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ABSTRACT

Large Language Models (LLMs) inherently encode a wealth of knowledge within
their parameters through pre-training on extensive corpora. While prior research
has delved into operations on these parameters to manipulate the underlying im-
plicit knowledge — encompassing detection, editing, and merging — there re-
mains an ambiguous understanding regarding their transferability across models
with varying scales. In this paper, we seek to empirically investigate knowl-
edge transfer from larger to smaller models through a parametric perspective.
To achieve this, we employ sensitivity-based techniques to extract and align
knowledge-specific parameters between different LLMs. Moreover, the LoRA
module is used as the intermediary mechanism for injecting the extracted knowl-
edge into smaller models. Evaluations across four benchmarks validate the ef-
ficacy of our proposed method. Our findings highlight the critical factors con-
tributing to the process of parametric knowledge transfer, underscoring the trans-
ferability of model parameters across LLMs of different scales. Project website:
https://maszhongming.github.io/ParaKnowTransfer.

1 INTRODUCTION

Driven by the advancements of Large Language Models (LLMs) (Brown et al., 2020; Chowdhery
et al., 2022; OpenAI, 2023; Touvron et al., 2023a), a transformative wave has reshaped the land-
scape in multiple areas of Artificial Intelligence, elevating performance across diverse tasks. From a
parametric perspective, the objective of pre-training is to encode substantial amounts of knowledge
into model parameters through language modeling on extensive corpora (Peters et al., 2018; Rad-
ford et al.; Devlin et al., 2019; Delétang et al., 2023). In a quest to unravel the intricate workings
of LLMs, a multitude of research efforts have been directed toward the detailed exploration and
nuanced manipulation of this reservoir of implicit knowledge.

Early research efforts sought to detect this parametric knowledge, typically probing the concrete
facts by using the “fill-in-the-blank” task under a closed-book setting (Petroni et al., 2019; Jiang
et al., 2020; Roberts et al., 2020). Subsequent studies delved into the feasibility of executing op-
erations on model knowledge, including knowledge editing (Cao et al., 2021; Mitchell et al., 2022;
Meng et al., 2022), a technique designed to modify targeted knowledge while preserving the in-
tegrity of the remaining information, and model merging (Izmailov et al., 2018; Ainsworth et al.,
2023; Stoica et al., 2023), a strategy that combines multiple models to enhance robustness or facil-
itate multitasking abilities. While these investigations exhibited that such parametric knowledge is
both detectable and editable within a single model, the broader question of whether it is transferable
across different LLMs remains an open and under-explored topic.

Knowledge transfer refers to distilling the expertise of larger teacher models into smaller, more man-
ageable counterparts, thereby democratizing access to cutting-edge machine learning capabilities.
As illustrated in Figure 1, online and offline distillation currently stand as the primary paradigms.
The former, especially prevalent before the LLM era, capitalizes on teacher models to guide the
learning trajectory of student models (Hinton et al., 2015; Sanh et al., 2019; Gou et al., 2021). Yet,
as LLMs grow in scale, the inherent demand for the teacher model to undergo fine-tuning or par-
ticipate in student training becomes increasingly cost-prohibitive. In contrast, offline distillation
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Figure 1: Different paradigms of knowledge transfer from teacher models to student models. (a)
Online Distillation: utilizing soft logits from the fine-tuned teacher model to guide the training
of the student model; (b) Offline Distillation: generating a distilled dataset that encapsulates the
knowledge of the teacher model to fine-tune the student model. (c) Parametric Knowledge Transfer:
extracting knowledge-specific parameters from the vanilla teacher model and injecting them into the
student model to enhance its training efficacy.

calls upon the teacher model merely to generate answers to open-ended queries, creating a distilled
training dataset for students (Honovich et al., 2023; Wang et al., 2023c; Taori et al., 2023). De-
spite reducing the overhead to thousands of inferences, it completely overlooks the rich knowledge
implicitly stored within the teacher’s parameters.

In this paper, we empirically investigate knowledge transfer from a distinct parametric perspective,
dedicated to selecting static parameters directly from the teacher model and exploring their trans-
ferability. Specifically, we introduce a new parametric knowledge transfer paradigm designed to
extract task-specific parameters from the teacher model and subsequently inject them into the stu-
dent model, thereby enhancing performance on downstream tasks. Through decoding on a limited
set of seed samples (e.g., 32 samples) with the teacher model, we calculate sensitivity metrics that
serve as the basis for knowledge extraction. Given the discrepancies in the number of layers and
dimensions across varied LLM scales, we employ sensitivity-based layer mapping and dimensional-
ity reduction techniques to establish alignment between the teacher and student models. Lastly, we
leverage LoRA (Hu et al., 2022) as a bridge to inject these extracted parameters into student models,
facilitating its fine-tuning on downstream tasks and thus achieving the knowledge transfer process.

Experimentally, we evaluate the parametric knowledge transfer framework across four bench-
mark categories: reasoning (Cobbe et al., 2021), professional knowledge (Hendrycks et al., 2021),
instruction-driven NLP tasks (Wang et al., 2022), and open-ended conversation (Dubois et al., 2023),
using various sizes of LLaMA models (Touvron et al., 2023a;b). The results indicate that upon trans-
ferring the teacher model’s parameters, the student performance demonstrates consistent improve-
ments across all benchmarks, affirming the transferability of parametric knowledge. Furthermore,
our detailed analyses illustrate the underlying factors that contribute to effective parametric knowl-
edge transfer, discovering that the teacher scales, initialization strategies, number of seed samples,
and the origin and structure of the extracted parameters all play crucial roles.

To summarize, the key contributions of this paper are threefold: (1) From a distinct perspective, we
introduce a parametric knowledge transfer paradigm that encompasses stages of sensitivity-based
knowledge extraction and LoRA-driven knowledge injection. (2) Through comprehensive evalua-
tions, we provide empirical evidence that implicit model knowledge is indeed transferable across
varying scales of LLMs. (3) Further enriching our insights into parametric knowledge transfer, we
undertake a thorough analysis to pinpoint the pivotal factors that dictate its efficacy.

2 RELATED WORK

2.1 MANIPULATION OF IMPLICIT MODEL KNOWLEDGE

With the recognition of the vast repository of knowledge embedded in model parameters (Petroni
et al., 2019; Jiang et al., 2020; Roberts et al., 2020; Dai et al., 2022), ensuing research has sought
to execute diverse operations on these parameters, aiming to manipulate the implicit knowledge.
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For instance, knowledge editing endeavors to modify or update specific facts by editing the associ-
ated parameters, all the while ensuring the broader knowledge base remains untouched (Cao et al.,
2021; Mitchell et al., 2022; Meng et al., 2022; 2023; Yao et al., 2023b). Another avenue, model
merging and composition, combines the weights of two or more models into a unified weight set or
dynamically activates different modules for greater robustness and multitasking capabilities (Huang
et al., 2017; Izmailov et al., 2018; Ainsworth et al., 2023; Stoica et al., 2023; Zhong et al., 2024).
Additionally, a strand of studies probes into performing arithmetic operations on the pre-trained
weights, thus enabling the model to augment or diminish particular functionalities (Ilharco et al.,
2023; Ortiz-Jiménez et al., 2023; Zhang et al., 2023). However, these explorations are limited to
operations within individual models or merging models with identical architectures, without inves-
tigating if implicit knowledge between different scale models can be manipulated and transferred.

2.2 INHERITANCE OF MODEL KNOWLEDGE

Another line of research that aligns more closely with our work concerns the operation of model
parameters across scales, specifically the concept of model growth (Yao et al., 2023a; Li et al., 2023).
This refers to accelerating the pre-training of LLMs by incrementally growing and expanding the
parameters of a smaller model, using them as an initialization for the larger one. The majority of
existing work is concentrated on devising function-preserving methods (Chen et al., 2016), ensuring
that the initialized larger model replicates the behaviors of the original smaller model (Wei et al.,
2016; Gu et al., 2021; Chen et al., 2022; Evci et al., 2022; Shen et al., 2022; Gesmundo & Maile,
2023). Concurrently, several studies adopt data-driven strategies, investigating reverse distillation
(Qin et al., 2022) or mapping learned weights from smaller models to their larger counterparts (Wang
et al., 2023a). In contrast to this research direction, our emphasis is on the transfer of knowledge
from larger teacher to smaller student models, with the aim of exploring not only the efficiency of
training, but also the transferability of parametric knowledge across different scenarios.

2.3 TRANSFER OF MODEL KNOWLEDGE

Knowledge transfer is a research area dedicated to training a smaller student model to mimic the
behavior of a larger pre-trained teacher model to achieve similar performance with fewer parameters
(Hinton et al., 2015). Despite progress in improving the online distillation paradigm (Zhang et al.,
2018; Lan et al., 2018; Jin et al., 2019; Mirzadeh et al., 2020; Park et al., 2021; Pham et al., 2021;
Zhou et al., 2022) and optimizing the efficiency of offline distillation (Honovich et al., 2023; Wang
et al., 2023c; Wu et al., 2023; Taori et al., 2023; Peng et al., 2023; Xu et al., 2023), they both
completely ignore the implicit knowledge embedded inherently in the teacher model. Concurrently,
Xu et al. (2024) propose weight selection for uniformly selecting parameters from a larger teacher
model to initialize a smaller variant. In contrast to our work, they concentrate on vision tasks and aim
to broadly enhance the capabilities of student models, rather than seeking to affirm the transferability
of task-specific implicit knowledge between various models.

3 PARAMETRIC KNOWLEDGE TRANSFER

In this section, we first outline the task formulation for parametric knowledge transfer. Following
this, we delve into a detailed description of our proposed method, as depicted in Figure 2.

3.1 TASK FORMULATION

The core objective of parametric knowledge transfer is to enhance a student model by selectively
transferring task-specific parametric knowledge from a more knowledgeable teacher model. Given
a task T , the transfer process begins with a teacher model MT endowed with parameters ΘT and a
student model MS characterized by parameters ΘS .

The first step in this procedure involves extraction, where task-relevant parameters are identified
from the teacher model and resized to a desired scale based on the student model’s parameter di-
mensions. This can be expressed as:

Extract(ΘT ;ΘS ; T ) = ΘTextract , (1)
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Figure 2: Overview of our parametric knowledge transfer framework. Starting with the teacher
model, we compute sensitivity metrics using a set of seed samples, which aids in the extraction of
task-specific knowledge. Subsequently, the extracted parameter matrices are factorized to initialize
the student model’s LoRA module, serving as a bridge for knowledge injection.

with Extract(·) encapsulating the logic for both parameter extraction and downscaling. Following
extraction, the next step is the injection of these extracted parameters into the student model:

Inject(ΘS ;ΘTextract) = Θ′
S , (2)

yielding a student model now characterized by the modified parameter set Θ′
S . Upon completing

the knowledge injection, there remains an optional phase wherein the student model fine-tunes the
newly incorporated parameters Θ′

S with respect to the task T .

3.2 KNOWLEDGE EXTRACTION

In implementing our Extract(·) function, we employ parameter sensitivity as the foundational metric
to guide the extraction process.

Sensitivity of the Parameters. Parameter sensitivity serves as a mechanism to measure the vari-
ation in the loss upon setting a particular parameter to zero (Mozer & Smolensky, 1988; Lee et al.,
2019; Lubana & Dick, 2021; Liang et al., 2022). When this removal elicits a significant shift in the
loss, such a parameter is deemed to be of high sensitivity. For a teacher model MT with parameters
ΘT = [θ1, . . . , θNT

], where NT represents the total number of parameters, the i-th parameter can
be expressed as ΘTi

= [0, . . . , θi, . . . , 0]. With gradients of the loss relative to ΘT represented as
∇ΘT

L, the sensitivity of the i-th parameter for a specific sample xj from task T is determined as:

Si,j =
∣∣Θ⊤

Ti
∇ΘT

L(xj)
∣∣ . (3)

The rationale behind this sensitivity definition stems from the first-order Taylor expansion of L(·)
relative to θi at ΘTi (Molchanov et al., 2017). In essence, Si,j provides an approximation for how
the loss might change in the absence of θi:

Θ⊤
Ti
∇ΘT

L(xj) ≈ L(ΘT )− L(ΘT −ΘTi
). (4)

To ascertain Si for parameter i pertaining to task T , we randomly sample k instances as seed samples
for an efficient and representative estimate. Thus, the final formulation Si for task T integrates the
cumulative sensitivity over the sampled instances, calculated as Si =

∑k
j=1 Si,j .

Layer Selection and Dimensionality Reduction. Given that models of varying scales often differ
in both the number of layers and their dimensions, we adopt a method of layer selection and dimen-
sionality reduction based on sensitivity scores. Our first step is to assess the layers of the teacher
model, MT , with respect to their relevance to task T . Let LT and LS represent the total number of
layers in the teacher and student models, respectively, with LS ≤ LT . For each layer l in MT , we
calculate a layer-specific sensitivity score, STl

, by aggregating the sensitivity scores of all parame-
ters within that layer, represented as: STl

=
∑

θi∈ΘTl
Si. Having computed the sensitivity scores
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for layer l in MT , we proceed to arrange them in descending order and select the top LS layers with
the highest scores. To preserve the inherent structure of the teacher model, the chosen layers are
subsequently mapped to the student model maintaining their original sequential order.

Upon alignment of the layers, the parameter dimensions of each layer in the teacher model typically
continue to surpass those of the student model. During this phase of the transfer process, our focus
is primarily on all the two-dimensional matrices in the teacher model, which are denoted as WT.
We initially identify submatrices within each WTi

∈ WT that match the student model’s matrix
dimensions, RnS×mS (nS ≤ nT ,mS ≤ mT ). The extraction of these submatrices can be conducted
through different methods: pass-by-neuron, by selecting rows and columns, or by direct extraction
of the submatrix. Our comparative analysis in Section 4.3 indicates that maintaining the original
structural integrity of the teacher model’s parameters is most effective. Consequently, we compute
the sensitivity scores for all submatrices with dimensions RnS×mS . The submatrix WTi,extract is
then selected as the one with the highest cumulative sensitivity score among these. Formally, this
objective is expressed as:

WTi,extract = arg max
W ′⊆WTi

∑
θi∈W ′

Si. (5)

By aggregating WTi,extract across all layers, we derive the extracted parameters ΘTextract from MT .

3.3 KNOWLEDGE INJECTION

To keep the architecture and the number of parameters of the student model unchanged during the
knowledge transfer process, we employ the LoRA approach to instantiate the Inject(·) function.

LoRA Module. LoRA (Hu et al., 2022), which stands for Low-Rank Adaptation, is a method
designed to optimize parameter efficiency by freezing the pre-trained model weights and inserting
trainable rank decomposition matrices into the deep neural network. The guiding intuition is that
pre-trained language models possess low “intrinsic dimensions” (Aghajanyan et al., 2021). This
means that even when projected to a smaller subspace, these models can still exhibit efficient learn-
ing. Consequently, it can be hypothesized that weight updates during adaptation also exhibit low
“intrinsic ranks”. For a given pre-trained weight matrix Wi ∈ Rn×m, it can be updated as:

W ∗
i = Wi +∆W = Wi +BiAi, Bi ∈ Rn×r, Ai ∈ Rr×m, (6)

where r represents the low rank with r ≪ min(n,m). The matrix Wi remains constant during this
operation, implying that only Bi and Ai are updated in the training phase. To ensure that training
commences from the original pre-trained weights, either Bi or Ai is initialized with zeros.

Knowledge Injection with LoRA. The main goal of this step is to integrate knowledge from the
teacher model by incorporating extracted parameters into the student’s LoRA module. Initially, SVD
is adopted to factorize each matrix WTi,extract in ΘTextract into three constituent matrices as:

WTi,extract = UiΣiV
⊤
i . (7)

Here, Ui and V ⊤
i are orthogonal matrices containing left and right singular vectors, respectively,

while Σi is a diagonal matrix that hosts the singular values in descending order. To capture the first
r ranks, we then formulate:

WTi,extract,r = Ui[:, : r]Σi[: r, : r]V
⊤
i [: r, :]. (8)

The symbols Ui[:, : r] and V ⊤
i [: r, :] represent the initial r columns of Ui and V ⊤

i , respectively,
while Σi[: r, : r] captures the top r singular values. For the student model’s corresponding matrix
Wi, we can adopt the training strategy from the LoRA paper:

W ∗
i = Wi +BiAi, (9)
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where Bi is initialized as Ui[:, : r]Σi[: r, : r], and Ai with V ⊤
i [: r, :]. This approach, however,

alters the starting point from the pre-trained weights of the student model, potentially impacting
downstream task performance, as discussed in Section 4.3. Consequently, we propose an alternative
initialization strategy for the student model:

W ∗
i = Wi −WTi,extract,r +BiAi, (10)

During the training process, we maintain the matrices Wi and WTi,extract,r as constants, with up-
dates only being applied to the parameters in BiAi. Given that WTi,extract,r and BiAi are initially
equivalent, this approach guarantees that training commences from the pre-trained weights. The
inclusion of the LoRA module is designed to efficiently utilize the most salient features of the ex-
tracted knowledge from the teacher model.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP

Facets of Evaluation. To validate the efficacy of our proposed framework, we conduct evaluations
across four distinct benchmark categories:

(1) Reasoning: Reasoning stands as a foundational capability for models, particularly when tackling
intricate tasks. We leverage the Grade School Math dataset (GSM) (Cobbe et al., 2021) to assess the
reasoning proficiency of models. The evaluation format requires models, given a math problem, to
produce the chain-of-thought process (Wei et al., 2022) and the final numerical answer.

(2) Professional Knowledge: For language models to effectively cater to users’ informational needs,
possessing a robust repository of professional knowledge is crucial. We measure this knowledge
reservoir using the Massive Multitask Language Understanding dataset (MMLU) (Hendrycks et al.,
2021). This dataset encompasses questions about 57 subjects, spanning a spectrum of difficulty
levels from elementary to advanced professional tiers, all formatted as multiple-choice questions.

(3) Instruction-driven NLP Tasks: This set of tasks evaluates a model’s capability in adhering to
instructions. Typically, the language model receives both a task definition and an input text, and
it must perform the specified classification or generation tasks as directed. Our chosen benchmark
for this category is the Super Natural Instructions (Super NI) (Wang et al., 2022), a rich dataset
comprising 1,616 varied NLP tasks alongside their expert-written instructions.

(4) Open-ended Conversation: This represents the primary interface through which models interact
with users in real-world scenarios. To evaluate such instructability, we employ AlpacaFarm (Dubois
et al., 2023), which contains 805 instructions including subsets from various evaluations like Self-
Instruct (Wang et al., 2023c), Open Assistant (Köpf et al., 2023), Anthropic (Bai et al., 2022), Vicuna
(Chiang et al., 2023), and Koala (Geng et al., 2023). GPT4-32K serves as the evaluator, determining
the win rate of the testing model against the outputs generated by Davinci-003.

Throughout all evaluations, we adhere to established metrics and prompts, utilizing the evaluation
scripts sourced from Wang et al. (2023b).

Implementation Details. For all our experiments, the larger-scale LLaMA model (Touvron et al.,
2023a;b) serves as the teacher, and its smaller-scale counterpart acts as the student. For the fine-
tuning of the student model, we draw a random subset of 1,000 instances from the respective training
datasets of each benchmark. In the case of AlpacaFarm, due to the absence of a training set, we
utilize LIMA data (Zhou et al., 2023) as a substitute, which is composed of 1,000 carefully curated
open-ended conversations. For each experiment, 32 seed samples are randomly selected from the
corresponding training sets. The student model is trained for 3 epochs with a batch size of 64 and
a learning rate of 3e-4. Regarding LoRA, we set the rank as 16, and insert LoRA module into
the embedding layer, FFN, and self-attention layer in the Transformer architecture (Vaswani et al.,
2017). Notably, all results presented in this paper are mean values derived from three separate runs,
with each run using a new random set of seed samples.
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Table 1: Results for parametric knowledge transfer. “7B-LoRA + 13B Param.” represents that we
extract parameters from the 13B teacher model and transfer them to the 7B student model.

Models
GSM MMLU Super NI AlpacaFarm Average

0-shot 8-shot 0-shot 5-shot EM R-L Win Rate% -

LLaMA-1

Vanilla 7B 4.70 10.77 32.10 35.30 0.67 5.55 - -
7B-LoRA 17.26 16.93 43.43 38.90 22.91 40.49 9.07 27.00

+ 13B Param. 18.73 18.85 44.03 39.77 24.51 42.37 9.28 28.22
+ 30B Param. 18.63 18.52 45.20 40.60 25.01 43.08 9.40 28.63

Vanilla 13B 4.93 17.44 43.50 46.80 2.18 7.78 - -
13B-LoRA 26.18 23.78 50.43 50.03 27.34 45.53 13.91 33.89

+ 30B Param. 27.85 27.70 51.30 51.03 27.51 46.09 17.27 35.54

LLaMA-2

Vanilla 7B 3.34 15.54 41.70 45.80 0.00 4.68 - -
Vanilla 13B 6.52 27.82 52.10 55.20 0.00 4.84 - -
7B-LoRA 23.38 21.05 47.77 47.07 24.93 41.25 20.50 32.28

+ 13B Param. 25.30 26.31 49.37 46.53 26.16 42.98 24.64 34.47

4.2 EXPERIMENTAL RESULTS

Results for Parametric Knowledge Transfer. Our initial experiments focus on four distinct
teacher-student model pairings: LLaMA-1 (13B ⇒ 7B, 30B ⇒ 7B, 30B ⇒ 13B) and LLaMA-2
(13B ⇒ 7B). The outcomes are systematically presented in Table 1. Remarkably, in contrast to
the direct fine-tuning approach of LoRA, the student models augmented with parametric knowledge
from their respective teacher models exhibit substantial improvements across all four benchmark
categories. For instance, the LLaMA-1 30B ⇒ 7B pairing yields an average performance boost of
6.04% (from 27.00 to 28.63). In a similar vein, the LLaMA-2 13B ⇒ 7B configuration brings an
enhancement of 6.78% (from 32.28 to 34.47).

Another observation emerges when examining the effects of scaling up the teacher model, specifi-
cally transitioning from 13B to 30B. The performance of the student model, LLaMA-1 7B, generally
sees an improvement, despite a slight decrement in the GSM benchmark. Beyond the evident perfor-
mance gains, the overhead introduced by parametric knowledge transfer remains minimal. The only
extra commitment involves the teacher model executing inference on a set of 32 seed samples, with-
out any direct participation in the training. Considering both performance and efficiency, parametric
knowledge transfer stands out as a practical technique, even as disparities in parameter counts and
architectural variances between teacher and student models expand.

Table 2: Transfer experiments with different task-specific extracted parameters. The leftmost col-
umn indicates the dataset on which the knowledge extraction is based. The teacher model and
student model are LLaMA-2 13B and 7B, respectively.

Models
GSM MMLU Super NI AlpacaFarm Average

0-shot 8-shot 0-shot 5-shot EM R-L Win Rate% -

Vanilla 7B 3.34 15.54 41.70 45.80 0.00 4.68 - -
7B-LoRA 23.38 21.05 47.77 47.07 24.93 41.25 20.50 32.28

GSM 25.30 26.31 48.40 45.97 24.45 42.11 23.68 33.75
MMLU 24.11 25.47 49.37 46.53 25.55 42.55 24.01 33.94
Super NI 23.78 24.11 48.60 46.70 26.16 42.98 24.31 33.81
LIMA 24.08 25.60 49.03 47.23 25.63 42.83 24.64 34.15

Transfer Experiments with Task-specific Extracted Parameters. While our results indicate
that transferring extracted knowledge from the teacher model positively influences student model
performance, the nature of this improvement—whether it is rooted in generalized knowledge or
task-specific expertise—warrants deeper exploration. To disentangle this, we conduct experiments
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wherein extracted parameters, each tailored to a specific task, are integrated into the student model,
which is subsequently fine-tuned across all datasets.

Table 2 offers insights into a prevalent trend: when parameters are extracted from a concrete task,
the performance is most significantly amplified for that same task. This is particularly evident in
the GSM benchmark. Models equipped with GSM-oriented extracted parameters notably exceed
their counterparts—achieving at least a 1.2 increase in 0-shot accuracy—compared to models in-
corporated with parameters based on alternative datasets. This is likely due to the unique and in-
tricate challenges associated with mathematical reasoning. Additionally, parameters sourced from
the LIMA dataset demonstrate remarkable generalizability, presumably owing to their grounding in
open-ended dialogues that cover a spectrum of domains and tasks. Overall, these observations high-
light the capability of our sensitivity-driven techniques to efficiently target certain types of knowl-
edge, rather than just extracting generalized knowledge.

4.3 ANALYSIS: KEY FACTORS FOR PARAMETRIC KNOWLEDGE TRANSFER

We further analyze the key factors for the process of parametric knowledge transfer as follows.

LoRA Initialization Our Initialization
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13B to 7B (Sensitivity) 30B to 7B (Random)
30B to 7B (Sensitivity)

Figure 3: Comparison of different initialization strate-
gies. The y-axis represents the average score over four
datasets. “13B to 7B (Sensitivity)” refers to initializ-
ing the LoRA module in the 7B model with submatri-
ces from the 13B model based on sensitivity score. The
orange dotted line denotes the result of fine-tuning 7B-
LoRA without knowledge transfer.

Initialization Strategies. Our analy-
sis begins with a comparison of two ini-
tialization strategies: the approach de-
scribed in the LoRA paper (Equation
9) and our proposed method (Equation
10). We employ the LLaMA-1 7B as the
student model and explore 5 methods
to initialize its LoRA module. These
include Gaussian initialization for both
B and A matrices, random extraction
of sub-matrices from the 13B and 30B
models, and sensitivity score-based ex-
traction of sub-matrices from both the
13B and 30B models.

We present our findings in Figure 3. Ini-
tializing as per the LoRA paper—but
without zeroing out BA—leads to a no-
ticeable drop in performance. Recog-
nizing the imperative of leveraging the
original model’s weights as a starting
point for fine-tuning the LoRA, our ini-
tialization strategy in this paper is rooted in Equation 10; hence, we keep both W and Wextract fixed
and solely fine-tune BA. Moreover, our sensitivity-based method consistently outperforms both
Gaussian initialization and random parameter extraction from teacher models across varying scales.

Figure 4: Analysis of how the quantity of seed samples affects student performance.

Number of Seed Samples. The quantity of seed samples plays a crucial role in determining both
the reliability and efficiency of computing sensitivity scores from the teacher model. To delve deeper
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into its impact, we study how varying numbers of seed samples influence the performance of the
student model. As evidenced in Figure 4, an augmentation in seed samples consistently mitigates
variance, whilst the enhancement in performance remains relatively slight. The results demonstrate
a tendency to stabilize after the application of 32 seed samples, prompting us to establish this as a
hyperparameter in this paper. A further insight is the marked reduction in variance as the student’s
scale is escalated (transitioning from 30B ⇒ 7B to 30B ⇒ 13B), or as the disparity between the
teacher and student models is diminished (transitioning from 30B ⇒ 7B to 13B ⇒ 7B).
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Figure 5: Analysis of various aspects of extracted parameters from teacher models. The y-axis
begins with the result of direct fine-tuning students without knowledge injection.

Layer Selection Methods. Owing to the discrepancy in the number of layers between teacher and
student models, the selection methodology for these layers potentially influences the final results.
We evaluate four strategies: random layer selection, extracting the top or last layers, and a selection
based on our sensitivity-centric technique. In the experiments, we consistently map teacher layers
to student layers in their inherent sequential order. As Figure 5(a) illustrates, while the layer se-
lection modestly affects student performance, our sensitivity-driven approach excels over the other
strategies across both teacher-student model pairings.

Origin of Extracted Parameters. The complex architecture of the Transformer raises inquiries
about the most effective module for knowledge transfer. Our explorations involve the Embedding
layer, the Feed-Forward Network (FFN), and the Self-Attention layer of the teacher model. As
depicted in Figure 5(b), the embedding layer experiences inferior transfer effectiveness, likely due
to its lesser parameter quantity. In contrast, the FFN showcases advanced transfer capabilities,
intimating that it houses a significant share of the teacher’s knowledge. Optimal results are obtained
when transferring knowledge from all available modules.

Structure of Extracted Parameters. The necessity to reduce the parameter matrix’s size for
knowledge transfer prompts questions regarding optimal population strategies for this matrix. We
undertake a comparison across four methods: random single-weight selection from the teacher
model, and parameter extraction based on the highest sensitivity at the single weight, row and
column, and submatrix levels. Figure 5(c) shows that maintaining the teacher model’s parameter
structure significantly benefits student model performance. More precisely, transferring isolated
single weights—either randomly or based on sensitivity—yields results comparable to those with-
out knowledge transfer, highlighting the ineffectiveness of such transfers. Preserving the coherence
of rows or columns provides a notable improvement, and the preservation of the submatrix structure
further augments the performance gains derived from parametric knowledge transfer. This observa-
tion underpins our proposed knowledge extraction approach as outlined in Equation 5.

5 CONCLUSION

In this paper, we delve into the feasibility of transferring parametric knowledge between LLMs of
varying scales, and present a new paradigm, exploring knowledge transfer from a distinct parametric
perspective. Through our two-stage framework encompassing knowledge extraction and injection,
we perform extensive experiments across four diverse benchmarks, affirming the inherent transfer-
ability of model parameters. Furthermore, by meticulously analyzing the key elements influencing
parametric knowledge transfer, we aim to shed light on future research in this domain.
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A APPENDIX

A.1 VISUALIZATION FOR PARAMETRIC KNOWLEDGE

(a) GSM (b) Alpaca Code

(c) Super NI (d) LIMA

Figure 6: Visualization of parametric knowledge across different layers for four distinct task cate-
gories. Darker shades represent higher sensitivity scores for each layer.

In our exploration, we also attempt to visualize the parametric knowledge intrinsic to different task
categories. MMLU is omitted from the set of tasks, given its encompassing knowledge from multi-
ple domains, and we introduce code generation (Chaudhary, 2023) as an additional task for analysis.
LLaMA-1 30B serves as the teacher model, and we base our findings on 32 randomly selected seed
samples, illustrating the sensitivity scores layer by layer. During the visualization process, we sub-
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ject each parameter matrix to min-max normalization, ensuring that sensitivity scores fall within the
[0, 1] range. The insights from Figure 6 reveal that the distribution of parametric knowledge across
layers varies considerably among tasks. For instance, mathematical reasoning predominantly en-
gages the bottom layer, instruction-driven NLP tasks concentrate on the bottom and middle layers,
open-ended conversations are more centered around the middle and upper layers, while code gener-
ation appears to draw from all layers. This further emphasizes the efficacy of our sensitivity-based
knowledge extraction method in pinpointing task-specific parametric knowledge, thereby aiding the
subsequent transfer processes between diverse models.

A.2 EXTENDED EXPERIMENT ON LLAMA-2 70B TO 7B

Table 3: Results for parametric knowledge transfer on LLaMA-2, with additional 70B to 7B transfer
results included.

Models GSM (0-shot) MMLU (0-shot) Super NI (R-L) AlpacaFarm Average

Vanilla 7B 3.34 41.70 4.68 - -
Vanilla 13B 6.52 52.10 4.84 - -
7B-LoRA 23.38 47.77 41.25 20.50 33.23

+ 13B Param. 25.30 49.37 42.98 24.64 35.57
+ 70B Param. 26.16 49.60 43.65 24.27 35.92

As shown in Table 3, we additionally exhibit the LLaMA-2 70B to 7B experiment for reference. Due
to the differences in attention architectures between LLaMA-2 70B and 7B models (with the 70B
employing grouped-query attention and the 7B using multi-head attention), we restrict the paramet-
ric knowledge transfer from 70B to 7B to the FFN and embedding layers, which account for 0.36%
trainable parameters. In contrast, in the transfer from the 13B to 7B model, we also include the atten-
tion module, increasing the percentage of trainable parameters to 0.61%. Nevertheless, the transfer
from the 70B to the 7B model demonstrates greater performance gains than transferring from 13B
to 7B. This implies that our parametric knowledge transfer approach becomes increasingly effective
as the teacher model scales up, even in the presence of architectural differences beyond the number
of layers and dimensions.

A.3 ANALYSIS OF THE NUMBER OF PARAMETERS

Table 4: Analysis of the effect of the number of parameters on the performance of parametric knowl-
edge transfer.

Transfer Module LoRA r Params. 13B to 7B 30B to 7B

Embedding 128 0.137% 27.33 27.52
Attention 16 0.248% 27.53 27.92
FFN 16 0.343% 27.87 28.23
All Modules 4 0.152% 27.93 28.37
All Modules 8 0.304% 28.17 28.48
All Modules 16 0.608% 28.22 28.63
All Modules 32 1.216% 28.19 28.54
All Modules 64 2.432% 28.27 28.60

Our analysis of the origin of parameters (see Figure 5(b)) involves a discussion of parameter
amounts. For example, transferring a combination of the embedding layer, FFN, and attention
modules, which constitute 0.608% of the model’s parameters, yields the best results. In contrast,
transferring a single module, like the FFN alone which accounts for 0.343% trainable parameters,
leads to relatively poor performance.

To further investigate the effect of the number of parameters, we extend the experiments at LLaMA-
1 13B to 7B and 30B to 7B by introducing comparisons with different LoRA r (intrinsic rank). The
results of the average score on the four datasets are listed in Table 4. For the transfer involving
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only the embedding layer, we set LoRA r at 128, ensuring that the number of trainable parameters
remains comparable. We observe that increasing LoRA r beyond 16 does not significantly enhance
the results when transferring all modules. Consequently, we maintain LoRA r at 16 for the ex-
periments presented in this paper. Our analysis indicates that the origin of the parameters has a
more pronounced impact on the effectiveness of parametric knowledge transfer than the number of
parameters transferred.

A.4 COMPARISON WITH DISTILLATION METHODS

The parametric knowledge transfer paradigm in this paper is fundamentally distinct from traditional
distillation methods, characterized by the following differences:

• Purpose and Focus: Rather than proposing better distillation methods, our study is fo-
cused on exploring the transferability of implicit knowledge embedded in static parameters.
While prior research has explored the detectability and editability of parametric knowledge,
its transferability remains less explored. Our experiments provide empirical evidence in the
knowledge transfer scenario, where student models show improved performance after re-
ceiving task-specific knowledge from the teacher model, as shown in Tables 1 and 2.

• Process and Efficiency: Our approach differs from standard knowledge distillation, which
typically requires fine-tuning or the direct involvement of the teacher model in student
model training — a computationally intensive process. In contrast, our parametric knowl-
edge transfer involves extracting task-specific parameters from the vanilla teacher model
and integrating them into the student model. This method, requiring only 32 inferences
from the teacher model, offers a significant efficiency advantage, especially in the context
of LLMs.

Despite these differences, we provide the results of the distillation methods as a reference in the
knowledge transfer scenario. Table 1 contains the results for LLaMA-1 13B to 7B and 30B to 7B,
where KD refers to vanilla knowledge distillation (Hinton et al., 2015) and SeqKD is sequence-level
knowledge distillation (Kim & Rush, 2016).

Table 5: Results for parametric knowledge transfer on LLaMA-1, additionally including results from
knowledge distillation methods.

Models GSM (0-shot) MMLU (0-shot) Super NI (R-L) AlpacaFarm Average

Vanilla 7B 4.70 32.10 5.55 - -
Vanilla 13B 4.93 43.50 7.78 - -
7B-LoRA 17.26 43.43 40.49 9.07 27.56
13B to 7B (KD) 17.69 43.57 42.08 9.32 28.17
13B to 7B (SeqKD) 17.86 43.33 41.91 9.36 28.12
13B to7B (Ours) 18.73 44.03 42.37 9.28 28.60
30B to 7B (KD) 17.81 44.10 41.96 9.48 28.34
30B to 7B (SeqKD) 17.99 43.97 42.40 9.61 28.49
30B to 7B (Ours) 18.63 45.20 43.08 9.40 29.08

All models are fine-tuned with LoRA, using identical training data and hyperparameters. In this
paper, we attempt to explore the evidence that knowledge in static parameters can be transferred
between different LLMs, and knowledge transfer is the scenario in which we find and provide em-
pirical evidence. Our focus is not on proposing to find better methods in this scenario.

A.5 TRADE-OFF DISCUSSION BETWEEN PERFORMANCE AND RUNNING COST

Considering that users may have varying computational resources in practical application scenarios,
we discuss the trade-offs between performance and running costs as follows:

Experimental details:

• We conduct comparisons for two knowledge transfers: LLaMA-1 13B to 7B and 30B to
7B.
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Table 6: Experimental results for the trade-off discussion between the performance and the running
cost.

Transfer Structure of Ext. Para. Methods for Ext. Para. Score Inference Time Memory

13B to 7B Submatrix Random 27.83 39 min 205 G
13B to 7B Submatrix Sensitivity 28.22 39 min 205 G
13B to 7B Single Weights Random 27.06 39 min 205 G
13B to 7B Single Weights Sensitivity 27.27 39 min 205 G
30B to 7B Submatrix Random 28.11 82 min 510 G
30B to 7B Submatrix Sensitivity 28.63 82 min 510 G
30B to 7B Single Weights Random 27.12 82 min 510 G
30B to 7B Single Weights Sensitivity 27.36 82 min 510 G

• For the structure of extracted parameters, “submatrix” extraction involves directly taking
sub-matrices from the teacher model’s larger matrix that aligns with the student model’s
dimensions. In contrast, “single weights” extraction means taking individual weights from
the teacher model’s larger matrix and arranging them into smaller matrices, maintaining
their original order, to initialize the student model’s LoRA module.

• We compare random selection with our sensitivity score-based method for choosing pa-
rameters.

• The “Score” column represents the average performance across four benchmarks.
• The running cost is compared on a CPU for 32 seed examples from GSM dataset, using

teacher models of 13B and 30B. We perform backpropagation for each inference and based
our experiments on fp32. Given that users may have limited GPU memory in real-world
applications, we conduct these experiments on CPUs.

Key observations:

• The sensitivity score-based method we propose consistently outperforms random extrac-
tion.

• Extracting parameters via submatrices is significantly more effective than by single
weights. This aligns with our discussion in Section 4.3 about the importance of main-
taining the structural integrity of parameters for successful parametric knowledge transfer.

• Scaling up the teacher model from 13B to 30B consistently enhances performance but
comes with about 2.1xthe runtime and 2.5x the memory usage.

• We can observe that the performance of transferring from 30B to 7B (Submatrix + Random)
is comparable to (slightly lower than) 13B to 7B (Submatrix + Sensitivity). Thus, for
applications with resource constraints, opting to randomly extract sub-matrices directly
from a larger teacher model presents a viable alternative, considering it reduces inference
time.
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