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Abstract

Multimodal Emotion Recognition in Conversations (MERC) enhances emotional
understanding through the fusion of multimodal signals. However, unpredictable
modality absence in real-world scenarios significantly degrades the performance
of existing methods. Conventional missing-modality recovery approaches, which
depend on training with complete multimodal data, often suffer from semantic
distortion under extreme data distributions, such as fixed-modality absence. To
address this, we propose the Federated Dialogue-guided and Semantic-Consistent
Diffusion (FedDISC) framework, pioneering the integration of federated learning
into missing-modality recovery. By federated aggregation of modality-specific
diffusion models trained on clients and broadcasting them to clients missing cor-
responding modalities, FedDISC overcomes single-client reliance on modality
completeness. Additionally, the DISC-Diffusion module ensures consistency in
context, speaker identity, and semantics between recovered and available modal-
ities, using a Dialogue Graph Network to capture conversational dependencies
and a Semantic Conditioning Network to enforce semantic alignment. We further
introduce a novel Alternating Frozen Aggregation strategy, which cyclically freezes
recovery and classifier modules to facilitate collaborative optimization. Extensive
experiments on the IEMOCAP, CMUMOSI, and CMUMOSEI datasets demon-
strate that FedDISC achieves superior emotion classification performance across
diverse missing modality patterns, outperforming existing approaches.

1 Introduction

Multimodal Emotion Recognition in Conversations (MERC) [l 2] has emerged as a pivotal tech-
nology of affective computing for understanding complex emotion states through synergistic fusion
of textual, acoustic, and visual signals [3| 4} 5]. While State-of-the-art (SOTA) methods achieve
remarkable performance under ideal multimodal conditions [[6} [7]], their efficacy collapses catastroph-
ically in real-world scenarios plagued by unpredictable missing modalities caused by sensor failures,
environmental noise, or privacy constraints [8, |9, [10].

Missing modality challenges in MERC can be categorized into two scenarios [[11]: random missing
protocol and fixed missing protocol. To recovery the missing information, researchers have proposed
various recovery methods, primarily falling into two paradigms: 1) Latent space semantic recovery:
Lian et al. [12] propose GCNet to construct cross-modal correlations in the latent space through
graph neural networks, leveraging temporal and speaker information from available modalities to
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compensate for missing features. 2) Explicit modality recovery: Wang et al. [§] leverage IMDer
with a score-based diffusion model to directly reconstruct missing modality features, with available
modalities guiding the reverse diffusion process as conditional inputs.

However, these methods struggle severely in fixed missing protocol scenarios, where a modality
is entirely absent in local datasets. The lack of distributional priors for the missing modality and
cross-modal alignment supervision leads to critical failures [13}[14]]. Latent space recovery suffers
from feature confusion due to missing modality-specific representations [[L5} [16], while generative
modality recovery models fail catastrophically due to the absence of raw data required for the training
of generative model. This highlights the inherent contradiction between current modality recovery
techniques’ reliance on modality completeness and their real-world applicability under extreme
incomplete modalities.

This paper proposes the Federated Dialogue-Guided and Semantic-Consistent Diffusion framework
(FedDISC)’, which innovatively integrates federated learning with generative modality recovery
to address challenges posed by incomplete modalities. To alleviate the dependency of generative
modality recovery on modality completeness, FedDISC establishes a federated architecture where
clients train local modality-specific diffusion models using their local available modalities. These
models are then aggregated into global modality-specific diffusion models on the server and broadcast
to clients missing corresponding modalities. This eliminates the need for clients to locally train
recovery models for missing modalities, overcoming the limitations of single-client incomplete
modalities while enabling zero-shot cross-client modality recovery and safeguarding data privacy.

Additionally, we design the DISC-Diffusion model, which integrates a Dialogue Graph Network
(DGN) to capture contextual dependencies and speaker relationships through graph structures, and a
Semantic Conditioning Network (SCN) that extracts semantic information from available modalities
via attention mechanisms. The fusion of these two modules ensures tri-dimensional consistency
between recovered and available modalities across context, speaker identity, and semantic alignment.
Finally, we introduce the Alternating Frozen Strategy (AFS), which cyclically freezes recovery
module and classifier module on each client to resolve optimization conflicts between generative and
classification objectives during federated collaborative training. The contributions of this work are
summarized as follows:

1. Federated Learning for Modality Recovery: FedDISC pioneers the integration of federated
learning with generative modality recovery, mitigating single-client limitations caused by incom-
plete modalities while preserving data privacy.

2. DISC-Diffusion for Consistent Recovery: We design DISC-Diffusion with DGN and SCN
modules to ensure tri-dimensional consistency (context, speaker identity, semantics) between
recovered and available modalities, leveraging dialogue and semantic constraints.

3. Alternating Frozen Strategy: AFS effectively eliminates cross-modal optimization conflicts by
alternately freezing recovery and classifier modules during federated updates.

2 Background

2.1 Incomplete Multimodal Learning

Incomplete multi-modal learning, a critical research topic in machine learning, aims to enhance
models’ capability to handle unpredictable and inevitable modality missing in real-world scenarios
[L7]. It can be categorized into two paradigms based on whether to restore missing modalities:
non-recovery methods and recovery methods [[18].

Non-recovery methods focus on inferring directly from incomplete modal inputs by improving model
architectures or optimization strategies. Representative approaches include knowledge distillation-
based and correlation maximization techniques. Knowledge distillation methods employ teacher
networks to learn modality-specific predictive models, then distill knowledge from available modali-
ties to student networks [[19, 20]]. Correlation maximization methods aim to maximize cross-modal
dependencies and enforce shared low-dimensional embeddings across heterogeneous modalities
through covariance constraints or mutual information maximization [21} 22].

3Code Repository: https://github.com/wdqdp/FedDISC.
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Recovery methods aim to estimate and reconstruct missing modalities from available modalities. It
can be categorized into latent space semantic recovery and explicit modality recovery. The former
recovers missing semantics in latent spaces by mining deep dependencies from multimodal data.
Lian et al. [12] uses graph networks to capture temporal and speaker dependencies in dialogues,
enabling semantic compensation for incomplete modalities within an invisible latent space. Zhang
et al. [23] focuses on processing high-frequency signals via graph neural networks, achieving
more comprehensive modality recovery through multi-frequency feature alignment compared with
[12]. Explicit modality recovery usually employs generative models to directly reconstruct missing
modalities. For example: Wang et al. [[18]] utilizes normalizing flow-based generative model DiCMoR
to predict missing modality distributions, exploiting the reversible property and precise density
estimation of flow models to ensure distributional consistency. Liu et al. [9] proposes CIF-MMIN,
which integrates an invariant feature-guided imagination module and cascaded residual autoencoders
to generate missing modality features that maintain semantic coherence with available modalities.
However, the inherent dependency of existing methods on data completeness fundamentally restricts
their practical effectiveness in real-world scenarios with severe modality missing.

2.2 Incomplete Multimodal Federated Learning

Multimodal federated learning(MFL) enables decentralized cross-modal learning while preserving
data privacy. However, the inevitable presence of missing modalities in real-world scenarios poses
significant challenges to its effectiveness. Le et al. [24] propose Multimodal Federated Cross
Prototype Learning (MFCPL) to addresses the issue of missing modalities through prototype learning.
They introduce Cross-Modal Alignment (CMA) to align zero-padded features of missing modalities
with existing modality features, reducing noise from zero-padding. However, this method can
only deeply mine existing data at the prototype level, failing to fundamentally reconstruct missing
information. To tackle this, Yin et. al. [25] introduce Stable Diffusion into MFL to recover missing
modalities. On image-text datasets with missing image modalities, clients upload text embeddings,
and the server generates and extracts image modality features. However, this method deploys a global
generative model on the server, unable to generate client-specific local feature image modalities,
limiting its generalization. To address these issues, our FedDISC framework fine-tunes modality-
specific feature recovery modules for each client’s local characteristics.

3 Method

3.1 Dialogue-guided and Semantic-Consistent Module

This chapter focuses on generative modality recovery methods under fixed missing protocol scenarios.
To ensure consistency between the recovered modality and the available modalities across context,
speaker identity, and semantic alignment, FedDISC first pretrain two modules, DGN and SCN,
as illustrated in Figure 2l We define a conversation has C utterances: C' = {u;}$_,, and each
utterance u; is spoken by speaker py(,,,), where s(-) is a map between the utterance and its speaker.
In fixed missing protocol, each client retains data from at least one modality, resulting in a total of
(2™ — 1) possible missing patterns, where M is the number of all modalities. Here, we consider
three modalities: language (1), vision (v), and acoustic (a), and we will discuss the case of missing /
modality.

3.1.1 Dialogue Graph Network

The core idea of our DGN is to capture context and speaker dependencies from conversational
utterances, which have been proven to be essential for dialogue understanding [26} 27]. Due to
the inconsistent dimensional spaces across different modalities, we first employ a feature extractor
composed of pre-trained embedding layers and convolution layers to project the raw data into a

v

unified dimensional space H = {h}, hf}le We construct separate speaker graph and context graph

for each available modality to extract modality-aware dialogue information.

Taking modality a as an example: H, = {h¢}¢_| is utilized as the initial nodes. In graphs,
edge weights quantify the importance of connections between nodes, while edge types reflect their
interaction patterns. The context graph and speaker graph share the same graph structure, but
employ distinct edge types to capture different dependencies. To avoid excessive computational
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Figure 1: The frame work of DGN and SCN. DGN captures context and speaker dependencies through
graph network while SCN captures cross-modal semantic information with attention mechanism.

overhead from connecting all nodes, we constrain the graph scale by implementing a fixed-size
window w. We select w from the set {1, 2, 3}, and a node h; can only connect within the node set
{h; }]G [maz(i—w,1),min(i+w,c)]- Then we can denote the edge from h; to h; as e;; € &. We set
w = 21in Flgurelﬁ

Speaker Graph: This graph leverages speaker relation to capture speaker-aware dependencies in
conversations. Let ;; € A denote the speaker relation identifier of e;;, the value of «;; reflects the
flow from pj(y;) t0 ps(u,). Therefore, | A| = 3 when the conversation happens between two speakers:
{i = 4,5 —i,i— i}

Context Graph: This graph leverages context relation to capture context-aware dependencies in
conversations. Let 3;; € B denote the context relation identifier of e;;, the value of 3;; can be

categorized as {forward, present, backward} based on the relative positions of node h; and h; in the
conversation.

Graph learning We employ single-layer R-GCN [28]] to aggregate speaker and context information
under multiple relations. The calculation formula is shown as follows:
Weh;), (M

2o XX i) = Y
r€a jeN, Z reEB JEN,
where v{ and v! are the output of Speaker Graph and Context Graph, respectively. N/ is the set
of connected indexes of h; under relation r, W,. is the weighted parameters for different types of
graph under relation r. o(-) is the activation function, we leverage ReLU function in this paper. After
the aggregation, we add corresponding nodes together to get the dialogue graph representation for
each available modality: 2" = v{™ + v{™, m € {a, v}. To predict the category of each utterance,
we concatenate modality-specific graph representations from available modalities, which are then
processed through multi-head self-attention layers and a multi-layer perceptron (MLP) to yield
classification probabilities: ; € R€*¢, c is the number of emotion classes. Then we can get the loss
of DGN with cross-entropy loss for pretraining: Lpon = — & Zle yilog(§a), where y; denotes
the ground truth of utterances.

Z

3.1.2 Semantic Conditioning Network

We propose the SCN to capture cross-modal semantic information from available modalities for
semantic alignment. Similar to DGN, we utilize pre-trained embedding layers and projection
layers to transform raw data from different modalities into a dimensionally aligned feature space:
H = {h?,h¢}¢ |, h € RE*4 d s the shared dimension.
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Figure 2: The training pipeline of FedDISC, this figure delineates a hierarchical federated learning
framework with two alternating phases: the Recovery Module Training Stage (right) and the Classifier
Optimization Stage (left).

To capture inter-modal dependencies, we employ cross-attention layers between audio and visual
features. For modality pair (h%, h"), the cross-attention mechanism calculates:

27 = Norm(h® + CrossAtin(h®,h")), 2"7% = Norm(h" + CrossAtin(h”, h?)),

@)
where CrossAtin(Q, K = V) = Softmax(%‘/), and 2%7Y 2v7 € REXsXP, Each fused

feature undergoes self-attention to refine intra-modal representations zg,, ¢, z;,; - Then we select the
head token of each sequence as the modality-specific semantic summary: s* = zg,, ;[0], s” = 2, £[0].
All the heads are concatenated and fed into a classifier to predict the emotion category 5. Consistent
with DGN, loss of SCN is calculated as: Lscny = —% Zic:1 yilog(ys). Finally, we combine these
two loss functions into a joint objective function which is utilized to pretrain the Dialogue-guided
and Semantic-Consistent Module: £ = Lpan + Lscn.

3.2 Federated Dialogue-Guided and Semantic-Consistent Diffusion

We consider a centralized federated learning architecture similar to FedAvg [29], where a sever
coordinates 7 clients with incomplete local dataset D; = {1, yi}ﬁvzll, m e M l‘“’a“, where V; is the
number of samples in the I*" client, M@ is the set of available modalities, with 1 < [M*v%| < M.

3.2.1 DISC-Diffusion Model

Due to ethical concerns and processing convenience, our DISC-Diffusion model generates latent
features for missing modalities rather than raw data.

Conditional embedding fusion: We leverage the SGN and SCN, both pretrained on local data, to
respectively extract dialogue dependency and semantic alignment information from the available
modalities. Let 2P = concat(z™),m € M denote the concatenation of the graph network
outputs corresponding to each available modality in the DGN, and z° denote the concatenation of the
heads corresponding to each available modality in the SCN, where 27, 25 € RV:*4 The embedding
layer concatenates the two representations and projects the result into the conditional embedding
space. The formula is:

¢ = Reshape(Linear(zP]|z%)), c € RN >*sxP, 3)
Training process: Recent work has demonstrated the effectiveness of conditional diffusion models
[30]. Inspired by its success, we implement the conditional noise prediction network with a U-Net
architecture [31]], where cross-attention layers are used to integrate the intermediate feature of the
U-Net with the conditioning signal c:

FUY = Concat(FW, CrossAttn(F©Y | Linear(c)), (€))

where F() is the input of the I*" layer of U-Net, Linear(-) projects c to the same size of F(!). To
amplify the condition, we randomly omit the condition with a fixed probability p during training to
enable unconditional predictions, and during inference we merge the conditional and unconditional
outputs with a weighted combination:

ét = (1 +’lU) 69(Zt7t7c) - we@(ztvt)’ (5)



further, to optimize the network, we can obtain the noise matching objective function:

2
L =Eiri(1,.. T z0~p(20), e~N(0,1) H e— ((1+w)eg(ze,t,¢) —wep(z, t)) H . (6)

Sampling process: During the reverse denoising process, we guide the noise prediction with the
conditional embedding and define the reverse transition distribution as:

po(ze-1 | zt,¢) = N(ze-15 fu(z.t,c), B 1), @)
where [i;(2¢,t, ¢) is calculated as:

1 1— oy
= =
where o, @ denote the noise scheduling coefficient. Then sampling is performed using the reparame-
terization trick.

ﬁt(Zt,t7C) = 69(2t7tac))7 (8)

3.2.2 Alternating Frozen Strategy

As illustrated in Figure[2] to harmonize the optimization of recovery and classification modules, we
propose the AFS, a two-stage, hierarchical federated learning protocol that systematically freezes
and activate model components. Each client’s local model is partitioned into three modules: 1)
Encoder Module: a pretrained feature extractor, whose parameters remain fixed throughout all
training; 2) Recovery Module: employs DISC-Diffusion for modality recovery; 3) Classifier Module:
a downstream predictor that is composed of attention layers and a MLP.

Stage I: In the first stage, as the right part of Figure [2| shows, only the Recovery Module is active,
while the Classifier Module is frozen. This stage has three steps: 1) Local Update: Client [ trains
its local modality-specific DISC-Diffusion model ¢;"* using locally available modality m, where

cross-modal data ch, ,Om € M@ serves as the conditioning input according to equation@ 2)
Server Aggregation: After e local epochs, each client uploads its modality-specific DISC-Diffusion
model to the server. The server then performs modality-specific aggregation following equation ??,
yielding three global diffusion models {67}, m € M — one per modality. 3) Broadcast: These
aggregated global models are sent back to all clients for the next stage.

Stage II: In the second stage, as the left part of Figure[2] shows, we invert the freezing scheme: the
Recovery Module is frozen, and the Classifier Module becomes active. We first apply the global
diffusion model {9;”}, m € M™% to recover the feature of the missing modality m after equation
thereby obtain a complete-modality representation. The recovered full-modal features pass through a

cross-attention layer, a self-attention layer, and an MLP to produce the output § € RV:*¢. The loss

function for classifier optimization is £ = —N% vazll yilog(y;). Then we leverage equation ?? to

aggregate and update the classifier modules of all clients.

By alternating between these two stages—freezing the classifier during recovery aggregation and
freezing recovery during classifier refinement—every £’ communication rounds, we prevent gradient
interference and ensure that each module converges under a coherent training signal. Empirically,
this strategy leads to stable optimization and superior generalization for both modality recovery and
emotion recognition.

4 Experiments
4.1 Datasets and Implementation Details

Datasets: To verify the effectiveness of FedDISC, we conduct experiments on three benchmark
conversational datasets: IEMOCAP [32], CMU-MOSI [33]], and CMU-MOSEI [34]. IEMOCAP
consists of 151 conversations between two speakers. For a fair comparison, we employ two prevalent
labeling methods, generating datasets with four classes [35] and six classes [12]. CMU-MOSI
consists of 2199 utterances, and CMU-MOSEI contains 22856 utterances.

Evaluation metrics: IEMOCAP is labeled in categorical labels, therefore we use 4-class accuracy
(ACC4), 6-class accuracy (ACC6), and weighted average F1-score (WAF1) [35]] as our evaluation
metric. Lables of CMU-MOSI and CMU-MOSEI are scored between [—3, 3]. This paper focuses



Dataset ‘ Available ‘ Baseline  FedDISC (P) FedDISC (I) GCNet [12] CIF-MMIN [38] SDR-GNN [23] IMDer [8] DiCMoR [18

{1} 59.6/59.4 68.0/68.2 65.4/65.2 66.7/65.9 58.0/59.3 66.2/66.2 60.4/60.4 28.6/28.5

{v} 58.1/57.3 62.5/60.3 60.1/59.5 55.7/55.7 53.3/51.3 56.3/55.6 56.2/54.7 21.9/15.6

IEMOCAP4 {a} 53.0/50.4 61.2/60.6 56.2/56.1 56.8/56.3 56.3/58.4 57.8/57.3 50.8/50.7 34.0/27.2
{l,v} 67.2/67.3 75.8/75.8 73.2/73.0 64.9/65.0 73.2/74.0 68.1/68.0 67.3/67.3 37.0/25.6

{l,a} 66.5/65.8 78.0/78.1 74.3/73.6 68.7/68.3 74.3/75.6 73.0/72.1 65.9/66.2 32.5/32.3

{v,a} 60.6/60.3 68.7/68.0 67.4/67.5 60.4/60.8 65.7/66.9 60.2/60.3 65.0/64.8 47.1/37.8

{l,v,a} | 78.6/78.4 78.6/78.4 78.6/78.4 78.4/78.3 78.3/78.5 78.5/78.1 78.1/78.3 78.2/78.3

{l} 46.4/45.8 56.8/56.5 53.6/53.6 50.8/50.0 54.7/54.3 58.8/58.9 44.6/44.9 34.5/33.8

{v} 36.2/36.4 56.0/55.5 46.3/46.3 55.7155.7 39.7/35.2 41.8/41.0 39.3/35.1 33.6/32.4

IEMOCAP6 {a} 36.8/29.9 60.6/59.9 52.2/51.6 56.8/56.3 56.3/58.4 51.6/50.7 39.2/37.5 38.6/38.7
{l,v} 49.4/49.9 57.4/57.6 54.8/55.0 49.3/47.8 51.3/52.1 60.6/60.3 49.6/49.0 34.4/34.8

{l,a} 51.3/50.6 59.4/59.3 58.1/58.0 51.9/51.3 53.8/50.1 60.3/60.4 51.5/50.4 37.1/37.0

{v,a} 41.1/36.3 66.4/66.3 52.8/52.9 44.0/43.4 56.5/56.9 60.0/50.7 43.8/41.2 36.5/35.9

{l,v,a} | 64.3/64.7 64.3/64.7 64.3/64.7 58.6/59.1 61.3/60.2 61.3/61.2 58.7/58.4 55.9/56.2

Table 1: Comparison results on IEMOCAP4 and IEMOCAPG6 datasets across different available
modalities. The best result in each row is highlighted in dark green.

on the negative/positive classification task, scores less than 0 are mapped to negative and greater
than 0 are mapped to positive. For both datasets, we choose the accuracy (ACC) and the WAF1 as
evaluation metric [36,137]].

Implementation details: In line with previous works [11} 8], We tested different models on two
commonly used protocols: 1) random missing protocol, 2) fixed missing protocol. For random
25\21 i
NixM
of available modalities for the i** sample, IV; indicates the sample number of client I. At the same
time, we ensure that at least one modality is available for each sample, s.t. m; > 1 and n < %
In this paper, we set M to 3, so we have 7 € [0.0,0.1,---,0.7]. For fixed missing protocol, We
define that each client completely lacks n modalities. To ensure at least one modality is retained,
we set 1 < n < 3. Consequently, the possible modality absence patterns for each client can be
enumerated as: ({I}, {v}, {a}, {l,v},{l,a},{v,a}). For federated learning, we set the number of
clients as n. = 3, each client evenly and randomly allocated all training, validation, and test data.
During the training process, we set the local epoch e to 1, and the communication round E to 3, the
window size w = 2. We perform five-fold cross-validation [[12] and report the mean values on the
test set. All experiments were conducted on two NVIDIA L40S GPUs, each equipped with 48 GB of
memory.

missing protocal, we define the missing rate asnp = 1 — , where m; denotes the number

Dataset ‘ Method ‘ Missing rate ‘ Average

‘ ‘ 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 ‘

FedDISC (P) 86.3/86.3 85.9/85.8 83.3/83.2 81.1/81.0 79.7/79.6  80.2/80.2 7751775 75.7/75.8 | 81.2/81.2

FedDISC (I) 85.9/85.9 84.6/84.6 82.8/82.9 80.6/80.6 79.3/79.3  77.5/77.6 70.5/70.4  70.9/70.4 | 79.0/78.9

GCNet' [12 85.1/85.2  82.3/82.3 79.5/79.4 77.2/77.2 74.4/743  69.8/70.0 66.7/67.7  65.4/65.7 | 75.1/75.2

MOSI CIF-MMIN ' [38] | 84.0/83.6 82.5/84.1 82.6/82.7 80.5/80.9 78.4/78.1 77.3/77.22 74.1/7429 69.8/71.3 | 78.8/78.9

SDR-GNN' [23] 86.3/86.3  85.0/85.1 81.9/81.9 80.7/80.8 77.9/78.0  76.1/76.2 722/722  71.1/71.3 | 78.9/79.0
IMDER' [8] 85.7/85.6  84.9/84.8 83.5/83.4 81.2/81.0 78.6/78.5  76.2/75.9 74.7/74.0  71.9/71.2 | 79.6/79.3
DiCMor' [18] 85.6/85.7 83.9/83.9 82.0/82.1 80.2/80.4 77.7/77.9  76.4/76.7 73.0/73.3  70.8/71.1 | 78.7/78.9
DCCAE! [39] 77.3/77.4 74.5/7477 71.8/71.9 67.0/66.7 63.6/62.8  62.0/61.3 59.6/58.5  58.1/57.4 | 66.7/66.3

FedDISC (P) 86.8/86.4 86.5/68.1 86.4/86.3 85.6/84.7 84.5/84.3 82.6/83.2 81.7/82.5  81.5/82.2 | 84.4/84.5
FedDISC (I) 85.4/85.2 84.8/84.7 84.0/84.3 83.4/82.3 82.3/82.9  81.9/80.1 80.2/81.2  80.5/81.0 | 82.8/82.8
GCNet' [12 85.1/85.2  82.1/82.3 79.9/80.3 76.8/77.5 74.9/76.0  73.2/74.9 72.1/74.1  70.4/73.2 | 76.8/77.9
MOSEI CIF-MMIN ' [38] | 85.8/86.2 85.4/85.5 85.0/85.3 83.1/83.8 82.7/82.5 80.4/81.1 78.5/79.2  77.3/77.4 | 82.3/82.6
SDR-GNN' [23] 87.3/87.4 86.7/86.8 85.7/85.9 84.7/84.8 83.8/84.0  82.6/82.8 81.3/81.6  80.8/81.0 | 84.1/84.3

IMDER [8] 85.1/85.1 84.8/84.6 82.7/82.4 81.3/80.7 79.3/78.1 79.0/77.4 78.0/75.5  77.3/74.6 | 80.9/79.8
DiCMor' [18] 85.1/85.1  83.5/83.7 81.5/81.8 79.3/79.8 77.4/718.7  75.8/77.7 73.7/76.7  72.2/75.4 | 78.6/79.9
DCCAE' [39] 81.2/81.2 78.3/718.4 75.4/75.5 72.2/72.3 70.0/70.3  66.4/69.2 63.2/67.6  62.6/66.6 | 71.2/72.6

Table 2: Comparison results on CMUMOSI and CMUMOSEI datasets under different missing rates.
T indicates the results come from [23].

4.2 Comparison with SOTA Methods

We compare our FedDISC approach with state-of-the-art recovery methods under unified environmen-
tal and dataset settings: GCNet [12], MMIN [40], SDR-GNN [23]], IMDer [8]], and DiCMoR [18]].
Also, we consider one non-recovery method with classical correlation maximization DCCAE [39]
to make a comprehensive comparison. To evaluate the generalization of our proposed framework,
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Figure 3: The t-SNE visualization compares the modality recovery performance of different methods
under single-modality availability. the features generated by FedDISC exhibit higher distributional
similarity to the original modality features compared to other methods, demonstrating its effectiveness.

we develop DISC-Diffusion with two classical diffusion models: DDPM (timesteps ¢ = 1000) and
DDIM (timesteps t = 50), denoted as FedDISC (P) and FedDISC (I) separately. The results are
reported below.

Fixed missing protocol. As listed in Table[] our proposed FedDISC (P) achieves the highest accuracy
and WAF1 under nearly all partial modality incomplete conditions. Specifically, the FedDISC (P)
delivers optimal classification results across all scenarios on the IEMOCAP4 dataset, outperforming
the best-performing SOTA methods by 1.3% ~ 7.5% in accuracy. On IEMOCAP6, the FedDISC (P)
slightly lags behind the SDR-GNN by 0.9% ~ 3.2% in certain incomplete modality settings ({i},
{l,v}, {l,a}). However, considering federated clients are assigned only N; = n% samples, while
other SOTA methods are full training data accessible, this result highlights our method’s capability
to generate high-quality missing modality features under few-shot environments. Wilcoxon signed-
rank tests with the alternative hypothesis set to “greater” show W = 21.00,p = 0.0156 < 0.05,
indicating significant superiority of FedDISC(P). The effect size, computed as rank-biserial correlation

r(r=2Z/V/N,N =6),isr = 0.77, reflecting a large effect (r > 0.5).

Random missing protocol. Table [2]illustrates the comparison results under missing rates range
from 0.0 to 0.7. On the CMUMOSI and CMUMOSETI datasets, our FedDISC exhibits slightly lower
accuracy and WAF1 compared to SOTA models when the missing rate lower than 0.4. However, it
achieves the highest accuracy and WAF1 under missing rates > 0.4. This discrepancy arises because,

Non Condition ! DGN+SCN

& w

Bk il | ©
3

Figure 4: The visualized ablation study on the IEMPCAPG6 dataset. Compared with unconditional
modality recovery, DGN and SCN guide recovery by leveraging dialog and semantic alignment,
ensuring category consistency between recovered and original modalities.



with low missing rates (e.g., < 0.4), modality recovery models are of low importance in classification
tasks. While as the missing rate increases, classification performance becomes more dependent on
modality recovery capabilities. As shown in the table, FedDISC is less suffered by rising missing rates
than other models. Specifically, when the missing rate increases from 0.0 to 0.7, on CMU-MOSI, the
accuracy of the compared models declines about 15.4% ~ 27.7% while our FedDISC shows only a
12.3% decline. on CMU-MOSEI, the compared models declines by 7.4% ~ 22.9% while FedDISC
declines merelly 6.1%. These comparisons validate the generalization capability of FedDISC’s
recovery model under random missing protocol. Wilcoxon tests yield W = 45.00,p = 0.0020 <
0.05, confirming significant differences. The effect size is  ~ 0.81 (/N = 8), also indicating a large
effect.

Visualization experiments. Figure [3]illustrates the distribution plots of missing modality features
generated by our FedDISC and other recovery-based models under the fixed missing protocol with
single modality availability, compared to ground truth features. We conducted experiments on
the IEMOCAP’s test set from a single client, projecting these features into a 2D space via t-SNE.
Observations reveal that FedDISC (P) achieves the highest denoising capability, predicting features
that closely align with the original distribution. FedDISC (I) slightly underperforms FedDISC (P)
in recovering modalities [ and v, yet still surpasses other recovery methods. This demonstrates
FedDISC'’s effectiveness in ensuring distributional consistency between recovered and original data.

Available | l ‘ v ‘ a ‘ lv ‘ l,a ‘ v, a
AFS ‘ ACC4 WAFI ‘ ACC4 WAFI ‘ ACC4 WAFI ‘ ACC4 WAFI1 ‘ ACC4 WAFI ‘ ACC4 WAFI
X 52.3 50.8 46.8 47.1 50.2 50.5 61.5 61.2 59.7 58.9 66.0 65.8
v 68.0 68.2 62.5 60.3 61.2 60.6 75.8 75.8 78.0 78.1 68.7 68.7

Table 3: Ablation study under different modality-missing scenarios on the IEMOCAP4 dataset.
This table shows that AFS enables collaborative training between the recovery module and the
classification module under any modality-missing conditions.

4.3 Ablation Study

DGN & SCN. To validate the importance of dialogue and semantic dependencies extracted by DGN
and SCN in the proposed DISC-Diffusion model, we design a visualized ablation study. As shown
in Figure ] we visualize the recovered and original modality features of IEMPCAPG6 under two
conditions: 1) Unconditional recovery (no guidance), 2) Jointly conditioned on DGN and SCN.
Specifically, we randomly select 120 samples (20 per class) from the IEMOCAPG test set and
project both generated and original features into a 2D space via t-SNE. We can observe that under
unconditional recovery setting, recovered features suffer from semantic ambiguity because of the
lack of semantic guidance. However, the modalities recovered through conditional recovery guided
by DGN and SCN exhibit strong clustering with the original modalities of the same category, while
maintaining distinct separation between classes. This validates the effectiveness of DGN and SCN in
capturing comprehensive dialogue and semantic information.

AFS. We design ablation experiments to validate the effectiveness of the proposed AFS. On the
IEMOCAP4 dataset, we test the AFS-equipped model and a baseline model (where the recovery and
classification modules are co-trained without AFS) under various modality-missing configurations.
Table [3] shows that the model with AFS outperforms the baseline in all missing-modality scenar-
ios. This demonstrates that AFS effectively mitigates optimization conflicts between modules and
improves training efficiency.

4.4 Computation and Communication Cost

Computation cost. The primary source of computational overhead in FedDISC lies in the inference
time of the diffusion-based recovery module. In our experiments, using DDPM (¢ = 1000), the aver-
age inference time is approximately 2.13 min/epoch; for DDIM (¢ = 50), this reduces significantly
to 5.7 s/epoch. As a result, the total training time varies with the diffusion backbone. Importantly,
our feature recovery module is not restricted to diffusion models—any conditional generative model
with lower inference latency (e.g., conditional autoencoders or GANs) can be flexibly adopted within
our framework.



Communication cost. The communication cost per client is 10.57 M B/round when using the
conditional DDPM. Compared to the traditional federated learning framework, FedAvg, which
incurs a communication cost of 22.64 M B /round, our proposed hierarchical federated framework
successfully reduces the communication overhead by more than half. Notably, the diffusion model
parameters account for the majority of this cost—approximately 85%, and our framework allows for
any lighter-weight conditional generative model to be used as the recovery module. For example,
when using DDIM, the communication cost further decreases to 7.18 M B/round. Moreover, the
recent paper [41] reports that communication costs of 5 — 12 M B per round per client are fully
deployable in real-world scenarios. This strongly supports the practicality and deployability of our
approach.

5 Conclusion and Limitations

In this work, we try to challenge MERC under extreme incomplete multimodalities by introducing a
new modality recovery paradigm: FedDISC. We pioneers the integration of federated learning with
generative modality recovery to mitigate the dependence of recovery models on modality integrity.
We design DISC-Diffusion with a DGN and a SCN module to capture dialogue and semantic
dependencies separately for diffusion guidance. Additionally, the designed AFA strategy balances
collaborative training between recovery models and classifiers via a periodic freezing optimization
mechanism. Comparative experiments and ablation studies validate the effectiveness of FedDISC in
missing-modality recovery and collaborative training.

Limitations: First, its sampling strategy can’t balance recovery quality and computational cost (e.g.,
iterative denoising requires multi-step inference). Future work may adopt consistency models for
faster high-quality generation. Moreover, FedDISC assumes synchronous federated training, while
real-world scenarios often involve asynchronous devices and dynamic modality absence. Extending
it to asynchronous FL frameworks will enhance practicality.

Acknowledgements

This research was supported by Guangdong Basic and Applied Basic Research Foundation
(No. 2024A1515011774), the National Key Research and Development Program of China (No.
2022YFC3310300), the National Natural Science Foundation of China (No. 12171036), Shenzhen
Sci-Tech Fund (Grant No. RCJC20231211090030059).

References

[1] Yusong Wang, Xuanye Fang, Huifeng Yin, Dongyuan Li, Guoqi Li, Qi Xu, Yi Xu, Shuai Zhong,
and Mingkun Xu. BIG-FUSION: brain-inspired global-local context fusion framework for
multimodal emotion recognition in conversations. In AAAI-25, Sponsored by the Association
for the Advancement of Artificial Intelligence, February 25 - March 4, 2025, Philadelphia, PA,
USA, pages 1574-1582. AAAI Press, 2025.

[2] Hui Ma, Jian Wang, Hongfei Lin, Bo Zhang, Yi-Jia Zhang, and Bo Xu. A transformer-
based model with self-distillation for multimodal emotion recognition in conversations. /[EEE
Transactions on Multimedia, 26:776-788, 2024.

[3] Zebang Cheng, Zhi-Qi Cheng, Jun-Yan He, Kai Wang, Yuxiang Lin, Zheng Lian, Xiaojiang
Peng, and Alexander Hauptmann. Emotion-llama: Multimodal emotion recognition and
reasoning with instruction tuning. Advances in Neural Information Processing Systems, 37:
110805-110853, 2024.

[4] Yazhou Zhang, Yang Yu, Qing Guo, Benyou Wang, Dongming Zhao, Sagar Uprety, Dawei
Song, Qiuchi Li, and Jing Qin. CMMA: benchmarking multi-affection detection in chinese
multi-modal conversations. In Advances in Neural Information Processing Systems 36: Annual
Conference on Neural Information Processing Systems 2023, NeurIPS 2023, New Orleans, LA,
USA, December 10 - 16, 2023, 2023.

[5] Jiayu Ye, Yanhong Yu, Lin Lu, Hao Wang, Yunshao Zheng, Yang Liu, and Qingxiang Wang.
Dep-former: Multimodal depression recognition based on facial expressions and audio features

10



via emotional changes. IEEE IEEE Transactions on Circuits and Systems for Video Technology,
35(3):2087-2100, 2025.

[6] AV Geetha, T Mala, D Priyanka, and E Uma. Multimodal emotion recognition with deep
learning: Advancements, challenges, and future directions. Information Fusion, 105:102218,
2024.

[7] Yusong Wang, Xuanye Fang, Huifeng Yin, Dongyuan Li, Guoqi Li, Qi Xu, Yi Xu, Shuai Zhong,
and Mingkun Xu. BIG-FUSION: brain-inspired global-local context fusion framework for
multimodal emotion recognition in conversations. In AAAI-25, Sponsored by the Association
for the Advancement of Artificial Intelligence, February 25 - March 4, 2025, Philadelphia, PA,
USA, pages 1574-1582. AAAI Press, 2025.

[8] Yuanzhi Wang, Yong Li, and Zhen Cui. Incomplete multimodality-diffused emotion recognition.
Advances in Neural Information Processing Systems, 36:17117-17128, 2023.

[9] Rui Liu, Haolin Zuo, Zheng Lian, Bjorn W. Schuller, and Haizhou Li. Contrastive learning
based modality-invariant feature acquisition for robust multimodal emotion recognition with
missing modalities. IEEE Transactions on Affective Computing, 15(4):1856—1873, 2024.

[10] Xihang Qiu, Wanyong Qiu, Ye Zhang, Kun Qian, Chun Li, Bin Hu, Bjorn W. Schuller, and
Yoshiharu Yamamoto. FedKDC: Consensus-driven knowledge distillation for personalized
federated learning in eeg-based emotion recognition. IEEE Journal of Biomedical and Health
Informatics, pages 1-14, 2025.

[11] Changqing Zhang, Yajie Cui, Zongbo Han, Joey Tianyi Zhou, Huazhu Fu, and Qinghua
Hu. Deep partial multi-view learning. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 44(5):2402-2415, 2020.

[12] Zheng Lian, Lan Chen, Licai Sun, Bin Liu, and Jianhua Tao. Genet: Graph completion network
for incomplete multimodal learning in conversation. IEEE Transactions on Pattern Analysis
and Machine Intelligence, 45(7):8419-8432, 2023.

[13] Zhangfeng Hu, Wenming Zheng, Yuan Zong, Mengting Wei, Xingxun Jiang, and Mengxin
Shi. A novel decoupled prototype completion network for incomplete multimodal emotion
recognition. In 2024 IEEE International Conference on Multimedia and Expo (ICME), pages
1-6. IEEE, 2024.

[14] Rui Liu, Haolin Zuo, Zheng Lian, Bjorn W. Schuller, and Haizhou Li. Contrastive learning
based modality-invariant feature acquisition for robust multimodal emotion recognition with
missing modalities. IEEE Transactions on Affective Computing, 15(4):1856—1873, 2024.

[15] Jiandian Zeng, Jiantao Zhou, and Tianyi Liu. Robust multimodal sentiment analysis via tag
encoding of uncertain missing modalities. /IEEE Transactions on Multimedia, 25:6301-6314,
2022.

[16] Lucas Goncalves and Carlos Busso. Robust audiovisual emotion recognition: Aligning modal-
ities, capturing temporal information, and handling missing features. IEEE Transactions on
Affective Computing, 13(4):2156-2170, 2022.

[17] Yuanyue Deng, Jintang Bian, Shisong Wu, Jianhuang Lai, and Xiaohua Xie. Multiplex graph
aggregation and feature refinement for unsupervised incomplete multimodal emotion recognition.
Information Fusion, 114:102711, 2025.

[18] Yuanzhi Wang, Zhen Cui, and Yong Li. Distribution-consistent modal recovering for incomplete
multimodal learning. In Proceedings of the IEEE/CVF International Conference on Computer
Vision, pages 22025-22034, 2023.

[19] Shicai Wei, Chunbo Luo, and Yang Luo. Mmanet: Margin-aware distillation and modality-aware
regularization for incomplete multimodal learning. In IEEE/CVF Conference on Computer
Vision and Pattern Recognition, CVPR 2023, Vancouver, BC, Canada, June 17-24, 2023, pages
20039-20049. IEEE, 2023.

11



[20] Nuno C. Garcia, Pietro Morerio, and Vittorio Murino. Modality distillation with multiple stream
networks for action recognition. In European Conference on Computer Vision, volume 11212,
pages 106—121. Springer, 2018.

[21] Jiawen Deng and Fuji Ren. Multi-label emotion detection via emotion-specified feature ex-
traction and emotion correlation learning. IEEE Transactions on Affective Computing, 14(1):
475-486, 2020.

[22] Magdiel Jiménez-Guarneros and Gibran Fuentes-Pineda. Cfda-csf: A multi-modal domain
adaptation method for cross-subject emotion recognition. IEEE Transactions on Affective
Computing, 15(3):1502-1513, 2024.

[23] Fangze Fu, Wei Ai, Fan Yang, Yuntao Shou, Tao Meng, and Keqin Li. SDR-GNN: spectral do-
main reconstruction graph neural network for incomplete multimodal learning in conversational
emotion recognition. Knowledge-Based Systems, 309:112825, 2025.

[24] Huy Q. Le, Chu Myaet Thwal, Yu Qiao, Ye Lin Tun, Minh N. H. Nguyen, Eui-Nam Huh, and
Choong Seon Hong. Cross-modal prototype based multimodal federated learning under severely
missing modality. Information Fusion, 122:103219, 2025.

[25] Kangning Yin, Zhen Ding, Xinhui Ji, and Zhiguo Wang. Self-attention fusion and adaptive
continual updating for multimodal federated learning with heterogeneous data. Neural Networks,
187:107345, 2025.

[26] Ming Zhong, Yang Liu, Yichong Xu, Chenguang Zhu, and Michael Zeng. Dialoglm: Pre-
trained model for long dialogue understanding and summarization. In Proceedings of the AAAI
Conference on Artificial Intelligence, volume 36, pages 11765-11773, 2022.

[27] Geng Tu, Bin Liang, Dazhi Jiang, and Ruifeng Xu. Sentiment-emotion-and context-guided
knowledge selection framework for emotion recognition in conversations. IEEE Transactions
on Affective Computing, 14(3):1803-1816, 2022.

[28] Michael Sejr Schlichtkrull, Thomas N. Kipf, Peter Bloem, Rianne van den Berg, Ivan Titov, and
Max Welling. Modeling relational data with graph convolutional networks. In The Semantic
Web - 15th International Conference, ESWC 2018, Heraklion, Crete, Greece, June 3-7, 2018,
Proceedings, volume 10843, pages 593-607. Springer, 2018.

[29] Brendan McMahan, Eider Moore, Daniel Ramage, Seth Hampson, and Blaise Agiiera y Arcas.
Communication-efficient learning of deep networks from decentralized data. In Proceedings of
the 20th International Conference on Artificial Intelligence and Statistics, AISTATS 2017, 20-22
April 2017, Fort Lauderdale, FL, USA, volume 54, pages 1273—-1282. PMLR, 2017.

[30] Jonathan Ho and Tim Salimans. Classifier-free diffusion guidance. CoRR, abs/2207.12598,
2022.

[31] Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-net: Convolutional networks for
biomedical image segmentation. In Medical Image Computing and Computer-Assisted Inter-
vention - MICCAI 2015 - 18th International Conference Munich, Germany, October 5 - 9, 2015,
Proceedings, Part 111, volume 9351, pages 234-241. Springer, 2015.

[32] Carlos Busso, Murtaza Bulut, Chi-Chun Lee, Abe Kazemzadeh, Emily Mower, Samuel Kim,
Jeannette N Chang, Sungbok Lee, and Shrikanth S Narayanan. Iemocap: Interactive emotional
dyadic motion capture database. Language Resources and Evaluation, 42:335-359, 2008.

[33] Amir Zadeh, Rowan Zellers, Eli Pincus, and Louis-Philippe Morency. Multimodal sentiment
intensity analysis in videos: Facial gestures and verbal messages. IEEE Intelligent Systems, 31
(6):82-88, 2016.

[34] AmirAli Bagher Zadeh, Paul Pu Liang, Soujanya Poria, Erik Cambria, and Louis-Philippe
Morency. Multimodal language analysis in the wild: Cmu-mosei dataset and interpretable
dynamic fusion graph. In Proceedings of the 56th Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers), pages 22362246, 2018.

12



[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

Zhenyu Yang, Xiaoyang Li, Yuhu Cheng, Tong Zhang, and Xuesong Wang. Emotion recognition
in conversation based on a dynamic complementary graph convolutional network. IEEE
Transactions on Affective Computing, 15(3):1567-1579, 2024.

Devamanyu Hazarika, Roger Zimmermann, and Soujanya Poria. MISA: modality-invariant
and -specific representations for multimodal sentiment analysis. In MM "20: The 28th ACM
International Conference on Multimedia, Virtual Event / Seattle, WA, USA, October 12-16,
2020, pages 1122-1131. ACM, 2020.

Zhongkai Sun, Prathusha Kameswara Sarma, William A. Sethares, and Yingyu Liang. Learning
relationships between text, audio, and video via deep canonical correlation for multimodal
language analysis. In The Thirty-Fourth AAAI Conference on Artificial Intelligence, AAAI 2020,
New York, NY, USA, February 7-12, 2020, pages 8992-8999. AAAI Press, 2020.

Rui Liu, Haolin Zuo, Zheng Lian, Bjorn W. Schuller, and Haizhou Li. Contrastive learning
based modality-invariant feature acquisition for robust multimodal emotion recognition with
missing modalities. IEEE Transactions on Affective Computing, 15(4):1856—-1873, 2024.

Weiran Wang, Raman Arora, Karen Livescu, and Jeff A. Bilmes. On deep multi-view repre-
sentation learning. In Proceedings of the 32nd International Conference on Machine Learning,
ICML 2015, Lille, France, 6-11 July 2015, volume 37, pages 1083—-1092. JMLR.org, 2015.

Jinming Zhao, Ruichen Li, and Qin Jin. Missing modality imagination network for emotion
recognition with uncertain missing modalities. In Proceedings of the 59th Annual Meeting of
the Association for Computational Linguistics and the 11th International Joint Conference on
Natural Language Processing, ACL/IJCNLP 2021, (Volume 1: Long Papers), Virtual Event,
August 1-6, 2021, pages 2608-2618. Association for Computational Linguistics, 2021.

Daixun Li, Weiying Xie, Zixuan Wang, Yibing Lu, Yunsong Li, and Leyuan Fang. Feddift:
Diffusion model driven federated learning for multi-modal and multi-clients. IEEE Transactions
on Circuits and Systems for Video Technology, 34(10):10353-10367, 2024.

Xuejiao Wang, Zhen Hua, and Jinjiang Li. PACCDU: Pyramid Attention Cross-Convolutional
Dual UNet for Infrared and Visible Image Fusion. IEEE Transactions on Instrumentation and
Measurement, 71:1-16, 2022.

Pengcheng He, Xiaodong Liu, Jianfeng Gao, and Weizhu Chen. Deberta: decoding-enhanced
bert with disentangled attention. In 9th International Conference on Learning Representations,
ICLR 2021, Virtual Event, Austria, May 3-7, 2021. OpenReview.net, 2021.

Zengqun Zhao, Qingshan Liu, and Shanmin Wang. Learning deep global multi-scale and local
attention features for facial expression recognition in the wild. IEEE Transactions on Image
Processing, 30:6544-6556, 2021.

Steffen Schneider, Alexei Baevski, Ronan Collobert, and Michael Auli. wav2vec: Unsupervised
pre-training for speech recognition. In Gernot Kubin and Zdravko Kacic, editors, 20th Annual
Conference of the International Speech Communication Association, Interspeech 2019, Graz,

Austria, September 15-19, 2019, pages 3465-3469. ISCA, 2019.

13



NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The claims of our FedDISC in the abstract and introduction reflect the paper’s
contributions and scope.

Guidelines:

* The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: Limitations of the work are briefly discussed in the conclusion.
Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate "Limitations" section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

* If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]
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Justification: Every theoretical result has an associated proof in the appendix.

Guidelines:

The answer NA means that the paper does not include theoretical results.

All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

All assumptions should be clearly stated or referenced in the statement of any theorems.
The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: The paper comprehensively describes the experimental setup, including
methodologies, key parameters, and data processing steps in sec 4{and the appendix.

Guidelines:

The answer NA means that the paper does not include experiments.
If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.
If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.
Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-

sions to provide some reasonable avenue for reproducibility, which may depend on the

nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Answer: [Yes]

Justification: The datasets used in the experiments are publicly available. Code will be
released.

Guidelines:

* The answer NA means that paper does not include experiments requiring code.

¢ Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

 The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.
6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: We describe the experimental setup in sec 4] and provide further details of the
experiments in the appendix.

Guidelines:

* The answer NA means that the paper does not include experiments.

» The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer:

Justification: Error bars are not provided in the paper, due to the experiments are too costly
to be run multiple times. However, the model is validated on sufficient experiments.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)
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10.

* The assumptions made should be given (e.g., Normally distributed errors).

e It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

e It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

» For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.
Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]
Justification: The required GPU resources are outlined in sec 4]
Guidelines:

* The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines]?

Answer: [Yes]
Justification: We read the Code of Ethics and follow the code carefully.
Guidelines:

¢ The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).
Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]
Justification: The societal impacts are discussed in appendix [J}
Guidelines:

* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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» The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer:
Justification: The FedDISC introduced in this paper poses no such risks.
Guidelines:

» The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]
Justification: We cite both the paper and the license of each model and dataset we use.
Guidelines:

* The answer NA means that the paper does not use existing assets.

* The authors should cite the original paper that produced the code package or dataset.

 The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

 For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

 If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
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* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: The assets introduced in this paper (code) will be released before publication
with full documentation.

Guidelines:

* The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: Although this paper utilizes a publicly available dataset, a detailed description
of the dataset is still provided in the appendix.

Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: This study exclusively utilizes publicly available datasets and does not involve
any direct experimentation with human subjects.

Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.
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* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]
Justification: This paper do not use any LLMS.
Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

¢ Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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A Theoretical Analysis

Assumption 1 (Noise-Prediction Error Model) For all clients k and timesteps t,
]EZO»E [6 - ng(zt,t,c)} = O’Ezme [H€ - €9k(2t,t,C)H2] < 6(21iff' )]
Assumption 2 (Conditioning Embedding Lipschitznes) For the dialogue graph encoder Epgn
and semantic encoder Escn, we require
| Epen () — Epan(a)|| < Lpex [l — 2|,
| Eson(z) — Esen(2)|| < Lsen Il — 2/|.
We then set Lo := Lpan + Lscn.

(10)

Assumption 3 (Aggregated Parameter Bias) FedAvg after one communication round yields
10 — 07[| < Gagg, [|0g = @"[| < Dagg, (11)
where {0*, $*} minimises F(0) + G(¢) on the pooled (non-federated) data.

Assumption 4 (Smoothness + Polyak-Y.ojasiewicz) Both blocks satisfy
IVE@©O) = VE@ )| < M0 -0, 5 IVFO)? = u[F(O) - F(67)],

. 12)
[VG(¢) = VG| < Mo = &Il 5 IVG@OI* = n[G(#) - G(¢")]
Assumption 5 (Bounded SGD Variance) For any client gradient estimator g,
Elg] = V4, E|lg - V¢||* <o (13)

Theorem 1 (Convergence of Recovery-Only Rounds) Run FEDDISC for T global rounds with
step-size ) < 1/M, E local steps, K clients chosen i.i.d., then

Mllog — 0> nEo® £di
T\ _ *) < g 2 diff .
E[FO;)] - FO) < —5 7 T T M + (14)
Proof. One client, one step. By M -smoothness:
M 2
F(6 = ng) < F(6) = n(VF (), g) + = |glI* (1s)
Take expectation over the stochastic gradient and use Assumption [5}
M 2
EF(8') < F(6) = n|VEO)[? + == (IVEO)[? + o2). 16)
Since n < 1/M, we get:
M 2 .2
EF(0') < F(6) - ZVF(O)? + =5 (17)
PL condition Assumption 4}
IVE@®)* = 2u(F(0) = F(67)). (18)
Apply Equ. for F local steps:
Mn?Eo? "
E[F(6L)] < F(6!) —nEp A, + TIT A, = F(6}) — F(67). (19)
FedAvg aggregation + bias Assumption 3}
Mn?Ec?
Appr < (1= nEp) Ay + HT + M2, (20)
Solve linear recursion. Noting 1 — nEp < e~ and summing over t = 0,...,7 — 1,
M|6g —0*|>  nEo?
Ar < g M2, 21
= 2nT + Ku + ass @h

Add irreducible diffusion gap. The imperfect predictor incurs an additive floor 3,4 /4. Combining
with equ. yields the final bound.
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Theorem 2 (Error Bound for Recovered Latent Vectors) After T, reverse diffusion steps, the
recovered latent vectors satisfy

EH/Z\’L - ZI*H S C’Cum Ltot €qift + Tattn - (22)

Proof. From the reverse mean formula and Assumption [T}
e — if[| = Ct lleo — €l| < Cteaqir- (23)
Conditioning perturbation at step ¢:
et = ci |l < Liot Ct €qisr- (24)

Because the U-Net cross-attention [42] is affine in ¢;, the bound Equ. @]) re-enters additively into
the next noise prediction error.

Trev
E||Z — 27|] <) Liot Ct €aist + Nattn = Ceum Lot Eaift + Nattn- (25)
t=1

Theorem 3 (Linear Rate of Alternating-Freeze Optimisation) With alternating blocks A : 0-
updates, B : ¢-updates, step-sizes na,np < 1/M, and executing R full alternations, we have:

QO 6™) = Q(6%,0") < (1—L)[Q(6°,6%) — Q(67, ")), (26)
where Q(0, ¢) := F(0) + G(¢).

Proof. Define the block operator

T:(0,¢0) = (0 —1aVF(8), ¢ —15VG(9)). (27)
One A-update with ¢ frozen. By the PL condition for F':
F(0%) = F(6%) < (1 —nap) [F(6) — F(67)]. (28)

One B-update with 60 frozen. Similarly for G,
G(6%) — G(¢") < (1 —npp) [G(¢) — G(¢")]. (29)
Combine. Let Q(¢, ¢) = F(0) + G(¢) and define

p:=max{1—nap, 1—773/L}§1—%. (30)
Then after one full alternation:
QT -Q <p(Q@-Q). (€29)
After R alternations. By recursion,
* * R *
QO™, ™) — Q" < p"[Q(0°%¢°) — Q"] = (1—4) " [Q(6°,¢°) — Q"] (32)
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C The set of utterances

C Number of utterances in a conversation

U The i-th utterance in a conversation

ps(u;) Speaker identity of utterance u;

H Unified feature space (e.g., H = {h"})

hm Feature representation of modality m for utterance u;
w Fixed window size for graph neighborhood construction
v;, v Outputs of Speaker Graph and Context Graph for utterance u;
z" Output of DGN for modality m

D, Local dataset of client [

N; Sample number of client I’s dataset

M, f“’aﬂ Set of available modalities for client [

2P, 25 Outputs from DGN and SCN modules

c Conditional embedding for diffusion guidance

F® Input features at the [-th layer of the U-Net

€ Gaussian noise in the diffusion process

ay, Oy Noise scheduling coefficients at timestep ¢

0" Global diffusion model parameters for modality m
op Global classifier parameters

E Alternating communication interval of AFS

S Subset of clients selected in communication round ¢
e Number of local training epochs per client

y Lable of the dataset

Uds Uss Y Predictions of DGN, SCN, and classifier module

Table 4: Main Notations Used in this Work. This table highlights the key notations and symbols used
throughout the paper, providing a concise reference for understanding the mathematical formulations
and models presented.

B Algorithm Analysis

In Algorithm[I] we present the pretraining procedure for the conditional capture networks DGN and
SCN.

Algorithm 2] illustrates the training process of FedDISC, detailing how AFS alternately freezes the
recovery and classifier modules to enable collaborative optimization.

C Information Redundancy Analysis

To address potential concerns regarding information redundancy, we further analyze whether the
recovered modality features in our framework merely replicate the information contained in the
existing modalities. Information redundancy occurs when reconstructed features are highly correlated
with, or simply duplicates of, the available modalities, thereby failing to contribute complementary
cues for downstream learning. In our design, the DGN and SCN are explicitly introduced to alleviate
this issue by jointly modeling local semantic patterns and global dependencies. Consequently, the
recovered modalities are not direct copies of the observed ones but context-enriched representations
that capture higher-level dependencies. This interpretation is supported by our experimental results
in Table([T} if substantial redundancy existed, the performance of the model with recovered modalities
would approximate that of the Baseline. However, both FedDISC(P) and FedDISC(I) achieve
statistically significant improvements under all missing-modality conditions (one-sided Wilcoxon
signed-rank test, W = 0, p = 0.03125 < 0.05 on IEMOCAP4 and IEMOCAP6), confirming that the
recovered modalities contribute non-redundant information to the overall framework.

D Data Missing Protocols and Federated Mechanism

As illustrated in Figure 5] (a), missing modality challenges in MERC can be categorized into two
scenarios [[I1]: random missing protocol and fixed missing protocol. Figure [5] (b) shows a brief
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Algorithm 1: Pre-training Process of DGN & SCN Modules

Input: Client datasets {D; }/* ,, window size w, pretraining epochs P

Output: Pretrained DGN parameters O pg v, SCN parameters O go

Initialize © pgny and Ogon;

for epoch=1,..., P do

for each client | € [K] in parallel do

DGN Forward: for each available modality m € M*" do
Build speaker graph GI"* and context graph G!"* with window w;
Perform R-GCN aggregation via Eq.(3) to get {v"™, v{™};

3
mo __ sm cm.
zm =0 v

end

Ja < Attention(Concat({z"}));

SCN Forward: H < Encoding({D"}), m € Mfvai;
Compute cross-attention and self-attention layers to get {s};
9s ¢+ M LP(Concat({s™}));

Joint Optimization: Calculate Lpgy = —ﬁ >y log §a;
Calculate Lgon = —ﬁ > yilog 9s;

Update © pan and Ogopn via V(EDGN + L:SCN);

end
end
return O pen, Oscon;

s T TTTTTTTTTTTTTIT T T TTTTTT . TTTTTTTTTTTTTTT T T T N
}( — Random Missing —— ——— Fixed Missing — Server @ Server @ ‘}
} Speaker A Speaker B Speaker A Speaker B @ @ }
IDEns w T T = :
u I

} D:\j 2 E\:\:‘uz DLanguage Client 1 Client n [> Client 1 Clientn }
! u [ [ u [ [ ] vision g g g }
| B 1, L v | Acoustic 1
lu N u [1] Missi 1

5 5 issing

| BEL) EEL) ([EEL) (EBEEL)
|

Figure 5: (a) illustrates two types of incomplete modalities: random missing protocol and fixed
missing protocol. (b) presents the federated generative modality recovery paradigm proposed in this
work, designed to alleviate the dependency of generative recovery on data completeness.

describe of our federated learning mechanism. The clients first train local specialized diffusion models
tailored to their available modalities. Then through server-side aggregation, unified modality models
are constructed and distributed to modality-deficient clients. By eliminating the need for clients
to locally train recovery models for missing modalities, this framework overcomes the limitations
caused by single-client incomplete modalities.

E Dataset Segmentation and Preprocessing

Dataset: As listed in Table 5] IEMOCAP4 includes four types of emotions: anger, happiness (where
excitement is merged with happiness), sadness, and neutral [23]. We assign 3290, 1000, and 1241
utterances for train, valid, and test. The six-class dataset IEMOCAPG6 encompasses: anger, happiness,
sadness, neutral, excitement, and frustration. We assign 4810, 1000, and 1623 utterances for train,
valid, and test. CMU-MOSI consists of 2199 utterances, where 1284, 299, 686 samples are set for
train, valid, and test. CMU-MOSEI contains 22856 utterances, where 16326 are used for training,
1871 and 4659 samples are used for validation and testing.

Preprocessing: For each modality, we employ the corresponding pre-trained network to perform
feature extraction. 1) Language: Pre-trained DeBERTa [43] is employed as the language feature
extractor. Motivated by its demonstrated superiority in natural language understanding and generation
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Algorithm 2: Federated Training Process of FedDISC

Input: Client datasets {D;}/<,, global diffusion models {6"},,c s, alternative interval E
Output: Global recovery models {;" }, global classifier ¢,
Initialize global models 6] < 0%, DL Pgys
fort=1,...,T communication rounds do
if t%E is odd (Stage I: Recovery Training) then
for each client | € Sy in parallel do
Freeze classifier module ¢;;
for each available modality m € Ml‘“’a” do
‘ Train local recovery model 0] via Eq.(8) using chm;
end
Upload {6} to server;
end

) |Dy| .
Server aggregates 0" < = ‘7’3” o,

Broadcast {6} } to all clients;

else if t%F is even (Stage II: Classifier Optimization) then
for each client | € Sy in parallel do
Freeze recovery modules {07 };

Recover missing modalities Z,,, +— DISC-Diffusion(67¢%, Djve);
Train classifier ¢; via £ = —N% > yilog §i;
Upload ¢ to server;

end

Server aggregates ¢ < >, %d)l;

Broadcast ¢, to all clients;

end

end
return {07}, ¢4

Dataset | Train Val Test Total
IEMOCAP4 3,290 1,000 1,241 5,531
IEMOCAP6 4,810 1,000 1,623 7,433
CMU-MOSI 1,284 229 686 2,199

CMU-MOSEI 16,326 1,871 4,659 22,856

Table 5: Statistical information on IEMOCAP, CMU-MOSI and CMU-MOSEI.

tasks, we leverage the DeBERTa-large variant to encode utterance sequences into 1024-dimensional
representations. 2) Vision: The pre-trained MA-Net [44] serves as the visual feature extractor,
utilizing global multi-scale and local attention mechanisms to handle occlusions and non-frontal
poses. We first apply MTCNN to detect and align faces, followed by extracting facial features via
pre-trained MA-Net. Frame-level features are then compressed into 1024-dimensional utterance-level
representations through average encoding. 3) Acoustic: Pre-trained wav2vec [43] serves as the
acoustic feature extractor, leveraging its multi-layer convolutional architecture trained on massive
unlabeled speech data. Building on its demonstrated success in downstream applications like speech
recognition , we adopt wav2vec-large to extract 512-dimensional acoustic features from utterances.

F Deep Analysis of Visualization Experiments

Figure[6] as a supplement to Figure 3] illustrates the distribution of features recovered by different
modality recovery methods compared to the ground truth, under all modality incomplete conditions.
All experiments were conducted on the IEMOCAP dataset. We can observe that, regardless of the
modality incomplete condition, the distribution of the features recovered by FedDISC is closer to that
of the ground truth compared to SOTA methods.
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Figure 6: t-SNE visualization: comparison of recovered versus original feature distributions by
different modality recovery methods under all modality incomplete conditions on IEMOCAP.

G DGN and SCN

Figure [7]demonstrate how the integration of DGN and SCN modules capture dialogue dependencies
and semantic information, validating their effectiveness in guiding the conditional diffusion process.
In addition to the conclusions observed in sec[d.3] we can further deduce the following: 1) When
single module is used, compared to DGN, the semantic information extracted by SCN provides more
effective guidance for the modality recovery process. 2) The combination of DGN and SCN modules,
as opposed to using a single module, offers more comprehensive dialogue-semantic information,
thereby further mitigating semantic confusion in the recovered modalities.

Table [f]extends the aforementioned ablation experiments. We conducted tests on the IEMOCAP4
dataset under six incomplete modality conditions, evaluating four ablation settings and recording their
ACC and WAFI, with the highest metrics highlighted in dark green. The table clearly demonstrates
that when both SGN and SCN are used as conditional guidance, our model achieves the highest
performance across all incomplete modality scenarios. This further validates that the integration of
dialogue dependencies and semantic information provides superior guidance for modality recovery.
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Figure 7: t-SNE visualization of feature distributions under different ablation settings on IEMCAP6
1) Unconditional diffusion, 2) DGN only guidance, 3) SCN only guidance, 4) DGN+SCN guidance,
colors represent different modalities.

Available | l v a l,v l,a v,a
DGN SCN ‘ ACC WAFI ‘ ACC WAFI ‘ ACC WAFI ‘ ACC WAFI ‘ ACC WAFI ‘ ACC WAFI
X X | 312 154 |356 18.7 | 384 245 |365 259 |389 276 |327 224
X v 1633 63.1 |574 566 |525 512 |71.9 712 |743 741 |63.8 629
v X | 624 626 |582 559 |524 518 |695 679 |72.8 725 |644 64.0
v vV 680 682 |625 603 |61.2 60.6 |758 758 |78.0 78.1 |68.7 68.7

Table 6: Ablation study results comparing model performance with four ablation settings under
various modality incomplete scenarios on the IEMOCAP4 dataset.

H Effectiveness of AFS

Figure 8]complements the ablation experiments for AFS presented in Table[3] illustrating the accuracy
variation trends of models with and without AFS under all incomplete modality conditions. The figure
clearly shows that, across all modality-missing scenarios, models incorporating AFS consistently
achieve higher accuracy than those without AFS. The reasons for this can be attributed to the

following:

Differing optimization objectives: The diffusion model and the classifier pursue distinct optimization
goals. During simultaneous training (without AFS), their gradient updates may counteract each
other or introduce noise, impeding the model’s convergence to an optimal solution. Impact of
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Figure 8: The ACC variation curves of models using AFS compared to models without AFS under
all incomplete modality conditions.

modality recovery quality: The quality of modality recovery by the diffusion model directly affects
the reliability of the input data for the classifier. If the diffusion model is inadequately trained, its
outputs may contain residual noise or artifacts, compelling the classifier to learn erroneous feature
associations.

AFS addresses these challenges by decoupling the optimization objectives through hierarchical
training, which alternately freezes the parameters of the two modules, thereby mitigating gradient
conflicts.

I Metrics of Different Categories

Figure E] illustrate the precision and recall, respectively, of FedDISC and other methods for different
categories under various incomplete modality conditions on the IEMOCAP4 dataset. The results
in Precision show that FedDISC (P) achieves superior performance across all subgraphs with the
largest enclosed area. Notably, it attains nearly 80% precision on the Anger and Happiness classes
under unimodal conditions (e.g., text-only or vision-only) while maintaining competitive accuracy for
Sadness and Neutral. In multimodal scenarios, FedDISC (P) further demonstrates strong integration
capabilities, significantly outperforming baseline methods. These findings highlight FedDISC’s
robustness under modality incompleteness. The results in Recall show that both FedDISC (I) and
FedDISC (P) consistently achieve the highest recall across most emotion categories and all six
modality settings, significantly outperforming the three SOTA models even in challenging unimodal
or bimodal scenarios with missing modalities. These results highlight FedDISC’s superior robustness
and generalization capabilities under partial modality conditions, underscoring its effectiveness even
when certain modalities are unavailable.

J Broader Impacts

This study integrates federated learning with conditional diffusion models to address the dual
challenges of modality incompleteness and privacy preservation in multimodal dialogue emotion
recognition, enabling technological advancements in healthcare and intelligent customer service. By
leveraging distributed collaborative training and modality completion mechanisms, our framework
ensures user data privacy while enhancing model adaptability to partially observed modalities. This
provides efficient solutions for depression screening and personalized mental health interventions.
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Figure 9: The precision and recall of FedDISC and other methods for different categories under
various incomplete modality conditions on the IEMOCAP4 dataset.
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Furthermore, the proposed method demonstrates promising applications in cross-institutional medical
data sharing, effectively mitigating data silos and advancing Al-driven precision medicine.

Despite its benefits, FedDISC may pose potential risks if deployed without careful consideration.
Biases in client-specific training data (e.g., cultural or demographic imbalances in emotion expression)
might propagate into the global model, exacerbating fairness issues in cross-client deployments.
Moreover, the computational demands of iterative diffusion sampling and federated aggregation could
disproportionately exclude resource-constrained participants, reinforcing inequities in collaborative
learning ecosystems. Mitigating these risks requires rigorous audits of recovered modality fidelity,
fairness-aware aggregation strategies, and energy-efficient implementations to align with ethical Al
practices.

30



	Introduction
	Background
	Incomplete Multimodal Learning
	Incomplete Multimodal Federated Learning

	Method
	Dialogue-guided and Semantic-Consistent Module
	Dialogue Graph Network
	Semantic Conditioning Network

	Federated Dialogue-Guided and Semantic-Consistent Diffusion
	DISC-Diffusion Model
	Alternating Frozen Strategy


	Experiments
	Datasets and Implementation Details
	Comparison with SOTA Methods
	Ablation Study
	Computation and Communication Cost

	Conclusion and Limitations
	Theoretical Analysis
	Algorithm Analysis
	Information Redundancy Analysis
	Data Missing Protocols and Federated Mechanism
	Dataset Segmentation and Preprocessing
	Deep Analysis of Visualization Experiments
	DGN and SCN
	Effectiveness of AFS
	Metrics of Different Categories
	Broader Impacts

