

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 NOT ALL DOCUMENTS ARE WHAT YOU NEED FOR EXTRACTING INSTRUCTION TUNING DATA

Anonymous authors

Paper under double-blind review

ABSTRACT

Instruction tuning improves the LLMs performance but depends on high-quality training data. Recently, LLMs have been used to synthesize data, enhancing training with seeds like question-answer (QA) pairs. However, this synthesis often results in instruction examples similar to the seeds, lacking diversity and biasing real applications. Thus, we propose to extract instruction tuning data from web corpus with much rich knowledge. The most straightforward strategy is to quickly retrieve domain specific documents from the corpus and then extract all QA pairs of these documents for tuning LLMs, which has two main limitations. (1) Extracting all QA pairs using LLMs is prohibitively expensive; and (2) These extracted pairs are not all beneficial for the downstream applications, and incorporating all of them for tuning may even hurt the model performance. To overcome the limitations, we introduce EQUAL, an Effective and scalable data extraction framework that iteratively interleaves document selection and extract high-QUALity QA pairs to optimize instruction tuning. EQUAL first clusters the document set based on the embeddings generated by contrastive learning. Then it leverages the multi-armed bandit based strategy to quickly identify document clusters where can extract high-quality QA pairs for training. This iterative framework significantly reduces computational costs while improving model performance much. Experiments on AutoMathText, KnowledgePile and StackOverflow across 13 downstream tasks demonstrate that EQUAL reduces computational costs by 5–10 \times while improving accuracy by 2.5% on LLaMA-3.1-8B, Qwen2.5-7B and Mistral-7B. Code and data is available at <https://anonymous.4open.science/r/EQUAL-DD20>.

1 INTRODUCTION

Previous studies have shown that instruction tuning enables the powerful reasoning capability of Large Language Models (LLMs) (Ouyang et al., 2022; Achiam et al., 2023; Dubey et al., 2024), but requires sufficient high-quality training data (Ntoutsi et al., 2020; Yu et al., 2023; Shah et al., 2024). However, although the weights of the open LLMs are publicly available, the datasets employed to fine-tune these models are generally private. This lack of data accessibility limits the opportunities to effectively adapt LLMs to targeted domains (Cobbe et al., 2021b; Hendrycks et al., 2021).

Recently, leveraging LLMs to synthesize instruction tuning data (Li et al., 2024a; Yue et al., 2024; Luo et al., 2023; Yu et al., 2023; Li et al., 2024a; Ding et al., 2024) has attracted much attention as an effective solution to enrich the original training data based on some seeds (*e.g.*, original question-answer pairs, knowledge bases, etc.), thanks to the powerful understanding and generative capabilities of LLMs. **However, achieving high-quality synthetic instruction data is challenging because LLM-based generation tends to closely imitate seed examples. When those seeds lack diversity, the synthesized data inherits this shortcoming, leading to degraded overall quality** (Guo et al., 2024b; Li et al., 2024c; Xu et al., 2024; Ding et al., 2024).

Data Extraction from Documents. In reality, there is plenty of high-quality web corpus (*e.g.*, Common Crawl) which contains rich knowledge and can be leveraged as high-quality instruction data. However, this wealth of knowledge is widely spread within the corpus. Recently, (Yue et al., 2024) proposed a method to retrieve domain-specific documents from a large web corpus, followed by employing high-performance LLMs to extract QA pairs from these documents and then using the extracted QA pairs to fine-tune an LLM. However, it has the following limitations.

054 *Prohibitive Computational Cost.* To
 055 extract a high-quality instruction tun-
 056 ing dataset, it uses LLMs to repeatedly
 057 scan and analyze all the documents to
 058 extract question-answer (QA) pairs,
 059 each of which often requires multiple
 060 LLM calls (Gilardi et al., 2023; Yue
 061 et al., 2024). Consequently, this
 062 process is prohibitively expensive, es-
 063 pecially when there are a large number
 064 of documents to process. Solving this
 065 problem requires largely reducing the
 066 number of candidate documents, *e.g.*,
 067 by discovering the documents most
 068 valuable to instruction tuning.

069 *Instruction QA Pairs.* Even if an or-
 070 ganization could afford extracting all
 071 domain-specific QA pairs from a large
 072 number of documents, blindly incorpo-
 073 rating all of them to fine-tune an LLM
 074 could potentially degrade the model
 075 performance due to the presence of a
 076 significant amount of low quality data.
 077 Specifically, a large corpus inevita-
 078 bly includes wild and
 079 noisy data with heterogeneous distri-
 080 bution that can degrade model per-
 081 formance on downstream tasks.
 082 Therefore, it is necessary to judiciously
 083 identify high-quality QA pairs for
 084 extraction.

085 **Intuitive Solutions.** There are two intuitive solutions to address the above limitations. Solution ①: extract all QA pairs first and then select high-quality pairs. Solution ②: Select high-quality documents that potentially contain high-quality pairs first and then extract QA pairs from them. Unfortunately, neither of the above two methods can solve both limitations. To be specific, for solution ①, although it can achieve good model performance, extracting all pairs beforehand is still costly. Solution ② is cost-effective, but it is difficult to accurately discover high-quality documents because documents and pairs have different feature distributions. Note that in this case, the quality of these documents should be measured by the potential contribution of the QA pairs to the target distribution, which is not aligned with the data quality of the original documents, *e.g.*, dirty data, duplication. In other words, even if the embedding of a QA pair is close to that of a document, it does not necessarily indicate that the QA pair is close to the pair potentially extracted from the document.

086 **Key Idea.** To address both limitations, our key idea is to interleave document selection and QA pairs
 087 extraction. During this iterative process, the extracted QA pairs help capture the relationship between
 088 the document and the pair distribution more and more accurately, and at the same time, the selected
 089 documents improve consistently.

090 **Our Proposal.** Inspired by the above idea, we propose EQUAL, a scalable and effective data extraction
 091 framework for constructing QA pairs from documents, aiming to enhance the LLMs instruction
 092 tuning. To be specific, EQUAL first clusters over the heterogeneous document set considering the
 093 feature similarities of QA pairs extracted from these documents. To achieve this, we introduce a
 094 warm-up step using contrastive learning to align the feature space between documents and QA pairs.
 095 In this way, EQUAL effectively identifies those high-quality clusters by sampling and extracting QA
 096 pairs from them to save cost. Afterwards, we propose a Multi-arm Bandit (MAB) based technique
 097 to iteratively select the clusters. As the reward function, it predicts the benefit of QA pairs that
 098 potentially could be extracted from the clusters. More specifically, in each iteration, EQUAL tends to
 099 select the cluster where documents can produce QA pairs that are likely to benefit the target model
 100 performance. This benefit is measured by the *optimal transport (OT) score*, where a higher benefit
 101 score indicates a smaller difference between the distributions of the QA pairs in the cluster and the
 102 target distribution. Then, given the selected cluster, EQUAL samples some documents from it, extracts
 103 QA pairs using LLMs, and in turn updates the optimal transport score of this cluster accordingly. In
 104 this iterative process, we precisely estimate the distribution of the QA pairs in a document cluster
 105 without having to conduct extraction over all documents.

106 Moreover, leveraging the upper confidence bound technique in MAB, EQUAL promotes the potentially
 107 low-quality, thus under-sampled clusters. Therefore, it improves the diversity of the extraction data.
 108 This balance between exploration and exploitation effectively avoids reaching a local optimum.

108 To summarize, we make the following contributions:
 109

110 (1) We propose EQUAL, a novel framework for data extraction from documents to enhance LLMs
 111 instruction tuning with high scalability.
 112 (2) We incorporate an iterative MAB solution to first cluster the documents and extract data from
 113 these clusters, achieving a good exploration-exploitation trade-off. We also propose a warm-up
 114 strategy to align the features of documents and QA pairs.
 115 (4) Extensive experiments on datasets (AutoMathText, KnowledgePile and StackOverflow) with more
 116 than 1 million documents and 13 popular downstream tasks demonstrate that EQUAL significantly
 117 outperforms baseline methods by saving 5-10 \times computation resources consumption while still
 118 improving 2.5% in accuracy (train/test on Llama-3.1-8B, Qwen2.5-7B and Mistral-7B model).
 119

120 **2 PRELIMINARY**
 121

123 We first introduce the necessity of extracting and selecting QA pairs for instruction tuning, followed
 124 by our problem definition.

125 **Instruction tuning** (a.k.a., supervised fine-tuning (SFT)) aims to adapt a base LLM to specific
 126 domains or user needs, thereby enabling better performance on downstream tasks (Wang et al.,
 127 2024b; 2023a; Zhang et al., 2023). Consequently, many studies on data selection for SFT (Li et al.,
 128 2023b; Xia et al., 2024; Ni et al., 2024) emphasize selecting domain-beneficial data from a candidate
 129 pool with reference to the target capabilities. This is because fine-tuning LLMs without careful
 130 data selection—for instance, using QA pairs extracted indiscriminately from all documents in the
 131 candidate set—can impede the model’s ability to acquire target capabilities. Empirical results from
 132 prior works (Kim et al., 2023; Muennighoff et al., 2022; Wang et al., 2023b) demonstrate that LLMs
 133 fine-tuned on targeted subsets of data outperform those trained on the full SFT dataset, underscoring
 134 the importance of relevance-aware data selection.

135 **QA Pair Extraction.** To construct SFT data, given a large number of documents, people always
 136 leverage advanced LLMs to extract and refine QA pairs. More specifically, LLMs such as Qwen2.5-
 137 72B (Yang et al., 2024a) are utilized to extract QA pairs within documents. By incorporating
 138 examples within the prompt, we guide the model to focus on the desired QA pairs while filtering out
 139 markups, boilerplate, and other irrelevant content. Although Qwen2.5-72B demonstrates impressive
 140 capabilities, the extracted QA pairs still exhibit issues such as improper formatting, missing answers,
 141 or mismatched responses (Li et al., 2023a; Honovich et al., 2022; Chen et al., 2023). To address
 142 these problems, we employ further refinement to these QA pairs using Qwen2.5-72B, which has
 143 demonstrated significant enhancement in the quality of the extracted pairs (Xu et al., 2023). The
 144 prompts for extraction and refinement are provided in Appendix V.

145 Overall, the entire extraction process requires each entire document as input and repeatedly calling
 146 high-performance LLMs, which is rather expensive. Thus, in this paper, we focus on reducing the
 147 number of documents to be extracted to save the cost while keeping high model accuracy. However,
 148 how to improve the quality of each extracted pair within each document is orthogonal to this work.

149 **Problem Definition.** Formally, we study the problem of data extraction from a candidate document
 150 pool \mathcal{D}_c to extract QA pairs for instruction tuning. Formally, given \mathcal{D}_c and a reference set \mathcal{D}_r for
 151 instruction tuning, the problem is to select a subset $\mathcal{D}_b \subset \mathcal{D}_c$ from which a set of QA pairs \mathcal{Q} are
 152 extracted to fine-tune an LLM M , aiming to minimize the loss of the updated model M' on \mathcal{D}_r .

153
 154 **3 PROPOSED APPROACH.**
 155

156 **3.1 THE EQUAL FRAMEWORK**
 157

158 **Multi-Armed Bandit (MAB)** (Vermorel & Mohri, 2005) is an effective framework that makes
 159 decisions over time under uncertainty. This consists of N possible actions, each known as an *arm*.
 160 Pulling an arm indicates sampling from this arm to capture its reward distribution more accurately.
 161 This framework characterizes an agent that iteratively gains new knowledge by pulling arms that are
 162 rarely visited (*i.e.*, exploration) while using current knowledge to enhance its decisions by pulling

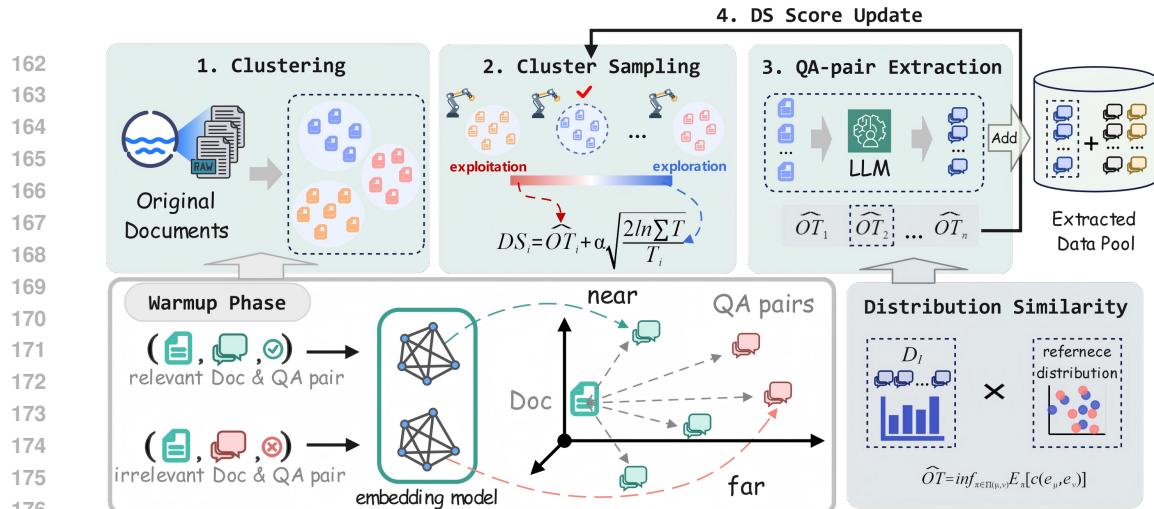


Figure 2: The Overall Framework of EQUAL.

arms already with a high reward (*i.e.*, exploitation). The agent aims to balance the exploration and exploitation to maximize their overall reward throughout the given time span.

Bridging EQUAL and MAB. The overall process of EQUAL is illustrated in Fig 2 and Algorithm 1. To reduce the computational cost, we first cluster all documents in the candidate dataset \mathcal{D}_c (line 1) such that the QA pairs extracted from each cluster are similar (Step-1 in Fig 2, see § 3.2 for details). Thus, we can neglect these low-quality clusters to save the cost. To precisely measure the quality of the cluster C_i , the most straightforward way is to extract all QA pairs and compare their distribution with that of the reference data, measured by the optimal transport score (see § 3.3 for details), denoted by OT_i , but it is still very expensive. Hence, we iteratively sample from these clusters to estimate the score. Our key idea is inspired by a natural connection between EQUAL and MAB.

At a high level, each cluster can be regarded as an arm of MAB. EQUAL iteratively selects a cluster, samples some documents and extract pairs from it (*i.e.*, pulling an arm). To be specific, as shown in Step-2 of Figure 2, a cluster with a high estimated optimal transport score (\hat{OT}_i) tends to be selected. The higher the score, the smaller difference between the distributions of QA pairs from this cluster and the reference data. Moreover, clusters that are rarely visited (denoted by the sampling frequency $T(C_i)$) tend to be selected as well to explore more diverse documents. Overall, putting \hat{OT}_i and $T(C_i)$ together, we use the document sampling (DS) score to measure the quality of a cluster, which can achieve a good exploration-exploitation trade-off. Subsequently, as shown in Step-3, we obtain these extracted pairs (line 5-7) and update the score \hat{OT}_i of the corresponding cluster (line 8). As more pairs from cluster C_i are extracted, the estimated score \hat{OT}_i will become more accurate.

Next, we illustrate the details of the EQUAL framework.

DS Score Computation. Following the upper confidence bound (Auer, 2002) in the typical MAB framework, we define the DS score DS_j of the cluster C_j to effectively balance the exploration (*i.e.*, data diversity) and exploitation (*i.e.*, data quality) as follows.

$$DS_j = \hat{OT}_j + \alpha \sqrt{\frac{2 \ln \sum_{C_k \in \mathcal{C}} T(C_k)}{T(C_j)}} \quad (1)$$

where $T(C_j)$ denotes the frequency of documents sampled from cluster C_j , $\sum_{C_k \in \mathcal{C}} T(C_k)$ denotes the total sampling times from all clusters. α is set as $\frac{1}{\sum_{C_k \in \mathcal{C}} T(C_k) + 1}$ (Hao et al., 2019), which provides higher weight to exploration in early stages, but in later stages, it provides higher weight to exploitation (line 9-11).

Update the DS Score. In each iteration, a subset of documents B_i is sampled from the selected cluster C_i with a high DS score, and a set of QA pairs Q_i is then extracted from the documents in B_i . The OT score of C_i will be updated as follows.

$$\hat{OT}_i = \mathcal{OT}(\cup Q_i, \mathcal{D}_r), \quad T(C_i) += 1 \quad (2)$$

216 where $\cup Q_i$ denotes all the extracted QA pairs in cluster C_i obtained from the beginning and $\mathcal{OT}(\cdot)$ denotes the function of computing the OT score. Then we update the DS score of all clusters.

217 **Extracted Pairs Collection.** As shown
 218 in Figure 2, in each iteration, we add the
 219 extracted QA pairs Q_i to the extracted data
 220 pool \mathcal{D}_e . Finally, we use the pairs in the
 221 pool to fine-tune the LLMs.
 222

224 3.2 WARM-UP FOR CLUSTERING

225 **Motivation.** Considering that the original
 226 documents contain much irrelevant content
 227 with downstream applications, there exists
 228 a discrepancy between the feature space
 229 of document embeddings and that of the
 230 QA pairs extracted from them. Obviously,
 231 we hope that similar QA pairs fall into the
 232 same cluster, but similar documents do not
 233 necessarily indicate similar pairs if we cluster
 234 purely based on feature embeddings of
 235 documents. However, it is rather expensive
 236 to extract all pairs and then cluster. There-
 237 fore, to improve the clustering quality, we
 238 propose to incorporate a warm-up step to
 239 align the two feature spaces using contrastive learning (Khosla et al., 2020).

240 **Feature Alignment.** In the warm-up stage, we first randomly sample a small proportion of the
 241 documents from the candidate data pool and use LLMs to extract QA pairs. Then, we fine-tune the
 242 model (*i.e.*, BAAI/bge-en-v1.5) used for document embedding to capture the deep connection
 243 between the original documents and the extracted QA pairs. Specifically, we treat the sampled
 244 documents and these extracted QA pairs as positive training examples (denoted by (d, q^+)) for
 245 contrastive learning. To generate negative examples q^- for a document d , we conduct negative
 246 sampling from all current QA pairs. Then we train with the following loss function:

$$247 \quad 248 \quad 249 \quad L = -\log \frac{e^{\text{sim}(d, q^+)}}{e^{\text{sim}(d, q^+)} + \sum e^{\text{sim}(d, q^-)}} \quad (3)$$

250 where sim denotes the cosine similarity between the embedding of a document d and QA pair q . In
 251 this way, documents containing similar QA pairs tend to be closer in the embedding space and are
 252 thereby grouped together in the same cluster.

254 3.3 MEASURING CLUSTER BENEFITS

255 Heuristic methods (Xia et al., 2024; Xie et al., 2023) estimate the pointwise benefit of each data point
 256 (*i.e.*, its contribution to the target capabilities) and simply aggregate these benefits as cluster benefits,
 257 implicitly assuming that each data point contributes independently of the others. However, this
 258 assumption fails even in simple linear regression tasks, as systematically demonstrated in (Hu et al.,
 259 2024). In contrast, EQUAL formulates targeted data selection as a distribution matching problem,
 260 aiming to identify a subset of candidate data that closely matches the target distribution. Specifically,
 261 EQUAL computing the distribution similarity of extracted data and reference data utilizing Optimal
 262 Transport (OT) (Villani et al., 2009), which is widely adopted to compute the minimal cost of
 263 transforming one distribution into another (more details in Appendix H). Specifically, the lower
 264 the transportation cost, the closer the two distributions, indicating that the extracted data is more
 265 beneficial for the target distribution.

266 In our scenario, suppose that the distribution of extraction data and reference set is μ and ν separately.
 267 The transportation cost from μ to ν can be calculated by $\mathcal{OT}(\mu, \nu)$:

$$269 \quad \mathcal{OT}(\mu, \nu) \stackrel{\text{def}}{=} \inf_{\pi \in \Pi(\mu, \nu)} \mathbb{E}_{(e_\mu, e_\nu) \sim \pi} [c(e_\mu, e_\nu)] \quad (4)$$

270 where e_μ and e_ν denote the embedding of extracted QA pairs q_μ, q_ν from the two distributions,
 271 $\Pi(\mu, \nu)$ denotes the set of all joint distributions $\pi(e_\mu, e_\nu)$ with marginals $\mu(e_\mu)$ and $\nu(e_\nu)$. Here,
 272 $c(e_\mu, e_\nu) : \mathbb{X} \times \mathbb{X} \rightarrow \mathbb{R}$ is the cost function for moving e_μ to e_ν , where \mathbb{X} denotes the entire
 273 embedding space in EQUAL. To be specific, we use $1 - \frac{e_\mu^T e_\nu}{\|e_\mu\| \|e_\nu\|}$ as the transportation cost between
 274 e_μ, e_ν , which is a popular choice to measure the semantic dissimilarity (Pennington et al., 2014).
 275 Then given two distributions μ and ν , there are numerous possible mappings (*i.e.*, $\pi \in \Pi$) between
 276 pairs from these distributions. The cost for each mapping can be calculated by various $c(e_\mu, e_\nu)$
 277 within the mapping, and the OT score represents the minimum cost among all the mappings.
 278

279 4 EXPERIMENT

280 In this section, we fine-tune the base models in different domains and conduct sufficient ablation
 281 studies to demonstrate the efficiency and effectiveness of EQUAL. More experiments such as enlarging
 282 the model size and the diversity of downstream tasks is provided in the Appendix I.

285 4.1 EXPERIMENT SETUP

287 **Training Settings.** We evaluate EQUAL using two foundational models (*i.e.*, LLAMA-3-8B,
 288 Qwen2.5-7B and Mistral-7B) and two training settings, *i.e.*, full fine-tuning (FULL) and Low-
 289 Rank Adaption (LoRA). In both training scenarios, the batch size is set to 512 and the maximum
 290 learning rate is set as 1×10^{-5} with a cosine decay schedule. For the FULL setting we train the
 291 extracted data for 2 epochs on 32 H100 GPUs, while for the LoRA setting we train the extracted
 292 data for 4 epochs on 16 H100 GPUs. For the warm-up stage, we randomly select 5% documents
 293 from \mathcal{D}_c to extract QA pairs and then use contrastive learning to fine-tune the original embedding
 294 model BAAI/bge-en-v1.5 model, and then it is employed to generate document embeddings
 295 for subsequent clustering.

296 **Dataset Preparation.** In our evaluation, we use AutoMathText (Zhang et al., 2024), KnowledgePile
 297 (Fei et al., 2024) (Appendix I and M) and StackOverflow (created by us) datasets as
 298 the candidate data pool \mathcal{D}_c for mathematical, general and coding tasks respectively. AutoMathText
 299 totally contains 4.9M documents, from which we select 1.4M ones by filtering documents with a
 300 metadata score of $lm_q1q2_score < 0.5$ ¹ to exclude math-irrelevant content. We use the dataset after
 301 filtering as the candidate data pool. StackOverflow is crawled by us from stackoverflow.com,
 302 which contains 1.2M documents in total. Then we implement an n -gram filtering (Guo et al., 2024a)
 303 to ensure that our training data is not contaminated by information from the downstream tasks. For
 304 the reference (validation) set \mathcal{D}_r , we respectively use the training set of GSM8K (Cobbe et al., 2021a)
 305 and MBPP (Austin et al., 2021) for math and code domains, which are both widely used language
 306 modeling tasks and often serve as a validation benchmark for instruction tuning. During the clustering
 307 process, documents from \mathcal{D}_c are clustered into 1,000 clusters using the k -means algorithm. The
 308 number of clusters is automatically determined by the Elbow (Syakur et al., 2018) method in EQUAL.

309 **Baselines.** We compare EQUAL with several baselines. (1) **Random**. We randomly sample documents
 310 to extract QA pairs from \mathcal{D}_c for fine-tuning. (2) **All (Mammoth)**. We fine-tune our model using the
 311 QA pairs extracted from all the documents in candidate data pool \mathcal{D}_c , which is the same method used
 312 in Mammoth (Yue et al., 2024). (3) **Rewriting** (Yu et al., 2023) synthesize new QA pairs based
 313 on existing QA pairs (specifically, the reference set \mathcal{D}_r in our setting) using LLM. We synthesize the
 314 same number of pairs as other baselines. (4) **Avg-sim**. We extract QA pairs from all documents in
 315 \mathcal{D}_c . Then we select QA pairs with the highest average similarities with the ones in \mathcal{D}_r . For each QA
 316 pair, we compute the embedding similarities between the pair and all pairs in \mathcal{D}_r , and compute the
 317 average. (5) **Perplexity** (Li et al., 2024b) extract QA pairs from all documents in \mathcal{D}_c . Then we
 318 select QA pairs with the highest perplexity scores. (6) **Influence** (Xia et al., 2024) extract QA
 319 pairs from all documents in \mathcal{D}_c . Then we select extracted QA pairs with the highest influence scores.
 320 (7) **LLM-scoring** (Wettig et al., 2024) employs high-performing LLMs to evaluate the quality
 321 score of documents. (8) **Perplexity-MAB** utilizes perplexity (Li et al., 2024b) score as the reward
 322 of MAB to select documents for extracting QA pairs. (9) **Influence-MAB** utilizes influence (Xia
 323 et al., 2024) score as the reward to select documents. (10) EQUAL is our full-fledged solution.

¹ lm_q1q2_score is a metadata attribute for each document in AutoMathText ranging from [0, 1], which
 quantifies the document's relevance, quality, and educational value in the context of mathematical intelligence.

324 Table 1: Comparison with other algorithms in test accuracy (%) on AutoMathText and StackOverflow.
325 The best results are highlighted. We run each experiment for three times and report the average.
326

Model	Domain	LLAMA-3-8B						Mistral-7B					
		Math			Code			Math			Code		
		GSM8K	MATH	FLOPs	HUMANEVAL	MBPP	FLOPs	GSM8K	MATH	FLOPs	HUMANEVAL	MBPP	FLOPs
Base Model		55.19	23.04	-	31.1	51.9	-	45.10	14.80	-	23.2	41.8	-
Random	LoRA	63.76	30.26	8.05	31.1	53.7	6.32	54.21	20.78	7.96	28.0	45.0	6.06
Avg-sim	LoRA	65.64	30.12	114.79	31.7	52.6	65.53	51.33	21.86	113.49	28.1	45.1	65.45
Perplexity	LoRA	63.61	30.94	134.35	31.1	54.6	71.07	51.40	22.18	134.18	25.6	44.4	70.9
Influence	LoRA	63.46	28.10	240.31	33.5	55.0	130.46	53.45	18.62	236.59	26.2	41.5	129.68
LLM-scoring	LoRA	65.11	30.55	271.56	34.3	53.5	141.38	53.02	19.33	266.51	27.7	44.6	137.37
Rewriting	LoRA	62.21	27.05	18.11	30.7	54.1	13.15	50.19	17.72	17.90	26.3	44.3	13.01
Perplexity-MAB	LoRA	64.52	30.48	18.18	34.6	55.0	13.24	51.78	22.10	17.36	27.4	45.6	12.99
Influence-MAB	LoRA	65.73	30.78	23.37	35.3	55.1	19.13	55.12	19.58	18.44	28.7	44.7	18.18
EQUAL(Ours)	LoRA	67.32	31.86	17.75	36.0	55.3	12.99	57.54	23.56	17.57	31.3	46.7	12.64
Random	FULL	68.92	32.46	8.83	42.7	52.3	7.19	61.41	25.76	8.74	31.1	44.2	6.84
Avg-sim	FULL	70.35	33.18	115.66	46.1	53.2	66.31	61.88	26.16	114.44	37.8	45.1	63.20
Perplexity	FULL	64.52	33.56	150.28	44.5	50.5	71.85	55.04	27.38	148.03	32.6	44.7	71.07
Influence	FULL	65.20	29.64	256.94	39.6	53.7	131.24	56.18	22.08	248.97	35.6	45.6	129.51
LLM-scoring	FULL	68.38	33.19	273.91	46.9	53.7	142.73	56.19	22.72	17.90	34.3	46.1	139.16
Rewriting	FULL	64.47	30.62	18.71	43.4	50.6	13.78	57.21	22.67	18.33	33.3	43.6	13.67
Perplexity-MAB	FULL	65.28	32.92	18.96	44.5	49.1	13.76	56.44	24.20	18.44	34.1	42.9	13.42
Influence-MAB	FULL	67.78	32.86	25.62	46.3	53.5	19.91	60.42	24.44	19.30	34.8	44.0	18.79
EQUAL(Ours)	FULL	73.01	35.10	18.55	49.4	56.3	13.50	67.73	28.28	18.18	39.1	50.6	13.07

341 **Metric.** We evaluate the quality of extracted data by accessing the LLM performance, which has
342 been fine-tuned with these data on several commonly used downstream tasks. (1) Math domain:
343 GSM8K (Cobbe et al., 2021a) and MATH (Hendrycks et al., 2021) are utilized for evaluating math
344 tasks. (2) Code domain: the fine-tuned LLM is evaluated on HUMANEVAL (Chen et al., 2021) and
345 MBPP (Austin et al., 2021) datasets. We also report FLOPs to quantify the total GPU cost across the
346 following three stages: data extraction, data selection, and model training, with details in Appendix F.
347

348 4.2 RESULT

350 **Overall Performance.** In Table 1, we acquire 5% documents ([70k from AutoMathText and 60k from](#)
351 [StackOverflow](#)) for each baseline. We can observe that EQUAL surpasses all the baseline methods on
352 accuracy across all models and downstream tasks. Specifically, when implementing Full fine-tuning
353 on Llama-3.1-8B, EQUAL achieves an accuracy improvement of 4.09% on GSM8k and 2.64% on
354 MATH compared with Influence, while saving approximately 5 \times w.r.t. the computational cost.
355 EQUAL surpasses Rewriting due to the fact that the QA pairs generated by Rewriting are quite
356 similar to those QA pairs in \mathcal{D}_r , resulting in limited data diversity. Besides, the pairs directly generated
357 by LLMs might be error-prone due to the hallucinations. EQUAL outperforms Perplexity and
358 Perplexity-MAB because perplexity score is solely based on the inherent complexity of the QA
359 pairs to select extracted data without considering the downstream tasks. Besides, EQUAL outperforms
360 Influence and Influence-MAB because influence function is easily affected by the length of
361 the sequence (Xia et al., 2024), often leading to the selection of pairs with fewer tokens (more details
362 in Appendix G). Also, EQUAL outperforms LLM-score and Avg-sim because it selects data based
363 on the similarities between QA pairs, without considering the overall distribution. In terms of the
364 computational cost, we can observe that the FLOPs consumed by the Avg-sim, Influence and
365 Perplexity extraction method are notably high. This is due to their necessity of extracting
366 the QA pairs from all the documents in \mathcal{D}_c , which incurs prohibitive cost. Additionally, since the
367 influence score used in Influence requires to compute gradients during back propagation, leading
368 to higher FLOPs consumption than EQUAL. In contrast, it can be seen that for the influence score
369 used in Influence and the perplexity score used in Perplexity, when combined with the MAB
370 framework, comparable results can be achieved at a lower computational cost, which demonstrates
371 the efficiency of the MAB strategy. [The detailed performance of EQUAL on Qwen2.5-7B can be](#)
372 [found in the Appendix S.](#)

373 Table 2 presents a comparison between EQUAL and Random using various QA pair extraction
374 ratios [ranging from 5%, 10%, and 20% up to 100% \(i.e., high-cost extraction from all documents\).](#)
375 Interestingly, we find that the extracting of just 5% of QA pairs for most tasks produces superior
376 results compared to the use of complete \mathcal{D}_c . This demonstrates the effectiveness of EQUAL. Even for
377 the difficult task MATH, extracting QA pairs from only 20% to the documents in \mathcal{D}_c can achieve
378 comparable performance to All (Mammoth) across all the training settings. This is because not all
379 the QA pairs extracted from all the documents in \mathcal{D}_c might contribute to the target tasks.

378
379

Table 2: Comparison with Random at different ratios.

380
381
382
383
384
385
386

Method	LoRA						FULL					
	Math			Code			Math			Code		
	GSM8K	MATH	FLOPs	HUMANEVAL	MBPP	FLOPs	GSM8K	MATH	FLOPs	HUMANEVAL	MBPP	FLOPs
Random (5%)	63.76	30.26	8.05	31.1	53.7	6.32	67.40	32.46	8.83	42.7	52.3	7.19
Random (10%)	66.03	30.82	16.37	32.3	53.8	13.11	68.92	34.54	17.50	43.6	54.6	14.33
Random (20%)	65.05	31.76	32.14	33.5	54.1	25.97	70.05	36.18	34.61	44.1	55.0	27.78
All	65.43	32.90	155.6	34.8	55.3	122.5	70.28	40.02	164.9	45.6	56.0	137.8
EQUAL (5%)	67.32	31.86	17.75	36.0	55.3	12.99	73.01	35.10	18.55	49.4	56.3	13.50
EQUAL (10%)	68.10	31.66	25.21	38.8	56.0	19.51	74.46	38.19	27.38	50.1	56.0	19.76
EQUAL (20%)	68.69	33.43	40.11	39.6	55.5	33.17	74.40	41.40	43.67	49.6	56.4	33.51

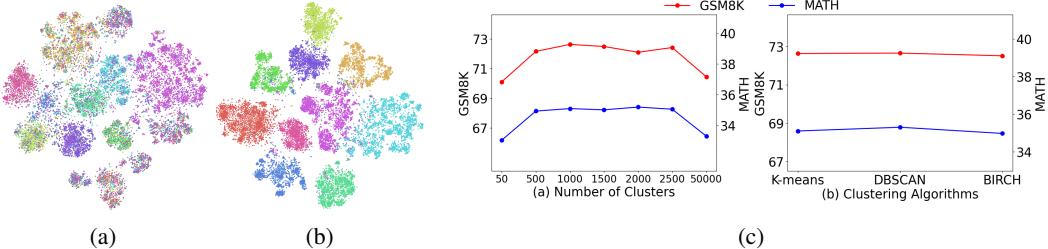


Figure 3: (a) shows the clusters based on the original embedding model; (b) shows the clusters based on the fine-tuned embedding model; (c) ablation study of cluster numbers and clustering algorithms.

394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451

432 **Effectiveness of Document Sampling (DS) score.** We evaluate the effectiveness of DS score by
 433 comparing EQUAL with no-DS, which utilizes the average similarities with QA pairs in \mathcal{D}_r as
 434 the MAB reward. As shown in Table 3, EQUAL surpasses the no-DS across all the settings. This
 435 indicates that DS score provides a more precise estimation of the distributional similarity between the
 436 extracted data and the reference set, hence better aligning with downstream applications.

437 **Number of Clusters.** We use the Elbow (Syakur et al., 2018) method to identify the optimal cluster
 438 numbers for AutoMathText and StackOverFlow datasets. In Figure 3(a), we plot the accuracy of
 439 EQUAL with different cluster numbers. When the cluster number is around 1000 (the selected optimal
 440 number for both datasets), the model consistently performs well. However, a very small number of
 441 clusters (*i.e.*, $k = 50$) leads to poor accuracy (2.90% and 2.05% lower accuracy on GSM8K and
 442 MATH tasks) due to the high variance of QA pairs extracted from the documents in each cluster. Thus,
 443 the QA pairs extracted from the sampled documents cannot well represent the cluster. Similarly, when
 444 the cluster number is too high (*i.e.*, $k = 50,000$), there will be many clusters that are in fact contain
 445 similar QA pairs, and thus it is hard to explore diverse clusters, thereby leading to the performance
 446 degradation (2.56% and 1.79% lower accuracy).

447 **Warmup Ratio.** As shown in Table 4, we
 448 analyzed the impact of the warm-up ratio
 449 in EQUAL, varying it from 0.1%, 1% to 5%
 450 of the candidate document pool D_c . Our
 451 experiments confirm that using a 1% warm-
 452 up ratio of the corpus achieves comparable
 453 performance with 5% under lower computation cost.

454 **Extractor Model.** In this part, we
 455 evaluate the performance of EQUAL
 456 using extractor models of varying
 457 sizes, as well as with closed-source
 458 extractor models. Specifically, instead
 459 of the Qwen2.5-72B model used in
 460 our paper, we performed extraction
 461 with the weaker-extraction Qwen2.5-
 462 7B and the closed-source Qwen-Flash
 463 models. As shown in Figure 4, replac-
 464 ing the Qwen2.5-72B extractor with the Qwen2.5-7B model or the closed-source Qwen-Flash model
 465 leads to small shifts in absolute performance (a decrease for Qwen2.5-7B and an increase for Qwen-
 466 Flash), attributable to differing linguistic and reasoning abilities, the relative improvement trend
 467 introduced by EQUAL remains consistent. This indicates that the key strength of our method lies in
 468 its ability to mine high-quality QA pairs from large-scale web data, rather than in the ability of the
 469 extractor itself.

470 **Clustering Algorithms.** Moreover, we evaluate the performance of EQUAL by other typical clustering
 471 algorithms including BIRCH (Zhang et al., 1996) and DBSCAN (Ester et al., 1996). The details of
 472 selecting optimal clustering parameters can be found in the Appendix D. As illustrated in Figure 3(b),
 473 EQUAL is robust to clustering algorithms on downstream tasks.

4.4 FURTHER EXPERIMENTS

474 **Chain-of-thought (CoT) Data Gen-
 475 eration.** In this section, we consider a
 476 setting where, for each QA pair, a cor-
 477 responding chain-of-thought (CoT) ra-
 478 tionale is distilled from a more capa-
 479 ble teacher model. In this CoT distilla-
 480 tion scenario, we apply our proposed
 481 method EQUAL and directly compare it against the state-of-the-art synthetic data generation meth-
 482 ods OpenThoughts and s1k under the same conditions (details of the experimental settings and
 483 baseline implementations are provided in Appendix T.). As shown in Table 5, EQUAL achieves the
 484 best performance while incurring the lowest computational cost (excluding the heuristic Random).

Table 4: Impact of warm-up ratio on model accuracy.

Warm-up Ratio	0.1%	0.5%	1%	3%	5%
Accuracy	69.66%	71.87%	72.91%	72.96%	73.03%

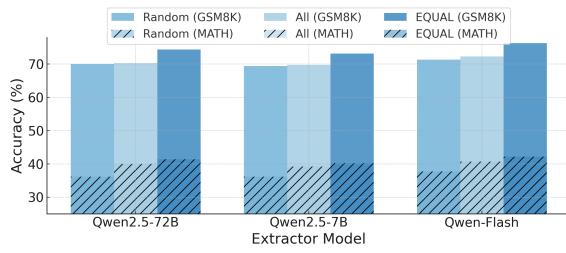


Figure 4: Ablation study of different extractor model.
 474 Moreover, we evaluate the performance of EQUAL by other typical clustering
 475 algorithms including BIRCH (Zhang et al., 1996) and DBSCAN (Ester et al., 1996). The details of
 476 selecting optimal clustering parameters can be found in the Appendix D. As illustrated in Figure 3(b),
 477 EQUAL is robust to clustering algorithms on downstream tasks.

Table 5: Performance comparison with advanced baselines.

Method	AIME24	AIME25	LiveCodeBench	CodeElo	FLOPs
Random	33.1%	26.0%	23.2%	7.29%	50.65
s1k	40.7%	32.7%	26.7%	9.30%	197.87
OpenThoughts	40.1%	33.1%	26.1%	9.55%	238.20
EQUAL	42.7%	34.2%	27.6%	10.05%	65.17

485 method EQUAL and directly compare it against the state-of-the-art synthetic data generation meth-
 486 ods OpenThoughts and s1k under the same conditions (details of the experimental settings and
 487 baseline implementations are provided in Appendix T.). As shown in Table 5, EQUAL achieves the
 488 best performance while incurring the lowest computational cost (excluding the heuristic Random).

486 This advantage stems from performing document-level selection before QA pair extraction and CoT
 487 generation, demonstrating the generalizability of EQUAL.
 488

489 **Experiments on Qwen Model.** Moreover, following common practice in recent studies, we conduct experiments
 490 on math tasks with Qwen2.5-Math-7B-Instruct (Yang et al., 2024a) and on code
 491 tasks with Qwen2.5-Code-7B-Instruct (Hui et al., 2024) (see Appendix T for full experimental
 492 details). For evaluation, we include the AIME24 (Zhang & Math-AI, 2024) and
 493 AIME25 (Zhang & Math-AI, 2025) benchmarks to assess mathematical reasoning,
 494 together with LiveCodeBench (Jain et al., 2024) and CodeElo (Quan et al., 2025) to measure code
 495 generation performance. As shown in Table 6, EQUAL consistently outperforms all baselines in this
 496 setting, further highlighting its robustness and strong generalization across model families and target
 497 capabilities.
 498

5 RELATED WORK

500 **Data Synthesis using LLMs.** In data synthesis, LLMs are commonly used to generate complex and
 501 high-quality data (Zhang & Yang, 2023; Yang et al., 2024b) training data. For example, (Luo et al.,
 502 2023; Yu et al., 2023) construct LLMs pipeline to revise existing training data, thus enhancing the
 503 quality and complexity. (Sun et al., 2024; Wang et al., 2024a) conduct principle-driven prompting,
 504 which inserts some well-crafted principles into prompts to guide the LLMs for synthesis. (Guo et al.,
 505 2024b; Li et al., 2024c) iteratively synthesize important instruction tuning data and train the model
 506 with the newly synthesized data in each round. However, the data generated by these methods often
 507 exhibits low diversity, as few-shot prompts tend to make the newly generated data very similar to
 508 the original data (Li et al., 2024a; Ding et al., 2024). To address this, researchers have proposed
 509 several techniques to generate diverse data. For instance, (Yu et al., 2024a; Gupta et al., 2023) use
 510 various prompts to synthesize diverse data. (Yoo et al., 2021) integrates different existing training
 511 data to generate more diverse data. (Divekar & Durrett, 2024) uses retrieval augmentation to enhance
 512 data diversity by feeding LLMs different retrieved contents. Closer to our work, (Yue et al., 2024)
 513 synthesizes QA pairs from vast web documents to enhance the diversity of synthetic data.
 514

515 **Data Selection for Instruction Tuning.** High-quality data plays a critical role in instruction tuning
 516 (Brown, 2020; Zhou et al., 2024; Xia et al., 2024). Simple approaches such as rule-based
 517 methods (Soldaini et al., 2024; Penedo et al., 2023) and deduplication (Abbas et al., 2023) can
 518 improve data quality but the improvement is limited due to simple heuristics. More sophisticated
 519 methods like LLMs like GPT-4 assess data based on human-defined metrics but this is rather expensive
 520 (Wettig et al., 2024). Perplexity-based methods (Marion et al., 2023; Li et al., 2024b) select data
 521 samples that are difficult for the model to predict. But all above methods do not consider the target
 522 distribution of downstream applications. The influence function can measure the impact of training
 523 data on downstream model performance (Grosse et al., 2023; Xia et al., 2024), but is computationally
 524 intensive and affected by the length of the sequence (Xia et al., 2024), leading to imprecise filtering.
 525 (Shao et al., 2024; Yu et al., 2024b) develop a surrogate model trained on available high-quality
 526 data to efficiently select data from the candidate dataset; however, its effectiveness is limited by the
 527 generalizability of the model.
 528

6 CONCLUSION

529 This paper present EQUAL, a scalable and effective method for instruction tuning data extraction.
 530 EQUAL first use contrastive learning to unify the embedding feature spaces of the original documents
 531 and the extracted QA pairs. Based on this, EQUAL clusters all candidate document and regards
 532 each cluster as an arm of MAB framework due to uncertain distribution similarity scores, allowing
 533 sampling from quality clusters to estimate distribution similarity scores accurately while maintaining
 534 diversity.
 535

Table 6: Comparison with baselines under advanced setting.

Method	AIME24	AIME25	LiveCodeBench	CodeElo
Random	33.1%	26.0%	23.2%	7.29%
Avg-sim	37.1%	30.7%	24.7%	8.04%
Perplexity	37.4%	31.9%	24.9%	8.29%
Influence	35.3%	29.6%	23.2%	7.04%
LLM-scoring	37.6%	31.3%	25.1%	8.54%
Rewriting	39.3%	30.1%	24.2%	7.79%
EQUAL	42.7%	34.2%	27.6%	10.05%

540
541
ETHICS STATEMENT

542 This work adheres to the ICLR Code of Ethics. In this study, no human subjects or animal experimen-
 543 tation was involved. All datasets used, were sourced in compliance with relevant usage guidelines,
 544 ensuring no violation of privacy. We have taken care to avoid any biases or discriminatory out-
 545 comes in our research process. No personally identifiable information was used, and no experiments
 546 were conducted that could raise privacy or security concerns. We are committed to maintaining
 547 transparency and integrity throughout the research process.

548
549
REPRODUCIBILITY STATEMENT
550

551 We have made every effort to ensure that the results reported in this paper are fully reproducible. Our
 552 experiments are conducted with clearly specified datasets, model architectures, and hyperparameters.
 553 All data preprocessing steps, training procedures, and evaluation metrics are explicitly described
 554 in the main text and supplementary materials. The codebase used for all experiments will be
 555 released publicly upon publication, including scripts for training, evaluation, and data preparation.
 556 Additionally, we provide pre-trained models and detailed instructions for reproducing all reported
 557 results. We also include sufficient ablation studies and analysis to allow independent verification of
 558 our claims.

559
560
REFERENCES

561 Amro Abbas, Kushal Tirumala, Dániel Simig, Surya Ganguli, and Ari S Morcos. Semdedup: Data-
 562 efficient learning at web-scale through semantic deduplication. *arXiv preprint arXiv:2303.09540*,
 563 2023.

564 Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni Aleman,
 565 Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. Gpt-4 technical report.
 566 *arXiv preprint arXiv:2303.08774*, 2023.

567 Sanjeev Arora, Yuanzhi Li, Yingyu Liang, Tengyu Ma, and Andrej Risteski. A latent variable model
 568 approach to pmi-based word embeddings. *Transactions of the Association for Computational
 569 Linguistics*, 4:385–399, 2016.

570 P. Auer. Using upper confidence bounds for online learning. In *Proceedings 41st Annual Symposium
 571 on Foundations of Computer Science*, Nov 2002. doi: 10.1109/sfcs.2000.892116. URL <http://dx.doi.org/10.1109/sfcs.2000.892116>.

572 Jacob Austin, Augustus Odena, Maxwell Nye, Maarten Bosma, Henryk Michalewski, David Dohan,
 573 Ellen Jiang, Carrie Cai, Michael Terry, Quoc Le, et al. Program synthesis with large language
 574 models. *arXiv preprint arXiv:2108.07732*, 2021.

575 Rishabh Bhardwaj, Tushar Vaidya, and Soujanya Poria. Knot: knowledge distillation using optimal
 576 transport for solving nlp tasks. *arXiv preprint arXiv:2110.02432*, 2021.

577 Tom B Brown. Language models are few-shot learners. *arXiv preprint arXiv:2005.14165*, 2020.

578 Jaime Carbonell and Jade Goldstein. The use of mmr, diversity-based reranking for reordering
 579 documents and producing summaries. In *Proceedings of the 21st annual international ACM SIGIR
 580 conference on Research and development in information retrieval*, pp. 335–336, 1998.

581 Lichang Chen, Shiyang Li, Jun Yan, Hai Wang, Kalpa Gunaratna, Vikas Yadav, Zheng Tang, Vijay
 582 Srinivasan, Tianyi Zhou, Heng Huang, et al. Alpaganus: Training a better alpaca with fewer data.
 583 *arXiv preprint arXiv:2307.08701*, 2023.

584 Liqun Chen, Yizhe Zhang, Ruiyi Zhang, Chenyang Tao, Zhe Gan, Haichao Zhang, Bai Li, Dinghan
 585 Shen, Changyou Chen, and Lawrence Carin. Improving sequence-to-sequence learning via optimal
 586 transport. *arXiv preprint arXiv:1901.06283*, 2019.

587 Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde De Oliveira Pinto, Jared
 588 Kaplan, Harri Edwards, Yuri Burda, Nicholas Joseph, Greg Brockman, et al. Evaluating large
 589 language models trained on code. *arXiv preprint arXiv:2107.03374*, 2021.

594 Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser,
 595 Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, et al. Training verifiers to solve
 596 math word problems. *arXiv preprint arXiv:2110.14168*, 2021a.

597

598 Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Jacob Hilton, Reiichiro Nakano, Christopher
 599 Hesse, and John Schulman. Training verifiers to solve math word problems. *Cornell University -*
 600 *arXiv, Cornell University - arXiv*, Oct 2021b.

601 Yuyang Ding, Xinyu Shi, Xiaobo Liang, Juntao Li, Qiaoming Zhu, and Min Zhang. Unleash-
 602 ing reasoning capability of llms via scalable question synthesis from scratch. *arXiv preprint*
 603 *arXiv:2410.18693*, 2024.

604

605 Abhishek Divekar and Greg Durrett. Synthesizrr: Generating diverse datasets with retrieval augmen-
 606 tation. *arXiv preprint arXiv:2405.10040*, 2024.

607

608 Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle, Aiesha
 609 Letman, Akhil Mathur, Alan Schelten, Amy Yang, Angela Fan, et al. The llama 3 herd of models.
 610 *arXiv preprint arXiv:2407.21783*, 2024.

611 Yann Dubois, Chen Xuechen Li, Rohan Taori, Tianyi Zhang, Ishaan Gulrajani, Jimmy Ba, Carlos
 612 Guestrin, Percy S Liang, and Tatsunori B Hashimoto. Alpacafarm: A simulation framework for
 613 methods that learn from human feedback. *Advances in Neural Information Processing Systems*,
 614 36:30039–30069, 2023.

615 Yann Dubois, Balázs Galambosi, Percy Liang, and Tatsunori B Hashimoto. Length-controlled
 616 alpacaeval: A simple way to debias automatic evaluators. *arXiv preprint arXiv:2404.04475*, 2024.

617

618 Martin Ester, Hans-Peter Kriegel, Jörg Sander, Xiaowei Xu, et al. A density-based algorithm for
 619 discovering clusters in large spatial databases with noise. In *kdd*, volume 96, pp. 226–231, 1996.

620 Zhaoye Fei, Yunfan Shao, Linyang Li, Zhiyuan Zeng, Hang Yan, Xipeng Qiu, and Dahu Lin. Query
 621 of cc: Unearthing large scale domain-specific knowledge from public corpora. *arXiv preprint*
 622 *arXiv:2401.14624*, 2024.

623

624 Fabrizio Gilardi, Meysam Alizadeh, and Maël Kubli. Chatgpt outperforms crowd workers for
 625 text-annotation tasks. *Proceedings of the National Academy of Sciences*, 120(30):e2305016120,
 626 2023.

627

628 Roger Grosse, Juhan Bae, Cem Anil, Nelson Elhage, Alex Tamkin, Amirhossein Tajdini, Benoit
 629 Steiner, Dustin Li, Esin Durmus, Ethan Perez, et al. Studying large language model generalization
 630 with influence functions. *arXiv preprint arXiv:2308.03296*, 2023.

631

632 Daya Guo, Qihao Zhu, Dejian Yang, Zhenda Xie, Kai Dong, Wentao Zhang, Guanting Chen, Xiao Bi,
 633 Yu Wu, YK Li, et al. Deepseek-coder: When the large language model meets programming—the
 634 rise of code intelligence. *arXiv preprint arXiv:2401.14196*, 2024a.

635

636 Hongyi Guo, Yuanshun Yao, Wei Shen, Jiaheng Wei, Xiaoying Zhang, Zhaoran Wang, and Yang Liu.
 637 Human-instruction-free llm self-alignment with limited samples. *arXiv preprint arXiv:2401.06785*,
 638 2024b.

639

640 Himanshu Gupta, Kevin Scaria, Ujjwala Anantheswaran, Shreyas Verma, Mihir Parmar, Saurabh Ar-
 641 jun Sawant, Chitta Baral, and Swaroop Mishra. Targen: Targeted data generation with large
 642 language models. *arXiv preprint arXiv:2310.17876*, 2023.

643

644 Botao Hao, Yasin Abbasi Yadkori, Zheng Wen, and Guang Cheng. Bootstrapping upper confidence
 645 bound. *Advances in neural information processing systems*, 32, 2019.

646

647 Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul Arora, Steven Basart, Eric Tang, Dawn Song,
 648 and Jacob Steinhardt. Measuring mathematical problem solving with the math dataset. *arXiv*
 649 *preprint arXiv:2103.03874*, 2021.

650

651 Or Honovich, Thomas Scialom, Omer Levy, and Timo Schick. Unnatural instructions: Tuning
 652 language models with (almost) no human labor. *arXiv preprint arXiv:2212.09689*, 2022.

648 Yuzheng Hu, Pingbang Hu, Han Zhao, and Jiaqi Ma. Most influential subset selection: Challenges,
 649 promises, and beyond. *Advances in Neural Information Processing Systems*, 37:119778–119810,
 650 2024.

651 Binyuan Hui, Jian Yang, Zeyu Cui, Jiaxi Yang, Dayiheng Liu, Lei Zhang, Tianyu Liu, Jiajun Zhang,
 652 Bowen Yu, Keming Lu, et al. Qwen2. 5-coder technical report. *arXiv preprint arXiv:2409.12186*,
 653 2024.

654 Naman Jain, King Han, Alex Gu, Wen-Ding Li, Fanjia Yan, Tianjun Zhang, Sida Wang, Armando
 655 Solar-Lezama, Koushik Sen, and Ion Stoica. Livecodebench: Holistic and contamination free
 656 evaluation of large language models for code. *arXiv preprint arXiv:2403.07974*, 2024.

657 Prannay Khosla, Piotr Teterwak, Chen Wang, Aaron Sarna, Yonglong Tian, Phillip Isola, Aaron
 658 Maschinot, Ce Liu, and Dilip Krishnan. Supervised contrastive learning. *Advances in neural
 659 information processing systems*, 33:18661–18673, 2020.

660 Joongwon Kim, Akari Asai, Gabriel Ilharco, and Hannaneh Hajishirzi. Taskweb: Selecting better
 661 source tasks for multi-task nlp. *arXiv preprint arXiv:2305.13256*, 2023.

662 Haoran Li, Qingxiu Dong, Zhengyang Tang, Chaojun Wang, Xingxing Zhang, Haoyang Huang, Shao-
 663 han Huang, Xiaolong Huang, Zeqiang Huang, Dongdong Zhang, et al. Synthetic data (almost) from
 664 scratch: Generalized instruction tuning for language models. *arXiv preprint arXiv:2402.13064*,
 2024a.

665 Ming Li, Yong Zhang, Shuai He, Zhitao Li, Hongyu Zhao, Jianzong Wang, Ning Cheng, and Tianyi
 666 Zhou. Superfiltering: Weak-to-strong data filtering for fast instruction-tuning. *arXiv preprint
 667 arXiv:2402.00530*, 2024b.

668 Qintong Li, Jiahui Gao, Sheng Wang, Renjie Pi, Xueliang Zhao, Chuan Wu, Xin Jiang, Zhenguo
 669 Li, and Lingpeng Kong. Forewarned is forearmed: Leveraging llms for data synthesis through
 670 failure-inducing exploration. *arXiv preprint arXiv:2410.16736*, 2024c.

671 Xian Li, Ping Yu, Chunting Zhou, Timo Schick, Omer Levy, Luke Zettlemoyer, Jason Weston, and
 672 Mike Lewis. Self-alignment with instruction backtranslation. *arXiv preprint arXiv:2308.06259*,
 2023a.

673 Yunshui Li, Binyuan Hui, Xiaobo Xia, Jiaxi Yang, Min Yang, Lei Zhang, Shuzheng Si, Ling-Hao
 674 Chen, Junhao Liu, Tongliang Liu, et al. One-shot learning as instruction data prospector for large
 675 language models. *arXiv preprint arXiv:2312.10302*, 2023b.

676 Bill Yuchen Lin, Wangchunshu Zhou, Ming Shen, Pei Zhou, Chandra Bhagavatula, Yejin Choi, and
 677 Xiang Ren. CommonGen: A constrained text generation challenge for generative commonsense
 678 reasoning. *arXiv preprint arXiv:1911.03705*, 2019.

679 Shayne Longpre, Le Hou, Tu Vu, Albert Webson, Hyung Won Chung, Yi Tay, Denny Zhou, Quoc V
 680 Le, Barret Zoph, Jason Wei, et al. The flan collection: Designing data and methods for effective
 681 instruction tuning. In *International Conference on Machine Learning*, pp. 22631–22648. PMLR,
 682 2023.

683 Haipeng Luo, Qingfeng Sun, Can Xu, Pu Zhao, Jianguang Lou, Chongyang Tao, Xiubo Geng,
 684 Qingwei Lin, Shifeng Chen, and Dongmei Zhang. Wizardmath: Empowering mathematical
 685 reasoning for large language models via reinforced evol-instruct. *arXiv preprint arXiv:2308.09583*,
 686 2023.

687 Max Marion, Ahmet Üstün, Luiza Pozzobon, Alex Wang, Marzieh Fadaee, and Sara Hooker.
 688 When less is more: Investigating data pruning for pretraining llms at scale. *arXiv preprint
 689 arXiv:2309.04564*, 2023.

690 Niklas Muennighoff, Thomas Wang, Lintang Sutawika, Adam Roberts, Stella Biderman, Teven Le
 691 Scao, M Saiful Bari, Sheng Shen, Zheng-Xin Yong, Hailey Schoelkopf, et al. Crosslingual
 692 generalization through multitask finetuning. *arXiv preprint arXiv:2211.01786*, 2022.

702 Jerzy Neyman. On the two different aspects of the representative method: the method of stratified
 703 sampling and the method of purposive selection. In *Breakthroughs in statistics: Methodology and*
 704 *distribution*, pp. 123–150. Springer, 1992.

705

706 Xinzhe Ni, Yeyun Gong, Zhibin Gou, Yelong Shen, Yujiu Yang, Nan Duan, and Weizhu Chen. Explor-
 707 ing the mystery of influential data for mathematical reasoning. *arXiv preprint arXiv:2404.01067*,
 708 2024.

709

710 Eirini Ntoutsi, Pavlos Fafalios, Ujwal Gadiraju, Vasileios Iosifidis, Wolfgang Nejdl, Maria-Ester
 711 Vidal, Salvatore Ruggieri, Franco Turini, Symeon Papadopoulos, Emmanouil Krasanakis, et al.
 712 Bias in data-driven artificial intelligence systems—an introductory survey. *Wiley Interdisciplinary*
 713 *Reviews: Data Mining and Knowledge Discovery*, 10(3):e1356, 2020.

714

715 Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida, Carroll Wainwright, Pamela Mishkin, Chong
 716 Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, et al. Training language models to follow
 717 instructions with human feedback. *Advances in neural information processing systems*, 35:27730–
 718 27744, 2022.

719

720 Christopher R Palmer and Christos Faloutsos. Density biased sampling: An improved method for
 721 data mining and clustering. In *Proceedings of the 2000 ACM SIGMOD international conference*
 722 *on Management of data*, pp. 82–92, 2000.

723

724 Guilherme Penedo, Quentin Malartic, Daniel Hesslow, Ruxandra Cojocaru, Alessandro Cappelli,
 725 Hamza Alobeidli, Baptiste Pannier, Ebtesam Almazrouei, and Julien Launay. The refinedweb
 726 dataset for falcon llm: outperforming curated corpora with web data, and web data only. *arXiv*
 727 *preprint arXiv:2306.01116*, 2023.

728

729 Jeffrey Pennington, Richard Socher, and Christopher D Manning. Glove: Global vectors for word
 730 representation. In *Proceedings of the 2014 conference on empirical methods in natural language*
 731 *processing (EMNLP)*, pp. 1532–1543, 2014.

732

733 Shanghaoran Quan, Jiaxi Yang, Bowen Yu, Bo Zheng, Dayiheng Liu, An Yang, Xuancheng Ren,
 734 Bofei Gao, Yibo Miao, Yunlong Feng, et al. Codeelo: Benchmarking competition-level code
 735 generation of llms with human-comparable elo ratings. *arXiv preprint arXiv:2501.01257*, 2025.

736

737 Erich Schubert, Jörg Sander, Martin Ester, Hans Peter Kriegel, and Xiaowei Xu. Dbscan revisited,
 738 revisited: why and how you should (still) use dbscan. *ACM Transactions on Database Systems*
 739 (*TODS*), 42(3):1–21, 2017.

740

741 Abigail See, Peter J Liu, and Christopher D Manning. Get to the point: Summarization with
 742 pointer-generator networks. *arXiv preprint arXiv:1704.04368*, 2017.

743

744 Vedant Shah, Dingli Yu, Kaifeng Lyu, Simon Park, Jiatong Yu, Yinghui He, Nan Rosemary Ke,
 745 Michael Mozer, Yoshua Bengio, Sanjeev Arora, et al. Ai-assisted generation of difficult math
 746 questions. *arXiv preprint arXiv:2407.21009*, 2024.

747

748 Ketan Rajshekhar Shahapure and Charles Nicholas. Cluster quality analysis using silhouette score.
 749 In *2020 IEEE 7th international conference on data science and advanced analytics (DSAA)*, pp.
 750 747–748. IEEE, 2020.

751

752 Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu, Junxiao Song, Mingchuan Zhang, YK Li, Yu Wu,
 753 and Daya Guo. Deepseekmath: Pushing the limits of mathematical reasoning in open language
 754 models. *arXiv preprint arXiv:2402.03300*, 2024.

755

756 Luca Soldaini, Rodney Kinney, Akshita Bhagia, Dustin Schwenk, David Atkinson, Russell Author,
 757 Ben Bogin, Khyathi Chandu, Jennifer Dumas, Yanai Lazar, et al. Dolma: An open corpus of three
 758 trillion tokens for language model pretraining research. *arXiv preprint arXiv:2402.00159*, 2024.

759

760 Zhiqing Sun, Yikang Shen, Qinhong Zhou, Hongxin Zhang, Zhenfang Chen, David Cox, Yiming
 761 Yang, and Chuang Gan. Principle-driven self-alignment of language models from scratch with
 762 minimal human supervision. *Advances in Neural Information Processing Systems*, 36, 2024.

756 Muhammad Ali Syakur, B Khusnul Khotimah, EMS Rochman, and Budi Dwi Satoto. Integration
 757 k-means clustering method and elbow method for identification of the best customer profile cluster.
 758 In *IOP conference series: materials science and engineering*, volume 336, pp. 012017. IOP
 759 Publishing, 2018.

760 Rohan Taori, Ishaan Gulrajani, Tianyi Zhang, Yann Dubois, Xuechen Li, Carlos Guestrin, Percy
 761 Liang, and Tatsunori B Hashimoto. Stanford alpaca: An instruction-following llama model, 2023.

763 Joannes Vermorel and Mehryar Mohri. Multi-armed bandit algorithms and empirical evaluation. In
 764 *European conference on machine learning*, pp. 437–448. Springer, 2005.

766 Cédric Villani et al. *Optimal transport: old and new*, volume 338. Springer, 2009.

768 Haoyu Wang, Guozheng Ma, Ziqiao Meng, Zeyu Qin, Li Shen, Zhong Zhang, Bingzhe Wu, Liu
 769 Liu, Yatao Bian, Tingyang Xu, et al. Step-on-feet tuning: Scaling self-alignment of llms via
 770 bootstrapping. *arXiv preprint arXiv:2402.07610*, 2024a.

771 Jiahao Wang, Bolin Zhang, Qianlong Du, Jiajun Zhang, and Dianhui Chu. A survey on data selection
 772 for llm instruction tuning. *arXiv preprint arXiv:2402.05123*, 2024b.

774 Yidong Wang, Zhuohao Yu, Zhengran Zeng, Linyi Yang, Cunxiang Wang, Hao Chen, Chaoya Jiang,
 775 Rui Xie, Jindong Wang, Xing Xie, et al. Pandalm: An automatic evaluation benchmark for llm
 776 instruction tuning optimization. *arXiv preprint arXiv:2306.05087*, 2023a.

777 Yizhong Wang, Yeganeh Kordi, Swaroop Mishra, Alisa Liu, Noah A Smith, Daniel Khashabi, and
 778 Hannaneh Hajishirzi. Self-instruct: Aligning language models with self-generated instructions.
 779 *arXiv preprint arXiv:2212.10560*, 2022.

781 Yizhong Wang, Hamish Ivison, Pradeep Dasigi, Jack Hessel, Tushar Khot, Khyathi Chandu, David
 782 Wadden, Kelsey MacMillan, Noah A Smith, Iz Beltagy, et al. How far can camels go? exploring
 783 the state of instruction tuning on open resources. *Advances in Neural Information Processing
 784 Systems*, 36:74764–74786, 2023b.

785 Alexander Wettig, Aatmik Gupta, Saumya Malik, and Danqi Chen. Qurating: Selecting high-quality
 786 data for training language models. *arXiv preprint arXiv:2402.09739*, 2024.

787 John Wieting and Kevin Gimpel. Paranmt-50m: Pushing the limits of paraphrastic sentence embed-
 788 dings with millions of machine translations. *arXiv preprint arXiv:1711.05732*, 2017.

790 Mengzhou Xia, Sadhika Malladi, Suchin Gururangan, Sanjeev Arora, and Danqi Chen. Less:
 791 Selecting influential data for targeted instruction tuning. In *Forty-first International Conference on
 792 Machine Learning*, 2024.

794 Sang Michael Xie, Shibani Santurkar, Tengyu Ma, and Percy S Liang. Data selection for language
 795 models via importance resampling. *Advances in Neural Information Processing Systems*, 36:
 796 34201–34227, 2023.

797 Can Xu, Qingfeng Sun, Kai Zheng, Xiubo Geng, Pu Zhao, Jiazhan Feng, Chongyang Tao, and Dixin
 798 Jiang. Wizardlm: Empowering large language models to follow complex instructions. *arXiv
 799 preprint arXiv:2304.12244*, 2023.

801 Zhangchen Xu, Fengqing Jiang, Luyao Niu, Yuntian Deng, Radha Poovendran, Yejin Choi, and
 802 Bill Yuchen Lin. Magpie: Alignment data synthesis from scratch by prompting aligned llms with
 803 nothing. *arXiv preprint arXiv:2406.08464*, 2024.

804 An Yang, Beichen Zhang, Binyuan Hui, Bofei Gao, Bowen Yu, Chengpeng Li, Dayiheng Liu, Jian-
 805 hong Tu, Jingren Zhou, Junyang Lin, et al. Qwen2. 5-math technical report: Toward mathematical
 806 expert model via self-improvement. *arXiv preprint arXiv:2409.12122*, 2024a.

808 Zhaorui Yang, Tianyu Pang, Haozhe Feng, Han Wang, Wei Chen, Minfeng Zhu, and Qian
 809 Liu. Self-distillation bridges distribution gap in language model fine-tuning. *arXiv preprint
 810 arXiv:2402.13669*, 2024b.

810 Kang Min Yoo, Dongju Park, Jaewook Kang, Sang-Woo Lee, and Woomyeong Park. Gpt3mix:
 811 Leveraging large-scale language models for text augmentation. *arXiv preprint arXiv:2104.08826*,
 812 2021.

813
 814 Longhui Yu, Weisen Jiang, Han Shi, Jincheng Yu, Zhengying Liu, Yu Zhang, James T Kwok, Zhenguo
 815 Li, Adrian Weller, and Weiyang Liu. Metamath: Bootstrap your own mathematical questions for
 816 large language models. *arXiv preprint arXiv:2309.12284*, 2023.

817 Yue Yu, Yuchen Zhuang, Jieyu Zhang, Yu Meng, Alexander J Ratner, Ranjay Krishna, Jiaming Shen,
 818 and Chao Zhang. Large language model as attributed training data generator: A tale of diversity
 819 and bias. *Advances in Neural Information Processing Systems*, 36, 2024a.

820 Zichun Yu, Spandan Das, and Chenyan Xiong. Mates: Model-aware data selection for efficient
 821 pretraining with data influence models. *arXiv preprint arXiv:2406.06046*, 2024b.

822 Xiang Yue, Tuney Zheng, Ge Zhang, and Wenhui Chen. Mammoth2: Scaling instructions from the
 823 web. *arXiv preprint arXiv:2405.03548*, 2024.

824 Shengyu Zhang, Linfeng Dong, Xiaoya Li, Sen Zhang, Xiaofei Sun, Shuhe Wang, Jiwei Li, Runyi
 825 Hu, Tianwei Zhang, Fei Wu, et al. Instruction tuning for large language models: A survey. *arXiv
 826 preprint arXiv:2308.10792*, 2023.

827 Tian Zhang, Raghu Ramakrishnan, and Miron Livny. Birch: an efficient data clustering method for
 828 very large databases. *ACM sigmod record*, 25(2):103–114, 1996.

829 Xuanyu Zhang and Qing Yang. Self-qa: Unsupervised knowledge guided language model alignment.
 830 *arXiv preprint arXiv:2305.11952*, 2023.

831 Yifan Zhang and Team Math-AI. American invitational mathematics examination (aime) 2024, 2024.

832 Yifan Zhang and Team Math-AI. American invitational mathematics examination (aime) 2025, 2025.

833 Yifan Zhang, Yifan Luo, Yang Yuan, and Andrew Chi-Chih Yao. Automathtext: Autonomous data
 834 selection with language models for mathematical texts. *arXiv preprint arXiv:2402.07625*, 2024.

835 Chunting Zhou, Pengfei Liu, Puxin Xu, Srinivasan Iyer, Jiao Sun, Yuning Mao, Xuezhe Ma, Avia
 836 Efrat, Ping Yu, Lili Yu, et al. Lima: Less is more for alignment. *Advances in Neural Information
 837 Processing Systems*, 36, 2024.

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864 A THE USE OF LARGE LANGUAGE MODELS (LLMs)
865866 In the preparation of this work, we used LLM as auxiliary tools in a limited capacity. Specifically,
867 LLMs assisted in drafting portions of the code and in refining the wording of certain sentences
868 for clarity and readability. All technical content, including the design of algorithms, experimental
869 methodology, analysis, and interpretations, was independently developed by the authors. The use
870 of LLMs was confined to language refinement and coding suggestions, and did not influence the
871 scientific contributions or results reported in this paper.
872873 B LIMITATIONS
874875 Although EQUAL incorporates filtering mechanisms to mitigate some biases, the underlying web
876 corpus may still contain culturally skewed content, which can subtly or unpredictably influence the
877 model's behavior. Specifically, given the vast scale of web-crawled data, it is inevitable that some
878 documents may contain content that is inconsistent with human values (e.g., promoting anti-human
879 or extremist ideologies). Since the focus of our research lies in data selection for targeted capabilities
880 improvement, rather than to detect or filter data with inappropriate or biased content, we did not
881 include strict mechanisms to identify or remove such content, as this falls beyond the scope of
882 our study. Nevertheless, we fully acknowledge the importance of ethical data usage. We therefore
883 recommend that practitioners applying our method first ensure that their candidate data pool has
884 been screened for harmful or culturally biased content (e.g., using bias-detection models such as
885 bert-hateXplain), in order to prevent potential misuse of our approach.
886887 C BROADER IMPACT
888889 EQUAL mitigates the bias introduced by over-reliance on synthetic or domain-specific data by sourcing
890 instruction tuning data from a broad and diverse web corpus. Its scalable and cost-efficient extraction
891 framework democratizes access to high-quality instruction tuning, enabling researchers with limited
892 resources to fine-tune large language models effectively. Moreover, the enhanced generalization of
893 models trained with EQUAL contributes to improved performance in socially impactful domains such
894 as education, healthcare, and public services.
895896 D ABLATION STUDY OF CLUSTERING NUMBERS AND ALGORITHM
897898 [Metric and Criteria.] We use the metric Within-Cluster Sum of Squares (WCSS) to select the best
899 cluster number using the well-known Elbow (Syakur et al., 2018) algorithm. WCSS is the sum of
900 squared distances between each data instance and its cluster center, i.e., $WCSS = \sum_{i=1}^k \sum_{x \in C_i} \|x - \mu_i\|^2$.
901 At a high level, the criteria should be that within each cluster, data instances are close to each
902 other, based on which it is better for different cluster centers to be far away from each other. Based
903 on the criteria, the Elbow algorithm leverages the WCSS as a measurement to iteratively select an
904 appropriate cluster number, as follows.
905906 [Specific hyperparameter selection strategy.] To be specific, Elbow begins with a small k , and with k
907 increasing, WCSS first decreases rapidly and then slows down. Then, we identify the "elbow point"
908 where the decreasing rate becomes slow as the best k . Thus, within each cluster, data points are
909 sufficiently close to one another. Furthermore, given that k remains modest, different cluster centers
910 tend to maintain a distance from each other.
911912 *Clustering algorithms.* In terms of the clustering algorithms, we also added experiments to show that
913 EQUAL is not sensitive to clustering algorithms mainly because different algorithms have their own
914 strategies to select appropriate parameters, which follows the criteria mentioned above.
915916 Specifically, we evaluate the performance of several typical clustering methods including
917 BIRCH (Zhang et al., 1996) and DBSCAN (Ester et al., 1996). Considering that the clustering
918 results are easily affected by the parameters of clustering algorithms, we use different methods
919 to select proper parameters. For DBSCAN, there are 2 key parameters: (1) eps (the radius of a
920 neighborhood w.r.t. some data points) and (2) $minPts$ (a data point is considered as a core point if at
921 least $minPts$ data points are within eps of it). They can be set using the method in (Schubert et al.,
922

918 2017). For BIRCH (Zhang et al., 1996), we can use the Elbow (Syakur et al., 2018) algorithm or
 919 Silhouette score (Shahapure & Nicholas, 2020) to determine the appropriate number of components.
 920

921 E RESTATING THE IMPORTANCE OF OUR PROBLEM SETTING

922 In this paper, we focus on instruction tuning, also known as supervised fine-tuning (SFT). This phase
 923 differs fundamentally from pre-training, whose objective is to build an unaligned foundation model.
 924 In contrast, instruction tuning aims to adapt a base LLM to specific domains or user needs, thereby
 925 enabling better performance on specialized downstream tasks (Wang et al., 2024b; 2023a; Zhang
 926 et al., 2023).
 927

928 Consequently, many studies on data selection for SFT (Li et al., 2023b; Xia et al., 2024; Ni et al., 2024)
 929 emphasize selecting domain-relevant data from a candidate pool with reference to a downstream
 930 task. This is because fine-tuning LLMs without careful data selection—for instance, using QA pairs
 931 extracted indiscriminately from all documents in the candidate set—can impede the model’s ability to
 932 acquire specialized capabilities. Empirical results from prior works (Kim et al., 2023; Muennighoff
 933 et al., 2022; Wang et al., 2023b) demonstrate that LLMs fine-tuned on targeted subsets of data
 934 outperform those trained on the full SFT dataset, underscoring the importance of relevance-aware
 935 data selection.
 936

937 F FLOPs CALCULATION

938 FLOPs is the number of floating point operations performed by GPUs. Many state-of-the-art methods
 939 [1,2,3] use it to measure the consumption of GPU computing resources. In our experiments, FLOPs
 940 is collected directly in the data selection process using the Python code:
 941

```
942 import torch
943 import torch.nn as nn
944 from torch.profiler import profile, ProfilerActivity
945
946 model = nn.Linear(1024, 512).cuda()
947 input_data = torch.randn(128, 1024).cuda()
948 with profile(activities=[ProfilerActivity.CPU,
949 ProfilerActivity.CUDA],
950 with_flops=True) as prof:
951     model(input_data)
952 print(prof.key_averages().table(sort_by="flops", row_limit=10))
```

953 G LENGTH OF SELECTED DATA

954 Table 7: The average length of extracted QA pairs with different methods (*i.e.*, Influence,
 955 Perplexity and EQUAL (Ours))

Length	Random	Influence	Perplexity	EQUAL(Ours)
Prompt	48.99	37.86	49.58	58.38
Output	470.05	222.94	1235.90	438.69
Total	519.04	260.80	1285.48	497.07

956 For synthesized QA pair data, recent research (Wang et al., 2022) has shown that having diverse
 957 lengths is more beneficial. Short synthesized SFT data may degrade performance due to lacking
 958 sufficient context (Taori et al., 2023), while excessively long data can introduce irrelevant content,
 959 diminishing the learning signal (Arora et al., 2016).
 960

961 H DETAILED EXPLANATION FOR OPTIMAL TRANSPORT

962 Optimal transport (OT) is a widely used metric to measure the distribution similarity of semantic
 963 vectors in NLP problems (Wang et al., 2022; Chen et al., 2019), which is particularly effective when
 964

972 the support regions of different distributions have relatively large deviations. In our scenario, the
 973 support regions(*i.e.*, possible values of the semantic vector) of extracted QA pairs and the target
 974 application often diverge due to varying data sources. Thus, traditional divergences, such as KL
 975 divergence, are unsuitable because they tends to approach infinity in this situation (Bhardwaj et al.,
 976 2021).

977 Also, in EQUAL, OT computation incurs far less cost than QA pair extraction, which dominates the
 978 expense of the entire pipeline. This is mainly because extracting QA pairs requires running multiple
 979 LLM inferences (e.g., with Qwen2.5-72B) for each document.

Step	FLOPs
Clustering	2.31
Extracting 5% QA pairs for warm-up	6.94
Fine-tuning the contrastive learning model	0.41
OT calculation	0.06
Extracting 5% QA pairs	6.94
Fine-tuning the LLM on 5% QA pairs	1.89
Total	18.55

989 Besides, although computing the OT incurs some overhead, it could be negligible compared to the
 990 substantial cost savings from avoiding millions of LLM calls. Our experiments (Table 1, Section 4.2)
 991 show that EQUAL outperforms baselines while reducing QA extraction documents by 5 to 10 times.
 992

993 I ENLARGE THE MODEL SIZE

996 In this section, we enlarged the model sizes from 7B/8B to 20B. As shown in the Table 8, we observe
 997 that EQUAL still performs better than other baselines on accuracy because we select high-quality data
 998 considering the distribution similarity as a whole. Moreover, EQUAL has good scalability compared
 999 with other baselines because we use the MAB framework to quickly identify the data instances that
 1000 are beneficial to the downstream tasks.

1001 Table 8: Enlarge model size and more downstream tasks

Method	GSM8K	MATH	FLOPs	HUMANEVAL	MBPP	FLOPs	MMLU	BBH	FLOPs
Base	76.16	25.56	–	49.6	63.0	–	67.1	70.3	–
Random	77.33	27.61	11.23	59.7	63.8	9.67	68.7	71.3	17.65
Avg-sim	77.97	28.33	121.25	61.4	63.0	67.73	67.6	70.4	231.02
Perplexity	76.65	31.16	156.70	62.5	63.8	73.25	68.3	72.0	302.51
Influence	76.38	29.67	511.96	62.2	64.6	373.51	70.3	73.8	976.96
Rewriting	77.51	30.55	21.38	63.3	64.7	16.96	69.7	73.3	28.10
Perp.-mab	77.76	31.90	21.35	63.2	63.7	17.01	69.1	72.2	28.23
Infl.-mab	76.70	30.73	32.76	64.7	64.1	28.46	70.6	73.7	46.53
EQUAL	80.38	33.78	21.03	67.3	66.7	16.65	73.1	76.3	27.46

1014 J STATISTICAL SIGNIFICANCE

1016 In this section, we show the statistical significance of our EQUAL in Table 9.

1019 K IMPACT AND OPTIMIZATION STRATEGIES OF EMBEDDING MODELS ON QA 1020 ALIGNMENT QUALITY

1022 In EQUAL, the quality of alignment between documents and QA pairs could be influenced by
 1023 the embedding model used. Currently, there have been some pretrained embedding models (e.g.,
 1024 jinaai/jina-embeddings-v3, BAAI/bge-large-en-v1.5, OpenAI embeddings and we use BAAI/bge-
 1025 large-en-v1.5) that demonstrate strong performance across multiple domains. Recent studies show
 that even in specialized fields such as mathematics and programming, the model’s ability to capture

1026

1027

1028

1029

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

1041

1042

1043

1044

1045

1046

1047

1048

1049

1050

1051

1052

1053

1054

1055

1056

1057

1058

1059

1060

1061

1062

1063

1064

1065

1066

1067

1068

1069

1070

1071

1072

1073

1074

1075

1076

1077

1078

1079

Table 9: Statistical Significance.

Methods	Exp-1	Exp-2	Exp-3	Avg ± std
Random	68.76	68.83	69.17	68.92 (0.22)
Avg-sim	70.08	70.24	70.73	70.35 (0.34)
Perplexity	63.98	64.97	64.61	64.52 (0.50)
Influence	65.33	65.25	65.02	65.20 (0.16)
Rewriting	64.38	64.56	64.49	64.47 (0.09)
Perplexity-MAB	65.19	65.35	65.30	65.28 (0.08)
Influence-MAB	68.49	67.68	67.17	67.78 (0.67)
EQUAL (ours)	72.51	72.70	73.78	73.01 (0.69)

general semantics is effective enough to obtain good performance. Furthermore, in EQUAL, to improve the embedding model in specific domains, we fine-tune the embeddings on domain-specific QA pairs through the contrastive learning component. This lightweight fine-tuning can significantly enhance representation quality without introducing substantial computational overhead. Although embedding computation does incur some cost, this step is performed offline in our pipeline, allowing the computational burden to be amortized across the entire dataset. In our experiments, this cost is well justified by the downstream performance gains achieved through improved clustering. Overall, while the embedding model plays a critical role, we find its practical impact on clustering quality to be manageable, and the resulting improvements in QA alignment more than justify the associated computational expense.

L SAMPLING STRATEGY

In this section, we analyze the impact of different document sampling strategies on downstream performance. In the main text, we primarily adopted Random Sampling as the default strategy for extracting documents from the selected cluster. To thoroughly evaluate the robustness of EQUAL, we have conducted additional experiments to evaluate the following three more sophisticated sampling strategies:

Stratified Sampling (Neyman, 1992): Within this strategy, the selected cluster is further partitioned into multiple groups based on their embeddings. Then, a fixed number of samples are drawn from each group, which enables the model to learn from a more comprehensive distribution.

Density Sampling (Palmer & Faloutsos, 2000): We prioritize documents located in high-density regions of the cluster, which is achieved by calculating the local density of each document (e.g., the inverse of k -nearest neighbor distance), with the goal of obtaining the most "typical" documents within the cluster.

Diversity Sampling (Carbonell & Goldstein, 1998): Within the selected cluster, we use Maximum Marginal Relevance (MMR) to prioritize documents with the greatest dissimilarity to each other. This strategy aims to maximize the internal diversity of a single cluster.

Methods	GSM8K Accuracy	HUMANEVAL Accuracy
Random	68.7%	75.2%
Stratified	68.9%	75.5%
Density	69.4%	75.7%
Diversity	69.1%	75.3%

The experimental results show that Stratified Sampling, Density Sampling and Diversity Sampling achieve slightly higher downstream performance compared to Random Sampling. This suggests that selecting more representative or central documents within a high-quality cluster, as identified by the MAB framework, can marginally improve the efficacy of the extracted data.

However, the performance gain is relatively modest. We attribute this to the inherent nature of our clustering process. After our contrastive learning warm-up step, documents within the same cluster are already highly similar in terms of their potential to generate QA pairs aligned with the target

1080 distribution. The clustering step effectively groups documents with homogeneous characteristics,
 1081 meaning that the variance of QA pair quality within a single cluster is relatively low. This finding
 1082 reinforces the importance of our two-stage approach: first, using clustering to create homogeneous
 1083 groups, and second, using MAB to perform a high-level, cluster-wise exploration-exploitation trade-
 1084 off.

1085

1086 M OPEN-ENDED TASKS

1087

1088 To demonstrate the generalizability of EQUAL, we conducted an additional experiment on multiple
 1089 open-ended tasks.

1090

1091 Specifically, we first sampled 500,000 web documents from the KnowledgePile dataset (a well used
 1092 dataset for general knowledge), forming a heterogeneous and broad candidate data pool D_c . Then, we
 1093 conduct our experiments on Mistral-7B. To better simulate a multi-task instruction tuning scenario,
 1094 we construct a mixed reference set D_r for EQUAL’s selection, combining several publicly available
 1095 instruction tuning datasets:

1096

- **Summarization:** Summarization task instructions selected from AlpacaFarm (Dubois et al., 2023).
- **Rewriting:** Text rewriting and style transfer task instructions selected from Unnatural Instructions (Honovich et al., 2022).
- **Brainstorming:** Brainstorming and ideation task instructions selected from the “brainstorming” and “ideation” categories of FlanV2 (Longpre et al., 2023).

1103

1104 For evaluation, we use AlpacaEval (Dubois et al., 2024), a GPT-4-based benchmark for assessing
 1105 a model’s performance on open-ended instruction following tasks (e.g., summarization, rewriting,
 1106 creative writing) and the primary evaluation metric is the model’s win rate (Dubois et al., 2024)
 1107 against the baseline (i.e., the original Mistral-7B base model), as judged by GPT-4 based on response
 1108 quality.

1109

Methods/Win rate(%)	Summarization	Rewriting	Brainstorming	Average
Random	70.9	70.9	54.7	65.5
Avg-sim	73.5	71.2	56.3	67.0
Perplexity	75.1	73.3	57.6	68.7
Influence	74.0	73.5	57.4	68.3
LLM-scoring	76.2	74.0	58.3	69.5
Rewriting	75.5	74.2	57.9	69.2
Perplexity-MAB	73.5	73.1	56.5	67.7
Influence-MAB	72.0	71.8	55.7	66.5
EQUAL	78.1	77.1	60.5	71.9

1110

1111 The results clearly indicate that the EQUAL method is particularly effective for open-ended tasks and
 1112 substantially improves the target model’s capability to manage multiple tasks concurrently. Specifi-
 1113 cally, the model fine-tuned with EQUAL achieved an average win rate of 71.9% on AlpacaEval,
 1114 significantly outperforming the random selection baseline (+6.4%) and the Perplexity-MAB baseline
 1115 (+4.2%). This provides strong evidence that EQUAL can effectively identify the most valuable content
 1116 from a large document pool to simultaneously enhance multiple open-ended task capabilities.

1117

1118 Specifically, in these experiments, we focus on open-ended tasks—such as summarization, rewriting,
 1119 and brainstorming, which lack clearly defined ground-truth answers. To address the challenge of
 1120 evaluating such tasks, we follow the approach proposed in AlpacaEval, which leverages powerful
 1121 large language models (LLMs) to assess generated responses without relying on reference outputs.
 1122 Specifically, both our fine-tuned model and a baseline model (i.e., the original base model used
 1123 in our experiments) are prompted with the same open-ended questions. A high-performing LLM
 1124 (e.g., GPT-4) is then used to compare their responses and determine which one is better. Following
 1125 AlpacaEval, we report the win rate of our model over the baseline across all open-ended questions
 1126 as our primary accuracy metric. Importantly, the default evaluation dataset in AlpacaEval does not
 1127 cover the tasks of summarization, rewriting, or brainstorming. Therefore, we used (See et al., 2017;

Wieting & Gimpel, 2017; Lin et al., 2019) as the evaluation datasets for these three tasks, respectively, in our experiments.

N DIVERSITY ANALYSIS

In this section, we directly assess diversity to further validate the effectiveness of EQUAL. Specifically, we measure the lexical diversity and semantic diversity among the extracted QA pairs.

1. Lexical Diversity: We compute Type-Token Ratio (TTR) and Measure of Textual Lexical Diversity (MTLD) over the QA pairs extracted by each method. As shown in the table below, EQUAL achieves the highest TTR and MTLD scores, indicating richer vocabulary usage in the extracted QA pairs.

Methods	TTR	MTLD
Random	55%	62.0%
Perplexity	46%	53.3%
Influence	42%	49.1%
EQUAL	52%	61.7%

2. Semantic Diversity: We compute the average pairwise semantic similarity among embeddings (using BAAI/bge-en-v1.5) within the final extracted dataset. Lower average similarity indicates higher semantic diversity. The results in the table below indicate that the QA pairs extracted by EQUAL exhibit greater semantic diversity.

Methods	Cosine Similarity
Random	50%
Perplexity	56%
Influence	59%
EQUAL	51%

These results demonstrate that EQUAL constructs a more lexically and semantically diverse instruction dataset.

O COMPARE WITH OTHER DATASETS

To directly evaluate the quality of data constructed by EQUAL, we compare it against four leading math-focused instruction-tuning datasets — MathInstruct[1], MetaMathQA[2], XwinMath[3], and OpenMathInstruct[4] — using full fine-tuning on LLaMA-3-8B under identical settings. As shown in the table below, EQUAL achieves the highest accuracy on both the GSM8K and MATH benchmarks, while maintaining comparable FLOPs to other methods, demonstrating its effectiveness. Specifically, all the four baselines use LLM to rewrite and augment the QA seed data, but limited data diversity leads to their inferior performance compared to EQUAL.

- [1] Mammoth: Building math generalist models through hybrid instruction tuning
- [2] Metamath: Bootstrap your own mathematical questions for large language models
- [3] Common 7b language models already possess strong math capabilities
- [4] Openmathinstruct-1: A 1.8 million math instruction tuning dataset

Methods	GSM8K	MATH	FLOPs
MathInstruct	67.30%	31.33%	18.25
MetaMathQA	69.23%	33.02%	17.76
XwinMath	69.72%	33.79%	17.97
OpenMathInstruct	70.03%	33.53%	18.31
EQUAL	73.01%	35.10%	18.55

1188 **P REFERENCE DATA SIZE**

1190 Intuitively, more reference data leads to more accurate estimation of the target distribution. However,
 1191 in this section, we would like to clarify that as long as the reference data roughly capture the
 1192 distribution, EQUAL can perform effectively in practice. This is consistent with the results reported
 1193 in other papers on this issue — (Xia et al., 2024; Li et al., 2023b; Wang et al., 2023b) all perform
 1194 well using only dozens of validation examples. To further validate this, we conducted an additional
 1195 experiment on the math task using full fine-tuning of LLaMA-3-8B by varying the size of the
 1196 reference set. The results are summarized in the table below:

#-Reference data	20	50	100	500	1000	1500
Accuracy	73.01%	73.08%	73.15%	73.21%	73.27%	73.33%

1201 As shown in the table, the performance of EQUAL improves consistently with the increase in the
 1202 number of examples in the reference set. Note that EQUAL achieves good results with just 20
 1203 reference examples, reaching an accuracy of 73.01%—nearly matching the 73.33% obtained with
 1204 1500 examples. Furthermore, we also extended our analysis to more complex and diverse benchmarks
 1205 such as MATH. The results show that, for more challenging dataset, the OT-based distance estimation
 1206 indeed requires 150 reference samples to reach stable and effective performance. In practice, such
 1207 reference sets are often readily available (e.g., training set in benchmark tasks), making our method
 1208 broadly applicable.

#-Reference data	20	50	75	150	500	1000	1500
Accuracy	34.37%	35.10%	35.76%	36.11%	36.19%	36.23%	36.40%

1213 **Q PERFORMANCE ON MORE DIFFICULT TASKS**

1215 In this section, we evaluate the effectiveness of EQUAL on the more challenging math benchmarks
 1216 AIME2024 and OLYMPIABENCHMATH, as well as the code benchmarks HUMANEVAL+ and LCB.
 1217 The results are presented below:

Methods	AIME2024	OLYMPIABENCHMATH	HUMANEVAL+	LCB
Llama-3-8B	1.1%	3.7%	31.1%	3.6%
Llama-3-8B-Instruct	8.3%	14.4%	60.4%	9.7%
EQUAL	10.1%	17.3%	61.8%	10.4%

1224 **R BASELINE IMPLEMENTATION DETAILS**

1226 In our paper, the perplexity scores are computed using an off-the-shelf language model (i.e., our target
 1227 model) that has not been fine-tuned on the reference set. Here, we include perplexity scores computed
 1228 on a model fine-tuned with the reference set as an informative additional baselines. Specifically,
 1229 we introduced an improved baseline called perplexity-ref. In this approach, we first finetune
 1230 the perplexity model on the reference set D_r , enabling it to better capture the specific domain
 1231 characteristics of the downstream task. We then use this finetuned model to compute perplexity
 1232 scores for all QA pairs extracted from the candidate pool to further finetune the model.

1234 Experimental results show that perplexity-ref outperforms the standard perplexity
 1235 method. This is because the finetuned model is more aligned with the downstream task, making
 1236 the perplexity scores more indicative of the relevance of the data. However, perplexity-ref
 1237 does still not perform better than our proposed EQUAL, as it treats data points independently and fails
 1238 to capture the underlying relationships between them, which in turn leads to reduced data diversity.

1239 Besides, in our experiments, we used the same method as LESS (Xia et al., 2024) to calculate the
 1240 influence scores on our target model. The reference set and test set are consistent with that used in
 1241 our EQUAL method. The training set consists of QA pairs extracted from all documents, from which
 we select the top 5% with the highest influence function scores calculated against the reference set.

Methods	GSM8K	MATH	HUMANEVAL	MBPP
Perplexity	64.52%	33.56%	44.5%	50.5%
Perplexity-ref	69.10%	34.46%	47.6%	54.6%
EQUAL	73.01%	35.10%	49.4%	56.3%

S EXPERIMENTS ON QWEN MODEL

We conducted additional experiments using the Qwen2.5-7B model. The results in the table below show that our proposed method consistently improves performance on Qwen2.5-7B, demonstrating its strong generalization across different model architectures.

Methods	GSM8K	MATH	FLOPs	HUMANEVAL	MBPP	FLOPs
Random	86.1%	59.6%	8.51	66.7%	75.2%	6.73
Avg-sim	87.6%	65.2%	111.73	68.7%	75.9%	64.15
Perplexity	86.1%	66.7%	146.52	69.1%	76.1%	72.22
Influence	85.6%	61.0%	251.28	66.9%	75.3%	131.65
LLM-scoring	86.9%	67.1%	17.61	69.6%	76.4%	137.96
Rewriting	87.1%	61.3%	19.06	67.2%	75.2%	14.56
Perplexity-MAB	86.4%	67.0%	18.23	69.7%	76.6%	14.19
Influence-MAB	85.9%	61.6%	18.19	67.8%	75.5%	14.72
EQUAL	89.6%	71.3%	17.76	73.3%	78.0%	13.30

T COT DATA GERERATION.

In this section, we further consider an experimental setting where, for each document selected from the candidate pool, we extract its QA pair and distill a corresponding chain-of-thought (CoT) for that pair using a stronger teacher model. In this CoT distillation scenario, we apply our EQUAL and directly compare it against OpenThoughts and s1k as follows:

- 1) OpenThoughts: We first extract QA pairs from all candidate documents and employ QwQ-32B to generate chain-of-thought answers for each question, and then use the resulting data to train our target model.
- 2) s1K: We first extract QA pairs from all candidate documents and use QwQ-32B to generate chain-of-thought answers for them. Subsequently, we follow the s1K methodology to select a small subset of QA pairs by filtering for quality, difficulty, and diversity.
- 3) EQUAL: We employ a multi-armed bandit strategy to iteratively identify clusters that are most likely to yield high-quality CoT data points. We then restrict expensive QwQ-32B calls to the documents in these high-value clusters only to extract QA pairs and generate chain-of-thought answers for them.

Methods	AIME24	AIME25	LiveCodeBench	CodeElo	FLOPs
Random	33.1%	26.0%	23.2%	7.29%	50.65
s1k	40.7%	32.7%	26.7%	9.30%	197.87
OpenThoughts	40.1%	33.1%	26.1%	9.55%	238.20
EQUAL	42.7%	34.2%	27.6%	10.05%	65.17

As shown in the table above, aside from the heuristic method Random, EQUAL attains the best performance with the lowest computational cost (i.e., FLOPs), primarily because it performs document-level selection before QA extraction and CoT generation. Specifically, instead of extracting QA pairs from all documents, EQUAL treats document clusters as arms in a multi-armed bandit and iteratively selects the most promising ones for QA extraction and CoT generation. This exploration-exploitation scheme focuses extraction on clusters that yield larger gains on targeted capabilities, cutting LLM extraction cost while preserving or even improving final task performance.

1296 **U KEY DIFFERENCE BETWEEN EQUAL AND EXISTING METHODS**
12971298 In Existing methods, when an LLM is prompted with only a few seed examples, it tends to produce
1299 instructions that are locally similar to those seeds (i.e., few-shot examples), which limits diversity. In
1300 contrast, all QA pairs generated by EQUAL are extracted from a large, heterogeneous web corpus
1301 (AutoMathText, KnowledgePile, StackOverflow) that contains rich knowledge beyond the seeds.
1302 Thus, whereas existing methods literally “stay close” to the seed examples in input space, EQUAL
1303 selects real, naturally occurring QA pairs from an independent corpus and uses the seeds solely as a
1304 guidance signal.1305 Furthermore, EQUAL prevents the generated QA pairs from collapsing onto a few high-OT clusters
1306 by modeling document selection as a multi-armed bandit (MAB) strategy with an upper-confidence-
1307 bound (UCB) style exploration term. Clusters that have been sampled less often receive a larger bonus
1308 and are thus more likely to be selected. This explicitly promotes under-sampled clusters, encouraging
1309 us to explore new regions of the document space instead of repeatedly pulling only the highest-OT
1310 cluster, which further increases the diversity of the generated QA pairs.1311 Together, our method avoids generating QA pairs that are near-duplicates of the original seed examples
1312 by merely rewriting a small set of seed examples. Instead, we select naturally generated QA pairs
1313 from large, heterogeneous corpora whose distribution matches the target tasks.1315 **V PROMPTS FOR QA PAIR EXTRACTION**
13161317 In this section, we present the prompts we used for extraction tasks across different domains.
13181319 **V.1 CODING TASK**
1320

1321 Code

1323 SYSTEM:

1324 You are given a set of pre-processed documents, each of which may contain natural question-answer (Q-A) pairs.
1325 Your task is to identify and extract these pairs while ignoring unrelated content such as ads, markup, or boilerplate
1326 text.

1327 Input:

1328 Each document contains multiple sections of text. Some of these sections may have clear questions followed by
1329 answers, while others may be irrelevant (e.g., ads or noise).

1330 Output:

1331 Extract the Q-A pairs found within each document. A valid Q-A pair must consist of a clearly defined question
1332 and its corresponding answer. If no natural Q-A pair exists in the document, return void for that document. In the
1333 document, in order to describe the problem more clearly, the questioner usually attaches some useful information
1334 (e.g., code or explanation) to make it easier for others to better understand the problem. You need to extract this
1335 part of the content that needs to be complete as well.

1336 Here are some examples:

1337 # Example 1

1338 Content:

1339 Sorting lines date-wise and time-wise using Python from a `.txt` file. I have just written a Python code to extract
1340 data from around 700 text files into one file called `out_data.txt`. The contents of the `out_data.txt` file
look something like this:1341 `datetime ,V_1 ,V_2 ,V_3 ,V_4 ,V_5 ,V_6 ,V_7`
1342 `2013-03-17 18:01:48.372 ,100 ,884 ,776 ,009 ,6553 ,ffff ,987`
1343 `2013-03-17 18:02:03.828 ,876 ,632 ,887 ,008 ,5423 ,879 ,443`
1344 `2013-05-17 20:13:52.488 ,543 ,987 ,233 ,112 ,098 ,344 ,123`
1345 `2013-08-17 23:09:08.171 ,667 ,9887 ,9897 ,09876 ,0987 ,098 ,0987`
1346 `2013-01-17 35:06:04.172 ,267 ,987 ,6897 ,9876 ,1287 ,3498 ,2987`
1347 `...`1348 There are a total of 5,783,374 lines in the `out_data.txt` file, and each line (after the header) begins with the
1349 `datetime` value.

```

1350
1351 However, the problem I have is that the code I wrote extracts the data from each individual file and adds it to my
1352 out_data.txt file, but the lines are not in the order of date-time as you can see above. I was hoping to get my
1353 lines to be in date-time order because I need to plot this data. Any help will be highly appreciated !
1354 Here is my current code:
1355 import re # Regular expressions
1356 import glob # File management and reading
1357
1358 if __name__ == "__main__": # Opening for Python
1359     all_header = [] # List declaration
1360     all_values = [] # List declaration
1361     i = 0
1362     with open('out_data.txt', 'w') as of: # Output file
1363         for infile in glob.glob("/Users/name/Desktop/raw_data/*.txt"): # Input
1364             → file
1365             with open(infile) as fobj:
1366                 print(f"Processing file {infile}")
1367                 for line in fobj:
1368                     data = line.split() # Split each line into individual tokens
1369                     if len(data) == 2 and re.search(r'(\d+-\d+-\d+)', data[0]): #
1370                         → Regular expression to identify date and time
1371                         header = ['datetime'] # Column name datetime
1372                         values = [data[0] + " " + data[1]] # date+time as one
1373                         → value
1374                     else:
1375                         header = [d for d in data if data.index(d) % 2 == 0]
1376                         values = [d for d in data if data.index(d) % 2 != 0]
1377                         all_header.extend(header)
1378                         all_values.extend(values)
1379                         if not header:
1380                             if i == 0:
1381                                 of.write(', '.join(all_header))
1382                                 i += 1
1383                                 of.write("\n")
1384                                 of.write(', '.join(all_values))
1385                                 all_header = []
1386                                 all_values = []
1387                                 of.write("\n")
1388                                 of.write(', '.join(all_values))
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

```

EXPECTED RESULT

The expected result from the example data given above would be:

```

datetime ,V_1,V_2,V_3,V_4,V_5,V_6,V_7
2013-01-17 35:06:04.172,267,987,6897,9876,1287,3498,2987
2013-03-17 18:01:48.372,100,884,776,009,6553,ffff,987
2013-03-17 18:02:03.828,876,632,887,008,5423,879,443
2013-05-17 20:13:52.488,543,987,233,112,098,344,123
2013-08-17 23:09:08.171,667,9887,9897,09876,0987,098,0987

```

However, I could not figure out how to include the sort element in the code or if there is any other way to achieve this.

SOLUTION USING PANDAS

You can use pandas. A simple example would be as follows:

```

import pandas as pd
import glob

df_list = []
for infile in glob.glob("/Users/name/Desktop/raw_data/*.txt"):
    df_list.append(pd.read_csv(infile, parse_dates=['datetime']))
df = pd.concat(df_list).sort_values(by='datetime')
df.to_csv('out_data.txt', index=False)

```

```

1404
1405     SOLUTION USING CSV
1406
1407     An alternative method is:
1408
1409     import csv
1410
1411     with open("out_data.txt", "r") as f:
1412         reader = csv.reader(f, delimiter=",")
1413         header = next(reader)
1414         sortedlist = sorted(reader, key=lambda x: x[0])
1415
1416     with open("sorted.txt", "w") as f:
1417         writer = csv.writer(f, lineterminator="\n")
1418         writer.writerow(header)
1419         writer.writerows(sortedlist)

1420     SOLUTION USING BASH
1421
1422     As an alternative, you can also use Bash:
1423
1424     head -1 out_data.txt > sorted.txt
1425     tail +2 out_data.txt | sort -t , -k1 >> sorted.txt
1426
1427     Hope this helps.
1428
1429     Q:
1430
1431     I've just written a Python code to extract data from around 700 text files into one file called out_data.txt.
1432     The contents of the out_data.txt file look something like this:
1433
1434     datetime ,V_1 ,V_2 ,V_3 ,V_4 ,V_5 ,V_6 ,V_7
1435     2013-03-17 18:01:48.372 ,100 ,884 ,776 ,009 ,6553 ,ffff ,987
1436     2013-03-17 18:02:03.828 ,876 ,632 ,887 ,008 ,5423 ,879 ,443
1437     2013-05-17 20:13:52.488 ,543 ,987 ,233 ,112 ,098 ,344 ,123
1438     2013-08-17 23:09:08.171 ,667 ,9887 ,9897 ,09876 ,0987 ,098 ,0987
1439     2013-01-17 35:06:04.172 ,267 ,987 ,6897 ,9876 ,1287 ,3498 ,2987
1440     ...
1441
1442     There are a total of 5,783,374 lines in the out_data.txt file, and each line (after the header) begins with the
1443     datetime value.
1444     However, the problem I have is that the code I wrote extracts the data from each individual file and adds it to my
1445     out_data.txt file, but the lines are not in the order of datetime as you can see above. I was hoping to get
1446     my lines to be in datetime order because I need to plot this data.
1447     Any help will be highly appreciated.
1448
1449     A:
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
2999

```

```

1458
1459     else:
1460         header = [d for d in data if data.index(d) % 2 == 0]
1461         values = [d for d in data if data.index(d) % 2 != 0]
1462         all_header.extend(header)
1463         all_values.extend(values)
1464         if not header:
1465             if i == 0:
1466                 of.write(', '.join(all_header))
1467                 i += 1
1468                 of.write("\n")
1469                 of.write(', '.join(all_values))
1470                 all_header = []
1471                 all_values = []
1472                 of.write("\n")
1473                 of.write(', '.join(all_values))

```

EXPECTED RESULT:

From the example data given above, the output should be:

```

1474     datetime ,V_1 ,V_2 ,V_3 ,V_4 ,V_5 ,V_6 ,V_7
1475     2013-01-17 35:06:04.172,267 ,987 ,6897,9876,1287,3498 ,2987
1476     2013-03-17 18:01:48.372,100 ,884 ,776 ,009 ,6553,ffff ,987
1477     2013-03-17 18:02:03.828,876 ,632 ,887 ,008 ,5423,879 ,443
1478     2013-05-17 20:13:52.488,543 ,987 ,233 ,112 ,098 ,344 ,123
1479     2013-08-17 23:09:08.171,667 ,9887,9897,09876,0987,098 ,0987
1480

```

USING PANDAS:

You can use the Pandas library for simplicity. Here is an example:

```

1484 import pandas as pd
1485 import glob
1486
1487 df_list = []
1488 for infile in glob.glob("/Users/name/Desktop/raw_data/*.txt"):
1489     df_list.append(pd.read_csv(infile, parse_dates=['datetime']))
1490 df = pd.concat(df_list).sort_values(by='datetime')
1491 df.to_csv('out_data.txt', index=False)

```

USING CSV MODULE:

You can also perform an ordinary (dictionary order) sort as follows:

```

1493 import csv
1494
1495 with open("out_data.txt", "r") as f:
1496     reader = csv.reader(f, delimiter=",")
1497     header = next(reader)
1498     sortedlist = sorted(reader, key=lambda x: x[0])
1499
1500 with open("sorted.txt", "w") as f:
1501     writer = csv.writer(f, lineterminator="\n")
1502     writer.writerow(header)
1503     writer.writerows(sortedlist)

```

USING BASH:

Alternatively, you can use the following Bash commands:

```

1505 head -1 out_data.txt > sorted.txt
1506 tail +2 out_data.txt | sort -t, -k1 >> sorted.txt

```

Hope this helps!

```

1509
1510
1511

```

1512 V.2 MATHEMATICAL TASK
15131514 Math
15151516 **System:**

1517 You are an excellent AI assistant who is good at constructing question-answer (Q-A) pairs. Your task is to construct
1518 some math Q-A from the original documents.

1519 **Input:**

1520 Each document contains multiple sections of text. Some of these sections may contain mathematical content which
1521 can be used to construct Q-A pairs.

1522 **Output:**

1523 Identify valid content and construct Q-A pairs. A valid Q-A pair must consist of a clearly defined question and its
1524 corresponding answer. Specially, the questions should be solvable that provide valid and complete pre-conditions;
1525 and the answers need to satisfy the Chain of Thought (CoT) format, which instructs the responder to solve the
1526 question step by step. If the content in the document is not suitable for Q-A construction, return void for that
1527 document.

1528 Here is an example:

1529 **User:** As I mentioned certain scientific terms in my previous post, I would like to go in-depth on those concepts,
1530 beginning with terminal velocity, it being the most fundamental concept in my post.

1530 **So what is terminal velocity?**

1531 Terminal velocity is the velocity of an object when the drag force (dependent on the fluid the object is travelling
1532 through) acting upon it is equal to the downward force of gravity acting upon it. Simply put, when the air resistance
1533 of a falling object cancels out the gravitational force which is pulling it downwards and accelerating it.

1534 **So how do these forces affect the motion of the object?** The forces cancelling each other out make the object
1535 remain at a constant rate of motion.

1536 You may ask why does the object still move when the forces cancel each other out. This is due to the fact that
1537 in the beginning the force of gravity still manages to overcome the drag force, allowing the object to gain speed
1538 (accelerate) initially. But as the object increases in velocity, the drag force increases. This effect can also be seen in
1539 the case of friction (Drag and friction are pretty much the same thing). Let's assume that a boy is dragging a heavy
1540 box, full of files, across a distance of 100 meters. Now, we will imagine this scenario in two different ways: firstly,
1541 in the case whereby the boy is walking slowly, and in the second, whereby the boy is running. So in the first case,
1542 the boy walks; when he reaches the end, he feels the bottom of the box, where the box and the floor meet, it still
1543 feels the same as before. Now in the second case, he runs; he once again feels the bottom of the box, this time it
1544 feels warmer than before.

1544 **So what can we infer from this scenario?**

1545 Before I reveal the answer, I would like to state a few properties of friction:

- Friction opposes motion
- Friction causes wear and tear
- Friction produces heat when kinetic energy is converted into thermal energy

1550 **So what can we infer?** In the second scenario, there was more heat; therefore, we can assume that there was more
1551 frictional force produced in the second case.

1552 Now let's go back to what I mentioned previously, air resistance increases (Drag Force) as the object's velocity
1553 increases. As seen in the example above, we can tell that this statement is true.

1554 **Recap:**

- Terminal velocity is the velocity an object is at when the gravitational force acting upon it is equal to the
1555 drag force acting upon it in the opposite direction, therefore cancelling out all forces and resulting in a
1556 resultant force of 0.
- The drag force acting upon the object increases as the object accelerates due to the downward force of
1557 gravity.

1560 Ok, so let's move on to the math behind terminal velocity and some examples of it.

1561 The formula for terminal velocity is as follows:

$$V_t = \sqrt{\frac{2mg}{\rho A C_d}}$$

1562 where:

1566

1567

1568

1569

1570

1571

1572

1573

- m = Mass of falling object
- g = Acceleration of the object due to gravity
- ρ = Density of fluid through which the object is travelling
- A = Projected area of the object
- C_d = Drag Coefficient

Example:

Assuming I drop a metal cube which has a mass of 3 kg and has a projected area of 1 m^2 on Earth 90° downward, through air at a temperature of 25°C , what would the terminal velocity of the cube be?

All we have to do is input all the values into the formula. The acceleration due to gravity on Earth is 9.81 m/s^2 . The density of air at 25°C is 1.1839 kg/m^3 and the drag coefficient of a cube is 1.05 facing downward.

The result is:

$$V_t = 6.881101581 \text{ m/s.}$$

That's terminal velocity for you!

I would like to thank Mr. Tan Ping Hock and Mr. Yao Zhi Wei Adrian, my current and previous physics teachers respectively, for clearing my doubts about certain concepts within this topic of terminal velocity!

Thanks for reading!

1579

1580

1581

1582

1583

1584

1585

1586

1587

1588

1589

1590

1591

1592

1593

1594

1595

1596

1597

1598

1599

1600

1601

1602

1603

1604

1605

1606

1607

1608

1609

1610

1611

1612

1613

1614

1615

1616

1617

1618

1619