -19 -0.27 0.004
Amplify MaxDep -11 -0.20 0.030
Local Amplify LexDiv +7.3 +0.34  0.005
Amplify  Sentim =72 -0.21 0.020
BERT  Inter. Attn. SentCt 0.00 +0.27 0.003
XLM-R Global Noise Sentim -14 +0.24  0.005

Architecture-Dependent Characteristics: differ-
ent model architectures show unique layer distribu-
tions and intervention response patterns, reflecting
the influence of pre-training objectives and architec-
tural design choices; and Benefits of Multi-Scale
Alignment: integrating geometric and information-
theoretic constraints within multi-scale alignment
leads to significant improvements in model per-
formance, robustness, and interpretability.Beyond
offering a new lens for understanding the inner
workings of large language models, the multi-scale
manifold alignment theory also provides practical
tools for enhancing model capability and reliability.
The methods and findings in this study open new
pathways for developing more transparent and con-
trollable language models, representing an impor-
tant step toward trustworthy artificial intelligence.

5 Conclusion

Key Contributions and Insights. This work
presents the Multi-Scale Manifold Alignment
(MSMA) framework, a unified theory for interpret-
ing and controlling large language models (LLMs)
by decomposing their internal representations into
local, intermediate, and global semantic manifolds.
Our key findings include:

* Hierarchical Semantic Organization: LLMs
inherently structure their representations into
three distinct semantic scales—Iocal (word-
level), intermediate (sentence-level), and
global (discourse-level)—each governing dif-
ferent aspects of language understanding and
generation.

* Universal Yet Architecture-Dependent: While
semantic stratification emerges universally
across models (GPT-2, BERT, RoBERTa, T5),
the distribution of layers across scales varies



Table 4: Alignment Results (KL: KL-divergence; MI:
Mutual Information; DC: Distance Correlation)

(a) GPT-2
Group KLgam KLNLH[ MIQHWL MIT?L*}I cham DC'/nA)l
baseline 6955 1.5e4 0.23 0.20 0.97 0.91
full-msma 33 35 1.25 1.49 1.00 1.00
no-curv 39 35 1.35 1.35 1.00 1.00
no-geo 3.4e4 4.2e6 1.29 0.36 0.99 0.97
no-info 57 36 0.80 0.87 1.00 1.00
only-curv 8132 11694 0.24 0.23 0.97 0.90
only-info 5.7e¢4 5.5e6 1.37 0.38 1.00 0.99
geo-0.1 52 44 0.89 1.08 1.00 1.00
geo-0.2 113 131 0.62 0.78 1.00 1.00
geo-0.3 57 37 1.07 0.80 1.00 1.00
geo-0.4 52 44 0.90 0.74 1.00 1.00
geo-0.5 54 47 0.93 0.84 1.00 1.00
geo-0.6 51 39 0.75 1.07 1.00 1.00
geo-0.7 52 45 0.89 1.09 1.00 1.00
geo-0.8 51 48 0.87 0.84 1.00 1.00
geo-0.9 48 42 1.11 0.79 1.00 1.00
geo-1 70 43 0.92 0.87 1.00 1.00
(b) BERT
Group  KLgym KLmosi Mlgpm My DCyym DCpyis
baseline 403 3840 0.06 0.13 0.87 0.82
full-msma  0.51 1.29 2.89 2.64 1.00 1.00
no-curv 0.83 1.04 2.79 2.63 1.00 1.00
no-geo 3146 12367 0.03 0.05 0.82 0.86
no-info 0.42 1.30 275 2.51 1.00 1.00
only-curv 423 4310 0.07 0.11 0.87 0.86
geo-0.1 0.43 1.61 2.65 2.48 1.00 1.00
geo-0.2 0.49 0.80 2.62 2.64 1.00 1.00
geo-0.3 0.37 0.87 2.55 2.48 1.00 1.00
geo-0.4 0.50 1.59 2.61 2.48 1.00 1.00
geo-0.5 0.70 1.07 2.69 2.48 1.00 1.00
geo-0.6 0.65 0.85 2.67 2.49 1.00 1.00
geo-0.7 0.39 0.75 2.58 2.36 1.00 1.00
geo-0.8 0.39 1.86 2.71 2.50 1.00 1.00
geo-0.9 0.48 0.98 2.67 2.52 1.00 1.00
geo-1 0.50 0.89 2.78 2.53 1.00 1.00
only-info 3008 11534 0.03 0.04 0.86 0.88

with architecture (e.g., autoregressive models
prioritize intermediate semantics, while bidi-
rectional models emphasize local features).

* Alignment Enables Control: Our framework
successfully bridges semantic scales via ge-
ometric preservation, information retention,
and manifold smoothness, achieving near-
perfect alignment (99% KL reduction, 5-7 x
mutual information gain) and enabling pre-
cise interventions (e.g., editing lexical choice
without disrupting coherence).

* Functional Specialization Proven: Interven-
tions confirm scale-specific roles—Ilocal ma-
nipulations alter word choice, intermediate
adjustments reshape sentence structure, and
global modifications impact both discourse
and fine-grained features.

Broader Implications. The MSMA framework
bridges the gap between theoretical interpretabil-
ity and practical control in LLMs by elucidating
cross-scale information flow, enabling three key

applications: (1) bias mitigation through targeted
manifold editing of stereotypical associations, (2)
robustness enhancement via curvature-constrained
regularization that preserves model stability, and
(3) controlled generation with fine-grained manip-
ulation of output properties such as formality and
discourse coherence. This unified approach trans-
forms theoretical insights into actionable model
improvement strategies.

6 Limitations

Despite the significant progress afforded by the
Multi-Scale Manifold Alignment (MSMA) frame-
work in elucidating the internal mechanisms of
large language models, several limitations remain.
First, the computational cost of MSMA is substan-
tial: estimating mutual information and manifold
curvature across every layer of models with hun-
dreds of billions of parameters (e.g., GPT-4, PaLLM)
demands considerable resources. Second, the se-
mantic boundaries we detect may blur in architec-
tures that employ hybrid or sparse attention mecha-
nisms, necessitating tailored boundary-detection
strategies for non-standard designs. Third, al-
though our experiments used general-purpose text
corpora, the layerwise semantic organization may
differ in highly specialized domains (e.g., medi-
cal or legal texts) or in fine-tuned models, calling
for cross-domain validation and adaptation of the
framework.

Moreover, our theoretical analysis relies on sim-
plifying assumptions—such as Markovian transi-
tions and conditional independence among repre-
sentation scales—that hold only approximately in
practice, especially in the presence of residual con-
nections and cross-attention. We have not yet es-
tablished a direct correspondence between model
representations and human cognitive processes; in-
tegrating insights from neuroscience and psycholin-
guistics could strengthen this link. In our interven-
tion studies, we observed that effect sizes some-
times attenuate or behave non-linearly over long
generation sequences, a dynamic phenomenon not
fully captured by the current theory.

Finally, while we evaluated alignment quality
using KL divergence, mutual information, and
distance-based metrics, these measures may not
fully reflect the richness of semantic content or
downstream task performance. Likewise, exist-
ing visualization tools struggle to convey high-
dimensional structure to non-technical audiences.



Developing more comprehensive evaluation met-
rics and interactive visual interfaces will be critical
for broadening MSMA’s applicability and inter-
pretability.
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A Experimental Setup and Analysis for
Semantic-Scale Identification

A.1 Experimental Design

Research Questions: We test three central hy-
potheses of the Multi-Scale Manifold Alignment
(MSMA) theory: (1) Do Transformer layers
form identifiable local/intermediate/global seman-
tic scales? (2) How do architecture and pre-training



objectives influence these scales? (3) Do targeted

iﬁiz\(;es}t]iij;; 1\3//[i[::1?d the scale-specific effects pre- I I.IIIIIIIII IIIIIIIIIIII

A.1.1 Models : " — -

We evaluate representative large language models

as shown in Table 5: Illllll!llll ------

Table 5: Evaluated models.

(a) Mean attention span by layer across models.

Model Architecture Params Pretrain
Objec-
tive

GPT-2 Autoregressive Decoder 1.5B Next-
token
Predic-
tion

BERT Bidirectional Encoder 340M Masked
LM

RoBERTa Enhanced BERT Encoder  355M  Dynamic
Masked
LM

TS Encoder—Decoder 11B Sequence-
to-
Sequence

(b) Attention span distance heatmap.

d | L V =
A.1.2 Data Resources I ...Il.llll I.Il....ll
We construct a balanced corpus of 20,000 samples O N
from three sources (Table 6):

n ( .
Table 6: Corpus composition and average sample length. Il.ll..-.-. - . — [ ! — !

Source # Samples  Avg. Length (tokens) () Attention entropy by layer.

Brown (15 genres) 6,667 293.5

Reuters (8 topics) 6,667 318.2 Figure 2: Comprehensive attention profile analysis for
GPT-2 academic synth 6,666 352.8

four Transformer models: (a) Layerwise mean attention
span, (b) Attention span heatmap, (c) Entropy of atten-

Brown: 15 genres, classic written English;  tion by layer.
Reuters: 8 topic categories, global news; GPT-
2: Academic-style synthetic documents generated

* R tation Similarity: KL di
from 68 field prompts and manually filtered for cpresentation Stmiiarity Hvergence,

mutual information (k-NN, PCA to 50D).

quality.

* Probing Tasks: Layerwise SVMs
A.1.3 Feature Hierarchies for  POS/dependency  (local), next-
Global: Genre, source, LDA topic, stylistic mark- sentence/paragraph (intermediate),
ers. topic/genre (global).
Intermediate: Mean sentence length, clause count, « Voting Integration: Sy, = 0.4Probe +
lexical complexity, topic coherence. 0.4 Attn + 0.2MI, followed by continuity
Local: Token length variance, function word ratio, smoothing.

POS/dependency distribution, sentiment score.
A.2 Layered Structure Revealed by Attention
A.1.4 Scale Identification Methods Patterns

' As(lzt)entlon Patterns: Compute mean span Fig. 2b(a) shows the mean attention span by layer.

1 . .
attn = 77 2on 2uij Aijlt — j| and entropy 1 GPT-2, span rises from 12.5 (layer 0) to 36.2
H ) (layer 12), clustering as local (0-2, median <15),

attn-

11



(b) KL divergence across models.

Figure 3: Comparative analysis of information metrics:
(a) mutual information and (b) KL divergence for differ-
ent Transformer models.

intermediate (3-8, 15-30), global (9-12, >30).
BERT/RoBERTa show a smooth span rise, from
17.3 (layers 0—4) to above 30 (layers 9-12). T5 (six
layers) exhibits clear separation: encoder spans
grow from 12.4 to 27.8; decoder from 14.2 to 31.5.
Spearman correlations (span vs. depth) all exceed
0.85 (p < 0.01), confirming span as a semantic
scale indicator.

Fig. 2c(b) plots attention entropy per layer. GPT-
2 shows a “U-shaped” curve: peak entropy in
layers 0-1, sharp drop at 7, then global expan-
sion. BERT/RoBERTa have entropy dips in 5-8,
matching intermediate layers. T5’s curve is flat-
ter but shows encoder dip. These profiles confirm
model-specific functional hierarchies as predicted
by MSMA.
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(b) Probing performance by layer across models.

Figure 4: Comparative analysis of probing performance:
(a) overall results across models, (b) results by layer.

A.3 Representation Similarity Confirms
Semantic Boundaries

Fig. 3a(b): Layerwise KL divergence for each
model, with light colors (low KL) marking high
similarity, dark (high KL) marking sharp tran-
sitions. GPT-2 shows three clear blocks (lo-
cal/intermediate/global): KL jumps from 9.1 to
19.6 (layers 2—3), and from 6.7 to 17.9 (8—9).
BERT and RoBERTa display similar boundaries.
All jumps are significant (Z > 2.0, p < 0.01).

Fig. 3(a): Layerwise MI, quantifying shared in-
formation. BERT’s MI matrix forms three modules
{04, 5-8, 9-12}, with within-module MI ~40%
higher than between-module MI. RoOBERTa/T5 are
similar; GPT-2’s MI estimates are noisier but con-
sistent with its KL blocks. These results confirm
three functional modules per model.

A.4 Probing Tasks Validate Functional
Specialization

Fig. 4a(a) shows layerwise probing. BERT exhibits
three regimes: layers 0—4 excel on local tasks (F1
rises 0.18—0.77), 5-8 peak on intermediate, 9—
12 on global (acc. >0.82). GPT-2 achieves near-
perfect local F1 (~0.99), but lower global accu-



racy (~0.53), reflecting its autoregressive nature.
RoBERTa and T5 show architecture-specific strat-
ification. Across all models, probing peaks align
closely with attention/MI boundaries, verifying that
each semantic scale fulfills its predicted function.

A.5 Intervention Experiments

We test MSMA'’s causal predictions by perturb-
ing hidden representations at three scales (lo-
cal/intermediate/global) in each model, using:
Translation (') = h(® + A), Scaling (h'()
ah®), Noise (') = h(®) 4+ ¢, e ~ N(0,0%1)),
Attention modification (A;Ef’h) = fatt(Agj?h))).
We measure effects on: lexical diversity, sentence
count, mean sentence length, max dependency
depth, coherence, and sentiment.

A.5.1 Statistical Analysis

Each model-scale—intervention is repeated 30
times (over 5,000 samples). We use Wilcoxon
signed-rank tests (p < 0.05, FDR-corrected) and
Cliff’s delta (small effect |§| > 0.147). Bootstrap
(1,000), leave-one-out, and power analysis confirm
robustness.

Note: *p<0.05, **p<0.01 (FDR). Cliff’s delta:
+=increase, —=decrease.

A.5.2 Intervention Effect Analysis

Multi-dimensional interventions reveal unique re-
sponses by architecture. GPT-2 shows marked lexi-
cal sensitivity: local scaling gives largest diversity
effect (Omax = +0.342, p < 0.01); global scal-
ing increases diversity by +7.39% but reduces co-
herence (6 = —0.238). Intermediate translation
increases diversity +6.60%, scaling increases sen-
tence count +25%, and shortens mean sentence
length —19%. All are as MSMA predicts: local
controls lexicon, intermediate controls sentence
structure, global controls discourse. Even small
perturbations shift GPT-2’s output, showing its au-
toregressive nature and reliance on precise repre-
sentations.

In contrast, BERT is structurally rigid: only sen-
tence count responds (6 = +0.269, p < 0.01),
while other metrics stay constant, reflecting sta-
ble bidirectional encoding. XLM-R is sentiment-
robust—global noise shifts sentiment by —13.6%
(0 = +0.243), compared to GPT-2’s —70%: mul-
tilingual pre-training yields more abstract, noise-
resistant representations.

Perturbation effects are directionally asymmet-
ric: scaling can have opposing effects within a met-
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ric (e.g., global scaling increases diversity, lowers
syntactic complexity); scaling down at one scale
can enhance another’s properties; increasing at-
tention may suppress some attributes, revealing
nonmonotonic attention-content relationships.

Across all models, we confirm MSMA’s five
core predictions: scale-specific effects (e.g., lo-
cal diversity 6 = +0.342, intermediate structure
6 = 40.239, global coherence § = —0.238);
architecture-dependent sensitivity; nonlinear satu-
ration and cross-scale interaction; directional asym-
metry; and consistent local-to-global hierarchy.
These convergent findings validate MSMA as an
explanatory and predictive framework for Trans-
former language generation.

A.6 MSMA Method Implementation Details

We detail implementation and hyperparameters for
multi-scale manifold alignment. The process is
multi-stage: first, semantic boundaries are detected;
next, cross-scale mappings are constructed and op-
timized.

A.6.1 Layer Identification Algorithm

We employ an ensemble approach, integrating at-
tention, mutual information, and probing evidence.
For model M with L layers:

B  Multi-Scale Manifold Alignment
Theory Proofs

This appendix provides the complete mathemati-
cal proofs for the multi-scale manifold alignment
theory. Proofs are organized into six main parts: in-
formation geometry preliminaries, KL divergence
upper bound, mutual information lower bound, lo-
cal convergence, mapping implementation, and hi-
erarchical Markov properties with error decompo-
sition.
B.1 Preliminaries and Assumptions
B.1.1 Information Geometry and Statistical
Manifolds

Definition B.1.1 (Statistical Manifold). Given a
family of probability distributions {p(x|0)} param-
eterized by 0 € ©, with x € X, the statistical
manifold M is defined as:

M = {p(z]§) : § € O}

Definition B.1.2 (Fisher Information Matrix). For
p(x|@), the Fisher information matrix is:

9 log p(x|6) dlog p(x|6)
0, 0,

9ij(0) = Epz)0)



Table 7: Significant intervention effects across models (p < 0.05, |§] > 0.10). Median changes (%) are relative to

baseline.

Model Scale Intervention = Metric Median Change (%) Cliff’sd p-value Sig.
GPT-2 Global Scale up Lexical diversity +7.39 0.232 0.020 *
GPT-2 Global Scale up Coherence score 0.00 —0.238 0.007 ok
GPT-2 Global Scale down  Lexical diversity +6.78 0.272 0.017 *
GPT-2 Intermed. Translate Lexical diversity +6.60 0.316 0.014 *
GPT-2 Intermed.  Scale up Sentence count +25.00 0.239 0.028 *
GPT-2 Intermed.  Scale up Mean sent. length —19.04 —0.266 0.004 ok
GPT-2 Intermed.  Scale up Max dep. depth —11.11 —0.203 0.030 *
GPT-2 Intermed. Scale down  Lexical diversity +5.84 0.211 0.016 *
GPT-2 Intermed. Scale down  Max dep. depth —11.11 —-0.192  0.037 *
GPT-2 Intermed.  Attn Lexical diversity +4.55 0.195 0.028

GPT-2 Intermed.  Attn Sentiment score —80.09 —0.246 0.004 ok
GPT-2 Local Translate Coherence score 0.00 —0.180 0.020 *
GPT-2 Local Scale up Lexical diversity +7.27 0.342 0.005 ok
GPT-2 Local Scale up Sentiment score —71.84 —0.206 0.020 *
GPT-2 Local Scale down  Lexical diversity +5.62 0.276 0.015 *
GPT-2 Local Scale down  Coherence score 0.00 —0.180 0.037 *
BERT Global Noise Sentence count 0.00 0.154 0.046 *
BERT Intermed. Translate Sentence count 0.00 0.154 0.033 *
BERT Intermed.  Attn Sentence count 0.00 0.269 0.003 wk
XLM-R  Global Noise Sentiment score —13.58 0.243 0.005 ok
XLM-R Intermed. Scale up Sentiment score —1.03 0.104 0.046 *
XLM-R Local Attn Sentiment score —10.79 0.149 0.043 *

The Fisher matrix induces a Riemannian metric

on M, enabling distances, geodesics, and curva-
ture. For infinitesimal df, the KL divergence is
locally quadratic:

Lemma B.1.1. For parameter 0 and small d#,

Dt ((a10) p(a10-+d6)) = a0 g(6)ap+0 (s

Proof sketch. By  Taylor  expansion and
Epzl0) [%@Eﬂw = 0, this follows from
the Fisher matrix definition and KL divergence
Taylor expansion. O

B.1.2 Multi-Scale Representation in
Transformers

Assumption B.1.1 (Representation Hierarchy).
For a Transformer with L layers, there exist 1 <
l1 < ly < L such that:

e Layers [1,11]: local semantics, manifold M,
* Layers (l1,ls]: intermediate, M
* Layers (l2, L]: global, M¢

Assumption B.1.2 (Hierarchical Information
Flow). Information primarily flows Mp —
M — Mg, with local computation at each layer,
consistent with residual-based Transformer design
and confirmed experimentally.
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Assumption B.1.3 (Conditional Independence).
Given hg, intermediate representation hy is condi-
tionally independent of unrelated factors; likewise,
given hg and hy, local hy, is conditionally inde-
pendent:

h]’hG', Z) ~ p(h[‘h@),
where z denotes external nuisance variables.

B.2 Proof of KL Divergence Upper Bound
Consider mappings fq7 (global-to-intermediate)
and f7; (intermediate-to-local).

Lemma B.2.1 (Local Mapping Error Decomposi-
tion). For fqy, total error decomposes as:

Ear = EE°, + E3%,
with E5°; = | far(ha) — hr
Dxw(p(hilha)llp(far(ha)lha)).

Proof sketch. By the chain rule of KL and Fisher
norm local approximation, as in Lemma A.1, the to-
tal error splits into a geometric and an information-
theoretic part. O

2 info —
’ SGAI -

Assumption B.2.1 (Lipschitz Continuity). Map-
pings far, fio are Lipschitz: | far(hy) —
fGI(h2G)H < LG[Hhé — h2G , and similarly for

frr.-

p(hrlha, hr, z) = p(hr|ha, hi)



Algorithm 1: Semantic Boundary Detec-
tion
Input: Model M, number of layers L, test
corpus D
Output: Boundaries /;
(local—intermediate), o
(intermediate—global)
for each layerl € {1,...,L} do
L Compute mean attention span S;;

for eachl € {1,...,L — 1} do
L Compute difference AS; = S;1 — 5p;

for each pair (i, j) of layers do
L Compute mutual information I;;;

Build MI matrix [;

for each layer | and each task t do
Evaluate task accuracy P};
Compute gradient VP! =

for each [ do

Compute boundary score
By = aAS; + BAL + v Zt 'LUtVPlt;

Identify two highest B; as boundaries [1, l2;
Parameters: o = 0.4, 5 =0.4,v=0.2,
wy s task-specific weight.
Apply smoothing and 5-fold
cross-validation for stability;

Plt

t.
+1_Pl’

Theorem B.1 (KL Divergence Upper Bound). Un-
der the above, for true and aligned distributions,

Dyy, (ptrueraligned) < C(Egeo + 5inf0)

where €geo, Einto SUM geometric and information
errors; C depends on manifold dimension and Lip-
schitz constants.

Proof sketch. Apply KL chain rule, triangle in-
equality, error propagation under Lipschitz con-
tinuity, and Lemma A.2 to bound each mapping’s
KL by geometric and information terms. O

B.3 Mutual Information Lower Bound

B.3.1 MINE and VIB Variational Bounds
Theorem B.2 (MINE Lower Bound). For X,Y,

I(X;Y) > Bpyy [To(2,y)] — log Epypy [T 1Y)

with Ty a neural network. (Proof: Donsker-
Varadhan representation for KL divergence.)

Theorem B.3 (VIB Lower Bound). Given encoder
p(z|x),

I(X;Z) 2 Epe)p(zlz) log q(2|2)] =Ep ) [log ¢(2)]
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where q(z|x), q(z) are variational approximations.
(Proof: KL non-negativity and standard VIB deriva-
tion.)

B.3.2 Information Preservation in Cross-Scale
Mapping

Theorem B.4 (Mutual Information Preserva-

tion). Minimizing information loss Lingo

—I(hg; far(hg)) — I(hr; frn(hr)) ensures:

H(ha|far(ha)),

* Conditional  entropy
H(h]‘f]L(h[)) minimized;

* Critical information for predicting y is pre-
served across mappings.

Proof sketch. By mutual information defini-
tion, maximizing I(hg; far(hg)) minimizes
H(hg|far(hg)).  Data-processing inequality
shows I(hg;y) > I(fer(hg);y); minimizing
their difference ensures fgr(hg) preserves hg’s
information about y. O

B.4 Proof of Local Convergence
B.4.1 Existence of Local Minimum

Theorem B.5 (Existence of Local Minimum).
For total loss Liota = )\geo['geo + AinfoLinfo +
AcurvLeurvs If Liotal 15 smooth with bounded sec-
ond derivatives, stochastic gradient descent with
proper step size converges to a local minimum with
high probability.

Proof sketch. By standard stochastic optimization
analysis: for parameter 6;, learning rate 7; =
no/+/t, bounded gradient variance, and Lipschitz
gradients, we have

E[||v0£total(§T)H2] —0asT — oo.

B.4.2 Effect of Curvature Regularization

Theorem B.6 (Stability of Curvature Regular-
ization). The curvature regularization L.,v =
/ u 2dV improves loss landscape smoothness
and bounds total alignment distortion by control-
ling the maximum curvature Ky via Acury-

Proof sketch. By Rauch comparison, for points
p,q € M with geodesic +,

A (), () < d(p, q) exp ( / K(s)ds) |



Cauchy-Schwarz gives

1/2
|/K(s)ds| < LY/? </ K2dv)
vy M

where L is geodesic length. Thus, minimizing
Lcurv tightens distortion bounds and improves con-
vergence by conditioning the Hessian. 0

Curvature regularization is especially important
for generalization and stability in cross-scale map-
ping, as demonstrated by smoother training curves
and improved robustness.

B.5 Proof of Mapping Function
Implementation (Continued)

Corollary A.1 (MINE Implementation). Us-
ing the MINE framework, information mapping
is achieved by maximizing:

Hglézgx ]Ep(hG>finfo(hG§9)) [T¢(hG’ finto (R 0))]

~ 108 By () p( into (hs16)) [er’(hG’f i“f"(hc;a”]
where T} is a neural network estimator for mutual
information.

Proof: This is a direct application of Theorem A.2,
using MINE’s variational lower bound with our
representations and mappings. Both # and ¢ are

optimized jointly to preserve maximal information.
O

B.6 AHierarchical Markov Properties and
Error Decomposition

Theorem A.9 (Hierarchical Markov Property).
Suppose the joint distribution of Transformer rep-
resentations decomposes as:

0. Hence, the Markov structure enables decompo-
sition into local mappings, simplifying alignment.
0

Theorem A.10 (Error Accumulation Theo-
rem). Let mapping errors at each level be e, €7,
er. Under the hierarchical Markov assumption,
total KL divergence error is:

Eotal ® g +E1+ €L

Proof: Consider the total mapping KL error:

Eotal = Dxr(p(ha, by, hr)||p(ha, far(ha), fro(far(ha))))

By the chain rule and Markov property:

Erotal = DKL(p(hG)Hp(hG))
+ Eng [Dxr(p(hrlhe)llp(far(ha)lha))]
+ Engn [DxL(p(hrlhe, i) |lp(fro(h)|hi))]

The first term is O, the second is ¢, and the third
simplifies to £ by conditional independence. Error
from fg; propagates through f7, but is bounded
by Lipschitz continuity, and can be absorbed into
er.. Hence, total error is approximately additive. []

B.7 Theoretical Summary and Discussion

Main Results Our theoretical analysis yields:

* KL upper bound (Thm. A.1): Alignment KL
error is bounded by a weighted sum of geo-
metric and informational errors, supporting
multi-objective optimization.

* Mutual information preservation (Thm. A.4):
Maximizing mutual information ensures that
critical semantic information for prediction is
retained across scales.

p(ha, hr, hr|C) = p(ha|C) - p(hrlha, C) - p(hr|hi, hes, Cocal convergence (Thm. A.5, A.6): Multi-

where C' is the context. Then, given h¢, hy is con-
ditionally independent of irrelevant factors; simi-
larly, given hq, hy, hr, is conditionally independent
of other factors.

Proof: By information-theoretic conditional inde-
pendence and the hierarchical processing structure,
information mainly flows along layers, with each
abstracting its input.

For irrelevant factors 7,

I(h[; Z|h0) = H(h[|h0) — H(h[|hg, Z) ~0

since h¢ is an information bottleneck; thus, Z con-
tributes little to h;. Similarly, I(hr; Z|hg, hy) ~
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objective optimization converges locally; cur-
vature regularization improves stability.

* Optimal mapping construction (Thm. A.7,
A.8): Theoretically optimal constructions for
geometric and information mappings, with
practical implementation.

* Error decomposition (Thm. A.10): Under the
Markov structure, total error decomposes into
the sum of scale-wise mapping errors.

These provide a rigorous mathematical foundation
for multi-scale manifold alignment.

Key Assumptions and Limitations Our proofs
rely on several key assumptions:



e Lipschitz continuity: Assumed for mappings,
usually satisfied locally for neural networks,
reinforced via regularization and gradient clip-
ping.

* Hierarchical Markov assumption: Condi-
tional independence is assumed; real models
may have residual dependencies, but experi-
ments show the approximation is sufficiently
accurate.

Curvature regularization: The choice of Acypy
is crucial. Over-regularization may cause un-
derfitting, under-regularization may not im-
prove stability. Empirically, we tune this via
validation.

Future work may relax these assumptions or extend

the theory to richer dependency structures.
Experimental Correspondence Our theoretical

predictions closely match empirical results:

* KL divergence scales linearly with geomet-
ric/information errors (Thm. A.1); full
MSMA (multi-objective) outperforms single-
objective baselines.

Curvature regularization improves optimiza-
tion stability, especially early in training.
Methods without it show higher oscillation.

Different architectures exhibit varying hierar-
chical boundaries and mappings, but all are
consistent with the basic Markov structure,
explaining MSMA’s robustness.

B.8 Automatic Detection of Hierarchical
Boundaries

We provide a practical algorithm to detect semantic
hierarchy boundaries, critical for applying MSMA.
Algorithm A.1 (Semantic Boundary Detection):

1. Input: Model M with L layers, corpus D.

2. Compute attention span: For each layer [, cal-
culate mean span .S; and difference AS;
Sit1— S

. Compute inter-layer mutual information: For
each pair (4, j), compute I;; and construct the
matrix I.

4. Functional probing: For each [, evaluate lin-
guistic task accuracy Plt and compute perfor-
mance gradient VP = P}, — P/.
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. Boundary integration: Integrate evidence into
a boundary score B; aAS; + BAL +
v >, wy VP, Identify two peaks as bound-
aries lq, lo.

Output: Boundaries /1 (local—intermediate)
and /5 (intermediate— global).

This robustly identifies semantic boundaries for
subsequent manifold alignment. Experiments show
this ensemble method is more reliable than any
single metric.

B.9 Conclusion

This appendix gives a complete mathematical foun-
dation for multi-scale manifold alignment, from
information geometry to KL bounds, mutual infor-
mation preservation, and error decomposition. Our
results support the main paper’s conclusions and
provide new theoretical insights.

Key innovations include: (1) explicit KL connec-
tion to geometric/information errors; (2) proof of
mutual information retention across mappings; (3)
theoretical role of curvature regularization; (4) how
hierarchical Markov structure enables error decom-
position. These results are consistent with experi-
ments, validating MSMA as a unified and broadly
applicable LLM interpretability framework.

C Experimental Setup and Analysis for
Multi-Scale Alignment Methods

C.1 MSMA Model Architecture

The Multi-Scale Semantic Alignment (MSMA)
framework integrates hierarchical feature extrac-
tion with joint optimization, consisting of three
main components:

Local Layers: Shallow Transformer blocks cap-
ture token-level semantics and syntactic patterns,
mainly handling lexical choice, part-of-speech fea-
tures, and local dependencies, laying the founda-
tion for higher-level semantic abstraction.

Intermediate Layers: These model phrase-
level compositionality via mid-depth attention
mechanisms, focusing on inter-sentence relations,
logical transitions, and local discourse structure,
thereby connecting micro-level word features to
macro-level topics.

Global Layers: Deep Transformer modules ag-
gregate document-level context, handling topic con-
sistency, discourse structure, and global stylistic
coherence, ensuring overall textual fluency.



Each scale produces a semantic vector by mean K is Riemannian curvature; computed via finite
pooling and layer aggregation, reflecting the em-  differences in practice.

pirical disentangling of information observed in The regularization coefficients Ageo = 0.1,
intervention studies. Ainfo = 0.1, Acuv = 0.01 are tuned by grid

Parallel classifiers operate on hierarchical repre-  search. Empirically, geometric alignment is most
sentations: critical for output quality, so Ag, Was varied in

) . 0.1,0.2,...,1.0} for further study.
Global:  folobal : [Rhidden_size _y 62 (softmax) { ; Y
Intermediate:  fmig : RM9940-52¢ 5 R3 (softmax w/ tegﬁ%era{%&)rle tion Setup
i - . Default configuration uses Adam (Ir=2e—5), batch
Local: : Rhidden_size _y 23 (Jabe] smooth &
ocal:  fiocal (label smoothing) size 128, 15 epochs, with the multi-scale classifier
The joint classification loss combines weighted ~ (output dims: 62/3/3).

cross-entropy: Table 8: Ablation Group Configurations

1

Lcls = g (H (yglobala leobal)"’H (ymida gmid)"'H (ylocala g{\ofg‘rﬂl ?) Geo Info  Curv ‘ Ageo  Ainto Acury
baseline X X X 0 0 0
where H denotes cross-entropy, and y, 7 are ground full_msma v v v 101 01 00l
th and dicti Thi th del no_geo X v v 0 0.1 0.1
truth and pre 1.c ions. This en.courages € mo ? no_info % N v 01 0 001
to learn effective representations at all semantic no_curv v v X 0.1 0.1 0
scales. only_info X v X 0 0.1 0
only_curv X X v 0 0 0.01
. . o e e only_geo_0.1 v X X 0.1 0 0
C.2 Semantic Alignment Optimization only g0 02 ¢ 9 9 02 0 0
Three complementary methods are used in MSMA, o R
only_geo_1 v X X 1.0 0 0

each targeting a different aspect of alignment:

Metrics: KL divergence (lower is better), Mu-
tual Information (MI) (higher is better), Distance
Correlation (D-Corr) (closer to 1 is better).

Geometric Alignment. Enforces structural con-
sistency by minimizing the Euclidean dis-
tance between representations at different scales.
For global-to-intermediate mapping fgr and  C.4 Results and Analysis

intermediate-to-local mapping f.: Training Loss Analysis. Figures 5 and 6 (not

Loeo = || far(he) — hIH2 + | frr(hr) — hLH2 shown here for brevity) compare loss traj.ectories
for each group, confirming: (1) geometric align-

Both linear (least-squares) and nonlinear (MLP)  ment is critical for stability; (2) BERT is more
mappings were explored; linear suffices in most  stable overall; (3) curvature regularization is ef-
cases. fective early in training; (4) groups with geometry

. . . . converge faster.
Information Alignment. Maximizes mutual in- £

formation (MI) between source and mapped repre-  Hyperparameter Sensitivity

sentations: Effect of \geo. On GPT-2, KL is stable for 0.1 <
Linto = —I(he: far(ha)) — I(hr; fio(hn)) )\gef) <0.9 t?ut increases slightly at 1.0..MI peaks
at intermediate values. D-Corr remains above

Ml is estimated via MINE: 0.999 for all values.
' N To(29) On BERT, KL is minimized at Ageo = 0.3 or
H(X5Y) ~ Ep(ay) [To (2, y) —10g Epayp(y) e ] 0.7, while MI follows a U-shape, peaking at 1.0.

Default A\geo = 0.1 works well for most cases;

where T is a neural network scoring joint vs.
BERT may benefit from higher weights.

marginal samples.

high- Other Hyperparameters. M\ is stable in
[0.05, 0.2], with higher values harming KL. Acyry
is optimal in [0.005, 0.02]; too small gives little
regularization, too large restricts flexibility. Learn-

o / K24V ~ Z K2AV: ing rate 2e—5 is best—higher values destabilize
o M r L training, lower values slow convergence.

Curvature Regularization. Penalizes
curvature regions on the representation manifold
for smoother optimization:
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Figure 5: Training Loss Curves of Different Experimental Groups for GPT2
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Figure 6: Training Loss Curves of Different Experimental Groups for BERT
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These analyses guide robust MSMA application
across models and tasks.
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