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Abstract
The rapidly emerging field of computational pathology
enables integrated image-omic solutions for cancer prog-
nosis by jointly modeling both histological and genomic
data. However, current multi-modal techniques suffer from
three major bottlenecks: (1) Memory Overheads, since a
raw histology image typically has a super high reso-
lution, e.g., 203, 183 × 91, 757 in cancer HNSC. Sim-
ple patch partitioning trades training time for spaces. (2)
Massive Computing Costs, due to immense parameter counts
in recent state-of-the-art models, which demand substantial
computational resources. Meanwhile, their intrinsic represen-
tation redundancy in vanilla-trained networks leads to an inef-
fective usage of the capacity. (3) Gradient Conflicts, because
there are significant heterogeneities between image and ge-
nomic data modalities, resulting in the disagreement of op-
timization directions. In this work, we propose an effective
multi-modal pipeline for cancer prognosis, i.e., CancerMoE,
to address the aforementioned challenges. Specifically, from
data to model, it first designs a dynamic patch selection al-
gorithm to flexibly score and locate informative patches on-
line, trimming down the memory cost; then introduces a
Sparse Mixture-of-Experts (SMoE) framework to disentan-
gle weight spaces and allocate the most relevant model pieces
to an input sample, promoting training efficiency and syner-
gistic optimization among multiple modalities; finally, con-
solidates and scarifies redundant attention heads, leading to
improved efficiency and interpretability. Our extensive exper-
iments demonstrate that CancerMoE achieves competitive
performance on twelve cancer datasets compared to previous
methods. Meanwhile, our proposed network architecture re-
quires only 1% of the image patches, 20% of the model pa-
rameters, and 30% of the merged attentions compared with
the vanilla transformer network.

1 Introduction
In cancer research, a comprehensive examination of vari-
ous facets is often needed to unravel the intricate nature of
this complex disease (Marusyk and Polyak 2010; Marusyk,
Almendro, and Polyak 2012). Prognosis (Sala et al. 2017;
Thakor and Gambhir 2013) serves as one of the promising
approaches to develop an understanding of cancer and pre-
dict the survival chance of patients, equipping with cutting-
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Figure 1: We evaluated the performance of histology-genomic
cancer prognosis on the BRCA dataset. The average results and
memory requirements are reported. The markers ✫ and ❍ repre-
sent the ”ours” and ”baseline” approaches, respectively. A larger
marker indicates more floating point operations (FLOPs) used for
inference. The most ideal solution is indicated in the top left corner.

edge technologies like molecular profiling (Yanaihara et al.
2006), imaging modalities (Shahbazi-Gahrouei et al. 2019),
and genetic analysis (Kamps et al. 2017; Claus, Risch, and
Thompson 1991). Moreover, the joint investigation between
tumor microenvironments (e.g., histological images) and its
interplay with immune responses (e.g., genomic profiles)
sheds light on the intrinsic dynamics that influence tumor de-
velopment and metastasis (Heindl, Nawaz, and Yuan 2015;
Kather et al. 2018; Tarantino et al. 2021), paving the way for
effective survival prediction and further treatment.

Specifically, the advent of high-throughput sequencing
technologies has brought about significant advances in sur-
vival analysis, leading to a shift from the sole examination
of clinical indicators to the integration of genomic profiles
with pathological images. Recent investigations (Shimizu
et al. 2022; Gobin et al. 2019; Kalra et al. 2020; Mayekar
and Bivona 2017; Zhang et al. 2022; Lu et al. 2022) have
highlighted the benefits of exploring multi-modal analysis.
Unfortunately, current learning-based integration solutions
are still in the initial stage of fusing multi-modal knowl-
edge in a straightforward way. For instance, (Braman et al.
2021; Cheerla and Gevaert 2019; Chen et al. 2020) directly
combine pathological features and genomic profiles for sur-
vival prediction, which overlook inherent cross-modal inter-
actions; (Li et al. 2021; Wang et al. 2021; Chen et al. 2021b)



utilize genomic embeddings to guide the attention aggrega-
tion of pathological image features, disregarding informa-
tion that may not be associated with gene expressions. Thus,
there is an immediate demand for an effective integration
mechanism adept at deciphering the domain-specific het-
erogeneity within histological and genomic data modalities.
Recent advancements in learning algorithms have demon-
strated performance that surpasses human experts. However,
their high computational cost presents significant challenges
to scalability and practical application.

In light of this, our paper targets effective integration,
aiming to address computing bottlenecks in three inter-
twined aspects. ① Memory Overheads. Histology images
usually have super high resolutions, e.g., 191, 352× 91, 562
in cancer LUAD and 139, 008 × 256, 256 in cancer BRCA,
which require substantial CPU/GPU memories to load and
process the data. A conventional way is segmenting the
high-resolution images and creating millions of smaller
patches (Kong et al. 2023; Dosovitskiy et al. 2020). How-
ever, it actually trades longer training time for memory re-
ductions. ② Training Efficiency. Millions of patches and
huge parameter counts in recent State-of-the-Art (SoTA)
transformer-based models (Chen et al. 2022a) severely ques-
tion the resource intensity during training. ③ Inference Effi-
ciency. Another efficiency concern and drawback lies in the
insufficient utilization of model capacity. As presented in
recent studies (Yuan et al. 2021; Gao, Zhou, and Metaxas
2021; He et al. 2023), only a small portion of network
weights, like 5% (Zhang et al. 2021; Allen-Zhu and Li 2019)
of total parameter counts, are engaged during the inference
of each sample. A few pioneering efforts have explored dy-
namic sparsity as initial remedies, to cut redundancy and
boost training and inference efficiency.

To overcome the aforementioned challenges in terms of
effective integration and efficient computing (①+②+③), we
propose a novel framework, namely, CancerMoE, for ultra-
efficient data integration for cancer prognosis. The innova-
tive designs span both data and model perspectives. Along
with the information feedforward, it first employs a dedi-
cated Dynamic Patch Selector (DPS) that meticulously ex-
amines and selects crucial image patches abundant in his-
tological information, while discarding redundant ones. It
significantly reduces the heavy costs associated with mem-
ory and training time. Then, a tailored SMoE architecture
is invented to learn modality-specific and -agnostic modules
to synergize multi-modality optimization. In detail, modu-
larization and modality-aware routing policies are leveraged
to disentangle the model parameter space and allocate input
tokens to different model pieces, aiming for computational
efficiency and mitigated conflicts of multi-modal gradients,
respectively. Lastly, we investigate and diminish the atten-
tion redundancy by proposing the Attention Consolidation
and Sparsification (ACS) mechanism. It appropriately clus-
ters multiple attention heads and reduces superfluous atten-
tion connections, which brings improved training and infer-
ence efficiency and interpretability. Our innovation efforts
can be summarized into the following four thrusts:

⋆ Given 1% patches of histological images, the same ge-

nomic profiles, and 20% model parameters, we demon-
strate promising performance and efficiency for pre-
dicting the survival of cancer patients. We introduce
CancerMoE, an effective multi-modal learner in can-
cer prognosis, that seamlessly integrates histology im-
ages and genomics profiles.

⋆ We design a dynamic patch selector mechanism to score
and select the most crucial image patches (e.g., 1% of to-
tal patches) online. This approach eliminates the need to
load the full-resolution image, thereby significantly re-
ducing memory overhead.

⋆ We propose a consolidation and sparsification algorithm
for self-attention modules to reduce intrinsic redundancy
and promote efficiency. It first merges insignificant at-
tention heads into a few knowledgeable ones, then elim-
inates less informative elements in their attention maps.

⋆ Extensive empirical studies are conducted to validate
the effectiveness of CancerMoE on twelve represen-
tative cancer datasets. Specifically, our approaches sur-
pass the ten existing state-of-the-art methods by a clear
performance margin of 4.1% ∼ 18.2% accuracies with
8.9% ∼ 31.2% memory and 0.1% ∼ 2.1% FLOPs as
shown in Fig. 1.

2 Related Work
Multi-Modality Learning (MML). Integrating multiple
data modalities like vision, text, and audio has been a long-
standing focus in machine learning (Lahat, Adali, and Jut-
ten 2015; Bayoudh et al. 2021; Ngiam et al. 2011; Bal-
trušaitis, Ahuja, and Morency 2018). Recently, transformer-
based models have become popular for effective multi-
modal learning (Ramesh et al. 2022; Saharia et al. 2022; Xia
et al. 2023; Dai et al. 2022). MML is crucial in medical ap-
plications, such as combining chest X-rays, clinical notes,
and measurements for intensive care monitoring (Suresh
et al. 2017; Zhou and Chen 2023). The rapid advancements
in computing and AI for medicine have led to increased re-
search in multimodal medical systems (Subbiah Parvathy,
Pothiraj, and Sampson 2020; Huang et al. 2023; Zhu et al.
2022b; Muhammad et al. 2021; Li et al. 2022). For exam-
ple, some studies use adaptive pipelines to enhance modality
fusion or employ optimization techniques to improve fusion
thresholds (Zhu et al. 2022b; Subbiah Parvathy, Pothiraj, and
Sampson 2020). Hierarchical approaches have also been de-
veloped to integrate genomic and image data (Li et al. 2022).
Histology-Genomic Cancer Prognosis. Combining his-
tological images and genomic data for cancer prognosis
is gaining traction (Chen et al. 2020; Li et al. 2022).
This approach merges tissue structure analysis with genetic
data (Galateau-Salle et al. 2016). Recent efforts focus on in-
tegrating both histology images and genomic biomarkers to
improve cancer diagnosis and treatment (Hao et al. 2019).
Studies have developed frameworks to construct prognostic
models, identify genetic patterns (Mobadersany et al. 2018),
and predict patient survival more accurately (Natrajan et al.
2016; Kather et al. 2019; Coudray et al. 2018; Subramanian
et al. 2018; Mobadersany et al. 2018; Echle et al. 2021).



Sparse Mixture-of-Experts (SMoE). Traditional dense
mixture-of-experts models use all experts for each input,
making them computationally expensive. Recent research
proposes SMoE, which activates only a small subset of ex-
perts, greatly improving efficiency during training and in-
ferences (Lepikhin et al. 2020; Shazeer et al. 2017a; Fe-
dus, Zoph, and Shazeer 2022). SMoEs have been effective
in computer vision (Lou et al. 2021; Eigen, Ranzato, and
Sutskever 2013; Riquelme et al. 2021; Ahmed, Baig, and
Torresani 2016; Gross, Ranzato, and Szlam 2017; Wang
et al. 2020; Abbas and Andreopoulos 2020; Pavlitskaya et al.
2020) and NLP (Kim et al. 2021b; Shazeer et al. 2017a; Lep-
ikhin et al. 2020; Zhou et al. 2022; Zhang et al. 2021; Zuo
et al. 2021; Jiang et al. 2021), allocating model components
dynamically for task- or modality-relevant learning (Ma
et al. 2018; Aoki, Tung, and Oliveira 2021; Hazimeh et al.
2021; Kim et al. 2021a; Fan et al. 2022; Ye and Xu 2023;
Chen et al. 2023; Mustafa et al. 2022; Zhu et al. 2022a;
Kudugunta et al. 2021). In cancer research, SMoEs have
been explored, but studies often focus on single-modality
learning (Raman et al. 2010; Myoung 2013; Übeyli 2005;
Kreutz et al. 2001; Afshar et al. 2021). The heterogeneity
of modalities, memory constraints, and diverse objectives
present optimization challenges for SMoE models in cancer
prognosis, which this paper aims to address.

3 Methodology
3.1 CancerMoE - An Ultra-Efficient

Multi-Modal Integration Framework in
Cancer Prognosis

Overview of CancerMoE. CancerMoE is a multi-
modal integration algorithm that learns and infers from his-
tology and genomics information for cancer prognosis. To-
gether with a tailored SMoE architecture, two efficient de-
signs are proposed from data (i.e., dynamic patch selection
in Section 3.3) and model (i.e., attention consolidation and
sparsification in Section 3.4) perspectives, aiming for fast
cancer prognosis. The overall procedures of CancerMoE
are illustrated in Fig. 2. It first selects the most influential
histological image patches in a data-driven manner. Then, it
turns all raw modalities into embeddings and feeds them into
a unified transformer encoder to fuse the knowledge across
modalities. Finally, all token embeddings are passed through
our customized SMoE equipped with consolidated and spar-
sified attention modules. After this step, these tokens are fed
to corresponding experts via modality-specific routing for
cancer prognosis prediction.

Customized SMoE Architecture. In this work, we fo-
cus on transformed-based networks since they have demon-
strated numerous successes in unifying heterogeneous
modalities (Zhu et al. 2022a). Our tailored designs span two
aspects: ① Modality-Specific Embedding and Routing Poli-
cies. CancerMoE creates modality-specific embedding by
concatenating the one-hot modality index vector and the to-
ken embedding as xm = Concat(x,OneHot(m)), where
x and OneHot(m) denote the intermediate token embed-
ding and its one-hot index vector of the modality m, re-
spectively. On top of xm, modality-aware routing is en-

abled according to R(xm). The design philosophy is to en-
courage a synergized multi-modal optimization by learning
appropriate modality-specific and -agnostic expert assign-
ments, which provides possibilities to uncover hidden cross-
modality interactions and transcends the capabilities of any
single modality, as demonstrated in Sec. C.
② Modularization. For efficiency purposes, we turn a large,
densely connected model into the mixture-of-experts archi-
tecture. Specifically, a uniform partition is adopted to di-
vide the original MLP into multiple smaller MLPs. Without
loss of generality, let d be the dimensionality of the origi-
nal MLP. After our modularization, a series of MLP experts
{f1, f2, · · · , fE} is obtained with the same hidden dimen-
sion d

E
. Note that, at both training and inference phases, only

a small subset of experts are activated for the prediction
of one sample, facilitating efficient cancer prognosis (Ta-
ble 2). Meanwhile, such model division allows a disentan-
glement in the model parameter space, offering opportuni-
ties to mitigate conflicted gradient directions from diverse
modalities(Figure 4 (b)).

3.2 Genomic Profile Encoder
To integrate genomic information, we use ”PatchEmbed-
ding” to encode the genomic profiles. Specifically, we start
by treating the genomic profiles as a single vector, which
we divide into g sub-vectors. Each sub-vector is then pro-
jected into the embedding space through a linear layer. After
this, we concatenate the sequence of genomic profile tokens
with the image tokens to create a single input sequence. This
combined sequence is then processed by the transformer
backbone, where the self-attention modules merge the two
types of data.

3.3 Dynamic Patch Selection for Cancer Images
with Super High Resolutions

The fine-gained histological image information is necessary
for prognosis (Shaban et al. 2019; Kim et al. 2020). Never-
theless, there are two challenges that hinder the effective and
efficient utilization of this special modality for prognosis: (1)
the super-high-resolution Whole Slide Images (WSIs) result
in unbearable computation costs; (2) the interfering noise
level increases with the image resolution.

To tackle these issues, we present the Dynamic Patch Se-
lector (DPS) framework. The DPS begins by segmenting all
whole slide images (WSIs) into patches and storing them in
the patch bank for each example. Partial patches then un-
dergo a dynamic scoring process, through which a small
subset of the most informative patches, deemed worthy of
learning, is selected. Simultaneously, a random subset of the
remaining patches within the patch bank is also chosen to
prevent overfitting and explore other informative patches.
Subsequently, the chosen patches are collaboratively used
for the online training of our proposed CancerMoE frame-
work, resulting in significant training cost reductions and ef-
fective noise token filtration.

Proposed Remedies of Addressing the Redundancy Is-
sues to Recover Efficiency. Recently, (Rao et al. 2021;
Kong et al. 2021) have observed the information contained
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Figure 2: The entire architecture design of CancerMoE. The key components of this network include: (1) Dynamic Patch Selection (DPS)
flexibly scores all patches in an online fashion, identifying elite patches; (2) Histopathological images and genomic data are individually
transformed into embeddings and merged across modalities within a unified encoder; (3) Leveraging the Attention Consolidation and Sparsi-
fication (ACS) mechanism, the CancerMoE automatically filters out elements with low informational value from attention maps, selectively
guiding high-quality tokens to respective experts for efficient cancer prognosis prediction.

in tokens has diverse ranges, which indicates that there are
redundant and noisy tokens among the WSIs. We can re-
move less informative tokens to save computational costs
and filter noisy tokens to achieve superior performance.

Our policy for managing computational costs involves re-
viewing a fixed number of WSI tokens during each training
iteration. This subset comprises two distinct parts: neigh-
borhood tokens and randomly selected tokens. Tokens pro-
cessed by the network will be assigned a token score, here-
after referred to as “Selected Tokens”. The DPS first re-
trieves b tokens with the highest token scores, designated
as “Key Tokens”, which treats them as informative tokens.
Intuitively, informative tokens are not isolated, regions sur-
rounding “Key Tokens” are likely to contain pertinent in-
formation. For instance, the extent of cancerous tissue of-
ten surpasses the size of a single patch (each patch will
be processed as a token). Hence, we select tokens centered
on “Key Tokens” as neighborhood tokens. However, in the
initial stages of training, the token scores from the atten-
tion mechanism could be inaccurate, potentially leading to
network overfitting on less informative tokens. To mitigate
this, the DPS concurrently retrieves tokens from the “Origi-
nal Tokens” at random- termed “Random Selected Tokens”.
This parallel selection process identifies new informative to-
kens and helps prevent overfitting to initially favored but
suboptimal tokens.

Token score from self-attention. For token score assign-
ment, we introduce the unique learnable token, denoted as
xcls. xcls will be inserted at the beginning of each input se-
quence to accumulate information from other tokens. We
compute the token score from its attention score acls =

softmax( qclsK
⊤

√
d

) ∈ RL, where qcls is the query vector of
xcls. The attention score comes from the intrinsic attention
mechanism in our transformer-based backbone do not re-
quire any additional cost. Each element in acls corresponds
to a token in the input sequence and is expressed as its asso-

ciated token score.
For more details CancerMoE, please refer to Ap-

pendix A.

3.4 Attention Consolidation and Sparsification

Owing to the redundancy among attention heads (Michel,
Levy, and Neubig 2019; Beltagy, Peters, and Cohan 2020),
it motivates us to consolidate learned information, which can
enable efficient prediction of cancer patient’s survival rates.
Our attention consolidation and sparsification (ACS) algo-
rithm consists of two components: (1) attention consolida-
tion, where attention maps are clustered based on their co-
sine similarity and then merged into a few more knowledge
ones; (2) attention sparsification, where superfluous atten-
tion connections are trimmed for extra inference efficiency.
▷ Attention Consolidation. As shown in Fig. 2 and
Algorithm 2, we first calculate the importance score
{I1, I2, . . . , IH} of all attention heads {Ai}|Hi=1 to identify
the most informative ones, where H is the number of atten-
tion heads. To be specific, the importance of attention head

Ai is estimated as: Ii = Ex∼X

∣∣∣∣Ai(x)
⊤ ∂L(x)
∂Ai(x)

∣∣∣∣ , whereX

symbolizes the distribution of training data, L(x) signifies
the objective function, and Ai(x) represents the output fea-
tures.

Then, k informative attention heads are selected, and
K-means is applied to assign the rest of the attention
heads to these k informative ones, according to their co-
sine similarities. In this way, {A(1)

1 ,A(2)
1 ,· · · ,A(k)

1 } denotes
the k selected attention heads. Their associated sets of
clustered heads are {{A(1)

2 ,· · · ,A(1)
n1 }, {A

(2)
2 ,· · · ,A(2)

n2 }, · · · ,
{A(k)

2 ,· · · ,A(k)
nk }}, where {n1 − 1,· · · ,nk − 1} are the num-

ber of allocated heads and
∑k

i=1 ni = H. The output yi
from the cluster i is described as a weighted sum across ni



heads:

yi =

The ith informative attention head︷ ︸︸ ︷
softmax({I1, · · · , Ini

})i ×Ai(x)+

Allocated attention heads in the cluster i︷ ︸︸ ︷
ni∑
j=2

softmax({I1, · · · , Ini
})j ×Aj(x)

.

(1)
The final output from the consolidated multi-head attention
can be formulated as y = Concat({yi}|ki=1).
▷ Attention Sparsification. In Fig. 2 and Algorithm 1, to re-
move superfluous attention connections, we further sparsify
attention maps by only preserving (q × N)2 attention ele-
ments with the largest magnitude. q is a pre-defined ratio
for the attention sparsification and N represents the number
of WSIs’ tokens. Note that, at the inference phase, the at-
tention calculation purely happens among the selected q×N
tokens, leading to substantially reduced computational costs.
Finally, the task-specific heads process these refined and re-
duced tokens to determine the cancer prognosis.

4 Experiment
4.1 Implementation Details
Datasets. To evaluate our proposed CancerMoE, we con-
duct experiments on The Cancer Genome Atlas (TCGA),
a publicly accessible database housing genomic and clini-
cal data derived from thousands of cancer patients, encom-
passing 33 prevalent cancer types. The Cancer Genome At-
las (TCGA) is a publicly accessible database housing ge-
nomic and clinical data from thousands of cancer patients,
encompassing 33 prevalent cancer types commonly used in
cancer prognosis prediction. We select 12 cancer types that
are frequently used in plenty of works (Chen et al. 2021c;
Klambauer et al. 2017; Jaume et al. 2023; Ilse, Tomczak,
and Welling 2018; Chen et al. 2021a; Shao et al. 2021,
2023; Chen et al. 2021b; Lu et al. 2021; Chen et al. 2022b).
We utilize the pre-processed Whole Slide Image (WSI) is
proposed by (Chen et al. 2022b) as the image input for
CancerMoE. The WSI is segmented 256×256 sub-images
of high-resolution histology images and extracts each sub-
image into feature vector R1024 by CLAM (Lu et al. 2021).
The size of the different WSIs varies greatly (8, 417×6, 602
to 191, 352×91, 562), resulting in the number of paths R1024

also varies accordingly, which makes parallelizing the train-
ing process difficult. More details about datasets and imple-
mentation can be found in Appendix B.

Optimization Object. To optimize the model parameters,
we utilize the log-likelihood function for a discrete survival
model (Chen et al. 2022b), Lc, where Lc is the loss function
for the censor patients. Formally, the survival state of a pa-
tient considers two factors: 1) Censorship status, where c =
0 signifies an observed patient death and c = 1 corresponds
to the patient’s last known follow-up. 2) Time-to-event, rep-
resented as ti, signifies the duration between the patient’s
diagnosis and observed death if c = 0, or the time until the
last follow-up if c = 1. The h denotes the output represent-
ing discrete survival predictions: hazards = σ(h). In the
next step, the cumulative survival function S(t) is calculated
from the hazards: S(t) =

∏t
i=0(1 − hazardsi). Then the

final loss function Lc corresponding to censored patients is

defined as: Lc = −(1 − c) · (log(S(t − 1) + log(S(t)))).
The term of the loss function corresponding to uncensored
patients Lu is defined as: Lu = −c · log(S(t)). The final
loss function can be obtained by combining Lc and Lu. The
β is the hyperparameter that balances the two loss terms.
Lsurvival = (1− β) · Lc + β · Lu

Evaluation Metric. The performance of the models is as-
sessed using the concordance index (c-index) (Harrell et al.
1982), where higher values indicate better performance. The
c-index measures the proportion of all possible pairs of ob-
servations for which the model’s predicted values accurately
predict the ordering of actual survival. It ranges from 0.5
(indicating random prediction) to 1 (reflecting perfect pre-
diction). The c-index can be expressed with the follow-
ing formulation: c-index = 1

n(n−1)

∑n
i=1

∑n
j=1 I(Ti <

Tj)(1 − cj), where n is the sample size, Ti and Tj rep-
resents the survival time of the i-th and j-th patients. The
symbol I(·) denotes the indicator function, which evaluates
to 1 if its argument is true and 0 otherwise. Meanwhile, cj
indicates the correct censorship status.

We follow the evaluation of (Chen et al. 2021c; Klam-
bauer et al. 2017; Jaume et al. 2023; Ilse, Tomczak, and
Welling 2018), which utilize 5-fold cross-validation to
demonstrate the superiority of our method.

Please refer to the Appendix B for more model implemen-
tation details.

4.2 Powerful performance of CancerMoE in
fierce competitions

In this section, we fairly compare the performance of
our model with various state-of-the-art baselines. The in-
volved machine learning models are SNN (Klambauer et al.
2017), OmicMlP (Jaume et al. 2023), AttnMISL (Ilse,
Tomczak, and Welling 2018), Patch-GCN (Chen et al.
2021a), TransMIL (Shao et al. 2021), MCAT (Chen et al.
2021b) and CMTA(ICCV‘23) (Zhou and Chen 2023), and
biology literature-based methods include CLAM-SB (Lu
et al. 2021), CLAM-MB(Lu et al. 2021), MMF (Chen
et al. 2022b), PorpoiseAMIL (Chen et al. 2022b), and Sur-
former (Wang et al. 2023). Given that single-modal ap-
proaches still exhibit superior performance for certain can-
cers, we also compare our model with single-modal base-
lines that utilize either only pathological images or genomic
profiles. The whole comparison results of CancerMoE
v.s. baselines on 12 type of cancers are shown in Ta-
ble 1, in which we make the following three observations.
① CancerMoE achieves the highest overall performance
across all 12 cancer datasets. Specifically, CancerMoE ex-
ceeds biology-based and learning-based baselines {0.026,
0.071, 0.068}, and {0.094, 0.072, 0.062} in cancers {KIRC,
BLCA, LUAD}, respectively. These empirical results demon-
strate the effectiveness of our model in addressing the cross-
modality conflict and assigning plausible SMoE experts to
conduct better cancer prognosis prediction. ② On LIHC and
BRCA, the performance of CancerMoE merely achieves
a moderate level. The best performance of these two can-
cer types is achieved by methods Patch-GCN (Chen et al.
2021a) and CLAM-SB (Lu et al. 2021) that only use WSI



Table 1: Performance comparison of our model vs. diverse baselines on 12 cancer diagnostic datasets. The notation “P.” signifies the utiliza-
tion of pathological images, “G.” indicates the use of genomic profiles, and “M.” implies the incorporation of both pathological images and
genomic profiles. We mark the best performance in bold and the second best performance in underline.

Method Modality BLCA BRCA HNSC KIRC KIRP LIHC LUAD LUSC PAAD SKCM STAD UCEC Overall↑
SNN(NeurIPS.’17) (Klambauer et al. 2017) G. 0.632 0.573 0.577 0.665 0.707 0.570 0.591 0.522 0.537 0.519 0.545 0.601 0.596
OmicMlP(Preprint’23) (Jaume et al. 2023) G. 0.581 0.589 0.542 0.658 0.740 0.541 0.582 0.507 0.578 0.590 0.527 0.604 0.587
AttnMISL(ICML’18) (Ilse, Tomczak, and Welling 2018) P. 0.553 0.561 0.543 0.577 0.622 0.629 0.564 0.555 0.538 0.621 0.559 0.617 0.581
DeepAttnMISL(MIA’20) (Yao et al. 2020) P. 0.596 0.681 0.569 0.508 0.698 0.625 0.647 0.558 0.594 0.632 0.567 0.743 0.618
Patch-GCN(MICCAI’21) (Chen et al. 2021a) P. 0.560 0.580 0.562 0.524 0.644 0.671 0.585 0.571 0.585 0.666 0.541 0.629 0.611
TransMIL(NeurIPS’21) (Shao et al. 2021) P. 0.529 0.524 0.602 0.533 0.605 0.650 0.476 0.498 0.538 0.637 0.523 0.538 0.554
MCAT(ICCV’21) (Chen et al. 2021b) M. 0.624 0.580 0.557 0.661 0.771 0.636 0.620 0.503 0.627 0.613 0.514 0.622 0.610

CLAM-SB(Nat. Biomed. Eng.’21) (Lu et al. 2021) P. 0.549 0.598 0.577 0.573 0.610 0.645 0.566 0.545 0.541 0.629 0.562 0.599 0.583
CLAM-MB(Nat. Biomed. Eng.’21) (Lu et al. 2021) P. 0.553 0.585 0.541 0.567 0.623 0.630 0.565 0.561 0.554 0.626 0.566 0.581 0.579
PorpoiseAMIL(Cancer Cell’22) (Chen et al. 2022b) P. 0.542 0.560 0.564 0.567 0.539 0.618 0.548 0.561 0.580 0.607 0.556 0.638 0.584
MMF(Cancer Cell’22) (Chen et al. 2022b) M. 0.627 0.558 0.580 0.711 0.811 0.640 0.586 0.527 0.591 0.608 0.587 0.644 0.629
Surformer(CMPB‘23) (Wang et al. 2023) P 0.553 0.623 0.576 0.520 0.594 0.678 0.580 0.549 0.544 0.640 0.606 0.592 0.588
CMTA(ICCV‘23) (Zhou and Chen 2023) M 0.619 0.613 0.587 0.617 0.802 0.567 0.642 0.646 0.556 0.590 0.556 0.590 0.616
Ours M. 0.653 0.576 0.603 0.752 0.824 0.647 0.644 0.571 0.634 0.687 0.605 0.660 0.655

Table 2: Parameters, FLOPs, VRAM consumption, and Training
time of CancerMoE v.s. diverse baselines that involve pathologi-
cal images. The VRAM consumption of each method is in the train-
ing stage (Average VRAM consumption across all cancer datasets),
and the training time is the average time for all 12 cancers. We mark
the best performance in bold and the second in underline.

Method Modality Params(M)↓ FLOPs(G)↓ VRAM(G)↓ Training time(H)↓
AttnMISL (Ilse, Tomczak, and Welling 2018) P. 0.920 42.189 7.320 4.861
Patch-GCN (Chen et al. 2021a) P. 1.187 2.545 20.843 4.974
TransMIL (Shao et al. 2021) P. 0.275 11.743 12.117 8.001
MCAT (Chen et al. 2021b) M. 3.210 7.823 6.003 6.479
CLAM-SB (Lu et al. 2021) P. 0.790 14.707 7.007 4.327
CLAM-MB (Lu et al. 2021) P. 0.791 39.842 8.053 6.317
PorpoiseAMIL (Chen et al. 2022b) P. 0.937 40.872 13.294 5.747
DeepAttnMISL (Yao et al. 2020) P. 8.532 33.294 4.417 12.047
Surformer (Wang et al. 2023) P. 14.520 18.534 4.898 4.343
MMF (Chen et al. 2022b) M. 6.849 137.24 12.376 7.324
Ours M. 0.446 0.170 1.875 2.362

images, which indicates we need a more comprehensive fu-
sion mechanism to effectively integrate genomic profiling
with histological image in LIHC and BRCA. ③ Our multi-
modal approach outshines competing baselines in resolving
modality conflicts across diverse cancer datasets, evident in
consistently superior performance metrics in the c-index. By
seamlessly integrating information from pathological im-
ages and genomic profiles, our model excels in {KIRC,
BLCA, LUAD SKCM}, surpassing MMF (Chen et al. 2022b)
{0.041, 0.021, 0.024, 0.021}, beating MCAT (Chen et al.
2021b) {0.091, 0.029, 0.024, 0.074}. These results prove
our model’s efficacy in leveraging complementary modali-
ties, effectively addressing and reconciling conflicts for en-
hanced cancer diagnostic accuracy.

4.3 Superior Efficiency Across Diverse Baselines
Given the extremely high dimensionality of image data
in pan-cancer diagnosis, we investigate the efficiency
of CancerMoE compared to baseline models. In Ta-
ble 2, we advance deeply to demonstrate the advance
of CancerMoE on efficient training and inference.
CancerMoE achieve improved performance with much
fewer computational resources in terms of fewer data
patches and training epochs. The flops of CancerMoE is
solely 1/1000 of that of MMF (Chen et al. 2022b), yet man-
ifests a considerable qualitative improvement. Compared to
MCAT (Chen et al. 2021b), CancerMoE use 1/50 compu-
tation complexity, with a 7.4% higher c-index, which clearly
shows the superiority and viability of our method. What
is even more noteworthy is that with the same granular-

ity choices including batch and patch size, CancerMoE
only utilizes 9%-20% GPU memory (VRAM) of previous
methods. Moreover, in a direct comparison with baselines,
CancerMoE consistently outperforms in the competition.

For more ablation and additional investigation experi-
ments about the CancerMoE, please refer to Section C.

5 Conclusion and Limitation
This paper proposes CancerMoE, a multi-modal cancer
prognosis prediction pipeline, to address the high computing
costs incurred by WSIs and the gradient conflict arising from
the heterogeneity between histological and genomic data.
Firstly, in CancerMoE, the Dynamic Patch Selection (DPS)
module tackles the complexity of ultra-high resolution by
only feeding elite patches. Then, the Sparse Mixture-of-
Experts (SMoE) is tailored to disentangle model parameter
space to mitigate the gradient conflict. Finally, the Attention
Consolidation and Sparsification (ACS) mechanism is inves-
tigated to diminish attention redundancy and enhance the ef-
ficiency of training and inference steps. Our CancerMoE
has demonstrated superior performance on cancer progno-
sis prediction, with the c-index significantly increasing in
12 types of cancer and beating all other methods. Moreover,
the experiments indicate that CancerMoE is more efficient
than SoTA methods in terms of FLOPs, VRAM, and training
time. Our approach offers valuable insights and techniques
for multimodal AI to aid in efficient cancer prognosis. This
fosters interdisciplinary progress across biology, medicine,
and computer science. As medical AI rapidly evolves, ap-
plying multimodal AI in cancer prognosis is becoming in-
creasingly practical.
CancerMoE has exhibited its effectiveness and excep-

tional performance in cancer prognosis tasks through exper-
iments on multiple cancer datasets; nevertheless, apart from
histopathology images and genomics, there exist multiple
other modalities, such as EHR (Electronic Health Records).
Our future vision entails the establishment of a multi-cancer
types medical diagnostic service, incorporating these diverse
modalities to enhance the capabilities of our proposed ap-
proach. The integration of additional modalities into our
framework poses an intriguing question that necessitates fur-
ther exploration.
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A Method Details
Revisting Sparse Mixture-of-Experts (SMoE). The
SMoE pipeline typically contains a router R and a group
of experts {f1, f2, . . . , fE}, where E is the number of ex-
perts. The output representation is then calculated by y =∑E

i=1R(x)i · fi(x), where fi(x) denotes the intermedi-
ate feature produced by expert fi and a weighted sum-
mation is performed based on their coefficients R(x)i.
Specifically, the router function is described as R(x) =
TopK(softmax(g(x)), k), whereR activates the top-k ex-
pert networks with the largest scores g(x) given an input
embedding x. Also, g is a learnable neural network, as a
Multi-Layer Perception (MLP). Meanwhile, the TopK func-
tion is shown as:

TopK(v, k) =

{
v if v is in the top k
0 otherwise

, (2)

which preserves the largest k values in v and sets the rest of
the elements to zero.

Revisting Self-Attention. In the classic design of a self-
attention mechanism, input tokens {pi}Li=1, pi ∈ Rd×1

are fed into three linear layers to produce the query Q,
key K, and value V matrices, respectively. Each output
matrix, Q, K, V ∈ RL×d shares a hidden dimension d,
with L being the number of total tokens. The attention
module Attn is then formulated as Attn(Q,K,V) =

softmax(QK⊤
√
d
)V . To be specific, let Q = [q1, q2, · · · , qL]

and ai = softmax( qiK
⊤

√
d
) ∈ RL is the attention scores

for the ith token pi. As for the multi-head self-attention, H
self-attention modules are applied to {pi}Li=1 separately, and
a weighted averaging is then performed on top of their out-
puts to generate the final representation. The corresponding
attention score is modified as ãi = 1

H
∑H

h=1 a
h
i .

Algorithm 1: Attention Sparsification, Ai(x)

Require: query, key, and value of x Q,K,V
1: A = softmax(QK⊤√

d
) # Calculate the attention map

2: Calculate k ← (q ×N)2, Aflat ← Flatten(A)
3: Atop ← TopK(Aflat, k), Asparse ← Reshape(Atop)
4: return AsparseV

A.1 Multi-modal Fusion for Dynamic Patch
Selection

With the DPS and ACS, we have achieved substantial train-
ing efficiency. Nonetheless, the performance remains sub-
optimal. We hypothesize that the limitation arises from the
inadequacy of token selection by the DPS. To address this
issue, integrating additional modalities is proposed to fur-
ther enhance the DPS and then achieve more competitive
performance. We pack adjacent genes into tokens to con-
struct the genomic sequence as an additional modality. In
our CancerMoE framework, we consolidate all modalities
pertaining to a single input into a unified sequence. This is
achieved by leveraging the self-attention mechanism to fuse

cross-modal information. This design strategy not only facil-
itates the seamless integration of multi-modal data without
necessitating structural modifications but also promotes the
DPS by effectively utilizing other modal information. The
benefits and advancements of our design are further elabo-
rated in Table 4.

Algorithm 2: Attention Consolidation

Require: Attention importance scores: {I1, I2, . . . , IH}
Ensure: Attention Head output: {A1(x),A2(x),AH(x)}

1: {A(1)
1 ,A(2)

1 , · · · ,A(k)
1 } =

Topk({I1, I2, . . . , IH}, {A1(x),A2(x),AH(x)})
# Use importance scores to select important heads

2: y = {} # Attention output
3: for A(i)

1 in {A(1)
1 ,A(2)

1 , · · · ,A(k)
1 } do

4: A(i)
cluster = {} # Attention Cluster

5: I(i)cluster = {} # Attention importance score in the
cluster

6: for Aj(x) in {A1(x),A2(x),AH(x)} do
7: if COSINE(A(i)

1 (x),Aj(x)) ≤
{COSINE(A(t)

1 (x),Aj(x))}t=k
t ̸=i,t=1 then

8: Add Aj to A(i)
cluster

9: Add Ij to I(i)cluster
10: end if
11: end for
12: yi ← 0

13: for Ai in A(i)
cluster do

14: yi = yi + softmax(I(i)cluster)i ×Ai(x)
15: end for
16: Add yi to y
17: end for

Details of Dynamic Patch Selection Mechanism. We
first split all WSIs of each example to construct a patch bank,
then, we identify the neighborhood tokens during each item
at first. We select b key tokens with Top-b attention scores,
usually, the value of b is ding to 4. A more comprehensive
discussion on the number of b key tokens can be found in
Sec. C, where additional details are provided.

We use ResNet to encode fixed-size image sub-regions,
resulting in different image sizes producing varying num-
bers of tokens. For example, for SKCM, the average number
of tokens is 58,381, the maximum is 1,010,257, and the min-
imum is 923. This variation in the number of tokens makes
parallel training challenging, as it requires input data to have
the same shape to form a batch for network training. Cancer-
MoE addresses this issue by fixing the number of tokens for
each input WSI to ( N ), enabling parallel training. Then
extract N × (1 − p) tokens around these b tokens as part
of selected tokens for DPS, where p is the ratio of selected
unseen tokens. For the remaining N × p tokens of DPS,
we uniformly select them among the unused original tokens
to explore more informative tokens and avoid overfitting to
neighborhood tokens. However, the weight of the model is
continuously updated during the training epoch, which ac-



(1) Whole Slide Images (2) DPS Selected Tokens (3) Attention Map (4) Attention Sparsity

Figure 3: Top: Analysis of the diversified attention via attention sparsity. These blocks are selected tokens via critical region identification,
and colorful blocks are unmasked attention tokens. Bottom: Additional visualized attention scores identified by CancerMoE.

tively keeps changing the attention value of the same token.
Hence, for a stable output, we update the token score only
when the c-index of the training set decreases. For more de-
tails about the token score update method and DPS please
refer to Section C.

B Implementation Details

Datasets Details We have utilized data from 12 pub-
lic cancer types sourced from The Cancer Genome At-
las (TCGA) Program for our experiments. These can-
cer types include Bladder Urothelial Carcinoma (BLCA),
Breast Invasive Carcinoma (BRCA), Head and Neck Squa-
mous Cell Carcinoma (HNSC), Kidney Renal Clear Cell
Carcinoma (KIRC), Kidney Renal Papillary Cell Carci-
noma (KIRP), Liver Hepatocellular Carcinoma (LIHC),
Lung Adenocarcinoma (LUAD), Lung Squamous Cell
Carcinoma (LUSC), Pancreatic Adenocarcinoma (PAAD),
Skin Cutaneous Melanoma (SKCM), Stomach Adenocarci-
noma (STAD), and Uterine Corpus Endometrial Carcinoma
(UCEC), totally involving hundreds of patients and Hema-
toxylin and Eosin (H&E) diagnostic Whole Slide Images
(WSIs). The elaborate information regarding these datasets
is provided in Table 3. Thousands of genomic features
are compiled for each patient, sourced from Copy Num-
ber Variation (CNV) data, mutation status, and bulk RNA-
Seq expression derived from the differentially expressed
genes. This data is collected from The Cancer Genome Atlas
(TCGA) and the cBioPortal (Cerami et al. 2012).

Baseline Details. To facilitate a thorough comparison, we
implement and assess various survival prediction methods
using the same 5-fold cross-validation splits. These meth-
ods encompass both the single-modal learning paradigm and
the multi-modal learning paradigm. The experimental re-
sults for all these methods across the 12 TCGA datasets
are summarized in Table 1. The Params and FLOPs of
CancerMoE and all baseline methods are calculated on the
BRCA dataset. For feature extraction, once segmentation is
completed, image patches of dimensions 256 × 256 are ex-
tracted without overlapping, based on the 20× equivalent
pyramid level from all identified tissue regions. Following
this, a pre-trained ResNet50 model, which had been trained
on Imagenet, is employed as an encoder. It converted each
256× 256 patch into a 1024-dimensional feature vector us-
ing spatial average pooling after the third residual block.

Baseline Modal. Machine learning models: 1)
SNN (Klambauer et al. 2017): It is a self-normalizing
network model, which serves as the single-modal base-
line when working exclusively with genomic profiles. 2)
OmicMLP (Haykin 1998; Jaume et al. 2023): It utilizes a
4-layer Multi-Layer Perceptron (MLP). 3) AttnMISL (Ilse,
Tomczak, and Welling 2018): It employs gated-attention
pooling for the WSIs. 4) Patch-GCN (Chen et al. 2021a): It
explores a hierarchical aggregation approach to consolidate
image-level features. 5) TransMIL (Shao et al. 2021): Trans-
MIL approximates patch self-attention using the Nyström
method (Xiong et al. 2021).6) MCAT (Chen et al. 2021b):
MCAT employs Genomic-Guided Co-Attention (GCA), a
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Figure 4: (a) The expert selection across different modalities in the BRCA dataset. (b) The gradient conflict between modalities in
CancerMoE and the dense counterpart. Here, the gradients are obtained from the experts and dense MLP with the same configuration
in CancerMoE and Dense Model, respectively. our proposed sparse model demonstrates reduced conflict, as evidenced by more positive co-
sine distances, thereby facilitating enhanced multi-modal integration. The BRCA dataset is used for the experiment. The gradient is collected
from the last transformer layer. More positive cosine distances denote less gradient conflict.
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mechanism similar to the standard transformer attention that
serves the purpose of establishing relationships between
image-grid data and word embeddings, much like in the
context of VQA (Vaswani et al. 2017). Biology literature-
based methods: 1) PorpoiseAMIL (Chen et al. 2022b):
It is mainly based on the attention module, projection,
and prediction layers. 2) CLAM-SB and CLAM-MB (Lu
et al. 2021): After segmentation of WSIs using Clustering-
constrained Attention Multiple (CLAM) instance learning’s
method (Lu et al. 2021), survival prediction is performed
in two ways. 3) MMF (Chen et al. 2022b): An approach is
taken to incorporate a multimodal fusion layer, an extension
of Pathomic Fusion (Chen et al. 2020), to merge the features
from SNN and PorpoiseAMIL.

Model Implementation Details. SMoE: We employ two
transformer encoder layers, and the SMoE is tailored in the

Table 3: TCGA 12 Cancers Case number and Feature Summary.

Cancer WSIs Genomics Profile

BLCA 437 20404
BRCA 1021 20980
HNSC 437 2217
KIRC 350 2513
KIRP 284 1587
LIHC 346 2583
LUAD 515 21155
LUSC 484 2416
PAAD 180 1659
SKCM 268 2350
STAD 372 2543
UCEC 539 9081

MLP layer of the last transformer encoder layers. The num-
ber of experts is 4 or 8, and we use the load and importance
balancing loss (Shazeer et al. 2017b) to combat the imbal-
ance loading phenomenon (Chi et al. 2022). DPS: We use
the attention score of the last transformer encoder layers as
the token scores. For the neighborhood tokens, assuming the
number of neighborhood regions is Nn, the total number of
tokens is N , and the ratio of select unseen tokens is p. We
will select N × (1 − p)/(2Nn) tokens on the right and left
sides of the Key Token, respectively. ACS: We do consol-
idation on each transformer encoder layer. The sparsifica-
tion is only executed in the first transformer encoder layer,
where we filter 92% WSIs tokens. Model Architecture: The
number of attention heads is 8, the hidden dimension of our
model is 32. For the genomic profiles, we use a patch em-
bedding layer that splits each gene profile vector into se-
quences with length 8. Training: The training batch size is
set to 32, and the learning rate is 1e−3. For other impor-
tant hyperparameters, we use the same default settings for
all cancer types except BRCA, LUSC, and SKCM: 3072 se-
lected tokens, 4 key tokens, and a ratio of 0.5 for selecting
unseen tokens.



C Additional Investigations

Table 4: Ablation studies on DPS, ACS, SMoE, and fusion. We fix
a set of randomly selected tokens during training to replace the DPS
as “w/o DPS”, use the vanilla attention module to replace the ACS
as “w/o ACS”, use the dense MLP module with the same parameter
to replace the SMoE layer as “w/o SMoE”, and remove genomic
profiles as “w/o Genomic Profiles”. The “Random Select” replaces
the DPS policy with policy that keep random token selection during
training and inference.

Setting BRCA LUSC SKCM

CancerMoE 0.576 0.571 0.687
- w/o DPS 0.564 0.519 0.655
- w/o ACS 0.541 0.506 0.641
- w/o SMoE 0.565 0.493 0.665
- w/o Genomic Profiles 0.539 0.525 0.515
Random Select 0.555 0.529 0.567

Ablation on each component in CancerMoE. To vali-
date the effectiveness of each component in CancerMoE,
we conduct ablation studies as recorded in Table 4. Results
indicate that (1) ACS is the central performance contribu-
tor; (2) The designs of DPS and SMoE bring similar level
amounts of performance improvements; (3) The combina-
tion of above three leads to a superior result in cancer prog-
nosis; (4) The superior performance compared with “w/o
DPS” that selects tokens randomly, demonstrate the efficacy
of DPS in finding important tokens. (5) In the LUSC dataset,
employing genomic profiles without the SMoE framework
yields inferior results compared to using only WSIs (“w/o
SMoE” versus “w/o Genomic Profiles”), which suggests the
presence of gradient conflicts, in which SMoE effectively
mitigates. (6) The enhancement in performance when mov-
ing from “w/o Genomic Profiles” and “w/o DPS” to the
CancerMoE model demonstrates the benefit of incorporat-
ing additional modalities. It leads to selecting elite tokens
better by DPS and leverages genomics data to promote pre-
diction accuracy.

Table 5: Ablation on # selected tokens (N) of CancerMoE.

N BRCA LUSC SKCM

512 0.569 0.571 0.654
1024 0.576 0.547 0.651
2048 0.566 0.536 0.655
3072 0.515 0.509 0.687
4096 0.546 0.536 0.643

DPS - The Number of Selected Tokens. The results in
Table 5 show that ① The best number of selected tokens
is dataset-dependent. Results vary from dataset to dataset.
We present clear indications on BRCA, LUSC, and SKCM
datasets. For BRCA, the performance pinnacle is reached at
N = 1024, with LUSC and SKCM arriving at a sweet point

Table 6: Ablation studies on # Key Tokens (b) of CancerMoE.

Setting BRCA LUSC SKCM

1 0.570 0.548 0.626
2 0.573 0.527 0.636
3 0.570 0.559 0.627
4 0.571 0.571 0.687
5 0.576 0.567 0.642

Table 7: Ablation on # informative attention heads in ACS.

Setting BRCA LUSC SKCM

0.1 0.537 0.555 0.600
0.3 0.561 0.544 0.687
0.5 0.576 0.571 0.666
0.7 0.572 0.527 0.624
0.9 0.571 0.565 0.655

for superior predictions at N values of 512 and 3072, corre-
spondingly. ② The performance shows an upward trend as
the value of N increases. This observation highlights that
too small a number of tokens do not provide enough feature
information for the DPS to capture. ③ Following its peak,
we obviously note that the performance experiences a grad-
ual decline as N values increase, which indicates that abun-
dant tokens do not necessarily yield superior outcomes. Al-
though DPS selects quality patches for training, more tokens
inevitably introduce noise, affecting performance.

DPS - The Number of Key Tokens b. The ablation ex-
periments on the number of Key Tokens b are presented in
Table 6, it is verified on datasets BRCA, LUSC, and SKCM.
The optimal diagnostic benefit is achieved when the value
of b is set to 4, too small or too large of b, both causing
performance degradation. The finding shows the importance
of the number of neighborhood tokens, which is crucial to
identifying diagnostic information.

DPS - Token Score Update Policy. As shown in Table 8,
adopting different token score update policies influences the
performance of CancerMoE. On the BRCA, SKCM cancer
dataset, the “c-index depends” approach exhibits superior
predictive capabilities, outperforming the “4 epochs apart”
and “2 epochs apart” strategies. Moreover, the “c-index de-
pends” tactics demonstrate more impressive competitiveness
on the LUSC dataset. Compared with the sub-optimal one,
the “c-index depends” exceeds 0.043. Considered holisti-
cally, we determine that “c-index depends” represents the
most effective token score update policy.

DPS - The Ratio p of Select Unseen Tokens. The ratio
p of select unseen tokens indicates how much the overview
information we use for prognosis prediction. We also con-
ducted extensive investigations on the ratio p illustrated in
Table 7. Initially, as the ratio increased, the accuracy of prog-



Table 8: Ablation studies on different token score update policies
of our proposed CancerMoE. “per epoch” denotes the update to-
ken score every epoch, “n epoch apart” denotes the update token
score n epoch apart, and “c-index depends” denotes token score is
updated when the c-index of the training set decrease.

Setting BRCA LUSC SKCM

per epoch 0.570 0.528 0.656
1 epoch apart 0.560 0.520 0.662
2 epochs apart 0.564 0.523 0.652
4 epochs apart 0.562 0.521 0.664
c-index depends 0.576 0.571 0.687

Table 9: Ablation studies on the ratio p of selected unseen tokens
of our proposed CancerMoE.

Setting BRCA LUSC SKCM

w/o Consolidation 0.536 0.541 0.685
1 0.540 0.511 0.682
2 0.576 0.514 0.687
3 0.567 0.571 0.671

nostic diagnosis improved. Subsequently, the optimal per-
formance plateaued at p = 0.5, reaching a saturation state.
Increasing the parameter p allows the model to encounter a
broader range of new tokens, thereby mitigating the risk of
overfitting to a limited set of specific tokens. However, set-
ting p too high can be counterproductive, as it may lead the
model to sample tokens too randomly, which can obstruct
the model’s ability to converge effectively. The observation
highlights that the balance between local and overview WSI
information is critical and needs to be carefully determined.

ACS - Consolidation and Sparsification In order to sub-
stantiate our proposition that eliminating redundant informa-
tion carried by redundant attention heads can result in re-
markable advancements in cancer prognostic performance,
we performed fusion experiments by varying the diverse
number of attention heads, and the resultant findings are pre-
sented in Table 9. The data reveals that aggregating multiple
heads brings substantial advantages without any accompa-
nying disadvantages. Notably, the most gratifying outcomes
are obtained when 2 is chosen as the number of informative
attention heads.

ACS - Interpretability from Diversified Attention. To
raise the interpretability of the model, we conducted exper-
iments with a sparse algorithm for the self-attention mod-
ule. The outcomes of the sparsity operation are displayed in
Fig. 3, where we eliminate elements with low information
content in the sequence to reduce inherent redundancy and
improve efficiency.

SMoE - Modality Level Routing Specialization. To
showcase the effectiveness of the modality router structure,
we present a visualization of CancerMoE in Fig. 4 (a). It
can be observed that the expert 1 and the expert 4, who pon-
der to be attributed to genomic profiles and others, tend to
process both modalities.

Gradient Conflict between Modalities. As previously
mentioned, our modality-specific routing policy directs
modality embeddings towards compatibility experts, which
in turn produce high-quality modality features. This strategy
effectively addresses various modalities and segregates the
network parameter space according to different modalities
and tasks. As demonstrated in Fig. 4 (b), disentangling the
model’s parameter space significantly reduces gradient con-
flict between modalities. This separation leads to enhanced
performance, which is further demonstrated in Table 4.


