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ABSTRACT

Despite possessing massive context windows, Large Language Models (LLMs)
exhibit a sharp decline in performance when processing long numerical sequences,
a critical failure for precision-sensitive applications. We identify the root cause as
the models’ inability to focus attention on a manageable sequence segment, lead-
ing to dispersed attention and inaccurate results. To address this, we introduce
Separate Numerical Sequences (SepNS), a training-free inference framework that
guides LLMs by strategically inserting separators into numerical inputs. This
simple modification encourages a “separate and focus” strategy, which we ver-
ify through attention analysis showing that separators induce localized focus on
distinct segments. Extensive experiments on nine high-performance LLMs show
SepNS substantially boosts accuracy, achieving average gains of 35.6% across
all evaluated datasets with less overhead. Our work demonstrates that simple,
structured input formatting acts as a powerful attention-focusing mechanism, un-
locking long numerical processing capabilities in LLMs without any retraining.

1 INTRODUCTION

Recent advances in Large Language Models (LLMs) have dramatically expanded their contextual
capacity, with some models now supporting context windows of up to millions of tokens (Anthropic,
2025; Gemini-Team, 2025; Meta-AI, 2025; Team et al., 2025a;b), enabling processing of increas-
ingly complex numerical data in domains such as weather forecasting (Gao et al., 2025) and stock
analysis (Huang et al., 2021). However, a large context window does not guarantee that LLMs can
analyze long sequences flawlessly (Hosseini et al., 2025). Empirical evidence suggests that LLMs
experience substantial performance degradation when processing inputs that exceed 10-20% of their
maximum context length (Kuratov et al., 2024; Liu et al., 2024b; Li et al., 2025c). Even in basic
tasks like counting 1’s in the numerical sequences, LLMs’ performance declines as the length in-
creases. As Figure 1(A) shows, accuracy drops by up to 70% as sequences grow from 2–32 to
256–512 elements in 6 fundamental tasks with the vanilla method. These fundamental deficiencies
severely limit the deployment of LLMs in precision-critical scenarios, where numerical errors can
propagate and lead to system failures, highlighting the urgent need to enhance LLMs’ long sequence
processing capabilities for reliable data-intensive applications.

Existing approaches to enhance long-context processing can be broadly categorized into three
paradigms. First, attention mechanisms have successfully extended context windows and accel-
erated inference (Leviathan et al., 2025; Lai et al., 2025; Liu et al., 2024a), but they fundamentally
fail to resolve precision issues inherent in numerical sequence processing. Second, while content
processing strategies such as summarization (Hosseini et al., 2025; Liu et al., 2025; Li et al., 2025b)
and reordering (Peysakhovich & Lerer, 2023; Chen et al., 2024b) have shown promise for textual
content, they are inherently incompatible with numerical sequences where order and completeness
are mathematically critical. Third, specialized tokenization approaches (Yang et al., 2025b) require
extensive retraining, which incurs prohibitive computational costs and risks degrading the model’s
general-purpose capabilities. These limitations motivate our central research questions:

What fundamental factors limit LLMs’ ability to process long numerical sequences? How can we
enhance this capability without additional training?
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How many ‘1’s are in the sequence:
[1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, …]

How many ‘1’s are in the sequence:
[1, 1, 1, 1, 1, 1, 
0, 1, 1, 1, 1, 1, 
1, 1, …]

One, two, three, …
Wait, which ‘1’ am

I on now? 

The 1st line has six 1’s,
the 2nd line has five 1’s,

the 3rd line has …(A) (B)

[ 1, 1, 1, 1, \n, 1, 0,  1, 1, \n, 1, …]

[   1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, …]

Dispersed Attention

Focused Attention

0.04 0.01 0.02 0.01 0.02 0.17 0.19 0.18 0.19 0.18 0.01 0.01

0.10 0.08 0.09 0.08 0.08 0.07 0.09 0.08 0.06 0.08 0.09 0.07

Figure 1: (A) Average accuracy across six synthetic tasks, performance drops sharply with in-
creasing numerical sequence length (S: 2–32, M: 33–128, L: 129–256, XL: 257–512), while SepNS
remains largely unaffected. (B) LLMs struggle with long numerical sequences due to dispersed at-
tention, whereas SepNS uses separator tokens to maintain focused attention.

To answer these questions, we investigate the attention map for LLMs’ sequence processing and
analyze the underlying mechanisms behind their performance degradation. Our systematic analysis
reveals a fundamental insight: LLMs’ performance degradation on long numerical sequences stems
from their limited capacity for focused attention on a separated sequence segment. As demonstrated
in Figure 1(B), when confronted with long numerical sequence tasks, LLMs struggle to add natural
breakpoints like humans do and process information in manageable chunks, leading to dispersed
attention throughout the entire sequence. Based on this insight, we propose a simple yet effec-
tive approach to guide LLMs toward solving problems by introducing separators that partition long
sequences into shorter, more manageable segments.

Building on these insights, we propose Separate Numerical Sequences (SepNS), a training-free
inference framework that enhances LLMs’ long numerical sequence processing through strategic
separator insertion. SepNS addresses the limitations through two key methodological contribu-
tions. First, we introduce systematic separator insertion, where separators are strategically placed
within numerical sequences to create segmentation boundaries. This simple yet effective modi-
fication transforms intractable long sequences into multiple manageable segments that align with
LLMs’ reliable processing capacity, directly mitigating the precision degradation issue observed in
Figure 1(A). Second, we conduct a comprehensive analysis of attention patterns to reveal the under-
lying mechanisms through both theoretical analysis and experimental validation. Our investigation
shows that separators cause specific attention heads to focus predominantly on local sequence seg-
ments rather than dispersing attention across the entire sequence. This localized attention pattern
enables more precise numerical processing while preserving global context by integrating informa-
tion across segments.

We conduct comprehensive experiments across 9 high-performance LLMs, evaluating performance
on six synthetic tasks and four real numerical sequence processing domains. Our results demonstrate
that SepNS substantially outperforms both chain-of-thought (Wei et al., 2022) and one-shot (Yu
et al., 2022) prompting strategies, achieving significant average accuracy gains of 35.6% across
all evaluated datasets. Notably, these performance gains are achieved with reduced computational
overhead: the method requires no additional training and actually reduces the inference burden
compared to baseline approaches.

This work makes three key contributions to enhancing LLMs’ capabilities for processing long nu-
merical sequences. First, we systematically identify and characterize the fundamental bottleneck
limiting LLMs’ performance on long numerical sequences: dispersed attention to the entire numer-
ical sequence. Second, we introduce SepNS, a training-free framework that mitigates this issue by
strategically inserting separators into the input. Third, we provide comprehensive theoretical guar-
antees and empirical validation across diverse datasets, establishing the effectiveness, efficiency,
and interpretability of our approach. Our findings demonstrate that simple input format changes can
unlock substantial performance gains in LLMs’ long numerical sequence processing.
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2 RELATED WORK

Progress and Challenges in Long-Text Processing. Although LLMs now support millions of
tokens (Anthropic, 2025; Gemini-Team, 2025; Team et al., 2025b), they still face significant chal-
lenges in long-context processing. Liu et al. (2024b) discover the “Lost in the Middle” phenomenon,
where LLMs ignore key information in the middle sections of long documents. To address this, re-
searchers propose solutions like MiniCache (Liu et al., 2024a) for efficient KV cache compression.
And Hosseini et al. (2025) emphasizes that simply increasing context windows cannot guarantee
perfect long sequence analysis.

Deficiencies in Numerical Understanding. Unlike semantic tasks, numerical tasks require un-
derstanding numbers as continuous quantities rather than discrete symbols, creating a fundamental
mismatch with LLMs’ token-based processing architecture. Research reveals that LLMs struggle
with maintaining numerical precision in long sequences, often exhibiting digit transposition errors
and magnitude confusion (Li et al., 2025a). Studies on mathematical reasoning demonstrate that
LLMs struggle with multi-step numerical calculations (Wei et al., 2022). Tokenization approaches
specifically designed for numerical data require extensive retraining, which is associated with pro-
hibitive costs (Kudo & Richardson, 2018). Furthermore, research on numerical robustness reveals
that models often fail to maintain precision in long numerical sequences (Hendrycks et al., 2021),
highlighting the need for specialized approaches to enhance numerical understanding capabilities.

Limitations of Tool Calling. While tool calling capabilities of LLMs have rapidly developed
through frameworks like ReAct (Yao et al., 2023) and Toolformer (Schick et al., 2023), they struggle
with tasks requiring multi-source information integration. Studies show that even with access to ex-
ternal APIs and code execution environments (Gao et al., 2023), models face challenges in complex
reasoning scenarios that demand synthesis of heterogeneous information sources (Press et al., 2022).
Additionally, models exhibit reliability issues in long sequence processing, as reported by Welleck
et al. (2019), who noted systematic failures in maintaining sequence fidelity. Advanced models
also show unexpected character insertions during numerical sequence tasks, indicating persistent
challenges in precise sequence tasks (Zhang et al., 2022).

3 METHOD

In this section, we begin by formally defining the problem of processing a long numerical sequence.
Through preliminary experiments, we then demonstrate that LLMs exhibit significant limitations in
accurately repeating such sequences. To address this critical issue, we propose Separate Numerical
Sequences (SepNS), a training-free and plug-and-play method designed to enhance LLMs’ perfor-
mance by strategically separating the input sequences. Finally, we provide a theoretical explanation
for the effectiveness of our proposed method.

3.1 PROBLEM DEFINITION

We define a class of numerical sequence reasoning problems in which, given a numerical sequence
s = {a1, a2, ..., an} of length |s| = n, the task is to answer a natural language query q based on this
sequence. This class of problems is characterized by three core properties:

Completeness Dependency. Correct problem solving requires complete and accurate access to the
entire numerical sequence. Any absence, modification, or omission of any element ai may lead to
deviations or errors in the final answer.

Natural Language Understanding Requirement. Questions are posed in natural language, which
requires accurate comprehension of user intent, including implicit conditional constraints, temporal
scope limitations, and domain-specific semantic meanings.

Composite Reasoning Complexity. The tasks exhibit high complexity due to the need for inte-
grating natural language understanding with numerical computation, involving conditional filtering,
sequential pattern recognition, and multi-step logical reasoning.

For instance, given a stock trading data sequence, the question “Excluding non-trading days, how
many times did the open price of stock rise for three or more consecutive days?” requires the
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(A) (B) (C) (D)

Figure 2: (A) and (C) visualize the attention scores given the input: “... How many 1’s in [0 1 0 1 0
1 0 0 0] ...”. (B) and (D) show the attention scores for the input with segmentation: “... How many
1’s in [0 1 0 1 \n 0 1 0 0 \n 0] ...”. (A) exhibits dispersed attention across the entire sequence. (B)
demonstrates segment-focused attention. (C) highlights heightened attention at the beginning and
end of the numerical sequence. (D) shows increased attention allocation to the separator token.

model to simultaneously understand the constraint condition of “excluding non-trading days”, the
sequential pattern of consecutive rises, and the counting requirement of three or more days.

3.2 THE REPETITION DILEMMA

Existing research (Dong et al., 2025; Pimentel et al., 2025; Junchi Yao, 2025) has shown that LLMs
are prone to significant repetition errors. To quantify this limitation in the context of numerical
sequences, we conduct preliminary experiments requiring LLMs to reproduce numerical sequences
word-for-word. Our findings reveal systematic performance degradation as sequence length in-
creases (see Appendix B for details), with a particularly steep decline observed beyond a critical
threshold. Specifically, when sequences exceed 256 floating-point numbers, only 14% of attempts
successfully repeat the sequence. This dramatic performance decline reveals the root cause of the
long numerical sequence processing limitation, which stems from the LLM’s limited capacity for
understanding long numerical sequences, leading to frequent failures in preserving sequence in-
tegrity. This inherent deficiency ultimately results in the inability to construct accurate function
calls or answer queries correctly, regardless of the availability of external tools.

3.3 ATTENTION LOCALIZATION THROUGH SEPARATOR TOKENS

To understand the underlying mechanisms behind these failures, we analyze attention patterns dur-
ing the processing of long numerical sequences. As shown in Figure 2(A), we observe that LLMs
tend to distribute attention across the entire sequence when processing a long numerical sequence.
This behavior differs significantly from the “divide-and-conquer” strategy employed by humans
when processing long sequences. Humans typically partition long sequences into several segments
and process them sequentially with focused attention. Figure 2(C) reveals an interesting finding
that while LLMs distribute attention across the entire sequence, attention weights tend to concen-
trate at the beginning and end of sequences. This finding aligns with research from Chen et al.
(2024a), which demonstrates that LLMs exhibit attention concentration on certain special tokens
(e.g., start/end markers in sequences, punctuation marks in sentences, and other separators); further-
more, the semantic embedding vectors of these separators often encapsulate key information from
their preceding segments. Based on these observations, we propose SepNS that guides LLMs to
focus attention on local segments rather than the global sequence by artificially introducing specific
separators into sequences.

Formally, given a numerical sequence s of length n, SepNS transforms it into a structured format by
periodically inserting separators. We define the transformation function as follows:

SepNS(s, k) = {a1, a2, . . . , ak} ⊕ sep⊕ {ak+1, . . . , a2k} ⊕ sep⊕ · · · ⊕ {an−r+1, . . . , an}, (1)

where k denotes the segment size, sep represents the separator token (e.g., “\n”), ⊕ denotes the
concatenation operation, and r is the remainder of n divided by k. After introducing separators
into sequences, we observe that transformer models exhibit a distinctive attention pattern: certain
attention heads ignore contextual information before separators, and focus attention on the current
separator and the numerical sequence following it, as illustrated in Figure 2(B, D).
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𝑗𝑖! …… 𝑖" 𝑗𝑖!𝑠𝑒𝑝 …… 𝑖"Vanilla SepNS

Figure 3: The separator token sep in SepNS summarizes the content up to the current position. It
exhibits a high score Qi1 · KT

sep for token i1 (within its segment), but a low score Qi2 · KT
sep for

token i2 outside the summarized segment.

3.4 THEORETICAL EXPLANATION

We analyze how separator tokens mechanistically alter attention computation between tokens in
different segments. For vanilla attention without separators, given sequence s = {a1, a2, . . . , an},
the attention weight between positions i and j is computed using query vector Qi, key vector Kj ,
and key dimension dk:

Avanilla[i, j] =
exp

(
Qi ·KT

j /
√
dk

)∑n
l=1 exp

(
Qi ·KT

l /
√
dk

) . (2)

With SepNS, the sequence becomes s′ = {a1, . . . , ak, sep, ak+1, . . . , a2k, sep, . . .} with length n′.
The attention weight between positions i and j is:

ASepNS[i, j] =
exp

(
Qi ·KT

j /
√
dk

)∑n′

l=1 exp
(
Qi ·KT

l /
√
dk

) . (3)

Denote Ssep as the set of all tokens before the current separator sep. As shown in Chen et al. (2024a),
separator tokens sep summarize tokens up to the current position, thus sep exhibit high attention
scores Qi1 ·KT

sep for tokens i1 ∈ Ssep but low scores Qi2 ·KT
sep for token i2 /∈ Ssep (Figure 3). When

computing attention from position i1 ∈ Ssep to position j /∈ Ssep, separator tokens dramatically
increase the denominator of ASepNS[i, j] through terms

∑
i1∈Ssep

exp
(
Qi1 ·KT

sep/
√
dk

)
.

Thus for token i1 ∈ Ssep and j /∈ Ssep, the cross-segment attention ASepNS[i1, j] becomes signifi-
cantly suppressed as:

ASepNS[i1, j]

Avanilla[i1, j]
=

∑n
l=1 exp

(
Qi1 ·KT

l /
√
dk

)∑n′

l=1 exp
(
Qi1 ·KT

l /
√
dk

) ≪ 1. (4)

In contrast, for tokens i2 /∈ Ssep, ASepNS[i2, j]/Avanilla[i2, j] ≈ 1 since exp
(
Qi2 ·KT

sep/
√
dk

)
is

small, maintaining high attention to tokens in the current segment.

This mathematical analysis reveals the underlying mechanism: separator tokens act as “attention
sinks” that absorb attention weight otherwise dispersed to cross-segment positions. The high query-
key similarity between tokens (e.g., i1) within the summarized segment and separator tokens (e.g.,
sep) effectively “shields” these positions from attending to distant segments (e.g., segment with
i2, j), thereby localizing attention within current segments and creating structured attention bound-
aries without explicit masking. See Appendix F for a detailed proof.

4 EXPERIMENTS

To evaluate our approach, we structure experiments around the following research questions (RQs),
examining performance gains and robustness.

RQ1 – Effectiveness. Does our proposed method consistently enhance model performance across
diverse tasks and model architectures, demonstrating its general applicability?

RQ2 – Robustness. Do any factors modulate the effectiveness of our method, and what actionable
insights can we provide for optimal deployment in different scenarios?

In this section, we present a comprehensive experimental evaluation designed to systematically ad-
dress these research questions. We begin by detailing our experimental setup, including the carefully
curated datasets, evaluation metrics, selected LLMs, and baseline methods. We then present our ex-
perimental results and analyses across multiple dimensions to address the above research questions,
demonstrating the superior performance of our method.
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4.1 EXPERIMENTAL SETTINGS

4.1.1 DATASET

We design two datasets to conduct an in-depth investigation of LLMs’ capabilities for processing
long numerical sequences: a synthetic dataset Dsyn and a real dataset Dreal.

For Dsyn, we construct sequences of varying lengths comprising both integer and floating-point
numbers. We categorize these sequences into four length intervals: S (short) for sequences con-
taining [2, 32] numbers, M (medium) for (32, 128] numbers, L (large) for (128, 256] numbers, and
XL (extra-large) for (256, 512] numbers. We formulate six distinct task types: (1) max-int, which
requires identifying the index of the maximum integer in an integer sequence; (2) min-int, which
locates the index of the minimum integer; (3) max-float and (4) min-float, which perform analogous
operations on floating-point sequences; (5) indexing, which determines the position of the last oc-
currence of 1 in a binary sequence; and (6) counting, which counts the total number of 1s in a binary
sequence. Each task comprises 200 samples, with 50 samples distributed across each of the four
length categories.

Building upon the prior work of Li et al. (2025a), we construct Dreal to assess model performance on
practical numerical reasoning tasks. This dataset comprises four distinct categories, each containing
200 samples. The categories include: (1) number-string, which involves counting numerals in al-
phanumeric sequences; (2) number-list, requiring logical reasoning over numerical sequences; and
(3-4) stock and weather, both constructed from real-world datasets with human-generated questions.
Notably, any failure to process a single value in these tasks inevitably results in an incorrect final
answer, making them particularly challenging. See Appendix C for details and examples.

4.1.2 EVALUATION METRICS

To comprehensively evaluate our proposed method, we assess both performance and robustness
using the following metrics:

Accuracy (Acc). This is our primary performance metric, measuring the percentage of correctly
answered questions. Let Ncorrect denote the number of responses that answer correctly out of N total
questions. Accuracy is computed as:

Accuracy = Ncorrect/N. (5)

Answer Rate (AR). This metric captures the model’s capability to generate valid responses across
all test instances. We observe that models may occasionally fail to produce meaningful output,
resulting in null responses. AR quantifies the proportion of questions for which the model generates
a valid, non-null response. Let Nvalid denote the number of valid responses out of N total questions:

Answer Rate = Nvalid/N. (6)

4.1.3 BASE MODELS

We conduct a comprehensive evaluation across 9 LLMs, representing diverse architectures, param-
eter scales, and training paradigms from both open-source and proprietary domains. Open-source
models: Our selection includes the Qwen3 family (Yang et al., 2025a), spanning 0.6B to 30B pa-
rameters with both dense and Mixture-of-Experts architectures (Fedus et al., 2022; Zhou et al.,
2023), available in instruct and reasoning modes, alongside the QwQ-32B model. We also evalu-
ate the DeepSeek series (Guo et al., 2025), including the recent DeepSeek-R1 and DeepSeek-V3
variants, which are known for their strong reasoning capabilities. Proprietary models: We assess
Claude-3.7-Sonnet from Anthropic (Anthropic, 2025). Additionally, we evaluate Google’s Gemini-
2.5-Pro (Gemini-Team, 2025), which showcases multimodal understanding capabilities, and two
variants from OpenAI’s GPT-4 series (Achiam et al., 2023): GPT-4.1 and GPT-4o. See Section 7
for a detailed version of the models.

4.1.4 BASELINES

To establish comprehensive benchmarks for evaluating our proposed method, we employ two base-
line approaches except the vanilla method. Chain-of-Thought: In the chain-of-thought setting (Wei

6
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Table 1: The average answer rate and accuracy of each task among the four methods. “Incr.” indi-
cates the percentage improvement of SepNS over Vanilla. Green and red indicate improvement and
degradation in performance metrics, respectively.

Task
Answer Rate (↑) Accuracy (↑)

Vanilla CoT One-shot SepNS (Incr.) Vanilla CoT One-shot SepNS (Incr.)

counting 100.0% 100.0% 100.0% 100.0% ( +0.0%) 42.7% 41.2% 37.9% 76.7% ( +79.6%)
indexing 100.0% 100.0% 100.0% 100.0% ( +0.0%) 38.8% 33.4% 34.9% 86.6% (+123.0%)
max-float 100.0% 100.0% 100.0% 100.0% ( +0.0%) 63.9% 60.5% 63.3% 81.0% ( +26.8%)
max-int 100.0% 100.0% 100.0% 100.0% ( +0.0%) 75.3% 68.8% 71.0% 92.4% ( +22.7%)
min-float 100.0% 100.0% 100.0% 100.0% ( +0.0%) 63.1% 60.2% 60.4% 79.3% ( +25.7%)
min-int 100.0% 100.0% 100.0% 100.0% ( +0.0%) 74.3% 68.1% 66.5% 93.0% ( +25.1%)
number-string 96.6% 96.3% 96.3% 99.0% ( +2.5%) 81.6% 81.0% 81.7% 81.7% ( +0.1%)
number-list 78.2% 77.6% 73.4% 79.1% ( +1.1%) 36.3% 35.4% 32.6% 36.7% ( +0.9%)
stock 64.1% 63.1% 63.3% 73.6% (+14.7%) 13.2% 13.7% 13.4% 27.4% (+107.6%)
weather 66.0% 65.6% 65.9% 76.8% (+16.3%) 26.7% 27.2% 27.8% 44.6% ( +67.1%)

Average 90.5% 90.3% 89.9% 92.8% ( +2.6%) 51.6% 49.0% 48.9% 69.9% ( +35.6%)

et al., 2023), the model is guided by prompt instructions to complete the task step by step. One-
shot Learning: For the one-shot baseline (Yu et al., 2022), we provide the model with a single
demonstration example that illustrates the desired input-output mapping for the target task.

4.2 EXPERIMENTAL RESULTS

In this section, we present a comprehensive evaluation designed to systematically address our re-
search questions. Each research question is analyzed and substantiated through multiple comple-
mentary perspectives, providing thorough empirical evidence for our claims.

4.2.1 EFFECTIVENESS (RQ1)

Across tasks. We evaluate our method against baselines on six synthetic and four real tasks, report-
ing Accuracy and Answer Rate (additional metrics (e.g., “Response Length”) in Appendix D). As
shown in Table 1, our analysis reveals critical deficiencies in standard LLMs when processing long
numerical sequences. Notably, popular enhancement methods, such as Chain-of-Thought (CoT)
and One-shot prompting, fail to address this fundamental problem. In fact, they prove detrimen-
tal, with average accuracies dropping from 51.6% (Vanilla) to 49.0% (CoT) and 48.9% (One-shot).
This strongly suggests that LLM’s failures stem not from an insufficient reasoning ability but from
a fundamental inability to properly parse and manage numerical sequences.

In contrast, our SepNS framework demonstrates remarkable efficacy, substantially elevating perfor-
mance across all tasks. By strategically structuring input, SepNS boosts average accuracy to 69.9%,
a significant 35.6% relative improvement over the vanilla baseline. This improvement extends be-
yond synthetic data—on real tasks, complex numerical tasks, SepNS proves equally effective. Ac-
curacy on stock and weather datasets increases dramatically by +107.6% and +67.1%, respectively.
SepNS also enhances reliability, increasing average answer rate to 92.8% (+2.6%), ensuring models
provide both more accurate and consistent responses. These results confirm that SepNS effectively
rectifies core weaknesses in LLM sequence understanding, enabling significant improvements in
numerical processing without requiring model modifications.

Across models. We evaluate 9 diverse high-performance LLMs and summarize model-wise per-
formance gains over vanilla baselines. Results are presented in model-wise tables to validate the
general applicability of our approach across different model architectures and scales.

The results in Table 2 demonstrate that SepNS provides consistent performance enhancements across
all tested architectures, achieving a remarkable +35.6% average accuracy boost over the vanilla
baseline. The framework yields significant gains irrespective of model size or origin. Open-source
models like QwQ-32B and Qwen3-8B exhibit significant improvements of +69.0% and +53.0%,
respectively, suggesting SepNS effectively unlocks numerical processing capabilities. This trend
extends to advanced proprietary models—Claude-3.7-Sonnet (+38.0%), Gemini-2.5-Pro (+34.3%),
and GPT-4.1 (+35.6%), all of which derive significant benefits. These indicate that difficulty han-
dling long numerical sequences is a fundamental limitation inherent in current LLM architectures
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Table 2: The average answer rate and accuracy of each model among the four methods. “Incr.”
indicates the percentage improvement of SepNS over Vanilla. Green and red indicate improvement
and degradation in performance metrics, respectively.

Model
Answer Rate (↑) Accuracy (↑)

Vanilla CoT One-shot SepNS (Incr.) Vanilla CoT One-shot SepNS (Incr.)

Qwen3-8B 79.4% 79.5% 75.2% 87.3% ( +9.9%) 45.5% 40.3% 38.5% 69.6% (+53.0%)
Qwen3-30B-A3B 80.6% 80.9% 81.0% 90.2% (+11.9%) 54.3% 52.7% 52.3% 80.7% (+48.6%)
QwQ-32B 72.7% 72.2% 72.7% 75.6% ( +4.0%) 34.2% 28.9% 28.5% 57.8% (+69.0%)
DeepSeek-V3 100.0% 100.0% 100.0% 100.0% ( +0.0%) 45.7% 44.5% 45.2% 50.9% (+11.4%)
DeepSeek-R1 99.9% 99.9% 99.8% 99.9% ( +0.0%) 61.1% 56.6% 57.9% 70.5% (+15.4%)
Claude-3.7-Sonnet 99.8% 99.9% 100.0% 99.9% ( +0.1%) 57.3% 57.6% 54.2% 79.1% (+38.0%)
Gemini-2.5-Pro 83.4% 81.8% 82.0% 84.6% ( +1.4%) 58.9% 48.0% 56.9% 79.1% (+34.3%)
GPT-4.1 99.6% 99.6% 99.8% 99.5% ( -0.1%) 61.0% 60.0% 60.0% 82.7% (+35.6%)
GPT-4o 99.0% 98.5% 98.6% 98.6% ( -0.4%) 46.4% 51.5% 44.5% 59.1% (+27.4%)

Average 90.5% 90.3% 89.9% 92.8% ( +2.6%) 51.6% 48.9% 48.7% 68.9% (+35.6%)

(A) (B) (C)

Figure 4: (A): Average Accuracy across different separate intervals. (B): Average Accuracy across
different separator symbols. (C): Average Answer Rate and Accuracy across different Qwen3 model
sizes, ranging from 0.6B to 14B.

that cannot be overcome merely by increasing model scale or training data. While some models
like DeepSeek show more modest gains, improvements remain consistently positive. Furthermore,
SepNS enhances model reliability. For models with lower initial answer rates, such as Qwen3-8B
and Qwen3-30B-A3B, our method provides notable increases of +9.9% and +11.9%, respectively,
improving dependability for practical applications. The widespread performance uplift across di-
verse LLMs strongly supports our thesis: SepNS effectively guides LLMs to better comprehend and
process structured numerical data. Tables 6 and 7 in Appendix E.1 further demonstrate that SepNS
reduces the average number of response tokens and decreases computing resource requirements.

4.3 ROBUSTNESS (RQ2)

Separate interval. We investigate the impact of separator intervals and report how performance
varies, revealing a clear pattern that highlights the fundamental trade-off between providing struc-
tural guidance and maintaining contextual integrity.

Figure 4(A) shows SepNS on both Qwen3-30B-A3B models outperforms vanilla baselines (54.6%
and 55.9%), confirming fundamental benefits. However, performance is highly interval-sensitive.
The reasoning model peaks at 86.2% (interval 8), while the instruction model reaches 71.0% (inter-
val 16), suggesting optimal moderate sparsity. Too-short intervals (4) overly fragment sequences,
preventing local relationship capture, while too-long intervals (32) weaken structural cues. This
demonstrates that SepNS effectiveness requires strategic separator insertion. The “sweet spot” pro-
vides practical guidelines for default interval selection (8 or 16), maximizing accuracy while mini-
mizing token overhead. Table 8 in Appendix E.2 gives detail results.

Separator symbol. We investigate separator symbol impact on performance using Qwen3-30B-
A3B-Instruct-2507 across 10 tasks with four separator types: Carriage Return (CR, \r), Carriage
Return Line Feed (CRLF, \r\n), Backslash (\\), and Line Feed (LF, \n). Tasks were categorized
into basic numerical processing (Dsyn) and complex applications (Dreal).
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Table 3: Accuracy comparison between instruction (Qwen3-30B-A3B-Instruct) and reasoning
(Qwen3-30B-A3B-Thinking) models across different separate intervals (4/8/16/32). Bold and
underlined values denote the highest and second-highest scores, respectively.

Size
Accuracy on Instruct Model (↑) Accuracy on Reasoning Model (↑)

vanilla 4 8 16 32 vanilla 4 8 16 32

S 98.0% 88.7% 91.0% 94.0% 95.0% 100.0% 100.0% 99.7% 100.0% 99.3%
M 68.0% 81.7% 81.0% 85.3% 81.0% 79.3% 99.6% 100.0% 99.7% 99.7%
L 47.3% 70.3% 78.7% 83.3% 79.7% 50.7% 98.0% 99.3% 99.0% 97.0%
XL 30.7% 65.3% 68.7% 78.3% 80.7% 25.3% 81.2% 92.0% 94.7% 91.7%

Avg. 61.0% 76.5% 79.8% 85.2% 84.1% 63.8% 94.7% 97.7% 98.3% 96.9%

Figure 4(B) reveals systematic performance differentiation across separator types varying with task
complexity. For basic tasks Dsyn, all separators showed modest accuracy variations (79.8%–82.8%),
with unconventional separators CR and Backslash achieving optimal accuracy (82.8% each), po-
tentially due to novelty requiring enhanced attention. However, inversion emerged in complex sce-
narios: while CR and Backslash excelled in basic tasks, LF demonstrated superior performance
(49.9% vs. Backslash’s 45.2%) in complex tasks. This reversal suggests fundamental processing
strategy shifts across complexity levels. These patterns evidence sophisticated cognitive resource
allocation (Sweller, 1988; Sweller et al., 2011) in LLMs. Under low cognitive load, models al-
locate additional resources to separator adaptation, where novel separators benefit from enhanced
attention. Under high cognitive load, models prioritize core semantic processing, favoring minimal-
overhead separators. LF’s superior complex performance reflects the prevalence of training data and
processing efficiency, enabling more resources for task-specific reasoning over format adaptation.

Model size. We evaluated Qwen3 models at various parameter scales (0.6B, 1.7B, 4B, 8B, and
14B). The results, shown in Figure 4(C), demonstrate that the effectiveness of SepNS is scale-
dependent. For smaller models (0.6B), SepNS underperforms the vanilla baseline, suggesting a
minimum capacity requirement for effective separator interpretation. A critical inflection point oc-
curs at the 4B parameter level, where SepNS begins to yield performance gains. Beyond this scale,
the performance gap widens substantially, reaching over 80% accuracy on the 14B models.

Reasoning vs. Instruction models. We contrast reasoning variants against the instruction model,
reporting paired differences to assess whether reasoning ability affects separator sensitivity. Table 3
reveals powerful effects when applying SepNS to stronger reasoning models.

With the vanilla method, both model types suffer severe degradation on long sequences. On extra-
long sequences, vanilla accuracy drops to 30.7% (instruction) and 25.3% (reasoning), highlighting
shared weaknesses. However, SepNS reveals significant gaps: instruction models reach 85.2% peak
accuracy (interval 16), while reasoning models achieve a near-perfect 98.3%. On large sequences,
reasoning accuracy jumps from 50.7% to 99.3%, versus instruction’s modest 47.3% to 83.3% im-
provement. Reasoning models exhibit greater interval robustness, maintaining near-optimal per-
formance across intervals 8-32, while instruction models are more hyperparameter-sensitive. This
indicates SepNS provides structural decomposition that reasoning models uniquely exploit, convert-
ing challenging problems into manageable sub-tasks for state-of-the-art accuracy.

5 CONCLUSION

In this work, we identify and address a fundamental limitation of LLMs: their inability to main-
tain focused attention when processing long numerical sequences, resulting in severe performance
degradation in precision-critical applications. We introduced SepNS, a training-free framework that
strategically inserts separators to partition long sequences into manageable segments. Through com-
prehensive evaluation across 9 high-performance models on 10 tasks, SepNS achieves a substantial
35.6% average accuracy improvement without computational overhead or retraining. Our analy-
sis reveals that separators induce localized attention patterns, transforming dispersed attention into
focused segment processing while preserving global context. This demonstrates that simple input
formatting serves as a powerful attention-focusing mechanism, unlocking significant numerical pro-
cessing capabilities and providing practical solutions for precision-critical applications.
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6 ETHICS STATEMENT

Our research adheres to the ICLR Code of Ethics and raises no ethical concerns. The proposed
SepNS framework is a training-free inference technique that modifies input formatting without al-
tering model parameters or requiring additional data collection. Our experiments utilize publicly
available models and synthetic datasets, with no involvement of human subjects, collection of per-
sonal data, or privacy risks. The method enhances model accuracy in numerical processing tasks
without introducing harmful capabilities or creating potential for misuse. All experimental evalua-
tions were conducted using established benchmarks and standard evaluation protocols. The research
makes a positive contribution to the field by addressing fundamental limitations in LLM numeri-
cal processing capabilities, with potential benefits for applications that require precise numerical
computation.

7 REPRODUCIBILITY STATEMENT

To facilitate reproducibility of our results, we provide comprehensive documentation and resources
across multiple components of this work.

Code and Data. Our proposed method is thoroughly detailed in Section 3, including algorithmic
descriptions and implementation specifics. Complete source code and datasets are available through
the anonymous repository at https://anonymous.4open.science/r/SepNS, with the
accompanying README file providing step-by-step instructions for execution and reproduction
of experiments.

Theorem. Rigorous theoretical foundations are established in Appendix F, which contains detailed
mathematical proofs and derivations supporting our theoretical claims. These materials collectively
provide researchers with the necessary resources to validate and build upon our contributions.

Selected Models. We evaluate diverse high-performance models across different experimental set-
tings. For the main evaluation (RQ1), we use 9 high-performance LLMs:

1. Qwen3-8B: https://huggingface.co/Qwen/Qwen3-8B
2. Qwen3-30B-A3B: https://huggingface.co/Qwen/Qwen3-30B-A3B
3. QwQ-32B: https://huggingface.co/Qwen/QwQ-32B
4. DeepSeek-V3: https://huggingface.co/deepseek-ai/DeepSeek-V3-0324
5. DeepSeek-R1: https://huggingface.co/deepseek-ai/DeepSeek-R1-0528
6. Claude-3.7-Sonnet: https://openrouter.ai/anthropic/claude-3.7-sonnet
7. Gemini-2.5-Pro: https://openrouter.ai/google/gemini-2.5-pro
8. GPT-4.1: https://openrouter.ai/openai/gpt-4.1
9. GPT-4o: https://openrouter.ai/openai/gpt-4o-2024-08-06

For robustness evaluation (RQ2), separator interval analysis, we compare instruction and reason-
ing variants:

1. Qwen3-30B-A3B-Instruct: https://huggingface.co/Qwen/
Qwen3-30B-A3B-Instruct-2507

2. Qwen3-30B-A3B-Thinking: https://huggingface.co/Qwen/
Qwen3-30B-A3B-Thinking-2507

For separator symbol analysis, we use Qwen3-30B-A3B-Instruct (https://huggingface.
co/Qwen/Qwen3-30B-A3B-Instruct-2507).

For model size analysis, we evaluate across different parameter scales:

1. Qwen3-0.6B: https://huggingface.co/Qwen/Qwen3-0.6B
2. Qwen3-1.7B: https://huggingface.co/Qwen/Qwen3-1.7B
3. Qwen3-4B: https://huggingface.co/Qwen/Qwen3-4B
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4. Qwen3-8B: https://huggingface.co/Qwen/Qwen3-8B
5. Qwen3-14B: https://huggingface.co/Qwen/Qwen3-14B

REFERENCES

Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni Ale-
man, Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. Gpt-4 technical
report. arXiv preprint, abs/2303.08774, 2023.

Anthropic. System card: Claude opus 4 claude sonnet 4. https://www-
cdn.anthropic.com/07b2a3f9902ee19fe39a36ca638e5ae987bc64dd.pdf, 2025.

Guoxuan Chen, Han Shi, Jiawei Li, Yihang Gao, Xiaozhe Ren, Yimeng Chen, Xin Jiang, Zhenguo
Li, Weiyang Liu, and Chao Huang. SepLLM: Accelerate large language models by compressing
one segment into one separator. Vienna, Austria, 2024a.

Yuhan Chen, Ang Lv, Ting-En Lin, Changyu Chen, Yuchuan Wu, Fei Huang, Yongbin Li, and
Rui Yan. Fortify the shortest stave in attention: Enhancing context awareness of large language
models for effective tool use. In Proceedings of the 62nd Annual Meeting of the Association
for Computational Linguistics, pp. 11160–11174, Bangkok, Thailand, 2024b. Association for
Computational Linguistics.

Yihong Dong, Yuchen Liu, Xue Jiang, Bin Gu, Zhi Jin, and Ge Li. Rethinking repetition problems
of LLMs in code generation. In Proceedings of the 63rd Annual Meeting of the Association for
Computational Linguistics, pp. 965–985, Vienna, Austria, 2025.

William Fedus, Barret Zoph, and Noam Shazeer. Switch transformer: Scaling to trillion parameter
models with simple and efficient sparsity. In Journal of Machine Learning Research, volume 23,
pp. 1–39, 2022.

Luyu Gao, Aman Madaan, Shuyan Zhou, Uri Alon, Pengfei Liu, Yiming Yang, Jamie Callan, and
Graham Neubig. Pal: Program-aided language models. In Proceedings of the 40th International
Conference on Machine Learning, pp. 10764–10799, Honolulu, HI, 2023.

Yuan Gao, Hao Wu, Ruiqi Shu, Huanshuo Dong, Fan Xu, Rui Chen, Yibo Yan, Qingsong Wen,
Xuming Hu, Kun Wang, Jiahao Wu, Qing Li, Hui Xiong, and Xiaomeng Huang. Oneforecast: A
universal framework for global and regional weather forecasting. arXiv preprint, abs/2502.00338,
2025.

Gemini-Team. Gemini 2.5 pro model card. https://storage.googleapis.com/model-
cards/documents/gemini-2.5-pro.pdf, 2025.

Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu, Qihao Zhu,
Shirong Ma, Peiyi Wang, Xiao Bi, et al. DeepSeek-R1: Incentivizing reasoning capability in
LLMs via reinforcement learning. arXiv preprint, abs/2501.12948, 2025.

Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul Arora, Steven Basart, Eric Tang, Dawn Song,
and Jacob Steinhardt. Measuring mathematical problem solving with the math dataset. In Pro-
ceedings of the Neural Information Processing Systems Track on Datasets and Benchmarks, vol-
ume 1, New Orleans, LA, 2021.

Peyman Hosseini, Ignacio Castro, Iacopo Ghinassi, and Matthew Purver. Efficient solutions for
an intriguing failure of LLMs: Long context window does not mean LLMs can analyze long
sequences flawlessly. In Proceedings of the 31st International Conference on Computational
Linguistics, pp. 1880–1891, Abu Dhabi, United Arab Emirates, 2025.

Yuxuan Huang, Luiz Fernando Capretz, and Danny Ho. Machine learning for stock prediction based
on fundamental analysis. In IEEE Symposium Series on Computational Intelligence, pp. 1–10,
Orlando, FL, 2021. IEEE.

Jianhua Xu Lijie Hu Mengdi Li Di Wang Junchi Yao, Shu Yang. Understanding the repeat curse in
large language models from a feature perspective. arXiv preprint, abs/2504.14218, 2025.

11

https://huggingface.co/Qwen/Qwen3-8B
https://huggingface.co/Qwen/Qwen3-14B


594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Taku Kudo and John Richardson. Sentencepiece: A simple and language independent subword
tokenizer and detokenizer for neural text processing. arXiv preprint, abs/1808.06226, 2018.

Yuri Kuratov, Aydar Bulatov, Petr Anokhin, Ivan Rodkin, Dmitry Sorokin, Artyom Y. Sorokin,
and Mikhail Burtsev. BABILong: Testing the limits of LLMs with long context reasoning-in-a-
haystack. In Advances in Neural Information Processing Systems 38, Vancouver, Canada, 2024.

Xunhao Lai, Jianqiao Lu, Yao Luo, Yiyuan Ma, and Xun Zhou. Flexprefill: A context-aware sparse
attention mechanism for efficient long-sequence inference. In Proceedings of the 13th Interna-
tional Conference on Learning Representations, Singapore, 2025.

Yaniv Leviathan, Matan Kalman, and Yossi Matias. Selective attention improves transformer. In
Proceedings of the 13th International Conference on Learning Representations, Singapore, 2025.

Haoyang Li, Xuejia Chen, Zhanchao Xu, Darian Li, Nicole Hu, Fei Teng, Yiming Li, Luyu Qiu,
Chen Jason Zhang, Qing Li, and Lei Chen. Exposing numeracy gaps: A benchmark to evaluate
fundamental numerical abilities in large language models. In Findings of the 63th Annual Meeting
f the Association for Computational Linguistics, pp. 20004–20026, Vienna, Austria, 2025a.

Taiji Li, Hao Chen, Fei Yu, and Yin Zhang. HERA: improving long document summarization using
large language models with context packaging and reordering. arXiv preprint, abs/2502.00448,
2025b.

Tianle Li, Ge Zhang, Quy Duc Do, Xiang Yue, and Wenhu Chen. Long-context LLMs struggle with
long in-context learning. Transactions on Machine Learning Research, 2025, 2025c.

Akide Liu, Jing Liu, Zizheng Pan, Yefei He, Reza Haffari, and Bohan Zhuang. Minicache: Kv cache
compression in depth dimension for large language models. In Advances in Neural Information
Processing Systems 38, Vancouver, Canada, 2024a.

Nelson F. Liu, Kevin Lin, John Hewitt, Ashwin Paranjape, Michele Bevilacqua, Fabio Petroni, and
Percy Liang. Lost in the middle: How language models use long contexts. Transactions of the
Association for Computational Linguistics, 12:157–173, 2024b.

Ran Liu, Xian-Ling Mao, and Heyan Huang. Dscisum: Detailed summarization of long scientific
documents. Knowledge-Based Systems, 317:113409, 2025.

Meta-AI. The Llama 4 herd: The beginning of a new era of natively multimodal ai innovation.
https://ai.meta.com/blog/llama-4-multimodal-intelligence/, 2025.

Alexander Peysakhovich and Adam Lerer. Attention sorting combats recency bias in long context
language models. arXiv preprint, abs/2310.01427, 2023.

Tiago Pimentel et al. Repetitions are not all alike: Distinct mechanisms sustain repetition in language
models. arXiv preprint, abs/2504.01100, 2025.

Ofir Press, Muru Zhang, Sewon Min, Ludwig Schmidt, Noah A. Smith, and Mike Lewis. Measuring
and narrowing the compositionality gap in language models. In Findings of the 2022 Conference
on Empirical Methods in Natural Language Processing, pp. 5687–5711, Abu Dhabi, United Arab
Emirates, 2022.

Timo Schick, Jane Dwivedi-Yu, Roberto Dessı̀, Roberta Raileanu, Maria Lomeli, Luke Zettlemoyer,
Nicola Cancedda, and Thomas Scialom. Toolformer: Language models can teach themselves to
use tools. arXiv preprint, abs/2302.04761, 2023.

John Sweller. Cognitive load during problem solving: Effects on learning. Cognitive Science, 12:
257–285, 1988.

John Sweller, Paul Ayres, and Slava Kalyuga. Cognitive Load Theory. Springer, New York, 2011.
ISBN 978-1-4419-8125-7.

12



648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

GLM-4.5 Team, Aohan Zeng, Xin Lv, Qinkai Zheng, Zhenyu Hou, Bin Chen, Chengxing Xie,
Cunxiang Wang, Da Yin, Hao Zeng, Jiajie Zhang, Kedong Wang, Lucen Zhong, Mingdao Liu,
Rui Lu, Shulin Cao, Xiaohan Zhang, Xuancheng Huang, Yao Wei, Yean Cheng, Yifan An, Yilin
Niu, Yuanhao Wen, Yushi Bai, Zhengxiao Du, Zihan Wang, Zilin Zhu, Bohan Zhang, Bosi Wen,
Bowen Wu, Bowen Xu, Can Huang, Casey Zhao, Changpeng Cai, Chao Yu, Chen Li, Chendi
Ge, Chenghua Huang, Chenhui Zhang, Chenxi Xu, Chenzheng Zhu, Chuang Li, Congfeng Yin,
Daoyan Lin, Dayong Yang, Dazhi Jiang, Ding Ai, Erle Zhu, Fei Wang, Gengzheng Pan, Guo
Wang, Hailong Sun, Haitao Li, Haiyang Li, Haiyi Hu, Hanyu Zhang, Hao Peng, Hao Tai, Haoke
Zhang, Haoran Wang, Haoyu Yang, He Liu, He Zhao, Hongwei Liu, Hongxi Yan, Huan Liu, Hui-
long Chen, Ji Li, Jiajing Zhao, Jiamin Ren, Jian Jiao, Jiani Zhao, Jianyang Yan, Jiaqi Wang, Jiayi
Gui, Jiayue Zhao, Jie Liu, Jijie Li, Jing Li, Jing Lu, Jingsen Wang, Jingwei Yuan, Jingxuan Li,
Jingzhao Du, Jinhua Du, Jinxin Liu, Junkai Zhi, Junli Gao, Ke Wang, Lekang Yang, Liang Xu, Lin
Fan, Lindong Wu, Lintao Ding, Lu Wang, Man Zhang, Minghao Li, Minghuan Xu, Mingming
Zhao, Mingshu Zhai, Pengfan Du, Qian Dong, Shangde Lei, Shangqing Tu, Shangtong Yang,
Shaoyou Lu, Shijie Li, Shuang Li, Shuang-Li, Shuxun Yang, Sibo Yi, Tianshu Yu, Wei Tian,
Weihan Wang, Wenbo Yu, Weng Lam Tam, Wenjie Liang, Wentao Liu, Xiao Wang, Xiaohan Jia,
Xiaotao Gu, Xiaoying Ling, Xin Wang, Xing Fan, Xingru Pan, Xinyuan Zhang, Xinze Zhang,
Xiuqing Fu, Xunkai Zhang, Yabo Xu, Yandong Wu, Yida Lu, Yidong Wang, Yilin Zhou, Yiming
Pan, Ying Zhang, Yingli Wang, Yingru Li, Yinpei Su, Yipeng Geng, Yitong Zhu, Yongkun Yang,
Yuhang Li, Yuhao Wu, Yujiang Li, Yunan Liu, Yunqing Wang, Yuntao Li, Yuxuan Zhang, Zezhen
Liu, Zhen Yang, Zhengda Zhou, Zhongpei Qiao, Zhuoer Feng, Zhuorui Liu, Zichen Zhang, Zi-
han Wang, Zijun Yao, Zikang Wang, Ziqiang Liu, Ziwei Chai, Zixuan Li, Zuodong Zhao, Wen-
guang Chen, Jidong Zhai, Bin Xu, Minlie Huang, Hongning Wang, Juanzi Li, Yuxiao Dong, and
Jie Tang. Glm-4.5: Agentic, reasoning, and coding (arc) foundation models. arXiv preprint,
abs/2508.06471, 2025a.

Kimi Team, Yifan Bai, Yiping Bao, Guanduo Chen, Jiahao Chen, Ningxin Chen, Ruijue Chen,
Yanru Chen, Yuankun Chen, Yutian Chen, Zhuofu Chen, Jialei Cui, Hao Ding, Mengnan Dong,
Angang Du, Chenzhuang Du, Dikang Du, Yulun Du, Yu Fan, Yichen Feng, Kelin Fu, Bofei Gao,
Hongcheng Gao, Peizhong Gao, Tong Gao, Xinran Gu, Longyu Guan, Haiqing Guo, Jianhang
Guo, Hao Hu, Xiaoru Hao, Tianhong He, Weiran He, Wenyang He, Chao Hong, Yangyang Hu,
Zhenxing Hu, Weixiao Huang, Zhiqi Huang, Zihao Huang, Tao Jiang, Zhejun Jiang, Xinyi Jin,
Yongsheng Kang, Guokun Lai, Cheng Li, Fang Li, Haoyang Li, Ming Li, Wentao Li, Yanhao
Li, Yiwei Li, Zhaowei Li, Zheming Li, Hongzhan Lin, Xiaohan Lin, Zongyu Lin, Chengyin
Liu, Chenyu Liu, Hongzhang Liu, Jingyuan Liu, Junqi Liu, Liang Liu, Shaowei Liu, T. Y. Liu,
Tianwei Liu, Weizhou Liu, Yangyang Liu, Yibo Liu, Yiping Liu, Yue Liu, Zhengying Liu, Enzhe
Lu, Lijun Lu, Shengling Ma, Xinyu Ma, Yingwei Ma, Shaoguang Mao, Jie Mei, Xin Men, Yibo
Miao, Siyuan Pan, Yebo Peng, Ruoyu Qin, Bowen Qu, Zeyu Shang, Lidong Shi, Shengyuan Shi,
Feifan Song, Jianlin Su, Zhengyuan Su, Xinjie Sun, Flood Sung, Heyi Tang, Jiawen Tao, Qifeng
Teng, Chensi Wang, Dinglu Wang, Feng Wang, Haiming Wang, Jianzhou Wang, Jiaxing Wang,
Jinhong Wang, Shengjie Wang, Shuyi Wang, Yao Wang, Yejie Wang, Yiqin Wang, Yuxin Wang,
Yuzhi Wang, Zhaoji Wang, Zhengtao Wang, Zhexu Wang, Chu Wei, Qianqian Wei, Wenhao Wu,
Xingzhe Wu, Yuxin Wu, Chenjun Xiao, Xiaotong Xie, Weimin Xiong, Boyu Xu, Jing Xu, Jinjing
Xu, L. H. Xu, Lin Xu, Suting Xu, Weixin Xu, Xinran Xu, Yangchuan Xu, Ziyao Xu, Junjie
Yan, Yuzi Yan, Xiaofei Yang, Ying Yang, Zhen Yang, Zhilin Yang, Zonghan Yang, Haotian Yao,
Xingcheng Yao, Wenjie Ye, Zhuorui Ye, Bohong Yin, Longhui Yu, Enming Yuan, Hongbang
Yuan, Mengjie Yuan, Haobing Zhan, Dehao Zhang, Hao Zhang, Wanlu Zhang, Xiaobin Zhang,
Yangkun Zhang, Yizhi Zhang, Yongting Zhang, Yu Zhang, Yutao Zhang, Yutong Zhang, Zheng
Zhang, Haotian Zhao, Yikai Zhao, Huabin Zheng, Shaojie Zheng, Jianren Zhou, Xinyu Zhou,
Zaida Zhou, Zhen Zhu, Weiyu Zhuang, and Xinxing Zu. Kimi K2: Open agentic intelligence.
arXiv preprint, abs/2507.20534, 2025b.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Brian Ichter, Fei Xia, Ed H. Chi,
Quoc V. Le, and Denny Zhou. Chain-of-thought prompting elicits reasoning in large language
models. In Advances in Neural Information Processing Systems 35, New Orleans, LA, 2022.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Brian Ichter, Fei Xia, Ed Chi, Quoc
Le, and Denny Zhou. Chain-of-thought prompting elicits reasoning in large language models,
2023.

13



702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Sean Welleck, Ilia Kulikov, Stephen Roller, Emily Dinan, Kyunghyun Cho, and Jason Weston.
Neural text generation with unlikelihood training. arXiv preprint, abs/1908.04319, 2019.

An Yang, Anfeng Li, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chang
Gao, Chengen Huang, Chenxu Lv, et al. Qwen3 technical report. arXiv preprint, abs/2505.09388,
2025a.

Haotong Yang, Yi Hu, Shijia Kang, Zhouchen Lin, and Muhan Zhang. Number cookbook: Number
understanding of language models and how to improve it. In Proceedings of the 13th International
Conference on Learning Representations, Singapore, 2025b.

Shunyu Yao, Jeffrey Zhao, Dian Yu, Nan Du, Izhak Shafran, Karthik Narasimhan, and Yuan Cao.
React: Synergizing reasoning and acting in language models. In Proceedings of the 11th Interna-
tional Conference on Learning Representations, Kigali, Rwanda, 2023.

Haizi Yu, Igor Mineyev, Lav R. Varshney, and James A. Evans. Learning from one and only one
shot. arXiv preprint, abs/2201.08815, 2022.

Yiming Zhang, Shi Li, and Yang Liu. On the robustness of chinese text processing pipelines. Find-
ings of the 60th Annual Meeting of the Association for Computational Linguistics, pp. 3548–3560,
2022.

Chunting Zhou, Pengfei Liu, Puxin Xu, Srini Iyer, Jianfeng Sun, Yuning Mao, Xuezhe Ma, Avia
Efrat, Ping Yu, Lili Yu, et al. Mixture-of-experts meets instruction tuning: A winning combination
for large language models. arXiv preprint, abs/2305.14705, 2023.

14



756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

Table 4: Performance of Qwen3-30B-A3B-Instruct-2507 and Qwen3-30B-A3B-Thinking-2507 on
the strict numerical sequence repetition task. The table shows the number of correct reproductions
and accuracy for each sequence length range.

Size Total
Qwen3-30B-A3B-Instruct Model Qwen3-30B-A3B-Thinking-2507

# Correct Accuracy # Correct Accuracy

S: 2-32 50 50 100.00% 50 100.00%
M: 33-128 50 50 100.00% 36 72.00%
L: 129-256 50 50 100.00% 16 32.00%
XL: 257-512 50 7 14.00% 0 0.00%
XXL: 513-1024 50 0 0.00% 0 0.00%

Overall 250 157 62.80% 102 40.80%

A THE USE OF LARGE LANGUAGE MODELS

We employed LLMs for bug detection in code. Additionally, LLMs were utilized to refine and polish
the manuscript content based on specific requirements. All LLM-generated content, including code
and textual revisions, underwent thorough review and validation by the authors to ensure accuracy,
quality, and alignment with our research objectives.

B THE EXPERIMENT OF REPETITION DILEMMA

To evaluate the capability of LLMs on repetition, we conducted a preliminary experiment on “strict
numerical sequence repetition.” The task requires a model to reproduce a given numerical sequence
exactly, without any additions, omissions, or alterations. We designed a testing framework with
progressively increasing difficulty by dividing sequence lengths into five ranges: 2–32, 33–128,
129–256, 257–512, and 513–1024. For each range, 50 unique samples were randomly generated.
Each sequence consisted of numbers with three decimal places, drawn uniformly from the interval
[-10, 10]. Models were prompted to return the output in a strict JSON array format (e.g., [1.234, -
5.678, 9.012]), prohibiting any extraneous characters, spaces, or line breaks. A response was judged
as correct only if it was an exact string match to the ground truth sequence.

The experiment was performed on two variants of the Qwen3 model: Qwen3-30B-A3B-Instruct-
2507 and Qwen3-30B-A3B-Thinking-2507. To ensure deterministic and stable outputs, the decod-
ing temperature was set to 0. Any deviation in format or content from the expected output was
classified as an error.

The results, presented in Table 4, reveal a strong “repetition dilemma” in both models. The Qwen3-
30B-A3B-Instruct-2507 variant performed flawlessly on sequences up to 256 numbers, achieving
100% accuracy. However, its performance collapsed to just 14% accuracy in the 257–512 range (XL)
and failed completely on the longest sequences (XXL). Counter-intuitively, the Qwen3-30B-A3B-
Thinking-2507 variant, despite its designation, demonstrated inferior overall performance (40.80%
vs. 62.80%). Its accuracy began to degrade significantly on medium-length sequences (M and L),
falling far short of its instruct-tuned counterpart.

These findings highlight significant architectural or attentional limitations in current LLMs for tasks
demanding precise, long-sequence replication. Such failures may stem from compounding errors in
the attention mechanism, effective context window constraints, or biases in the training data. The
inferior performance of the “Thinking” variant is particularly noteworthy. It suggests that for rote,
mechanical tasks that do not require reasoning, the cognitive overhead or architectural modifications
intended to facilitate complex thought may act as a source of noise, thereby degrading performance
on simple memorization and reproduction.

C DATASET DETAILS

This appendix provides detailed descriptions of the datasets used to evaluate LLMs’ long numerical
sequence processing capabilities.
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C.1 SYNTHETIC DATASET

The synthetic dataset Dsyn consists of 1,200 samples across six task types, each containing 200
samples. The sequences are categorized into four length intervals:

• S (Short): [2, 32] numbers (50 samples per task)

• M (Medium): (32, 128] numbers (50 samples per task)

• L (Large): (128, 256] numbers (50 samples per task)

• XL (Extra-large): (256, 512] numbers (50 samples per task)

C.1.1 TASK TYPES

max-int: Identify the index (0-based) of the maximum integer in an integer sequence. Example:

1 {
2 "task_type": "max_int",
3 "answer": "7",
4 "ts": [3, 2, 2, 0, 3, 0, 2, 5, 0, 0, 1, 0, 1, 0, 1, 2, 0, 1, 4]
5 }

The maximum value is 5 at index 7.

min-int: Identify the index (0-based) of the minimum integer in an integer sequence. Example:

1 {
2 "task_type": "min_int",
3 "answer": "19",
4 "ts": [6, 9, 7, 6, 7, 7, 6, 6, 6, 7, 9, 8, 7, 6, 6, 8, 8, 8, 9, 2, 9, 9, 6, 9, 6, 8

, 6, 9, 6]
5 }

The minimum value is 2 at index 19.

max-float: Identify the index (0-based) of the maximum floating-point number in a sequence. Sim-
ilar to max-int but with floating-point numbers.

min-float: Identify the index (0-based) of the minimum floating-point number in a sequence. Similar
to min-int but with floating-point numbers.

indexing: Determine the position of the last occurrence of 1 in a binary sequence. Example:

1 {
2 "task_type": "indexing",
3 "answer": "8",
4 "ts": [1, 0, 0, 0, 1, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]
5 }

The last occurrence of 1 is at index 8.

counting: Count the total number of 1s in a binary sequence. Example:

1 {
2 "task_type": "counting",
3 "answer": "4",
4 "ts": [1, 0, 0, 0, 1, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]
5 }

There are 4 occurrences of 1 in the sequence.
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C.2 REAL DATASET

The real dataset Dreal consists of 800 samples across four categories, each containing 200 samples.
These tasks are based on practical numerical reasoning scenarios.

C.2.1 TASK CATEGORIES

number-string: Count numerals in alphanumeric sequences. Example:

1 {
2 "question": "How many numbers are there in the string? Note that a sequence like

’a243b’ counts as a single number.",
3 "struct_data": "effV2xM8hF5vcNgl8xrTCmbD6sEM38tiK4Nn2vem14f698o7Lo",
4 "answer": 11
5 }

This task requires parsing mixed alphanumeric strings to identify and count distinct numerical se-
quences.

number-list: Perform logical reasoning over numerical sequences with multiple-choice questions.
Example:

1 {
2 "question": "Which index holds the greatest number in the list between the indices

20 and 80? Options: A: 40, B: 75, C: 53, D: 58, E: 48, F: 44, G: 60, H: 31",
3 "struct_data": [1372.31, -3479.74, 1046, "..."],
4 "answer": "H"
5 }

These tasks involve complex reasoning operations such as finding extrema within specific ranges,
identifying patterns, or performing conditional operations.

stock: Answer questions about financial time series data. Example:

{
"question": "How many days had a volume over 15,000 between 2024-10-15 and

2024-10-25? Options: A: 3, B: 5, C: 7, D: 9",
"struct_data": [

{"date": "2024-10-15", "close_price": 52.56, "volume": 24421, "...": "..."},
{"date": "2024-10-16", "close_price": 52.80, "volume": 19962, "...": "..."},
{"date": "2024-10-17", "close_price": 53.11, "volume": 19210, "...": "..."},
{"date": "2024-10-18", "close_price": 55.11, "volume": 25238, "...": "..."},
"..."

],
"answer": "C"

}

Listing 1: Stock example (truncated)

This task involves analyzing real-world financial time series data with questions about trading vol-
umes, price movements, and temporal patterns.

weather: Answer questions about meteorological time series data. Example:

{
"question": "On which date was the temperature lastly above 5 degrees between

2024-11-10 and 2024-11-20? Options: A: 2024-11-11, B: 2024-11-14, C:
2024-11-12, D: 2024-11-13",

"struct_data": [
{"date": "2024-11-10", "temperature_2m": 5.99, "precipitation": 0.0, "...":

"..."},
{"date": "2024-11-11", "temperature_2m": 5.51, "precipitation": 0.0, "...":

"..."},
{"date": "2024-11-12", "temperature_2m": 5.10, "precipitation": 0.0, "...":

"..."},
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{"date": "2024-11-13", "temperature_2m": 4.92, "precipitation": 0.0, "...":
"..."},

{"date": "2024-11-14", "temperature_2m": 5.45, "precipitation": 0.0, "...":
"..."},

"..."
],
"answer": "B"

}

Listing 2: Weather example (truncated)

This task involves analyzing real-world meteorological time series data with questions about tem-
perature patterns, precipitation, and temporal trends.

C.3 DATASET STATISTICS

Table 5 shows the dataset statistics.

Table 5: Dataset overview and statistics.
Dataset Task Types Total Samples Length Categories Sample Distribution

Dsyn 6 1,200 4 (S/M/L/XL) 50 per category per task
Dreal 4 800 Variable 200 per task

D ADDITIONAL METRICS

SepNS adds extra separators, which results in a longer input length. Since the number of input
and output tokens is directly related to the computational cost, we use metrics Input Length (IL),
Response Length (RL) and Total Length (TL) defined as follows to quantify the mdoel performance:

Input Length (IL) is the average number of tokens in the input prompts. Let Lprompti be the token
count for prompt i:

IL =
1

N

N∑
i=1

Linputi . (7)

Response Length (RL) is the average number of tokens in the generated responses. This serves as
a proxy for inference cost. Let Lresponsei be the token count for the response to prompt i:

RL =
1

N

N∑
i=1

Lresponsei . (8)

Total Length (TL) is the average number of tokens in the inputs and responses. This serves as a
proxy for computing cost:

TL = IL + RL. (9)

E DETAILED EXPERIMENTAL RESULTS

E.1 MAIN RESULTS WITH LENGTH

This experiment evaluated SepNS effectiveness across different task types. Results in Table 6 reveal
that SepNS demonstrates consistent improvements in accuracy across most tasks, with particularly
strong gains for information localization tasks like indexing (+123.0%) and counting (+79.6%), as
well as real-world applications such as stock (+107.6%) and weather (+67.1%) analysis. The method
also achieves solid improvements on numerical comparison tasks, with max-int (+22.7%), min-int
(+25.1%), max-float (+26.8%), and min-float (+25.7%) all showing substantial accuracy gains. No-
tably, SepNS maintains perfect Answer Rates (100.0%) across all synthetic tasks while improving
response efficiency, as evidenced by reduced response lengths for most tasks. The only exceptions
are number-list tasks, which show minimal accuracy improvement (+0.9%) despite slight Answer
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Table 6: Average performance comparison of different tasks (Vanilla vs SepNS). Green and red
indicate improvement and degradation in performance metrics, respectively.

Task
Answer Rate (↑) Accuracy (↑) Response Len (↓) Total Len (↓)

Vanilla SepNS Incr. Vanilla SepNS Incr. Vanilla SepNS Incr. Vanilla SepNS Incr.

counting 100.0% 100.0% +0.0% 42.7% 76.7% +79.6% 3004 2106 -29.9% 3594 2740 -23.8%
indexing 100.0% 100.0% +0.0% 38.8% 86.6% +123.0% 4035 2304 -42.9% 4573 2909 -36.4%
max-float 100.0% 100.0% +0.0% 63.9% 81.0% +26.8% 3459 3603 +4.2% 4544 4843 +6.6%
max-int 100.0% 100.0% +0.0% 75.3% 92.4% +22.7% 2242 1744 -22.2% 2741 2334 -14.9%
min-float 100.0% 100.0% +0.0% 63.1% 79.3% +25.7% 3676 3722 +1.2% 4764 4945 +3.8%
min-int 100.0% 100.0% +0.0% 74.3% 93.0% +25.1% 2338 1829 -21.8% 2843 2425 -14.7%
number-string 96.6% 99.0% +2.5% 81.6% 81.7% +0.1% 1855 1569 -15.4% 2059 1803 -12.4%
number-list 78.2% 79.1% +1.1% 36.3% 36.7% +0.9% 2881 4205 +46.0% 5643 7526 +33.4%
stock 64.1% 73.6% +14.7% 13.2% 27.4% +107.6% 5285 3721 -29.6% 13328 13173 -1.2%
weather 66.0% 76.8% +16.3% 26.7% 44.6% +67.1% 4972 3428 -31.1% 11901 11642 -2.2%

Average 90.5% 92.8% +2.6% 51.6% 69.9% +35.6% 3375 2823 -16.3% 5599 5434 -2.9%

Table 7: Average performance comparison of different models (Vanilla vs SepNS). Green and red
indicate improvement and degradation in performance metrics, respectively.

Model
Answer Rate (↑) Accuracy (↑) Response Len (↓) Total Len (↓)

Vanilla SepNS Incr. Vanilla SepNS Incr. Vanilla SepNS Incr. Vanilla SepNS Incr.

QwQ-32B 72.7% 75.6% +4.0% 34.2% 57.8% +69.0% 7993 6487 -18.9% 10984 9953 -9.4%
Qwen3-30B-A3B 80.6% 90.2% +11.9% 54.3% 80.7% +48.6% 6403 5028 -21.5% 9392 8492 -9.6%
Qwen3-8B 79.4% 87.3% +9.9% 45.5% 69.6% +53.0% 6878 6001 -12.7% 9866 9466 -4.1%
DeepSeek-V3 100.0% 100.0% +0.0% 45.7% 50.9% +11.4% 720 882 +22.5% 2762 3404 +23.2%
DeepSeek-R1 99.9% 99.9% +0.0% 61.1% 70.5% +15.4% 5438 3798 -30.1% 7481 6276 -16.1%
Claude-3.7-Sonnet 99.8% 99.9% +0.1% 57.3% 79.1% +38.0% 444 535 +20.6% 2553 3182 +24.7%
Gemini-2.5-Pro 83.4% 84.6% +1.4% 58.9% 79.1% +34.3% 654 822 +25.6% 3671 4424 +20.5%
GPT-4.1 99.6% 99.5% -0.1% 61.0% 82.7% +35.6% 1226 1115 -9.1% 2452 2229 -9.1%
GPT-4o 99.0% 98.6% -0.4% 46.4% 59.1% +27.4% 616 740 +20.0% 1231 1478 +20.1%

Average 90.5% 92.8% +2.6% 51.6% 69.9% +35.6% 3375 2823 -16.3% 5599 5434 -2.9%

Rate gains (+1.1%), and number-string tasks that maintain similar performance levels (+0.1% ac-
curacy, +2.5% Answer Rate). Concurrently, the Response Length for these tasks decreased signifi-
cantly (e.g., indexing: -42.9%, counting: -29.9%), demonstrating more concise and accurate model
output. The max/min-int type tasks also achieved improvements exceeding 22% from already rela-
tively high baseline Accuracy ( 75%). A critical outlier is the number-list task, where Accuracy re-
mained almost unchanged under SepNS (+0.9%), yet Response Length increased sharply (+46.0%).
This suggests that the current design of the SepNS scheme may be ineffective at addressing the core
challenges of this task, instead introducing unnecessary verbose output.

Illustrated in Table 7, this experiment compared the performance of the baseline method (Vanilla)
and the SepNS scheme across a range of mainstream large language models. Evaluation metrics
included Answer Rate, Accuracy, Response Length, and Total Length. The results demonstrate
that the SepNS scheme significantly outperforms the baseline in the vast majority of cases. Over-
all, SepNS improved the average Answer Rate (+2.6%) and average Accuracy (+35.6%), with the
gain in Accuracy being particularly remarkable. Furthermore, the scheme effectively reduced the
average Response Length (-16.3%) and Total Length (-2.9%), indicating that it enhances not only
performance but also output efficiency.

Specifically, in terms of Accuracy, all models showed improvement, with the most significant gains
observed in QwQ-32B (+69.0%), Qwen3-8B (+53.0%), and Qwen3-30B-A3B (+48.6%). Regarding
output efficiency, the generated length was substantially reduced for most models, such as QwQ-
32B (Response Length: -18.9%) and DeepSeek-R1 (Response Length: -30.1%). However, some
anomalies were observed: the Response Length increased for DeepSeek-V3 (+22.5%), Claude-
3.7-Sonnet (+20.6%), Gemini-2.5-Pro (+25.6%), and GPT-4o (+20.0%) under SepNS. This may
stem from specific interactions between their inherent reasoning patterns and the structured output
requirements, though all of these models still achieved positive gains in Accuracy (ranging from
+11.4% to +38.0%).
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Table 8: Accuracy of Qwen3-30B-A3B applied vanilla and SepNS across separate interval compar-
ing Instruct (Qwen3-30B-A3B-Instruct-2507) and Reasoning (Qwen3-30B-A3B-Thinking-2507)
model. Bold and underlined values denote the highest and second-highest scores, respectively.

Task
Accuracy of Instruct Model (↑) Accuracy of Reasoning Model (↑)

vanilla 4 8 16 32 vanilla 4 8 16 32

max-int 82.5% 81.5% 85.0% 94.5% 91.5% 88.0% 100.0% 100.0% 100.0% 100.0%
max-float 71.5% 74.0% 75.0% 82.5% 82.0% 73.0% 96.0% 97.5% 97.5% 97.5%
min-int 76.5% 78.5% 84.0% 86.0% 89.5% 82.0% 99.0% 100.0% 99.5% 100.0%
min-float 74.0% 80.0% 77.5% 82.0% 83.0% 65.5% 89.0% 92.0% 95.0% 90.5%
indexing 29.0% 80.0% 83.5% 90.5% 85.5% 34.5% 100.0% 99.5% 99.0% 98.0%
counting 32.5% 65.0% 74.0% 76.0% 73.0% 40.0% 89.0% 97.5% 99.0% 95.5%
number-string 98.0% 80.5% 98.5% 97.5% 95.0% 99.0% 67.0% 99.5% 99.5% 100.0%
number-list 38.5% 37.5% 41.0% 43.0% 43.0% 39.0% 45.0% 46.5% 42.0% 41.0%
stock 19.0% 36.5% 40.5% 41.0% 35.5% 8.5% 50.5% 57.5% 45.0% 41.5%
weather 24.0% 24.5% 19.5% 17.5% 30.0% 29.0% 75.0% 71.5% 69.0% 67.5%

Average 54.6% 63.8% 67.8% 71.0% 70.8% 55.9% 81.0% 86.2% 84.5% 83.1%

Table 9: Answer rate and accuracy of Qwen3-30B-A3B-Instruct applied SepNS across different
separator symbols. Bold and underlined values denote the highest and second-highest scores, re-
spectively.

Task
Answer Rate (↑) Accuracy (↑)

CR(\r) CRLF(\r\n) Backslash(\\) LF(\n) CR(\r) CRLF(\r\n) Backslash(\\) LF(\n)

max-int 100.0% 100.0% 100.0% 100.0% 93.0% 89.0% 92.0% 85.0%
max-float 100.0% 100.0% 100.0% 100.0% 79.0% 74.5% 76.0% 75.0%
min-int 100.0% 100.0% 100.0% 100.0% 87.0% 87.0% 91.5% 84.0%
min-float 100.0% 100.0% 100.0% 100.0% 77.5% 75.5% 72.0% 77.5%
indexing 100.0% 100.0% 100.0% 100.0% 87.0% 90.0% 92.5% 83.5%
counting 100.0% 100.0% 100.0% 100.0% 73.0% 75.0% 73.0% 74.0%

Average 100.0% 100.0% 100.0% 100.0% 82.8% 81.8% 82.8% 79.8%

number string 100.0% 100.0% 100.0% 100.0% 99.0% 98.0% 98.5% 98.5%
number list 59.5% 69.0% 60.0% 67.0% 39.5% 41.5% 35.5% 41.0%
stock 76.5% 82.0% 76.0% 80.5% 38.0% 33.5% 38.0% 40.5%
weather 97.5% 98.0% 99.5% 98.5% 19.5% 17.0% 9.0% 19.5%

Average 83.4% 87.2% 83.9% 86.5% 49.0% 47.5% 45.2% 49.9%

E.2 TABLE RESULTS FOR RQ2

We provide detailed experimental results for Figure 4 in Table 8 and Table 9.

E.3 RAW ACCURACY RESULTS OF SYNTHETIC DATASET

Table 10 reports the baseline performance, without applying SepNS, across the six synthetic
sequence-based tasks introduced in Section 4.1.1: min-int, max-int, counting, min-float, max-float,
and indexing. For each task, datasets are categorized by input sequence length into four sizes: small
(S), medium (M), large (L), and extra-large (XL).

Across all models and tasks, we observe a consistent and pronounced performance degradation
as sequence length increases. While most models achieve near-perfect accuracy on the S and M
settings, accuracy drops sharply for larger inputs, with many models falling below 10% on the XL
datasets. This trend persists even for models known for strong reasoning capabilities, underscoring
a general limitation of current LLMs in processing long numerical sequences.

Table 11 summarizes the accuracy gains achieved by enhancing LLMs with SepNS, compared to
the baseline results in Table 10. The improvements are particularly pronounced for tasks involving
large (L) and extra-long (XL) input sequences, where several models exhibit gains exceeding 0.8
in accuracy. While performance in the small (S) and medium (M) ranges is generally stable—with
occasional minor decreases—the consistent boost for L and XL sequences highlights SepNS’s ef-
fectiveness in mitigating context-length degradation. These trends are evident across diverse tasks,
including min/max integer and float extraction, counting, and indexing, underscoring the robustness
of SepNS across both discrete and continuous input domains.
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Table 10: Accuracy of vanilla method on sequence-based tasks. The results highlight significant
performance variation among the models and reveal a consistent trend of decreasing accuracy as the
input sequence becomes longer.

Model
min-int max-int counting

S M L XL S M L XL S M L XL

Qwen3-8B 100% 92% 60% 20% 100% 96% 80% 32% 96% 28% 0% 0%
Qwen3-30B-A3B 100% 100% 88% 48% 100% 98% 92% 52% 100% 42% 4% 0%

QwQ-32B 100% 62% 18% 6% 100% 62% 38% 2% 94% 20% 0% 0%
DeepSeek-V3 100% 98% 74% 32% 96% 98% 64% 28% 98% 66% 28% 4%
DeepSeek-R1 100% 100% 98% 76% 100% 100% 94% 74% 100% 86% 34% 10%

Claude-3.7-Sonnet 100% 86% 70% 26% 100% 90% 64% 26% 94% 70% 32% 10%
Gemini-2.5-Pro 98% 94% 92% 72% 98% 98% 92% 76% 96% 80% 46% 10%

GPT-4.1 100% 94% 70% 46% 100% 94% 72% 48% 96% 34% 8% 2%
GPT-4o 100% 90% 44% 20% 100% 88% 42% 14% 92% 40% 16% 2%

Model
min-float max-float indexing

S M L XL S M L XL S M L XL

Qwen3-8B 100% 94% 36% 2% 100% 88% 30% 2% 96% 16% 0% 0%
Qwen3-30B-A3B 100% 98% 64% 10% 100% 100% 78% 24% 100% 34% 4% 0%

QwQ-32B 100% 26% 0% 0% 100% 32% 8% 0% 98% 10% 0% 0%
DeepSeek-V3 100% 86% 48% 20% 100% 98% 42% 18% 98% 78% 18% 0%
DeepSeek-R1 100% 100% 94% 92% 100% 100% 100% 96% 100% 72% 26% 4%

Claude-3.7-Sonnet 100% 84% 42% 26% 100% 92% 32% 20% 100% 46% 16% 2%
Gemini-2.5-Pro 98% 100% 28% 10% 98% 90% 42% 4% 100% 60% 28% 6%

GPT-4.1 100% 92% 56% 40% 100% 94% 58% 44% 100% 44% 12% 2%
gpt-4o-2024-08-06 100% 78% 32% 16% 100% 72% 24% 12% 96% 30% 2% 0%

Table 11: Accuracy improvement of SepNS over vanilla method. Results are broken down by
LLMs and input sequence length for various sequence-based tasks. Higher values indicate a greater
improvement.

Model
min-int max-int counting

S M L XL S M L XL S M L XL

Qwen3-8B 0% 8% 40% 78% 0% 4% 20% 66% 0% 66% 76% 54%
Qwen3-30B-A3B 0% -2% 12% 52% 0% 2% 8% 46% 0% 50% 84% 82%

QwQ-32B 0% 38% 80% 70% 0% 38% 62% 92% 6% 76% 76% 22%
Claude-3.7-Sonnet 0% 12% 28% 68% 0% 10% 34% 68% 6% 30% 56% 12%

DeepSeek-V3 -12% -6% 6% 10% -6% -22% 8% 10% -10% 20% -8% 0%
DeepSeek-R1 -8% 0% 2% 24% -6% 0% 4% 26% -6% 14% 66% 84%

Gemini-2.5-Pro 2% 4% 8% 28% 0% 2% 8% 24% 4% 20% 52% 74%
GPT-4.1 0% 0% 24% 36% 0% 4% 20% 42% 2% 44% 54% 42%
GPT-4o 0% -8% 34% 50% 0% 4% 20% 44% 8% 52% 16% 6%

Model
min-float max-float indexing

S M L XL S M L XL S M L XL

QwQ-32B -2% 46% 2% 0% 0% 50% 8% 0% 0% 90% 84% 52%
Qwen3-30B-A3B 0% 0% 22% 58% 0% -2% 16% 46% -4% 64% 92% 98%

Qwen3-8B -4% -2% 26% 26% 0% 10% 40% 40% 2% 78% 96% 86%
Claude-3.7-Sonnet 0% 12% 46% 58% 0% 2% 56% 70% 0% 46% 70% 90%

DeepSeek-V3 -16% 0% 28% 10% -22% -14% 26% 12% -8% -2% 38% 36%
DeepSeek-R1 -8% 0% 6% 6% -10% 0% 0% 4% -10% 28% 74% 96%

Gemini-2.5-Pro 0% -2% 68% 80% 0% 8% 50% 78% -2% 34% 58% 92%
GPT-4.1 -2% 0% 30% 48% 0% 0% 38% 40% 0% 50% 88% 96%
GPT-4o -6% 10% 20% 30% -6% 12% 38% 22% -2% 26% 52% 36%

E.4 RAW RESPONSE LENGTH RESULTS OF SYNTHETIC DATASET

As shown in Table 12, SepNS consistently reduces response length for well-aligned models, with its
benefits becoming particularly pronounced as input sequences grow longer.

The true strength of SepNS is unlocked when processing long contexts, a critical challenge for
LLMs. This is powerfully illustrated by models like GPT-4.1, which achieved dramatic response
length reductions of up to 78.9% and 89.6% on extra-large (XL) sequences for ‘min-int‘ and ‘in-
dexing‘ tasks, respectively. Similarly, the Qwen series models consistently benefit from SepNS on
medium (M) to XL sequences, especially on complex tasks like ‘counting‘ and ‘indexing‘, where
token savings often exceed 50%. Furthermore, the QwQ-32B model shows exceptional affinity for
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Table 12: Percentage change in response length (RL) using SepNS over baselines. Results are
broken down by LLM and input sequence length for various sequence-based tasks in a zero-shot
setting. More negative values signify a greater improvement (i.e., token number reduction).

Model min-int max-int counting

S M L XL S M L XL S M L XL

Qwen3-8B 57.3% -3.4% -25.4% -37.0% 78.1% 0.6% -21.7% -39.3% 67.6% -40.4% -36.8% -18.1%
QwQ-32B -14.0% -52.0% -38.0% -27.0% -10.1% -51.5% -40.4% -37.3% -59.6% -67.3% -35.6% -5.6%

Qwen3-30B-A3B 93.9% 20.4% -22.7% -45.9% 109.7% 5.2% -23.2% -43.4% 42.8% -57.3% -57.2% -37.9%
Claude-3.7-Sonnet -4.3% 42.2% 0.6% 39.9% -10.9% 30.8% -11.6% 12.9% -27.6% 5.0% 41.2% 66.9%

DeepSeek-V3 -31.4% -19.9% -1.8% 5.2% -22.8% -13.5% 28.5% 35.6% 12.6% 6.4% 39.9% 178.4%
DeepSeek-R1 80.6% 77.3% 261.6% 565.7% 96.6% 33.5% 235.7% 252.4% -6.8% 55.7% 126.3% 62.9%

Gemini-2.5-Pro -3.8% -2.8% -2.5% -15.5% -9.5% -4.9% -6.9% 2.3% -1.3% -3.7% 14.4% 140.1%
gGPT-4.1 -0.4% 25.5% -23.7% -78.9% 0.8% 38.8% -23.8% -76.8% 3.5% -31.0% -40.2% -60.6%
GPT-4o 13.5% 29.2% 15.9% -24.2% 4.9% 37.4% 2.3% -22.0% -4.2% -3.9% -17.9% 76.9%

Model min-float max-float indexing

S M L XL S M L XL S M L XL

Qwen3-8B 36.2% 3.6% -7.7% -4.5% 48.6% 4.1% -9.1% -7.3% -1.5% -54.9% -45.3% -31.3%
Qwen3-30B-A3B 63.6% 4.0% -8.9% -17.4% 82.4% 25.0% -1.6% -17.9% 34.6% -52.2% -48.6% -47.5%

QwQ-32B -13.7% -14.6% -0.3% 0.0% -8.8% -24.3% -1.0% 0.0% -39.0% -59.6% -31.4% -13.8%
Claude-3.7-Sonnet -11.8% 86.3% 143.5% 126.1% -20.6% 29.7% 123.5% 162.6% 23.2% 9.4% 5.7% -45.5%

DeepSeek-V3 15.7% -5.6% 62.1% 146.2% 47.1% 7.8% 130.1% 154.5% -10.4% -18.4% -3.5% -19.3%
DeepSeek-R1 54.8% 9.1% -2.9% -8.1% 69.3% 5.0% 3.9% 0.6% 133.4% -53.1% -65.1% -72.5%

Gemini-2.5-Pro -7.9% 6.9% 82.4% 134.8% -16.9% 10.6% 93.0% 187.4% 21.9% 20.9% -23.9% -44.2%
GPT-4.1 13.7% 10.4% -14.0% -32.7% 14.6% 4.2% -13.4% -17.8% 21.2% 1.9% -68.1% -89.6%
GPT-4o 10.9% 31.9% 26.8% 19.1% 3.9% 35.9% 29.1% 29.1% 18.5% 68.3% 49.6% 66.1%

the SepNS format, realizing substantial and consistent token reductions across nearly all evaluated
conditions, highlighting the method’s potential when paired with a compatible model architecture.

While some models, such as Claude-3.7-Sonnet and DeepSeek-R1, occasionally produced more ver-
bose outputs, this variance appears to reveal more about model-specific training than a limitation of
SepNS. These models, likely heavily fine-tuned for conversational and descriptive tasks, may inter-
pret the structured SepNS format as a prompt for explanation rather than direct computation, leading
to increased verbosity. In contrast, models that respond well to SepNS demonstrate a stronger innate
capability for structured data processing.

F SEPNS ATTENTION MECHANISM: RIGOROUS MATHEMATICAL PROOF

F.1 DEFINITIONS AND SETUP

Definition 1 (Vanilla Attention Sequence). Let s = {a1, a2, . . . , an} be the original sequence
without separators, where each ai represents a token at position i.

Definition 2 (SepNS Sequence). Let s′ = {a1, . . . , ak, sep1, ak+1, . . . , a2k, sep2, . . .} be the se-
quence with separator tokens, where sepj denotes the j-th separator token. The total length of s′ is
n′.

Definition 3 (Segment Partitioning). For a given separator token sep at position p, define Ssep =
{i : i < p} as the set of all token positions before the separator sep.

Definition 4 (Query-Key Similarity). For any positions i and j, define the scaled dot-product simi-
larity as:

αi,j =
Qi ·KT

j√
dk

F.2 MAIN THEOREM

Theorem 1 (Cross-Segment Attention Suppression). Let i1 ∈ Ssep and j /∈ Ssep for some separator
sep. Then:

ASepNS[i1, j]

Avanilla[i1, j]
=

Zvanilla(i1)

ZSepNS(i1)
≪ 1

22



1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

where Zvanilla(i1) and ZSepNS(i1) are the normalization constants for vanilla and SepNS attention
respectively.

F.3 PROOF

Step 1: Establish Attention Weight Formulations For vanilla attention:

Avanilla[i, j] =
exp(αi,j)∑n
l=1 exp(αi,l)

=
exp(αi,j)

Zvanilla(i)

For SepNS attention:

ASepNS[i, j] =
exp(αi,j)∑n′

l=1 exp(αi,l)
=

exp(αi,j)

ZSepNS(i)

Step 2: Analyze Normalization Constant Difference The key insight is that:

ZSepNS(i) = Zvanilla(i) + ∆Z(i)

where ∆Z(i) represents the additional normalization mass contributed by separator tokens:

∆Z(i) =
∑

sep∈Separators

exp(αi,sep)

Step 3: Establish Core Lemma Lemma 1 (Separator Attention Asymmetry). For separator token
sep and positions i1 ∈ Ssep, i2 /∈ Ssep:

αi1,sep ≫ αi2,sep

Proof of Lemma 1: By the design principle of separator tokens as summarizers of preceding con-
tent, the key vector Ksep is constructed to have high similarity with query vectors Qi1 for i1 ∈ Ssep

and low similarity with Qi2 for i2 /∈ Ssep. This follows from the separator’s role in capturing the
semantic representation of tokens up to its position.

Step 4: Quantify Cross-Segment Attention Suppression For i1 ∈ Ssep and j /∈ Ssep:

ASepNS[i1, j]

Avanilla[i1, j]
=

Zvanilla(i1)

ZSepNS(i1)
=

Zvanilla(i1)

Zvanilla(i1) + ∆Z(i1)

Since i1 ∈ Ssep, by Lemma 1, we have exp(αi1,sep) is large, making ∆Z(i1) significant. Therefore:

Zvanilla(i1)

Zvanilla(i1) + ∆Z(i1)
=

1

1 + ∆Z(i1)
Zvanilla(i1)

≪ 1

Step 5: Analyze Within-Segment Attention Preservation For i2 /∈ Ssep and j in the same
segment as i2:

By Lemma 1, exp(αi2,sep) is small, so ∆Z(i2) ≈ 0. Therefore:

ASepNS[i2, j]

Avanilla[i2, j]
=

Zvanilla(i2)

Zvanilla(i2) + ∆Z(i2)
≈ Zvanilla(i2)

Zvanilla(i2)
= 1

F.4 COROLLARY

Corollary 1 (Attention Localization). The ratio of cross-segment to within-segment attention de-
creases exponentially with the separator’s query-key similarity:

ASepNS[i1, jcross]

ASepNS[i1, jwithin]
∝ Avanilla[i1, jcross]

Avanilla[i1, jwithin]
· exp(−αi1,sep)

where jcross /∈ Ssep and jwithin ∈ Ssep.
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F.5 CONCLUSION

This proof rigorously establishes that separator tokens act as “attention sinks” that systematically
redirect attention mass from cross-segment positions to within-segment positions. The mechanism
operates through:

Asymmetric Query-Key Similarity. Separators exhibit high similarity with tokens in their sum-
marized segment but low similarity with tokens outside.

Normalization Mass Redistribution. High separator attention scores increase the denominator for
tokens in the summarized segment, suppressing their cross-segment attention weights.

Selective Suppression. Only tokens in the summarized segment experience attention suppression,
while tokens outside maintain their original attention patterns.

This mathematical framework explains how SepNS achieves structured attention boundaries without
explicit masking, creating localized attention patterns that respect segment boundaries.
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