Varying Manifolds in Diffusion:
From Time-varying Geometries to Visual Saliency

Abstract

Building on the manifold hypothesis, which sug-
gests that generative models learn data distribu-
tions residing on low-dimensional manifolds, this
paper investigates the time-varying manifold se-
quence induced by the generation process through
the lens of differential equations in diffusion mod-
els. Our primary contribution is the introduction
of the generation rate, a novel metric that quanti-
fies local manifold scaling over time. For image
data, we show that the accumulated generation
rate, referred to as the generation curve, strongly
correlates with intuitive visual properties, such
as the saliency of image components. By lever-
aging modifications to the generation curves, we
propose a unified framework for a range of im-
age manipulation tasks, including semantic trans-
fer, object removal, saliency adjustment, and im-
age blending. Comprehensive evaluations, sup-
ported by both the qualitative and quantitative
results, highlight the effectiveness of our frame-
work across these diverse tasks.

1. Introduction

The variation of natural data, i.e., how the data can change,
is governed by several continuous variables, such as lighting
and colors in images. Consequently, the data exhibit fewer
degrees of freedom (dimensions) than their ambient space,
exemplified by the total pixels of natural images. This obser-
vation inspires manifold hypothesis (Tenenbaum et al., 2000;
Roweis & Saul, 2000), which states that real-world data are
conceptualized as points on or near a low-dimensional man-
ifold within a high-dimensional ambient space.

Generative models, such as Variational Autoencoders
(VAE) (Kingma & Welling, 2014) and Generative Adver-
sarial Networks (GANs) (Goodfellow et al., 2014), seek
to learn the statistical data distribution by constructing the
mapping from a simple base distribution, such as a Gaussian
distribution, to the data distribution. The learned distribution
inherently encodes the underlying data manifold. Recently,
diffusion models or score-based models (Sohl-Dickstein
et al., 2015; Ho et al., 2020) have substantially enhanced

the expressiveness of generative modeling by representing
the distribution transformation process as a stochastic dif-
ferential equation (SDE). Inspired by natural diffusion phe-
nomena, diffusion models elucidate how data distributions
evolve under noise perturbations.

Data manifolds provide a geometric perspective for data
analysis. On one hand, viewing data as points on a curved
manifold enables effective examination of pairwise geo-
metric distances and localized variations among samples.
(Arvanitidis et al., 2018; Miolane et al., 2019). On the
other hand, the geometry of these manifolds can reflect
domain-specific attributes, such as the connectivity of graph-
structured data (Topping et al., 2022) or complexity and clas-
sification characteristics of images (Tempczyk et al., 2021;
Baptista et al., 2024). In the context of diffusion models,
the generative process based on differential equation offers
insights into the evolution of data manifolds. The analysis
of time-varying data manifolds enables a more comprehen-
sive understanding of how data is generated and how its
underlying geometric structure changes over time.

In this paper, we propose a metric to gauge the rate of
change of the data manifold in diffusion models as a func-
tion of time. As our key observation, we show that such a
change rate corresponds to the rate of information removal
during the diffusion process, or the rate of information in-
jection during the reverse generation process. Therefore,
in the reverse process, we call our metric the ”generation
rate”, which changes over time to define the ”generation
curve”. Furthermore, we demonstrate that the generation
curve effectively captures the visual properties of image data.
Utilizing this connection, we construct a unified framework
for a range of image manipulation tasks, including semantic
transfer, object removal, saliency manipulation, and image
blending, by manipulating the shape of the generation curve
using stochastic optimization. Finally, through comprehen-
sive evaluation, we show that our framework consistently
outperforms the existing approaches in performing these
image manipulation tasks.

2. Background

It is widely accepted that the distributions of high-
dimensional observed data reside on a lower-dimensional
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Figure 1. We consider the data manifold at each time level of the transformation Equation 3 (top row), and analyze the local geometry
(second row) around a nominal sample (third row). The notations used to define the local geometry are illustrated on the right.

manifold M embedded in ambient space R? (Tenenbaum
et al., 2000; Roweis & Saul, 2000). The notion of data
manifold not only offers a low-dimensional representation
of the data but also proves highly useful for data analysis
and processing (Tempczyk et al., 2021; Topping et al., 2022;
Baptista et al., 2024). In this paper, we adopt basic con-
cepts from differential geometry, including the tangent space
T, M as a linear approximation of the manifold at a point
z and differential mappings that act on this tangent space.
More background details are presented in Appendix A.

2.1. Diffusion Process as SDE

The diffusion model (Sohl-Dickstein et al., 2015; Ho et al.,
2020) is a type of stochastic generative model that gradually
adds noise to the original data in a forward diffusion process
and generates realistic data samples via a reverse denoising
process. It can be formulated as stochastic differential equa-
tions (SDEs) (Song et al., 2021b) with a continuous time
variable ¢ € [0,T]. The forward diffusion process, which
evolves a probabilistic distribution towards a more uniform
or stable state over time through random perturbations, is:

dXt :/,L(Xt,t) dt+0’(Xt,t) th, (1)

where X, represents the state of the process at time t,
u(X¢, t) is the drift coefficient, o(Xy,t) is the volatility
coefficient, and dW; is the differential of a Wiener process.

The reverse SDE, used for denoising and generating data, is
formulated as:

dXt :[:U’(Xtv t) - 02 (Xta t)vz Ingt (Xt)] dt"‘

G'(Xt,t) th, (2)

where V, log p;(X}) is the score function of the probability
density function p;(X3).

We can further derive a deterministic process with trajec-
tories that share the same marginal probability densities as
the SDE (Equation 1). This is formulated as an ordinary
differential equation (ODE) (Song et al., 2021b):

1
dXy = [u(X, 1) — 502(Xt,t)vz log pi(Xy)] dt, (3)

In this paper, we adopt this deterministic approach and use
its specific discrete form from (Song et al., 2021a):
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where « is a time-dependent variable as defined in (Song
et al., 2021a) and €} (X,) is a neural network with param-
eter 6 trained to approximate noise, which is related to
the score function by reparametrization V, log p:(X;) =
—eh(Xt)/v/1 — ar (Song et al., 2021b). In this form, one
can directly and deterministically obtain a predicted X
from the X; by: Xo(X;) = (X; — V1 — azel(X1))/ v/,
which can further be considered as an estimation of the
generation state.

2.2. Time-Varying Manifolds in Diffusion Models

Within the realm of generative models, the learned data
distribution offers a natural foundation for studying data
geometry. In particular, the ODE-based formulation of dif-
fusion models suggests that their generative process does
more than simply denoising individual data points: it in-
duces a family of diffeomorphisms on the data manifold.
This continuous transformation can be discretized into a
sequence of manifolds {M;}, as illustrated in Figure 1.

In this paper, we adopt a geometric viewpoint on how
data evolve through the generation process, linking data



attributes to manifold geometry. A challenge lies in ac-
cessing geometric quantities such as the local tangent basis.
Some existing work (Batzolis et al., 2022) derives the man-
ifold’s tangent space by exploiting gradient information
from score-based (diffusion) models, but this approach is
computationally prohibitive for high-dimensional data. Al-
ternatively, building on empirical evidence that intermediate
neural network spaces tend to compress normal directions
while preserving the tangent directions (Kvinge et al., 2024),
(Park et al., 2023) propose to approximate the tangent basis
of a data manifold within a diffusion model’s U-Net archi-
tecture. Specifically, they regard the encoder layers of the
noise predictor (U-Net) as a compression map h;. In prac-
tice, they apply the power method to the differential Dy,
of h;, which extracts the leading right singular vectors to
approximate the manifold’s local tangent basis. We adopt
this approach to derive the tangent space of M;.

3. Generation Rate & Generation Curve

In this section, we first define our notation of generation
rates and generation curves in diffusion models (Section 3.1).
We then demonstrate, using a pre-trained image diffusion
model, that these curves effectively capture how quickly the
model generates visual content. In particular, we show that
the fluctuations of these curves exhibit a strong correlation
with visual saliency (Section 3.2).

3.1. Definition

The key idea of our analysis lies in the temporally local
analysis of the time-varying manifolds {M;}. Between con-
secutive manifolds, we define the forward diffusion mapping
as Xy = f:(Xt—a¢), and the reverse diffusion mapping as
Xi_ar = ft_l(Xt). These manifold-to-manifold transfor-
mations induce differential mappings Dy, and D g1 on the
corresponding tangent spaces 1, M, transforming a tangent
vector from one manifold to the next. Following prior work
(Bengio et al., 2013; Hanin & Rolnick, 2019), we use local
scaling of the tangent space to track how a manifold de-
forms. In particular, the scaling of a tangent vector refers to
the change in its length before and after the differential map-
ping, thereby quantifying the local geometric deformation
at each timestep, as illustrated in Figure 1.

An empirical finding is that, under the parametrization in
Equation 4, the singular values of Dy, for tangent vectors al-
most always fall in the range (0, 1), implying that f; is a con-
tracting mapping when restricted to M;. This is consistent
with the fact that the diffusion process removes information
from the data and injects entropy into the distribution on M,
as t increases. Similarly, we can consider the reverse pro-
cess and the associated map f; ', whose differential D £
empirically has singular values in the range (1, c0). This
corresponds to injecting information into the distribution

by reducing its entropy. Based on these observations, we
define our information generation rate as the norm of the
directional derivative:

Hthfl(Xt)[U]H : Ty M, — R, 5)

along a unit tangent-space variation v.

A potential pitfall of Equation 5 lies in the requirement that
v is a tangent-space variation. In practice, however, an arbi-
trarily sampled variation v € R? to a noised image X; might
not lie in the tangent space T, M. To mitigate this flaw, we
define the projection operator Proj(v) as the projection of
v onto the tangent space spanning by the leading singu-
lar vectors, whose derivation is explained in Section 2.2.
Specifically, we define the projected generation rate as:

r1(Xe, 0) = || Dy (X)) [Proj(v)] ], (©)

which enables us to use an arbitrary variation v in the ambi-
ent space R?. The variation vector v provides an important
additional degree of freedom: for example, by choosing v
to represent a specific image component, e.g. a single pixel
or a channel of a pixel, we can measure the generation rate
specifically for this component.

Using the diffusion ODE (Equation 4), we can uniquely
trace areversible path X = (X, X, ..., Xr) either forward
(from Xg) or backward (from X7). This sequence is also
denoted as X(X,) or X(Xr). We define the generation
curve ¢(X,v) as the discrete sequence (r;(X; € X, v))7_,,
calculated at each time step from ¢ = 7 down to ¢t = 0 for a
fixed variation v € R? and a given path X

3.2. Connection to Visual Saliency

In this section, we present our comprehensive analysis to
demonstrate that the generation curve is strongly connected
to the visual properties of images. For simplicity, we con-
sider single-channel images since additional channels can
be simply treated as extra dimensions. We set the vector
v as a unit vector v = e;; that takes value 1 at ij-th pixel
and zero otherwise. Then, we project it to the tangent space
of the image manifold to compute its generation rate with
Equation 6. This setting allows us to investigate the rate of
information generation for a single pixel.

To extend the notion of generation rate to an image patch .4
containing multiple pixels {e;; }, we slightly abuse notation
and define it as the following average:

(X, A) = B, vy [re(Xe, v(eig))], @)

where v(e;;) denotes the vectorization of pixel e;; and U (-)
is the uniform distribution.

In Figure 2, we plot the generation curves for a column or
row of image pixels, with each curve corresponding to an
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Figure 2. Generation curves for a column or row of image pixels (yellow). The generation curves fluctuate significantly at the pixels with

high visual saliency, such as the wing tip of the bird.
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Figure 3. Visual saliency analysis. Left: Curve fluctuation statistics
comparing salient (blue) and non-salient (red) pixels across image
samples. Right: An example image from the test set.

individual pixel. We observe that pixels exhibiting high
visual saliency, such as those in the bird’s wing tip and body,
demonstrate pronounced fluctuations (peaks) in their genera-
tion curves. Conversely, in lower-saliency regions the curves
remain notably smoother, except for a sharp rise when ¢ ap-
proaches 0. We further conduct a large-scale analysis by
using 100 pictures from the visual saliency dataset (Borji &
Itti, 2015). For each image, we sample one salient pixel and
one non-salient pixel from the ground truth. For both pixels,
we take the windowed variance: ¢(X,v(e;;)) — R to mea-
sure the fluctuation of its generation curve, and the statistics
are shown in Figure 3 (Appendix C.1 for more details). For
86% of the images, higher visual saliency leads to higher
fluctuation, validating the high consistency between curve
fluctuation and visual saliency.

For other morphological factors of the curve, such as the po-
sition and curvature of the peaks, we experimentally found
that these are determined by more specific and low-level
visual properties of the underlying object. For instance,
image patches with different materials like grassland and
woodland often exhibit different curve shapes, although they
share similar visual saliency.

We also notice an alternative way (Choi et al., 2022; Kwon
et al., 2023) to consider the generation rate in diffusion
models. For each noised image X, we can compare the
visual similarity of its predicted XO (Song et al., 2021a)
to the real image Xy, e.g., by computing the perceptual
distance (Zhang et al., 2018; Caron et al., 2021) between
the two images. Such computation can be performed with
respect to an image patch by applying a region mask. We
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Figure 4. Comparison between perceptual-based curves (green)
and our generation curves (orange). The curves correspond to two
objects indicated in the specified regions of the left image.

consider this similarity as the generation state, and the time
derivative of this state can also be interpreted as a gener-
ation rate. In Figure 4, we compare the generation curve
computed using our definition and this alternative definition
for objects (details in Appendix C.2). We notice that the
two curves exhibit similar trends while our curve has much
less noise. Besides, due to the nature of visual metrics, this
alternative method is applicable only to regions with seman-
tically complete objects and often exhibits heavy noise or
even negative generation rates in areas with less prominent
visual features, especially with background patches. These
limitations prevent this alternative method from providing
reliable indications of the information generation rate, limit-
ing its usage in analyzing the generation process.

4. Curve Matching

Since the generation curve is intrinsically related to certain
visual properties of images, it enables the manipulation of
those properties by modifying image curves. In this section,
we propose a curve matching algorithm that adjusts the
curves via an optimization procedure.

4.1. Approximate Computation of Generation Curve

To calculate and modify the curves ¢(X, v), we must eval-
uate the generation rate at each time step. This computa-
tion, according to Equation 6, involves the projection op-
eration Proj(v) for image pixel vectors, which depends on
a power-method-based derivation of the tangent space (see
Section 2.2). Since the power method is not differentiable,
the projection Proj(v) impedes gradient-based optimization.
Therefore, we seek for a substitute, i.e. a differentiable com-
ponent of the generation curve that inherits its correlation
with visual properties. Using Equation 4, we can rewrite
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differential of the reverse diffusion mapping fotl as:
D1 (X)[e] = A(t)o + B(t)Des(x (XD[t], ®)

where A(t) = y/at—at/or and B(t) = (V1 — ap—ar —
Vai—ai(l —a;)/ay).  Substituting Proj(v) for v, the
square of generation rate r; (X, v) takes the form:

12(Xi,v) = (D (X)) [Proj(v)], D1 (X,) [Proj(v)])
— A1) [Proj(v)|> + B>(1) | Des . (X0) Proj (v)]]
+ A(t)B(#){Proj(v), Dy (xp) (XOProj(@)]),  (9)

where (-) denotes canonical Euclidean inner product.
Empirically, as demonstrated in Figure 5, the curve of
[ Der (X)[Proj(v)]|| dominates the overall shape of the
curve of ;. Hence, in practice, we only retain this com-
ponent in our generation rate formulation, allowing us to
control the resulting generation curves and thereby adjust
the corresponding visual properties of the images.

To circumvent the non-differentiable projection, we leverage
the bottleneck (encoder) mapping h; (Section 2.2) of the net-
work eg. As observed in (Shwartz-Ziv & Tishby, 2017; Saxe
et al., 2018), bottleneck layers often exhibit similar singular
value distributions to those of the final outputs, implying
a shared directional scaling (i.e. how different directions
are stretched or compressed). This similarity in scaling
implies the similarity in accumulated curves, enabling the
curve of || Dy, (X¢)[Proj(v)]|| to serve as a substitute for the
curve of || Dt (x,)(X¢)[Proj(v)]||. Moreover, since Dy, al-
ready compresses normal directions to derive the tangent
space, it eliminates the need for Proj(-). Consequently, the
curve of || Dy, (X:)[v]|| becomes a natural alternative to
[ Det (x,)(X¢)[Proj(v)]||. Figure S compares several curves
obtained by these alternatives. Despite numerical differ-
ences across the curves, their similar shapes meet our needs
for manipulating images. Since || Dp, (X¢)[v]|| is readily op-
timizable via gradient descent, we adopt it in the subsequent
image manipulation applications.

4.2. Optimization Algorithm

The proposed curve matching algorithm manipulates the
visual properties of an image patch by aligning the shapes
of curves. Its input contains an image X with its associated
noisy sequence X, a specified reference generation curve

c* derived from pixel p* with the corresponding reference
generation rates 77, and a source image patch A € X to be
edited. Our objective is to uniformly transform the patch A
into the visual content represented by p*, by modifying the
generation curves of its pixels to match c*.

Specifically, we search for a desired image X via the fol-
lowing optimization:

argming, E., v () [D(c(X(Xo),eij), )], (10)

where D is some distance metric. Because each curve value
is computed independently at discrete time instances, we
use an L -type distance. Moreover, to focus optimization on
the more salient parts of the curve c(X, e;;), thereby better
reflecting the crucial distinctions between it and c*, we
adopt an importance sampling strategy. Specifically, we first
normalize the curve ¢(X, e;;) into a probability distribution
P(X,e;;) by dividing the curve values ZtT=o c(t| X, e;5).
We then define:

D(c(X,eij),c*) = Epg)x.ellc(t| X, ei) — ()], (11)

Moreover, optimizing X directly in the ambient space can
lead to undesired distortions, as there is no guarantee that
the edited image remains on the underlying manifold. In-
stead, based on Equation 4, we select the corresponding
X, from the noisy sequence A" associated with X as our
optimization variable, where ¢ is a hyperparameter. Because
X, resides in a diffused distribution, it is more fault-tolerant
to local edits. Finally, to alleviate computational burden, we
adopt a stochastic optimization strategy by sampling exactly
one pixel and one timestep per iteration. Specifically, we
uniformly choose a pixel e;; from A in each iteration and
randomly choose a pixel e; from A at the beginning of
the optimization process, keeping ej, fixed throughout. The
curve ¢(X, ey) is then normalized to a probability distribu-
tion P(X, ey), from which we sample a timestep ¢, in each
iteration.

We update X; using the gradient descent step X; <
Xt —nVx,|c(ts| X, ei;) — c*(ts)| with 7 being the learning
rate of the SGD optimizer. After optimization, we recover
Xy from the optimized X; by Equation 4. The optimiza-
tion algorithm can be applied to various image manipula-
tion tasks by specifying the reference generation curve and
adding additional constraints to the objective function.



Localized Modification A typical requirement in many
applications is to edit only the image content within a given
patch A. However, our standard SGD scheme often modi-
fies the entire image, which is undesirable. Simply applying
a mask to X, after each iteration does not solve the prob-
lem either, because the mask is applied at the noised level,
while the corresponding noiseless image X can still contain
modifications outside 4. Instead, we propose to iteratively
blend the noised original image, X;, and the noised opti-
mized image, X,, via X; « X; ® A+ X; ® A, where A
is the complement of A and © is the pixel-wise product.
We perform such blending every 70 iterations for ¢ > tpjend-
Blending at a sufficiently high noise level (t > tpjena) €n-
sures that the noiseless image has seamless patch boundaries
around A by nature of the reverse generation process.

5. Image Manipulation Applications

Many image manipulation tasks can be considered as the
transformation of visual properties. This section demon-
strates how our curve matching algorithm can flexibly per-
form various image manipulations using only a pre-trained,
unconditional diffusion model for image generation. By
leveraging our generation curve, we provide a unified frame-
work for these tasks, removing the need for separate super-
vised models or specialized datasets. Application details
and quantitative evaluation are presented in Appendix D.

5.1. Semantic Transfer

The semantic transfer task modifies a source region to match
the semantic properties (e.g., color, material, texture) of a
reference while maintaining other properties (e.g., depth,
shape) unchanged. Given the coupling of visual properties
within the curve, this problem can be inherently dealt with
our curve matching algorithm by specifying the reference
curve of a pixel with desired semantic properties. To avoid
meaningless transfers from arbitrary references, we choose
the reference pixel from a region adjacent to the source area,
limiting their difference within expected properties.

Figure 6 shows our semantic transfer results as well as the
generation rate curves before and after the optimization. For
the first row, the objective is to induce hair growth on the
forehead. We select the reference pixel from an adjacent
region that not only exhibits the characteristics of hair but is
also similar to the source region in other aspects, e.g., both
being located on the crown of the head. After optimization,
the source curves align with the specified reference, and hair
gradually emerges on the forehead.

Since our optimization aims to align each pixel’s curve in
the editing area with the reference curve, in the figures, we
randomly select one pixel from that region to illustrate its
curve before and after editing. We do not expect the opti-

mized curves to perfectly align with the reference, because
the edited area should maintain harmony with the rest of the
image. Therefore, we apply the localized modification tech-
nique (see Section 4.2) and stop the iterative optimization
algorithm after a predetermined number of steps, before it
completely converges to the reference.

5.2. Object Removal

Object removal involves replacing an object with the back-
ground it obscured, while keeping the rest of the image
unchanged. Our curve matching algorithm addresses this by
transferring the visual properties of the background to the
pixels of the object to be removed. This process shares the
same pipeline as semantic transfer, with the reference pixel
selected from the expected background.

Figure 7 compares the object removal results of our method
and two recent approaches, i.e., SD-XL inpainting (Podell
et al., 2023) and an instruction-based method, called
ZONE (Li et al., 2023). The shortcomings of these two
types of methods are primarily in the following aspects:
Inpainting methods that are trained on masked images can
be considered a form of re-sampling from the true image
distribution conditioned on the unmasked region (Rout et al.,
2023). However, the procedure of inpainting often lacks
clear guidance to specify the background content after re-
moval, thereby the content in the editing area is unstable,
occasionally filled by another object. For instruction-based
methods, they achieve image editing through a pre-trained
model that accepts textual instructions. However, they some-
times fail to identify the objects by solely relying on text
descriptions. In the case of removal, they often fail when
dealing with complex occlusion scenarios.

5.3. Saliency Manipulation

Saliency manipulation involves altering the saliency of an
object while maintaining its identity. The high correlation
between visual saliency and the fluctuation of the genera-
tion curve allows us to adjust saliency by modifying these
fluctuations during curve optimization. Directly specifying
a reference curve pattern with only a different fluctuation
is challenging. Moreover, we observe that salient object’s
curve tends to have greater fluctuation and peak with higher
values (Figure 2) compared to the non-salient curve which
maintains a lower and fixed value. Therefore, to increase
(resp. decrease) saliency, we simply maximize (minimize)
generation rates, where the reference curve is implicitly
specified. We also use the feature alignment loss from UNet
as described in (Mou et al., 2023) to preserve image content.

We present the saliency editing results in Figure 8, compar-
ing our results and those of a recent approach RSG (Mian-
goleh et al., 2023). The results indicate that using curves
as a measure and quantification of saliency is reasonable.
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Figure 6. Semantic transfer results. Left: The input image and the transfer results captured at different optimization iterations. The
beginning and end of the arrow represent the reference point and the editing region, respectively. Right: Generation curves before and
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Figure 7. Object removal comparison. From left to right: the input image and object mask, the results of alternative approaches (Podell
et al., 2023; Li et al., 2023) and ours, corresponding generation curves during optimization.

By contrast, while existing methods that learn from eye-
tracking data can effectively manipulate saliency by end-
to-end networks, they often focus on patterns such as color
contrast and brightness, thus failing to produce harmonized
results across diverse natural images.

5.4. Image Blending

The image blending task aims at blending a foreground im-
age with a background image at boundaries. To accomplish
this task, given a composite image, we define the boundary
between the foreground and background as the salient re-
gion, since it contains undesirable and eye-catching seams.

Then we propose to reduce the visual saliency of the bound-
ary region to make a natural transition. With our curve
matching algorithm, we follow the same procedure as our
saliency manipulation application, but minimize the visual
saliency only at the boundary region.

In Figure 9, we show the results of ours and an existing
approach (Wu et al., 2019). In our experiments, we found
that existing methods often perform well on specific image
types and fail to produce satisfactory results across various
natural images. Instead, our approach consistently produces
visually pleasing boundaries for composite images.
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Figure 9. Image blending comparison. From left to right: input image, input mask, results of GP-GAN (Wu et al., 2019), our results, and

the corresponding generation curves.

6. Conclusion

In this work, we propose the generation rate, which corre-
sponds to the local geometric scaling of the manifold over
time around an image component. Through comprehensive
analytical evaluations, we show that this time-varying ge-
ometric deformation exhibits a high correlation with the
visual saliency of the image component. In addition, manip-
ulating the generation curves with different loss functions
provides a unified framework for a row of image manip-
ulation tasks. Future research could investigate different

descriptions of geometric deformation in of data manifold,
explore more applications and address the limitations of
our generation curve. For instance, our curve optimization
algorithm requires first-order differential computation and
thus requires approximately 10 minutes for 300 iterations
including the pre-processing. On the other hand, for im-
age manipulation tasks, since different objects have varying
visual appearances and thus different generation curves, it
causes varying convergence speeds and thus different num-
bers of iterations for curve optimization.



Impact Statement

This paper presents work whose goal is to advance the field
of Machine Learning. There are many potential societal
consequences of our work, none which we feel must be
specifically highlighted here.
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A. Background on Differentiable Manifold

A differential manifold M of dimension m is a topological space such that every point z € M has a neighborhood
homeomorphic to an open set in R, and the transition between these local coordinate patches are differentiable. When data
are assumed to lie on a low-dimensional manifold M embedded in a higher-dimensional Euclidean space R™ with n > m,
this manifold structure provides a geometric framework for understanding local neighborhoods, directions, and curvature
within the data.

At each point z € M, there is an associated tangent space T, M, which is an m-dimensional vector space that linearly
approximates the manifold near x. Intuitively, T, M captures the possible “directions” one can move from = while remaining
on the manifold. A differential map or forward differential of a smooth function f : M — N between two manifolds M
and N, denoted by

sz T, M — Tf(x)N7

is a linear map that describes how tangent vectors at x are mapped to tangent vectors at f(x). This allows us to see how
local shapes, distances, and densities are distorted when applying the map f.

B. Curve Matching Algorithm

As described in Section 4, our curve matching algorithm manipulates the original image X to align the generation curves
of a source area .4 and a reference pixel p*. When applied to different image manipulation tasks, we flexibly select the
reference pixel and modify the loss function £ to achieve different goals. The default hyperparameter setting is ¢ = 700
for transforming X to X; and learning rate 7 = 0.02. The iteration number ranges from 30 to 300 for different tasks, and
we show their intermediate results during the optimization process. We use the pre-trained unconditional diffusion model,
stable-diffusion-2-1-base, for all our experiments.

We present the details in Algorithm 1. The basic idea is to update X, transformed from the input X, in order to align
the generation curves of the source area ¢(X(X;),.A) and the curve ¢* = ¢(X (X)), p*) of the reference pixel p* for each
channel. Specifically, we first transform X to X} via the deterministic diffusion process, and pre-compute the generation
curve of the reference pixel ¢* = r(X(X;),v*) and that of a random pixel within the source area ¢, = r¢(X(X}), v,).
Then we start the iterative optimization. In each iteration, we sample a pixel p; within the source area randomly and a time
t1, based on the cumulative distribution of c,. The optimization variable X, is transformed to X, , which is used to compute
the generation rate 7, (X¢, ,vx) and the loss function £ = |ry, (X4, ,vr) — 77, |. To avoid back-propagation through the
differential equation-based diffusion process, we compute the forward transformation X; — X;, in a non-grad context.
Concretely, we first generate the difference AX = X;, — X, without tracking any gradients. We then treat AX as a noise
term and apply it directly to X;. Then we update X; with an Adam optimizer. After finishing the optimization, e.g. reaching
the maximum iteration number, we recover X; back to X via Equation 4.

Curve updating. The optimization objective requires to sample ¢;, according to the curve of the source area, which in turn
varies during the optimization and is time-consuming to compute. Firstly, to simplify the computation, we sample a pixel p,
within the source area and compute its generation curve, i.e. c,, to represent the curve of the source area. On the other hand,
we update the curve c, after every m = 50 iteration steps. Additionally, for spatial cases when the reference curve also
varies, e.g. when the reference pixel lies within the source area, we update the reference curve as well.

C. Visual Analysis Experiments
C.1. Visual Saliency Experiment

Experiment setting. We validate the connection between the fluctuation of our generation curve and the visual saliency
of images, as described in Section 3.2. The experiment is conducted on the MIT saliency benchmark CAT2000 (Borji &
Itti, 2015), which provides the collected eye-tracking data of images from human observers and the pre-processed saliency
map. For each image, we randomly select one pixel within maximum saliency values and one within minimum values as the
salient pixel and non-salient pixel. For the generation curves at the two pixels, we compute its local variance for ¢ > 200 (to
ignore the abrupt rise when ¢ is close to 0 ) over a sliding window of length £ = 5 and take their average to represent the
curve fluctuation.

Discussion. Figure 10 presents the example images and the generation curves corresponding to the selected pixels. For the
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Algorithm 1 Curve Matching Algorithm
Input: Image X, source pixel set A, reference pixel p*, hyperparameter ¢, iteration number N

/* Initialization */
1: Transform X through Eq. 4 to obtain X} // Initialize the optimization variable
2: Initialize pixel vector v* for p* and v, for a randomly sampled source pixel p, € A

/* Pre-processing */
3: cq  1e( X4, va), ¢ 1(X¢, v*) // Compute curves ¢, and ¢, for p, and p, respectively

/* Curve optimization with X, as the variable */
4: for k =1to N do
5 Sample a random source pixel p;, € A and initialize its corresponding vector vy,
6:  Sample a time ¢, based on the normalized c,
7 Transform X, to X, through Eq. 4 without gradients
8 Compute generation rate r, (X, , vi)
9:  Compute the loss £ = |ry, (X4, , v) — ¢*(t1)]
10:  Update X; < X; —nVL
11: end for

/* Generate the manipulated image from optimized X, */
12: Transform the edited X, to X through Eq. 4

example on the left, the salient pixel corresponds to the blue curve with obviously higher fluctuation than the red curve. In
our experiment, we found that our estimated curve fluctuation often reflects the visual saliency well for natural images. For
86% of the images in test set, higher visual saliency leads to higher fluctuation, validating the high consistency between
curve fluctuation and visual saliency. However, for some special cases, the noise inherent in eye-tracking data causes
the inaccurate spatial location of the salient and non-salient pixels, and thus significantly interfering with our pixel-level
calculations. For the line drawing images on the right, our curve fluctuation is not consistent with the ground-truth visual
saliency. The red pixel is marked as a non-salient pixel, while it corresponds to a higher curve fluctuation since it is located
in the region with dense line drawings.

' ‘ —— Non-salient Point
‘ —— Salient Point

v —— Non-salient Point
Salient Point

Generation State
/

Generation State

Aaron's Ra - b Ti}nestgp t Ti%eSté"b t
Figure 10. The salient pixel (blue) and non-salient pixel (red) on the images and their corresponding generation curves. The left shows
that our curve fluctuation is often consistent with the ground-truth saliency for natural images. The right is an inconsistent case with the

special line drawing images.

C.2. Two types of Generation Curves

Experiment setting. Given an image and the mask of a small object, we compare our generation curve and another
alternative approach, both of which estimate the generation rates of the small object at different timesteps. The alternative
approach computes a perceptual-based curve that utilizes perceptual loss to estimate the generation rates of a local region.
The experiments are as follows.

* Perceptual-based curve. For each timestep during the diffusion process, given the noised image X;, we can predict
the Xy with DDIM (Equation 4) and decode the corresponding RGB image /. Then we use the pre-trained DINO
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Figure 11. More results of the comparison between the perceptual-based curve and our generation curve.

model (Caron et al., 2021) to compute the perceptual loss between the predicted I and the original image I w.r.t. the
region (mask) M of the specified small object. The perceptual loss is defined as the cosine distance between the
features DIN O(f ® M) and DINO(I ® M), corresponding to the generation state at timestep ¢ that ranges from 0
to 1. And its derivatives can be considered as an approximation of the generation rates.

* QOur generation curve. As described in Section 3.2, we define the generation rate of an object—comprising multiple
pixels {e;; }—as the average of the generation rates of its individual pixels. Given a noised image X, and a specified
mask M, we calculate the generation rate (X, v(e;;)) for each masked pixel vector v; and compute their average,
which represents the generation rate of the object.

Discussion. Figure 12 presents the curves of two example images, both ours and the perceptual-based curves. Note that
we normalize each curve into the range [0, 1] for better visualization. As described in Section 3.2, the two types of curves
exhibit similar trends, especially with their main peaks occurring at close timesteps. It validates that both the two curves
reflect the generation rates. On the other hand, compared to the intuitive perceptual-based curves, our generation curve is
more applicable to many potential tasks. Firstly, the perceptual loss is object-wise rather than pixel-wise. It prevents its
analysis and application to more fine-grained generation patterns. Secondly, the perceptual loss can only distinguish the
prominent foreground features. Consequently, the perceptual-based curve often exhibits heavy noise or even negative values
with less prominent visual features, especially the flat background, as shown in Figure 13.

Generation Rate

Generation Rate

Timrnnestén;) t
Figure 12. Two types of generation curves for the masked small object in the image. Green: the perceptual-based curve; Orange: our
generation curve. All the curves are normalized into range [0, 1].

Generation Rate

Ti?nestgp t

Figure 13. We plot the generation state (blue) and generation rate (red) estimated by the perceptual-based loss. For background areas
without prominent visual features, the perceptual-based curves (red) tend to exhibit heavy noise or even negative generation rates.
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D. Application Details

We discuss more application details in this section. We conduct quantitative experiments utilizing Vision-Language
models (Radford et al., 2021; Caron et al., 2021) and user studies as discussed in D.1, with results shown in Table 1.

Table 1. Quantitative evaluations of object removal, saliency editing (increasing/decreasing), image blending, semantic transfer.

Object Removal CLIPg, T CLIPgiml DINOgml EffectivenessT Realism?
ZONE (Li et al., 2023) 0.2589 0.4824 0.433 4.48 6.3
SD-XL inpainting (Podell et al., 2023) 0.2617 0.4787 0.422 5.63 7.52
Ours 0.2629 0.4782 0.416 6.01 6.62

Saliency Editing CLIPg; 1 CLIPgn DINOgim EffectivenessT Realism?

RSG (Miangoleh et al., 2023) 0.2518/0.2508  0.4903/0.4890 0.4745/0.4763 6.76/6.95 8.14/7.52

Ours 0.2521/0.2516  0.4908/0.4876  0.4740/0.4653 6.32/6.77 8.58/8.53

Image Blending CLIPg; T Effectiveness?{ Realism? Semantic Transfer  CLIPg

GP-GAN (Wu et al., 2019) 0.3221 5.68 4.86 Ours 0.0108
Ours 0.3273 8.11 7.75 / /

D.1. Quantitative evaluation setup

The evaluation of these tasks often lacks standard metrics and datasets. Therefore, we take a general setting using common
Vision-Language models (Radford et al., 2021; Caron et al., 2021) and user studies, which are also adopted in (Sheynin
et al., 2023; Miangoleh et al., 2023).

Similarity metrics.

* We use CLIPg;; (Sheynin et al., 2023) to reflect whether the image editing direction is consistent with that indicated by
a text prompt. This metric is defined as

<ecap(T)a eimg(Ia) - eimg(Ib)>
[ecap(T) || ||eime (1) — €ime (L)’

where ecap(+) and ejmg(+) are the CLIP encoders for text and image, respectively. T" is the embedding of the text prompt
that describes the editing direction. I and I, are the images before and after editing. A higher CLIPg;, indicates a more
effective editing. We use instructional descriptions such as “decrease visual attention” for saliency editing, “remove
the car from the picture” for object removal, and “make the boundary transition smoother” for image blending.

CLIP;, = (12)

* We use CLIPg;;,, and DINOy;,, to measure the similarity between images before and after editing. They are defined as

CLIPn (1, I5) = {eime(11), €img(I2))
S leimg (12)1] lleime (22)]

13)

<dimg(Il)a dimg([2)>
DINOgim (1, I2) = s
(o bo) = g e )]

where €y, (-) is the CLIP image encoder and din,(-) is the DINO encoder. We evaluate CLIPgy,, and DINOgip,
specifically over the edited region. These metrics are used to evaluate the object removal and saliency editing tasks.
Lower values indicate larger change (thus more effective editing).

(14)

* We use CLIPg; to examine whether the edited images match better with the text prompt describing the desired edit
than before. It is defined as

CLIPg¢ = CLIP(T, I,) — CLIP(T, I,), (15)

where T is a natural-language description of the desired editing, and I,, I; are the images after and before the edit.
CLIP is the text-image similarity score

— <ecap(T)7 eimg(I»
CLIP(T,I) = llecap(T)| [l€ime (D)

(16)
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This metric is used to evaluate the semantic transfer task. A positive CLIPg# means I, aligns more closely with the
target description 7" than [, indicating a successful semantic transfer.

User study. We present the results independently to 8 participants and ask them to rate the effectiveness and realism
respectively from 1 to 10. The study uses 20 test examples for image blending, 15 for object removal, 30/30 for saliency
increasing/decreasing.

D.2. Semantic Transfer

The semantic transfer application shares the same pipeline with our object removal application, except that we select a
representative pixel of a surrounding object as the reference. We demonstrate more visual results in Figure 14. It enables
interactive editing with only a click on the image to specify the reference. However, since the generation curves involve
various visual properties, sometimes the transfer results don’t exhibit the desired visual effects. For example, as shown in
Figure 15, it transfers the material but not the color in the two examples.

As shown in Table 1, the positive value of CLIPy;s indicates that the images are edited towards the semantic transfer and
evaluate the effectiveness of our method.

D.3. Object Removal

Experiment setting. We conduct the comparison experiment on the test set from Emu Edit benchmark (Sheynin et al.,
2023). For the object removal task, it provides the original images, the input and output captions, and the text instructions to
specify the objects to be removed. We pre-process the test set with an image segmentation tool to obtain the masks of the
objects to be removed. The quantitative evaluation is performed on a random subset of 100 images from this test set. Note
that there’s no need for the training set since we utilize the pre-trained models in all our experiments.

The related works often utilize image inpainting (Criminisi et al., 2004; Suvorov et al., 2022; Lugmayr et al., 2022; Podell
et al., 2023) or instruction-based image editing (Brooks et al., 2023; Pan et al., 2023; Hertz et al., 2023) for the object
removal task. The former resamples the editing area, which is then likely to fall into the high-density distributions, i.e.
image background. The latter fine-tunes the pre-trained image generation model to take the text instructions as conditions.
We compare with the SD-XL inpainting (Podell et al., 2023) and instruction-based method ZONE (Li et al., 2023) in our
experiments:

* SD-XL inpainting. We input the original image and the object mask to the SD-XL model, i.e. stable-diffusion-xI-1.0-
inpainting-0.1, and obtain the inpainted image as the result.

e ZONE. We take the original image and the text instruction as input and the generated image as result. Note that the
pre-processed object mask is used in the composition of the generated image for a precise local editing.

¢ Qurs. The input includes the original image, the object mask as the source area, a selected surrounding background
pixel as the reference. Note that the tedious selection of reference pixels can be omitted for simple cases with a uniform
background, as described in the following implementation.

Implementation. To alleviate the manual selection of reference pixels, we adopt an approximation solution for the simple
cases. That is, we divide the test set into two types: one containing the target objects located on uniform backgrounds,
and the other with complex and varying backgrounds. For the former, instead of using the generation curve at a manually
selected reference pixel, we define a fixed pseudo curve to replace it. Specifically, since the generation curves at background
locations often follow the common pattern with stable and lower values, we directly minimize the generation rate values at
the target area, i.e. £ = |r(Xy,, p;)|- For the latter, we manually select the reference pixels and invoke our curve matching
algorithm as described in Algorithm 1. We experimentally found that the pseudo curve solution is enough for most images
(more than 80 out of the 100 images in our quantitative evaluation, Table ?? in the main paper).

Results and failure cases. We present more results of object removal in Figure 16. Table 1 validates that our approach
performs better in terms of deleting the objects, obtaining the best effectiveness yet slightly lower realism than SD-XL.
However, we also notice some failure cases when the background is complex. As shown in Figure 17, sometimes it may be
hard to specify a reference pixel representative for the background. This often causes distorted results at the region of the
object to be removed.
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D.4. Saliency Manipulation

Experiment setting. Saliency manipulation refers to increasing or decreasing the saliency of a specific object as one
expects, while maintaining the image content as unchanged as possible (Aberman et al., 2021; Mejjati et al., 2020; Jiang
et al., 2021; Miangoleh et al., 2023). The input contains the original image and a mask indicating the region to be edited.
In our experiments, we compare against a recent saliency-based image manipulation approach (Miangoleh et al., 2023).
This approach, denoted as RSG, optimizes the image with a saliency loss using a pre-trained saliency model and a realism
loss to prevent frequent unrealistic edits. We use their released code and the parameters in our experiments. As for our
approach, we eliminate the reference curve, but directly minimize or maximize the generation rate values at the editing
region to control the saliency. At the same time, we define a feature alignment loss to preserve the original image content.
The feature alignment loss is defined as the difference between the U-Net intermediate feature maps before and after the
editing. In summary, we replace the loss in Algorithm 1 as £ = Ai|ry, (Xy,, p)|[*? + 3, |Us(Xt,) — Us(Xy)|, where
A1 = 50 is a weighting parameter and A2 takes values 1 or —1 to decrease or increase the saliency, respectively. And U;
represents the U-Net layers which outputs the intermediate feature maps. We set the iteration number N = 70 for the
saliency manipulation task.

Results and failure cases. We present the saliency increase and decrease examples in Figure 18 and 19. As the iteration
number increases during the optimization, our approach obtains edited objects with saliency varies as expected. Increasing
the saliency results in sharp color contrast and more visual details, while decreasing the saliency results in faded visual
effects. The quantitative results in Table 1 validate that we achieve a balance between effectiveness and realism, while
RSG (Miangoleh et al., 2023) produces prominent but unrealistic image regions. It is worth noting that all the saliency
manipulation approaches require a balance between local editing and the preservation of image content. Sometimes, forcing
the saliency variation may cause the altering of the original identity and object distortion. We also present the failure cases
in Figure 20.

D.5. Image Blending

Experiment setting. Image blending aims to create a natural boundary transition for the compositional images (Pérez et al.,
2003; Wu et al., 2019; Zhang et al., 2020; 2021; Xing et al., 2022; Niu et al., 2024). We evaluate the image blending results
on the iHarmony4 dataset (Cong et al., 2020). It provides the synthesized composite image with inconsistent foreground and
background, as well as the corresponding foreground masks. To conduct the experiment with our approach, we apply the
erosion filter with kernel size £ = 3 on the given mask and take the eroded region as the source area of our curve matching
algorithm. We use the algorithm with loss £ = Ay |ry, (X4, ,pr)| + >, |Us(Xt,, ) — Ui(X¢)| to complete this task, where
A1 = 50 is a weighting parameter and p; are the pixels within the eroded region of the mask. We set the iteration number
N = 100 for the image blending task.

Results and failure cases. When compared to (Wu et al., 2019) in Figure 9, this approach requires both the complete
background and foreground images as input, Therefore, we utilize online tools that combine the inpainting (Suvorov et al.,
2022) and post-processing techniques to provide a suitable background, as shown in Figure 23. We present more results
in Figure 21. Table 1 shows that we obtain obviously better blending results with a natural and smooth transition at the
boundary. However, the smooth transition often corresponds to blurred details. As a consequence, the image details might
be smoothed out during the blending, such as the beak of the bird and the leaves on the tree in Figure 22.
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Input image Semantic transfer results during optimization

Figure 14. More results of semantic transfer. The left column shows the input image, where the arrows indicate the semantic transfer from
the reference to source area. From left to right, we show the intermediate results during the optimization.
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Figure 15. Failure cases of semantic transfer. The material and depth features are transferred but not the color.
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Figure 16. More object removal results. From left to right: the input image and the input object mask, the results of the instruction-based
method ZONE (Li et al., 2023), SD-XL inpainting (Podell et al., 2023), and our approach.
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Figure 17. Failure cases of object removal application.

Saliency increase

Input image

Figure 18. Saliency increasing results. From left to right: the input image, the intermediate and final results of our approach, the result of
RSG (Miangoleh et al., 2023).
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Input image Saliency decrease Ours RSG

Figure 19. Saliency decreasing results. From left to right: the input image, the intermediate and final results of our approach, the result of

RSG (Miangoleh et al., 2023).
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Figure 20. Failure cases of saliency manipulation.
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Input Composite Image Input Composite Image

Figure 21. Image blending results. For each example, we show the input composite image and the foreground mask, as well as the result
of our approach.

Figure 22. Failure cases of image blending. Although we achieve a natural blending at the boundary, it loses the small details such as the
beak of the bird and the leaves on the tree.
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Figure 23. Provided background for GP-GAN (Wu et al., 2019) in image blending.

23



