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Abstract001

Reward engineering is one of the key002
challenges in Reinforcement Learning (RL).003
Preference-based RL effectively addresses this004
issue by learning from human feedback. How-005
ever, it is both time-consuming and expensive006
to collect human preference labels. In this007
paper, we propose a novel Vision-Language008
Preference learning framework, named VLP,009
which learns a vision-language preference010
model to provide preference feedback for em-011
bodied manipulation tasks. To achieve this,012
we define three types of language-conditioned013
preferences and construct a vision-language014
preference dataset, which contains versatile im-015
plicit preference orders without human annota-016
tions. The preference model learns to extract017
language-related features, and then serves as018
a preference annotator in various downstream019
tasks. The policy can be learned according020
to the annotated preferences via reward learn-021
ing or direct policy optimization. Extensive022
empirical results on simulated embodied ma-023
nipulation tasks demonstrate that our method024
provides accurate preferences and generalizes025
to unseen tasks and unseen language instruc-026
tions, outperforming the baselines by a large027
margin.028

1 Introduction029

Reinforcement Learning (RL) has made great030

achievements recent years, including board031

games (Silver et al., 2017, 2018), autonomous032

driving (Kiran et al., 2021; Zhou et al., 2021),033

and robotic manipulation (Kober et al., 2013;034

Andrychowicz et al., 2020; Chen et al., 2022; Sun035

et al., 2024b). However, one of the key chal-036

lenges to apply RL algorithms is reward engineer-037

ing. First, designing an accurate reward function038

requires large amount of expert knowledge. Sec-039

ond, the agent might hack the designed reward040

function (Hadfield-Menell et al., 2017), obtaining041

high returns without completing the task. Also, it042

is difficult to obtain reward functions for subjective 043

human objectives. 044

To address the above issues, a variety of works 045

leverage expert demonstrations for imitation learn- 046

ing (IL) (Ho and Ermon, 2016; Torabi et al., 2018). 047

Nevertheless, expert demonstrations are often ex- 048

pensive and the performance of IL is limited by 049

the quality of the demonstrations. Another line of 050

work leverages Vision-Language Models (VLMs) 051

to provide multi-modal rewards for downstream 052

policy learning (Nair et al., 2023; Ma et al., 2023a; 053

Rocamonde et al., 2024). However, the reward 054

labels produced in these works are often of high 055

variance and noisy (Ma et al., 2023a). Preference- 056

based RL is more promising way that learns from 057

human preferences over trajectory pairs (Christiano 058

et al., 2017; Lee et al., 2021). On the one hand, we 059

can learn a reward model from preferences and 060

then optimize the policy according to the reward 061

model (Christiano et al., 2017; Kim et al., 2023). 062

On the other hand, the policy can be directly op- 063

timized according to the preferences (Hejna and 064

Sadigh, 2023; Hejna et al., 2024). 065

However, preference-based RL requires either 066

querying a large number of expert preference la- 067

bels online (Lee et al., 2021; Park et al., 2022) 068

or a labeled offline preference dataset (Kim et al., 069

2023; Hejna et al., 2024), which is quite time- 070

consuming and expensive. As the reasoning abil- 071

ities of Large Language Models (LLMs) improve 072

significantly (OpenAI, 2024; Liu et al., 2025), pre- 073

vious methods propose to use LLMs/VLMs to pro- 074

vide preference labels (Wang et al., 2025, 2024), 075

but the generated labels are not guaranteed to be 076

accurate and it is assumed to have access to the 077

environment information. 078

In this paper, we propose a novel Vision- 079

Language Preference alignment framework, named 080

VLP, to provide preference feedback for video 081

pairs given language instructions. Specifically, we 082

collect a video dataset from various policies under 083
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Figure 1: Comparison of VLP (right) with previous methods (left) of providing preference labels.

augmented language instructions, which contains084

implicit preference relations based on the trajec-085

tory optimality and the vision-language correspon-086

dence. Then, we define language-conditioned pref-087

erences and propose a novel vision-language align-088

ment architecture to learn a trajectory-wise pref-089

erence model for preference labeling, which con-090

sists of a video encoder, a language encoder, and a091

cross-modal encoder to facilitate vision-language092

alignment. The preference model is optimized by093

intra-task and inter-task preferences that are implic-094

itly contained in the dataset. In inference, VLP095

provides preference labels for target tasks and can096

even generalize to unseen tasks and unseen lan-097

guage instructions. We provide an analysis to show098

the learned preference model resembles the nega-099

tive regret of the segment under mild conditions.100

The preference labels given by VLP are employed101

for various downstream preference optimization102

algorithms to facilitate policy learning.103

In summary, our contributions are as follows:104

(i) We propose a novel vision-language prefer-105

ence alignment framework, which learns a vision-106

language preference model to provide preference107

feedback for embodied manipulation tasks. (ii) We108

propose language-conditioned preferences and con-109

struct a vision-language preference dataset, which110

contains videos with language instructions and im-111

plicit language-conditioned relations. (iii) Exten-112

sive empirical results on simulated embodied ma-113

nipulation tasks demonstrate that our method pro-114

vides accurate preferences and generalizes to un-115

seen tasks and unseen language instructions, out-116

performing the baselines by a large margin.117

2 Background118

Problem Setting. We formulate the RL prob-119

lem as a Markov Decision Process (MDP) (Sut-120

ton and Barto, 2018) represented as a tuple M = 121

(S,A,P,R, γ, p0), where S is the state space, A 122

is the action space, P : S × A → S is the tran- 123

sition function, R : S × A → R is the reward 124

function, γ ∈ [0, 1) is the discount factor, and 125

p0 : S → [0, 1] is the initial state distribution. At 126

timestep t, the agent observes a state st and se- 127

lects an action at based on a policy π(at|st). Then, 128

the agent receives a reward rt from the environ- 129

ment, and the agent transits to st+1 according to 130

the transition function. The agent’s goal is to find 131

a policy that maximizes the expected cumulative 132

reward E
[∑∞

t=0 γ
trt

]
. In multi-task setting, for a 133

task T ∼ p(T ), a task-specific MDP is represented 134

as MT = (ST ,A,PT ,RT , γ, pT0 ). 135

Preference-based RL. Preference-based RL dif- 136

fers from RL in that it is assumed to have no access 137

to the ground-truth rewards (Christiano et al., 2017; 138

Lee et al., 2021). In preference-based RL, human 139

teachers provide preference labels over trajectory 140

pairs, and a reward model is learned from these 141

preferences. Formally, a trajectory segment σ of 142

length H is represented as {s1, a1, . . . , sH , aH} 143

and a segment pair is (σ1, σ2). The preference 144

label y ∈ {0, 1, 0.5} denotes which segment is pre- 145

ferred, where 0 indicates σ1 is preferred (i.e., σ1 ≻ 146

σ2), 1 indicates σ2 is preferred (i.e., σ2 ≻ σ1), 147

and 0.5 represents two segments are equally pre- 148

ferred. Previous preference-based RL approaches 149

construct a preference predictor with the reward 150

model r̂ψ via Bradley-Terry model (Bradley and 151

Terry, 1952): 152

Pψ[σ
1 ≻ σ2] =

exp
(∑H

t=1 r̂ψ(s
1
t , a

1
t )
)∑2

k=1 exp
(∑H

t=1 r̂ψ(s
k
t , a

k
t )
) ,
(1) 153

where Pψ[σ
1 ≻ σ2] denotes the probability that 154

σ1 is preferred over σ2 predicted by current re- 155

ward model r̂ψ. Assume we have a dataset with 156
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Figure 2: (a) Trajectory videos and language instruction are fed into the preference model to obtain a trajectory-wise
preference score. (b) The cross-modal transformer obtains language-related video features and video-related
language features by cross-attention mechanism.

preference labels D = {(σ1, σ2, y)}, the reward157

learning process can be formulated as a classifica-158

tion problem using cross-entropy loss (Christiano159

et al., 2017):160

Lce = − E
(σ1,σ2,y)∼D

[
(1− y) logPψ[σ

1 ≻ σ2]

+ y logPψ[σ
2 ≻ σ1]

]
.

(2)161

By optimizing Eq. (2), the reward model is aligned162

with human preferences, providing reward signals163

for policy learning.164

3 Method165

In this section, we first present the overall frame-166

work of VLP, including model architecture and the167

vision-language preference dataset. Then, we in-168

troduce language-conditioned preferences and the169

detailed algorithm for vision-language preference170

learning, which learns a trajectory-wise preference171

model via vision-language preference alignment.172

3.1 Model and Dataset173

The goal of VLP is to learn a generalized prefer-174

ence model capable of providing preferences for175

novel embodied tasks. To achieve this, the prefer-176

ence model receives videos and language as inputs,177

where videos serve as universal representations of178

agent trajectories and language act as universal179

and flexible instructions. To obtain high-quality180

representations of these two modalities, we utilize181

CLIP (Radford et al., 2021), which is pre-trained182

on extensive image-text data, as our video and lan-183

guage encoders. The extracted video and language184

features are fed into to a cross-modal transformer185

for cross-modal attention interaction to capture186

video features associated with the language and lan-187

guage features related to the video. These features188

are subsequently utilized for predicting preference189

scores in vision-language preference learning. The 190

overall framework is illustrated in Figure 2. 191

Model Architecture. A video v is represented 192

as a sequence of video frames, i.e., v = 193

{v1, v2, . . . , v|v|}, where vi ∈ RH×W×3, H and 194

W are the height and width of each video frame, 195

and |v| denotes the number of video frames. The 196

video encoder is employed to obtain the video to- 197

kens z = {z1, z2, . . . , z|v|}, where zi ∈ RM×Dv , 198

M = H/p×W/p is the number of visual tokens, 199

p is the patch size of CLIP ViT, and Dv is the di- 200

mension of the visual tokens. Given language input 201

l, the language tokens u ∈ RN×Dl are obtained via 202

the language encoder, where N is the number of 203

language tokens, and Dl is the dimension of the 204

language tokens. 205

With video tokens z and language tokens u, a 206

cross-modal encoder is employed to facilitate multi- 207

modal feature learning, making tokens of different 208

modalities fully fuse with each other. Video tokens 209

and language tokens are separately inputted into 210

the self-attention layers. Then, utilizing the output 211

video tokens as queries and the output language to- 212

kens as keys and values, the cross-attention layer, as 213

shown in Figure 2(b), generates language features 214

that are closely related to the input video. Simi- 215

larly, the cross-attention layer produces language- 216

related video features. The multi-modal tokens are 217

averaged along the first dimension and then con- 218

catenated as w ∈ RDw , where Dw = Dv + Dl. 219

These new tokens are fed into the final Multi-layer 220

Perceptron (MLP) for vision-language preference 221

prediction, outputting a trajectory-level preference 222

score. 223

Vision-Language Preference Dataset. While 224

there are open-sourced embodied datasets with lan- 225

guage instructions (Mu et al., 2023), there lacks 226

a multi-modal preference dataset for generalized 227
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preference learning. To this end, we construct228

MTVLP, a multi-task vision-language preference229

dataset built upon Meta-World (Yu et al., 2020). To230

that end, we consider the following aspects: (i) tra-231

jectories of various optimality levels should be col-232

lected to define clear preference relations within233

each task; (ii) each trajectory pair should be accom-234

panied with a corresponding language instruction235

for learning language-conditioned preferences.236

It is easy to describe the optimality of expert237

trajectories and random trajectories because it is238

easy to understand the agent’s behavior in these239

trajectories. However, it is challenging to define a240

medium-level policy without explicit rewards. For-241

tunately, we find most robot tasks can be divided242

into multiple stages, where each stage completes a243

part of the overall task. Thus, we define a medium-244

level policy as successfully completing half of the245

stages of the task. For example, we divided the246

task of opening the drawer into two subtasks: (i)247

moving and grasping the drawer handle and (ii)248

pulling the drawer handle. A medium-level policy249

only completes the first subtask.250

We leverage a scripted policy for each task to roll251

out trajectories of three optimality levels: expert,252

medium, and random. For expert-level trajecto-253

ries, we employ the scripted policy with Gaussian254

noise to interact. The medium-level trajectories are255

also collected with the scripted policy but are ter-256

minated when the half of subtasks are completed.257

As for random-level trajectories, actions are ran-258

domly sampled from a uniform distribution during259

rollout. For the corresponding language, we ob-260

tain diverse language instructions to improve the261

generalization abilities of our model by aligning262

one video with multiple similar language instruc-263

tions. Following Adeniji et al. (2023), we query264

GPT-4V (OpenAI, 2023) to generate language in-265

structions with various verb structure examples and266

synonym nouns of each task. Details of collecting267

trajectories and language instructions for each task268

are shown in Appendix C.269

3.2 Vision-Language Preference Alignment270

Language-conditioned Preferences. Previous271

RLHF methods define trajectory preferences ac-272

cording to a single task goal. However, this uni-273

modal approach struggles to generalize to new274

tasks due to its rigid preference definition. In275

contrast, by integrating language as a condition,276

we can establish more flexible preference defini-277

tions. Consider two videos, v11 and v12 , along with278

a language instruction l1 from task T 1, and an- 279

other video v2 paired with a language instruction 280

l2 from task T 2. We categorize three forms of 281

language-conditioned preferences: Intra-Task Pref- 282

erence (ITP), Inter-Language Preference (ILP), and 283

Inter-Video Preference (IVP), as shown in Table 1. 284

Table 1: Three types of language-conditioned prefer-
ences.

Type Videos Language Criterion

ITP v11, v
1
2 ∼ T 1 l1 ∼ T 1 optimality

ILP v11, v
1
2 ∼ T 1 l2 ∼ T 2 equally preferred

IVP v11 ∼ T 1, v21 ∼ T 2 l1 ∼ T 1 v11 ≻ v12|l1

ITP corresponds to the conventional case of pref- 285

erence relation within the same task (Christiano 286

et al., 2017), where the videos and language instruc- 287

tions are from the same task, and the preference 288

relies on the optimality of videos w.r.t. the task 289

objective. ILP considers a scenario where the lan- 290

guage instruction differs from the task of the videos. 291

Thus, both videos are equally preferred under this 292

language condition. IVP deals with preferences of 293

two videos from different tasks, with the language 294

instruction from either task. It is straightforward 295

to define the preference that the vision-language 296

come from the same task is preferred to the other 297

pair. 298

This framework allows for the establishment 299

of universal and adaptable preference relations, 300

wherein videos from the same task can yield vary- 301

ing preference labels depending on the language 302

condition. Notably, even random trajectories paired 303

with language instructions from a specific task is 304

preferred to expert trajectories from other tasks. 305

Vision-Language Preference Learning. With 306

language-conditioned preferences defined above, 307

we further introduce our vision-language prefer- 308

ence learning algorithm. We aim to develop a 309

vision-language preference model that predicts the 310

preferred video under specific language conditions. 311

However, directly inputting two videos and a lan- 312

guage instruction into the model would affect com- 313

putational efficiency. So, we consider the conven- 314

tional way to learn from preference labels (Chris- 315

tiano et al., 2017), i.e., first constructing preference 316

predictors via Bradley-Terry model (Bradley and 317

Terry, 1952). Previous work has revealed the ad- 318

vantages of learning a preference model over a 319

reward model (Zhang et al., 2024). Based on these 320

insights, our proposed preference model fψ(v|l) 321
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takes a video and a language instruction as inputs322

and outputs a scalar preference score. Then the323

preference label can be obtained by comparing pref-324

erence scores of two videos with a given language325

instruction, i.e., v1 ≻ v2|l if fψ(v1|l) > fψ(v2|l).326

Given videos v1 representing σ1 and v2 repre-327

senting σ2, the language-conditioned preference328

distribution Pψ[v1 ≻ v2|l] is the probability that σ1329

is preferred over σ2 under the condition l:330

Pψ[v1 ≻ v2|l] =
exp

(
fψ(v1|l)

)
exp

(
fψ(v1|l)

)
+ exp

(
fψ(v2|l)

) .
(3)331

Given tasks T 1 and T 2, we consider the follow-332

ing objectives aligned with language-conditioned333

preference relations: (a) Learning Intra-Task Pref-334

erence: Within the same task, the video that better335

follows l should be preferred, analogous to previ-336

ous RLHF objective (Christiano et al., 2017); (b)337

Learning Inter-Language Preference: Under the338

language condition of task T 2, videos from task339

T 1 are equally preferred; (c) Learning Inter-Video340

Preference: Under the language condition of task341

T 1, the video from T 1 is preferred over the video342

from T 2.343

During vision-language preference learn-344

ing, a task T is sampled from all training345

tasks, followed by sampling a minibatch346

{vb1, vb2, v ̸=b, lb, l ̸=b, yITP, yILP, yIVP}1:B . Here, the347

superscript b indicates data sampled from task T348

in the minibatch, while ̸=b denotes data from other349

tasks. yITP, yILP, yIVP are the ground-truth labels350

of ITP, ILP, and IVP, respectively. The total loss of351

vision-language preference learning is as follows:352

Lce = −
∑
b∈B

[
CE

(
Pψ[v

b
1 ≻ vb2|lb], yITP

)
︸ ︷︷ ︸

(a)

+ λ1CE
(
Pψ[v

b
1 ≻ vb2|l ̸=b], yILP

)
︸ ︷︷ ︸

(b)

+ λ2CE
(
Pψ[v

b
1 ≻ v ̸=b|lb], yIVP

)
︸ ︷︷ ︸

(c)

+ λ2CE
(
Pψ[v

b
2 ≻ v ̸=b|lb], yIVP

)
︸ ︷︷ ︸

(c)

]
,

(4)353

where CE(·, ·) is the cross-entropy loss, and λ1 and354

λ2 are balance weights of learning ILP and IVP. By355

optimizing Eq. (4), the vision-language preference356

model outputs trajectory-level preference scores357

aligned with the language-conditioned preference358

relations. 359

4 Related Work 360

Vision-Language Models for Reinforcement 361

Learning. Our work is related to the literature on 362

VLM rewards and preferences for embodied manip- 363

ulation tasks (Radford et al., 2021; Nair et al., 2023; 364

Ma et al., 2023a; Rocamonde et al., 2024; Wang 365

et al., 2024; Liu et al., 2024a). These methods can 366

be divided into three categories: (i) representation- 367

based pre-training, (ii) zero-shot inference, and (iii) 368

downstream fine-tuning. For representation-based 369

approaches, R3M (Nair et al., 2023) is pre-trained 370

on the Ego4D dataset (Grauman et al., 2022) to 371

learn useful representations for downstream tasks. 372

LIV (Ma et al., 2023b), which extends VIP (Ma 373

et al., 2023b) to multi-modal representations, is 374

pre-trained on EpicKitchen dataset (Damen et al., 375

2018), and can also be fine-tuned on target do- 376

main. For zero-shot inference methods, VLM- 377

RM (Rocamonde et al., 2024) utilizes CLIP (Rad- 378

ford et al., 2021) as zero-shot vision-language re- 379

wards. RoboCLIP (Sontakke et al., 2023) uses 380

S3D (Xie et al., 2018), which is pre-trained on 381

HowTo100M dataset (Miech et al., 2019), as video- 382

language model to compute vision-language re- 383

ward with a single demonstration (a video or a 384

text). RL-VLM-F (Wang et al., 2024) leverages 385

Gemini-Pro (Team et al., 2023) and GPT-4V (Ope- 386

nAI, 2023) for zero-shot preference feedback. Crit- 387

icGPT (Liu et al., 2024a) is the representative 388

method of (iii), which fine-tunes multimodal LLMs 389

on a instruction-following dataset, and utilizes the 390

tuned model to provide preference feedback for 391

downstream policy learning. VLP differs from 392

these approaches that we do not suffer from bur- 393

densome training of (i) and (iii), showing great 394

computing efficiency. And VLP learns more em- 395

bodied manipulation knowledge compared with 396

VLMs pre-trained on natural image-text data. 397

Preference-based Reinforcement Learning. 398

Preference-based RL is a promising framework for 399

aligning the agent with human values. However, 400

feedback efficiency is a crucial challenge in 401

preference-based RL, with multiple recent studies 402

striving to tackle. PEBBLE (Lee et al., 2021) im- 403

proves the efficiency by unsupervised pre-training. 404

SURF (Park et al., 2022) proposes to obtain pseudo 405

labels using reward confidence. RUNE (Liang 406

et al., 2022) employs reward uncertainty to 407

guide exploration. Meta-Reward-Net (Liu et al., 408
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Table 2: Success rate of RLHF methods with scripted labels and VLP labels. The results are reported with mean
and standard deviation across five random seeds. The result of VLP is shaded and is bolded if it exceeds or is
comparable with that of RLHF approaches with scripted labels. VLP Acc. denotes the accuracy of preference labels
inferred by VLP compared with scripted labels.

Task P-IQL P-IQL+VLP IPL IPL+VLP CPL CPL+VLP VLP Acc.

Button Press 72.6 ± 7.1 90.1 ± 3.9 50.6 ± 7.9 56.0 ± 1.4 74.5 ± 8.2 83.9 ± 11.8 93.0
Door Close 79.2 ± 6.3 79.2 ± 6.3 61.5 ± 9.4 61.5 ± 9.4 98.5 ± 1.0 98.5 ± 1.0 100.0
Drawer Close 49.3 ± 4.2 64.9 ± 2.9 64.3 ± 9.6 63.2 ± 4.7 45.6 ± 3.5 57.5 ± 14.3 96.0
Faucet Close 51.1 ± 7.5 51.1 ± 7.5 45.4 ± 8.6 45.4 ± 8.6 80.0 ± 2.9 80.0 ± 2.9 100.0
Window Open 62.4 ± 6.4 69.7 ± 6.8 54.1 ± 6.7 61.4 ± 8.6 91.6 ± 1.7 99.1 ± 1.1 98.0

Average 62.9 71.0 55.2 57.5 78.0 83.8 97.4

Table 3: Success rate of VLP (i.e., P-IQL trained with VLP labels) against IQL with VLM rewards. The results are
reported with mean and standard deviation across five random seeds. The result of VLP is shaded and the best
score of all methods is bolded.

Task R3M VIP LIV CLIP VLM-RM (0.0) VLM-RM (1.0) VLP

Button Press 10.1 ± 2.3 68.4 ± 6.4 56.3 ± 1.9 59.5 ± 6.1 60.3 ± 6.1 64.3 ± 8.4 90.1 ± 3.9

Door Close 70.9 ± 5.3 74.8 ± 9.5 43.3 ± 3.2 43.6 ± 3.9 45.8 ± 8.5 41.1 ± 3.4 79.2 ± 6.3

Drawer Close 46.6 ± 2.6 70.4 ± 4.5 61.8 ± 5.7 69.4 ± 4.1 69.4 ± 4.5 73.5 ± 5.4 64.9 ± 2.9

Faucet Close 25.7 ± 23.6 40.9 ± 8.0 42.2 ± 6.3 59.6 ± 7.5 60.1 ± 5.1 33.7 ± 15.3 51.1 ± 7.5

Window Open 39.0 ± 6.6 42.7 ± 11.3 33.8 ± 6.4 26.4 ± 2.0 23.9 ± 1.9 23.7 ± 4.9 69.7 ± 6.8

Average 38.5 59.4 47.5 51.7 51.9 47.3 71.0

2022) takes advantage of the performance of409

the Q-function as an additional signal to refine410

the accuracy of the reward model. Hejna III411

and Sadigh (2023) leverages meta-learning412

to pre-train the reward model, enabling fast413

adaptation to new tasks with few preference414

labels. RAT (Bai et al., 2025) proposes to use415

preference-based RL to attack deep RL agents.416

Recently, a growing number of studies focus on417

offline preference-based RL with the population418

of offline RL (Levine et al., 2020; Kostrikov et al.,419

2022; Lyu et al., 2024, 2025). PT (Kim et al.,420

2023) introduces a Transformer-based architecture421

for reward modeling. OPPO (Kang et al., 2023)422

proposes to learn policies without a reward423

function. IPL (Hejna and Sadigh, 2023) learns the424

Q-function from preferences, also eliminating the425

need of reward learning. CPL (Hejna et al., 2024)426

further views preference-based RL as a supervised427

learning problem, directly learning policies from428

preferences. FTB (Zhang et al., 2024) introduces429

a diffusion model for better trajectory generation.430

PEARL (Liu et al., 2024b) proposes cross-task431

preference alignment to transfer preference labels432

between tasks and learn reward models robustly433

via reward distributional modeling. VLP addresses434

the labeling cost by learning a vision-language435

preference model via vision-language alignment,436

thereby providing generalized preferences to novel437

tasks. 438

5 Experiments 439

In this section, we evaluate VLP on Meta- 440

World (Yu et al., 2020) benchmark and aim to an- 441

swer the following questions: 442

• Q1: How do VLP labels compare with 443

scripted labels in offline RLHF? (Section 5.2) 444

• Q2: How does VLP compare with other 445

vision-language rewards approaches? (Sec- 446

tion 5.3) 447

• Q3: How does VLP generalize to unseen tasks 448

and language instructions? (Section 5.4) 449

5.1 Setup 450

Implementation Details. We evaluate VLP on 451

the 5 test tasks of MTVLP, including Button Press, 452

Door Close, Drawer Close, Faucet Close, and 453

Window Open, while the other 45 tasks of Meta- 454

World (Yu et al., 2020) are used as training tasks. 455

For implementing VLP, we use the pre-trained ViT- 456

B/16 CLIP model (Radford et al., 2021) as our 457

video encoder and language encoder. The weights 458

of learning ILP and IVP in Eq. (4) are λ1 = 0.1, 459

λ2 = 0.5, respectively. Additional hyperparame- 460

ters of VLP are detailed in Table 7 in Appendix A. 461
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Table 4: Success rate of VLP (i.e., P-IQL trained with VLP labels) against P-IQL with VLM preferences (denoted
with prefix P-). The results are reported with mean and standard deviation across five random seeds. The result of
VLP is shaded and the best score of all methods is bolded.

Task P-R3M P-VIP P-LIV P-CLIP P-VLM-RM (0.0) P-VLM-RM (1.0) RoboCLIP VLP

Button Press 84.7 ± 5.8 41.2 ± 3.9 61.7 ± 5.1 62.9 ± 6.2 72.8 ± 5.0 44.2 ± 4.2 56.4 ± 7.3 90.1 ± 3.9

Door Close 72.4 ± 11.5 54.2 ± 13.8 67.9 ± 6.3 53.3 ± 10.3 57.6 ± 2.9 45.7 ± 7.6 47.6 ± 6.7 79.2 ± 6.3

Drawer Close 59.6 ± 6.5 63.0 ± 3.7 45.5 ± 10.4 63.4 ± 3.2 62.7 ± 3.0 49.2 ± 6.9 73.0 ± 6.2 64.9 ± 2.9

Faucet Close 58.0 ± 4.5 51.1 ± 7.5 62.3 ± 7.2 60.2 ± 10.4 57.3 ± 7.0 51.3 ± 9.5 62.1 ± 6.3 51.1 ± 7.5

Window Open 27.3 ± 5.0 50.2 ± 1.8 22.2 ± 18.1 28.4 ± 3.2 33.2 ± 5.4 20.7 ± 2.3 28.1 ± 4.6 69.7 ± 6.8

Average 60.4 51.9 51.9 53.6 56.7 42.2 53.4 71.0

All experiments are conducted on a single NVIDIA462

RTX 4090 GPU.463

5.2 How do VLP labels compare with scripted464

labels in offline RLHF?465

Baselines. We evaluate VLP by combining it466

with recent offline RLHF algorithms: (i) P-IQL467

(Preference IQL), which first learns a reward model468

from preferences and then learns a policy via469

IQL (Kostrikov et al., 2022); (ii) IPL (Hejna and470

Sadigh, 2023), which learns a policy without re-471

ward learning by aligning the Q-function with pref-472

erences; (iii) CPL (Hejna et al., 2024), which di-473

rectly learns a policy using a contrastive objective474

with maximum entropy principle, eliminating the475

need for reward learning and RL.476

Evaluation. For each evaluation task, we train477

each RLHF method with scripted labels (Chris-478

tiano et al., 2017; Lee et al., 2021) and VLP labels479

(denoted as +VLP), respectively. Scripted prefer-480

ence labels mean the preference labels computed481

based on the ground-truth rewards (Christiano et al.,482

2017; Lee et al., 2021). The number of preference483

labels is set to 100 for all tasks. The evaluation is484

conducted over 25 episodes every 5000 steps. Fol-485

lowing (Hejna et al., 2024), we average the results486

of 8 neighboring evaluations and take the maxi-487

mum value among all averaged values as the result.488

Detailed hyperparameters of RLHF algorithms can489

be found in Appendix A.490

Results. Experimental results in Table 2 demon-491

strate that the performance of P-IQL+VLP and492

CPL+VLP is comparable with, and in some cases,493

outperforms that with scripted labels on all evalu-494

ation tasks. We hypothesize that the ground-truth495

reward of Button Press, Drawer Close and Win-496

dow Open may not accurately represent the task497

goal (Xie et al., 2024; Ma et al., 2024; Sun et al.,498

2024a). However, by aligning video and language499

modalities through preference relations with lan-500

guage as conditions, the predicted VLP labels di- 501

rectly represent how the video reflects the language 502

instruction. Therefore, our method provides more 503

accurate and preference labels and can generalize 504

to unseen tasks. 505

5.3 How does VLP compare with other 506

vision-language rewards approaches? 507

Baselines. We compare VLP with the follow- 508

ing VLM rewards baselines: (i) R3M (Nair 509

et al., 2023), which pre-trains visual representation 510

by time-contrastive learning and vision-language 511

alignment; (ii) VIP (Ma et al., 2023b), which pro- 512

vides generalized visual reward and representa- 513

tion for downstream tasks via value-implicit pre- 514

training; (iii) LIV (Ma et al., 2023a), which learns 515

vision-language rewards and representation via 516

multi-modal value pre-training; (iv) CLIP (Rad- 517

ford et al., 2021), which pre-trains by aligning 518

vision-language representation on a large-scale 519

image-text pairs dataset; (v) VLM-RM (Roca- 520

monde et al., 2024), which provides zero-shot 521

VLM rewards based on CLIP (Radford et al., 2021). 522

VLM-RM includes a hyperparameter α, which con- 523

trols the goal-baseline regularization strength. In 524

the evaluation, we denote the variant of α = 0.0 525

as VLM-RM (0.0) and the variant of α = 1.0 526

as VLM-RM (1.0). (vi) RoboCLIP (Sontakke 527

et al., 2023), which provides zero-shot VLM re- 528

wards using pre-trained video-language models and 529

a single demonstration (a video demonstration or a 530

language description) of the task. 531

Evaluation. We first evaluate our method with 532

the VLM baselines by directly training IQL with 533

VLM rewards. VLP is tested by training P-IQL 534

with VLP labels, and the experimental setting of 535

our method is the same as that of Section 5.2. We 536

further compare VLP with VLM preferences, i.e., 537

using predicted VLM rewards to compute prefer- 538

ence labels for a fair comparison with our method. 539
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Table 5: The correlation coefficient of VLM rewards with ground-truth rewards and VLP labels with scripted
preference labels. Larger correlation means the predicted values are more correlated with the ground-truth.

Task R3M VIP LIV CLIP VLM-RM (0.0) VLM-RM (1.0) VLP

Button Press 0.313 0.204 -0.281 0.127 0.153 -0.082 0.581
Door Close 0.735 0.125 0.600 -0.309 -0.152 -0.492 1.000
Drawer Close -0.106 0.043 0.052 -0.151 -0.137 -0.031 0.438
Faucet Close 0.676 0.851 0.563 -0.301 -0.291 0.084 1.000
Window Open 0.411 0.725 -0.568 0.336 0.405 -0.333 0.571

Average 0.406 0.390 0.073 -0.060 -0.005 -0.171 0.718

Table 6: The generalization abilities of our method on 5 unseen tasks with different types of language instructions.
Acc. denotes the accuracy of preference labels inferred by VLP compared with ground-truth labels.

Metric Seen Phrase Description Correct Color Incorrect Color

ITP Acc. (↑) 97.4 95.8 97.0 97.0 97.0
IVP Acc. (↑) 91.7 90.5 91.9 91.9 91.8
ILP Loss (↓) 0.705 0.704 0.704 0.705 0.705
Average Loss (↓) 0.555 0.554 0.558 0.556 0.557

However, RoboCLIP obtains scalar trajectory-level540

rewards and we utilize them as trajectory return541

for preference labels calculation. Implementation542

details of IQL and VLM baselines can be found in543

Appendix A.544

Results. Results in Table 3 show that our method545

exceeds the VLM baselines that train IQL from546

VLM rewards by a large margin with an average547

success rate of 71.0. As shown in Table 4, when the548

VLM baselines are trained with preferences com-549

puted by VLM rewards, our method still surpasses550

the baselines. We further compute the preference551

label accuracy of each method, detailed in Table 15.552

The results show that VLP exceeds VLM baselines,553

which do not learn relative relations of reward val-554

ues.555

Reward / Preference Correlation. To further in-556

vestigate the advantages of VLP model compared557

with VLM reward models, we compare the cor-558

relation between VLM rewards with ground-truth559

rewards and VLP labels with scripted preference560

labels. Results in Table 5 indicate that VLP labels561

exhibit a stronger correlation with scripted labels562

compared with VLM rewards.563

5.4 How does VLP generalize to unseen tasks564

and language instructions?565

Evaluation. We first evaluate how accurate 3566

kinds of VLP labels are on the test tasks. We test567

the preference model with phrases, descriptions,568

and correct and incorrect object colors. Since the la-569

bel of ILP is 0.5 (i.e., two segments are equally pre-570

ferred), we compute ILP loss with the (b) term in571

Eq. (4), i.e., −
∑

b∈B CE
(
Pψ[v

b
1 ≻ vb2|l ̸=b], yILP

)
. 572

Performance of ITP and IVP are measured with 573

accuracy. Experimental details can be found in 574

Appendix A. 575

Results. Table 6 shows that VLP generalizes to 576

unseen language instructions on unseen tasks with 577

high ITP and IVP accuracy and low ILP loss. How- 578

ever, using unseen phrases as language conditions 579

leads to a performance drop, while unseen descrip- 580

tions have a slight negative impact on ITP but a 581

positive impact on IVP and ILP. We think the rea- 582

son is that phrases contain insufficient information 583

about completing the task, while descriptions con- 584

tain enough task information. VLP generalizes 585

well with suitable language information of tasks. 586

Also, VLP exhibits strong generalization abilities 587

on color. 588

6 Conclusion 589

In this paper, we propose VLP, a novel vision- 590

language preference learning framework provid- 591

ing generalized preference feedback for embodied 592

manipulation tasks. In our framework, we learn 593

a vision-language preference model via proposed 594

language-conditioned preference relations from the 595

collected vision-language preference dataset. Ex- 596

perimental results on multiple simulated robotic 597

manipulation tasks demonstrate that our method ex- 598

ceeds previous VLM rewards approaches and pre- 599

dicts accurate preferences compared with scripted 600

labels. The results also show our method gener- 601

alizes well to unseen tasks and unseen language 602

instructions. 603

8



7 Limitations604

In this paper, we focus on providing preferences for605

robotic manipulation tasks. First, VLP is limited to606

the tasks that can be specified via videos and lan-607

guage instructions. While this covers a wide range608

of robotic tasks, certain tasks cannot be fully ex-609

pressed via videos and language, such as complex610

assembly tasks requiring intricate spatial reason-611

ing. Consequently, the risk of predicting incorrect612

preferences grows for complex tasks that are diffi-613

cult to express. Second, if the language instruction614

lacks sufficient information of the task goal, the615

risk of giving incorrect labels still grows, as shown616

in Table 6. We do not see any potential risks of our617

work.618
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A Experimental Details905

A.1 Tasks906

Meta-World. The tasks used in the experiments907

are from the test tasks of MTVLP. Figure 3 shows908

these tasks and the task descriptions are as follows:909

• Button Press: The goal of the robotic arm is910

to press the button. The initial position of the911

arm is randomly sampled.912

• Door Close: The goal of the robotic arm is to913

close the door. The initial position of the arm914

is randomly sampled.915

• Drawer Close: The goal of the robotic arm is916

to close the drawer. The initial position of the917

arm is randomly sampled.918

• Faucet Close: The goal of the robotic arm is919

to close the faucet. The initial position of the920

arm is randomly sampled.921

• Window Open: The goal of the robotic arm is922

to open the window. The initial position of the923

arm is randomly sampled.924

A.2 Implementation Details925

We implement our method based on the publicly926

released repository of LAPP (Xie et al., 2023).1927

Following LAPP (Xie et al., 2023), we use a928

pre-trained ViT-B/16 CLIP (Radford et al., 2021)929

model as our video encoder and language encoder.930

To achieve efficient learning, we uniformly sample931

8 frames to represent each video. The detailed hy-932

perparameters of our method are shown in Table 7.933

Training a VLP model takes about 6 hours on a sin-934

gle NVIDIA RTX 4090 GPU with 12 CPU cores935

and 120 GB memory, without costly pre-training936

process like VLM reward or VLM preference meth-937

ods (Nair et al., 2023; Ma et al., 2023b,a).938

IQL, P-IQL, IPL and CPL are implemented939

based on the official repository of CPL and IPL.23940

The hyperparameters of offline RL and RLHF algo-941

rithms are listed in Table 8, Table 9, and Table 10.942

For the inference of VLP labels, we first use K-943

means clustering to divide the trajectories of each944

test task into 2 sets, following Liu et al. (2024b).945

Then we sample 100 trajectory segments of length946

50 from each set to construct segment pairs and947

1https://github.com/amberxie88/lapp
2https://github.com/jhejna/cpl
3https://github.com/jhejna/

inverse-preference-learning

Table 7: Hyperparameters of VLP.

Hyperparameter Value

Prediction head (512, 256)
Number of self-attention layers 2
Number of attention heads 16
Batch size 16
Optimizer Adam
Learning rate 3e-5
Learning rate decay cosine decay
Weight decay 0.1
Dropout 0.1
Number of epochs 15k
Number of negative samples 4
Number of video frames 8
Weight of ILP loss λ1 0.1
Weight of IVP loss λ1 0.5

predict preference labels of these pairs with trained 948

VLP model. Training RL and RLHF algorithms 949

take about 10 minutes using a single NVIDIA RTX 950

4090 GPU with 6 CPU cores and 60 GB memory. 951

Table 8: Shared hyperparameters.

Hyperparameter Value

Network architecture (256, 256)
Optimizer Adam
Learning rate 1e-4 (CPL), 3e-4 (IQL, IPL and P-IQL)
Batch size 64
Discount 0.99
Dropout 0.25
Training steps 100000

Segment length 50 (RLHF)
Number of queries 100 (RLHF)
Temperature 0.3333 (IQL, IPL and P-IQL)
Expectile 0.7 (IQL, IPL and P-IQL)
Soft target update rate 0.005 (IQL, IPL and P-IQL)

Table 9: Hyperparameters of CPL.

Hyperparameter Value

Temperature 0.1
Contrastive bias 0.5
BC weight 0.0
BC steps 10000

Table 10: Hyperparameters of IPL and P-IQL.

Hyperparameter Value

Regularization weight (IPL) 0.5
Reward learning steps (P-IQL) 30

For VLM methods, R3M, VIP, LIV, VLM-RM, 952

and RoboCLIP are implemented based on their 953
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(a) Button Press (b) Door Close (c) Drawer Close (d) Faucet Close (e) Window Open

Figure 3: Five simulated robotic manipulation tasks used for experimental evaluation.

official repositories.45678 The CLIP baseline is a954

variant of VLM-RM and is implemented based on955

the code of VLM-RM. The language inputs of the956

VLM baselines except are as listed in Table 11.957

R3M, LIV, CLIP, and RoboCLIP only require the958

target column as language inputs, while VLM-RM959

additionally needs a baseline as a regularization960

term. R3M requires an initial image and we use961

the first frame of each trajectory as the initial im-962

age, while VIP requires a goal image for VLM963

rewards inference and we use the last frame of ex-964

pert videos.965

Table 11: Language inputs used for evaluating VLM
baselines on the test tasks.

Task Target Baseline (for VLM-RM)

Button Press press button button
Door Close close door door
Drawer Close close drawer drawer
Faucet Close turn faucet left faucet
Window Open move window left window

B Additional Experimental Results966

Evaluation on ManiSkill2 Tasks. To examine967

the effects of VLP on more challenging tasks, we968

conduct experiments on ManiSkill2 (Gu et al.,969

2023) benchmark. We leverage MoveBucket-970

v1, OpenCabinetDrawer-v1, PegInsertionSide-v0,971

PickCube-v0, PickSingleEGAD-v0, PlugCharger-972

v0, StackCube-v0, and TurnFaucet-v0 as train-973

ing tasks and evaluate VLP on LiftCube-v0,974

OpenCabinetDoor-v1, PushChair-v1 tasks. Ta-975

ble 12 summarizes the average VLP label accuracy976

on the three test tasks compared to scripted labels977

and the results demonstrate the strong generaliza-978

tion capabilities of VLP.979

4https://github.com/facebookresearch/r3m
5https://github.com/facebookresearch/vip
6https://github.com/penn-pal-lab/LIV
7https://github.com/AlignmentResearch/vlmrm
8https://github.com/sumedh7/RoboCLIP

Table 12: Preference label accuracy of VLP on Man-
iSkill2 test tasks.

Task VLP Acc.

LiftCube-v0 100.0
OpenCabinetDoor-v1 100.0
PushChair-v1 93.8

Average 97.9

Attention Map Visualization. We further ana- 980

lyze VLP by visualizing the attention maps of the 981

cross-attention. Results in Figure 4 show that re- 982

gions of the objects related to language instructions 983

exhibit high attention weights. For example, in the 984

Drawer Close task, our vision-language preference 985

model specifically focuses on whether the drawer 986

is closed, with the attention map highlighting the 987

edges of the drawer to monitor its position and 988

similarly for Door Close task. These observations 989

demonstrate that our vision-language preference 990

model effectively learns to guide language tokens 991

to attend to relevant regions in the videos and illus- 992

trate the effectiveness of our cross-attention mech- 993

anism in bridging vision and language modalities 994

for precise task understanding. 995

Effects of λ1 and λ2. λ1 and λ2 in Eq. (4) con- 996

trol the strength of ILP and IVP learning, respec- 997

tively. To investigate how λ1 and λ2 influence 998

VLP, we conduct experiments by vary λ1 across 999

{0.0, 0.1, 0.5} and λ2 across {0.0, 0.5, 1.0}. Re- 1000

sults in Table 13 show that the performance of 1001

VLP drops with too small or too large λ1. Mean- 1002

while, without IVP learning (i.e., λ2 = 0), the per- 1003

formance of IVP and ILP significantly decreases. 1004

We speculate that IVP is crucial for language- 1005

conditioned preference learning. Without IVP 1006

learning, the learned VLP model degenerates into 1007

a vanilla preference model without language as 1008

conditions. 1009

Effects of Preference Dataset Size. We inves- 1010

tigate how the preference dataset size influences 1011
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(a) Drawer Close (Shift closer and secure
the drawer shut)

(b) Door Close (Direct the gripper to the
door handle and press to seal it)

Figure 4: Attention map visualization of Drawer Close
and Door Close. The language instruction is shown at
the bottom of each subfigure.

Table 13: Accuracy of VLP labels with different loss.
Acc. denotes the accuracy of preference labels inferred
by VLP compared with ground-truth labels.

λ1 λ2 ITP Acc. (↑) IVP Acc. (↑) ILP Loss (↓) Avg. Loss (↓)

0.0 0.5 95.4 74.1 0.728 0.618
0.5 0.5 85.8 74.7 0.702 0.578

0.1 0.0 96.2 63.0 0.775 0.646
0.1 1.0 95.8 96.5 0.699 0.554

0.1 0.5 97.4 91.7 0.705 0.555

our method. We conduct additional experiments by 1012

varying the dataset size across {50%, 75%, 100%}. 1013

Results in Table 14 indicate that the performance 1014

of VLP downgrades as the dataset size decreases. 1015

Table 14: Accuracy of VLP labels with different data
size. Acc. denotes the accuracy of preference labels
inferred by VLP compared with ground-truth labels.

Data ITP Acc. (↑) IVP Acc. (↑) ILP Loss (↓) Avg. Loss (↓)

50% 94.2 89.6 0.699 0.557
75% 95.2 89.7 0.707 0.555
100% 97.4 91.7 0.705 0.555

Preference Label Accuracy. To compare the rel- 1016

ative relation of VLM rewards with VLP, we com- 1017

pute the preference label accuracy of each method. 1018

The accuracy is measured by comparing the pre- 1019

dicted preference labels with scripted preference 1020

labels. The results in Table 15 show that VLP ex- 1021

ceeds the VLM baselines by a large margin, demon- 1022

strating VLM rewards do not capture the relative 1023

reward relationship. 1024

Different VLMs/LLMs for Language Instruc- 1025

tion Generation. To see the influence of differ- 1026

ent language model on our method, we we conduct 1027

additional experiments using instructions from less 1028

capable model, such as GPT-3.5 and open-source 1029

Llama-3.1-8B-Instruct. We observe that generating 1030

diverse language instructions does not necessar- 1031

ily require strong VLMs like GPT-4V, even open- 1032

source Llama-3.1-8B-Instruct can accomplish this 1033

job since the language model is prompted with a 1034

diverse set of examples, following LAMP (Adeniji 1035

et al., 2023). The results in Table 16 show that 1036

the model’s performance is relatively stable across 1037

different LLMs. 1038

C Details of MTVLP Collection 1039

For the 50 robotic manipulation tasks in Meta- 1040

World (Yu et al., 2020), we divide Button Press, 1041

Door Close, Drawer Close, Faucet Close, and Win- 1042

dow Open as test tasks and the other 45 tasks as 1043

train tasks. For each task, we leverage scripted poli- 1044

cies of Meta-World (Yu et al., 2020) to collect tra- 1045

jectories. For expert trajectories, we add Gaussian 1046

noise sampled from N (0, 0.1). For medium trajec- 1047

tories, we utilize the near_object flag returned by 1048

each task to determine whether the first subtask is 1049

completed and add Gaussian noise sampled from 1050

N (0, 0.5). For random trajectories, the actions are 1051

14



Table 15: Preference label accuracy of VLP against VLM baselines. The accuracy of our method is shaded and
the best score of all methods is bolded.

Task R3M VIP LIV CLIP VLM-RM (0.0) VLM-RM (1.0) RoboCLIP VLP

Button Press 91.0 40.0 62.0 53.0 62.0 41.0 46.0 93.0
Door Close 98.0 57.0 97.0 49.0 59.0 10.0 61.0 100.0
Drawer Close 66.0 49.0 39.0 66.0 65.0 58.0 43.0 96.0
Faucet Close 98.0 100.0 97.0 38.0 25.0 65.0 63.0 100.0
Window Open 72.0 88.0 16.0 81.0 88.0 16.0 49.0 98.0

Average 85.0 66.8 62.2 57.4 59.8 38.0 52.4 97.4

Table 16: Preference label accuracy of VLP with lan-
guage instructions generated by different VLMs/LLMs.

Task GPT-4V GPT-3.5 Llama-3.1-8B-Inst.

Button Press 93.0 93.0 91.0
Door Close 100.0 100.0 98.0
Drawer Close 96.0 96.0 97.0
Faucet Close 100.0 100.0 100.0
Window Open 98.0 99.0 99.0

Average 97.4 97.6 97.0

sampled from uniform distribution U [0, 1]. We col-1052

lect 32 trajectories of each type of trajectory for1053

each task, resulting in a total of 4800 trajectories1054

for all tasks. We query GPT-4V (OpenAI, 2023) to1055

generate language instructions by the prompt con-1056

taining an example of generating diverse language1057

instructions, an example of generating synonym1058

nouns, task name, task instruction, and an image1059

rendering the task. The detailed prompt we used is1060

shown in Table 17.1061

D Discussions1062

How do ILP and IVP benefit VLP? The inclu-1063

sion of ILP and IVP in our training data serves1064

critical roles in enhancing the generalization and1065

robustness of our model. ILP allows our model to1066

learn to disregard language variations when they1067

do not impact the preference outcomes, thus train-1068

ing the model to focus on task-relevant features1069

rather than linguistic discrepancies. On the other1070

hand, IVP facilitates the model’s ability to general-1071

ize across different tasks by learning to associate1072

videos with their corresponding task-specific lan-1073

guage instructions effectively. This capability is1074

crucial when the model encounters new tasks or1075

language contexts, as it must discern relevant from1076

irrelevant information to make accurate preference1077

predictions. By training with both ILP and IVP,1078

our model learns a more holistic understanding of1079

the task space, which not only improves its perfor-1080

mance on seen tasks but also enhances its adapt- 1081

ability to new, unseen tasks or variations in task 1082

descriptions, as evidenced by our experimental re- 1083

sults where the model demonstrated generalization 1084

capabilities. 1085

How does different train-test split influence 1086

VLP? We conduct experiments on the Meta- 1087

World ML45 benchmark, training the vision- 1088

language preference model on its training tasks and 1089

evaluating on its test tasks. We compute VLP label 1090

accuracy by comparing VLP label with scripted 1091

preference labels. The results shown in Table 18 1092

demonstrate the strong generalization capability 1093

of our method on unseen tasks in ML45. This 1094

reinforces the robustness and adaptability of our 1095

framework regardless of task split. 1096

E License For Artifacts 1097

Meta-World, IPL, CPL, R3M, LIV, VLM-RM, and 1098

CLIP models are licensed under the MIT License. 1099

VIP is licensed under the CC BY-NC 4.0 License. 1100

For ManiSkill2, all rigid body tasks are covered by 1101

fully permissive licenses (e.g., Apache-2.0), while 1102

the associated assets are licensed under CC BY-NC 1103

4.0. It should be noted that the official repositories 1104

for LAPP and RoboCLIP currently do not include 1105

any license information. 1106
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Table 17: Prompt for generating diverse language instructions. The verb structures list and synonym nouns example
are from Table 2 and Table 4 in LAMP (Adeniji et al., 2023), respectively.

System Message: Suppose you are an advanced visual assistant. Your task is to generate more instructions with the
same meaning but different expressions based on the task instruction I provide, generating 40 new instructions for each
task. The instructions you generate need to be as simple and clear as possible. Below is an example of an answer for
picking up an object. The answer should be formatted as a Python list.
– Begin of instruction example –
Task instruction: "Pick up the [NOUN]"
Answer:
Verb Structures List
– End of instruction example –
Moreover, you need to be mindful to replace the nouns in the instructions with synonyms, such as replacing "bag" with
the following words in the Python list:
– Begin of synonym example –
Synonym Nouns
– End of synonym example –
The tasks are from Meta-World benchmark and the image of the task is rendered in a 3D simulation environment. In the
environment, there is a wooden table and a robotic arm. The robotic arm is placed above the table. The robotic arm
needs to manipulate the object(s) on the table to complete tasks.
My instruction for Task Name task: Task Instruction
Answer:

Table 18: Preference label accuracy of VLP on ML45
test tasks.

Task VLP Acc.

Bin Picking 95.0
Box Close 90.0
Door Lock 100.0
Door Unlock 100.0
Hand Insert 100.0

Average 97.0
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