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ABSTRACT

Instruction tuning improves the LLMs performance but depends on high-quality
training data. Recently, LLMs have been used to synthesize data, enhancing
training with seeds like question-answer (QA) pairs. However, this synthesis often
results in instruction examples similar to the seeds, lacking diversity and biasing
real applications. Thus, we propose to extract instruction tuning data from web
corpus with much rich knowledge. The most straightforward strategy is to quickly
retrieve domain specific documents from the corpus and then extract all QA pairs of
these documents for tuning LLMs, which has two main limitations. (1) Extracting
all QA pairs using LLMs is prohibitively expensive; and (2) These extracted pairs
are not all beneficial for the downstream applications, and incorporating all of them
for tuning may even hurt the model performance. To overcome the limitations,
we introduce EQUAL, an Effective and scalable data extraction framework that
iteratively interleaves document selection and extract high-QUALity QA pairs to
optimize instruction tuning. EQUAL first clusters the document set based on the
embeddings generated by contrastive learning. Then it leverages the multi-armed
bandit based strategy to quickly identify document clusters where can extract
high-quality QA pairs for training. This iterative framework significantly reduces
computational costs while improving model performance much. Experiments on
AutoMathText, KnowledgePile and StackOverflow across 13 downstream tasks
demonstrate that EQUAL reduces computational costs by 5–10× while improving
accuracy by 2.5% on LLaMA-3.1-8B, Qwen2.5-7B and Mistral-7B. Code and data
is available at https://anonymous.4open.science/r/EQUAL-DD20.

1 INTRODUCTION

Previous studies have shown that instruction tuning enables the powerful reasoning capability of
Large Language Models (LLMs) (Ouyang et al., 2022; Achiam et al., 2023; Dubey et al., 2024), but
requires sufficient high-quality training data (Ntoutsi et al., 2020; Yu et al., 2023; Shah et al., 2024).
However, although the weights of the open LLMs are publicly available, the datasets employed to
fine-tune these models are generally private. This lack of data accessibility limits the opportunities to
effectively adapt LLMs to targeted domains (Cobbe et al., 2021b; Hendrycks et al., 2021).

Recently, leveraging LLMs to synthesize instruction tuning data (Li et al., 2024a; Yue et al., 2024;
Luo et al., 2023; Yu et al., 2023; Li et al., 2024a; Ding et al., 2024) has attracted much attention
as an effective solution to enrich the original training data based on some seeds (e.g., original
question-answer pairs, knowledge bases, etc.), thanks to the powerful understanding and generative
capabilities of LLMs. However, achieving high-quality synthetic instruction data is challenging
because LLM-based generation tends to closely imitate seed examples. When those seeds lack
diversity, the synthesized data inherits this shortcoming, leading to degraded overall quality (Guo
et al., 2024b; Li et al., 2024c; Xu et al., 2024; Ding et al., 2024).

Data Extraction from Documents. In reality, there is plenty of high-quality web corpus (e.g.,
Common Crawl) which contains rich knowledge and can be leveraged as high-quality instruction
data. However, this wealth of knowledge is widely spread within the corpus. Recently, (Yue
et al., 2024) proposed a method to retrieve domain-specific documents from a large web corpus,
followed by employing high-performance LLMs to extract QA pairs from these documents and
then using the extracted QA pairs to fine-tune an LLM. However, it has the following limitations.
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Figure 1: Number of training iterations on different models

Prohibitive Computational Cost. To
extract a high-quality instruction tun-
ing dataset, it uses LLMs to repeatedly
scan and analyze all the documents to
extract question-answer (QA) pairs,
each of which often requires multiple
LLM calls (Gilardi et al., 2023; Yue
et al., 2024). Consequently, this pro-
cess is prohibitively expensive, espe-
cially when there are a large number
of documents to process. Solving this
problem requires largely reducing the
number of candidate documents, e.g.,
by discovering the documents most
valuable to instruction tuning.

Instruction QA Pairs. Even if an or-
ganization could afford extracting all
domain-specific QA pairs from a large number of documents, blindly incorporating all of them
to fine-tune an LLM could potentially degrade the model performance due to the presence of a
significant amount of low quality data. Specifically, a large corpus inevitably includes wild and
noisy data with heterogeneous distribution that can degrade model performance on downstream tasks.
Therefore, it is necessary to judiciously identify high-quality QA pairs for extraction.

Intuitive Solutions. There are two intuitive solutions to address the above limitations. Solution
1⃝: extract all QA pairs first and then select high-quality pairs. Solution 2⃝: Select high-quality
documents that potentially contain high-quality pairs first and then extract QA pairs from them.
Unfortunately, neither of the above two methods can solve both limitations. To be specific, for
solution 1⃝, although it can achieve good model performance, extracting all pairs beforehand is still
costly. Solution 2⃝ is cost-effective, but it is difficult to accurately discover high-quality documents
because documents and pairs have different feature distributions. Note that in this case, the quality
of these documents should be measured by the potential contribution of the QA pairs to the target
distribution, which is not aligned with the data quality of the original documents, e.g., dirty data,
duplication. In other words, even if the embedding of a QA pair is close to that of a document, it does
not necessarily indicate that the QA pair is close to the pair potentially extracted from the document.

Key Idea. To address both limitations, our key idea is to interleave document selection and QA pairs
extraction. During this iterative process, the extracted QA pairs help capture the relationship between
the document and the pair distribution more and more accurately, and at the same time, the selected
documents improve consistently.

Our Proposal. Inspired by the above idea, we propose EQUAL, a scalable and effective data extraction
framework for constructing QA pairs from documents, aiming to enhance the LLMs instruction
tuning. To be specific, EQUAL first clusters over the heterogeneous document set considering the
feature similarities of QA pairs extracted from these documents. To achieve this, we introduce a
warm-up step using contrastive learning to align the feature space between documents and QA pairs.
In this way, EQUAL effectively identifies those high-quality clusters by sampling and extracting QA
pairs from them to save cost. Afterwards, we propose a Multi-arm Bandit (MAB) based technique
to iteratively select the clusters. As the reward function, it predicts the benefit of QA pairs that
potentially could be extracted from the clusters. More specifically, in each iteration, EQUAL tends to
select the cluster where documents can produce QA pairs that are likely to benefit the target model
performance. This benefit is measured by the optimal transport (OT) score, where a higher benefit
score indicates a smaller difference between the distributions of the QA pairs in the cluster and the
target distribution. Then, given the selected cluster, EQUAL samples some documents from it, extracts
QA pairs using LLMs, and in turn updates the optimal transport score of this cluster accordingly. In
this iterative process, we precisely estimate the distribution of the QA pairs in a document cluster
without having to conduct extraction over all documents.

Moreover, leveraging the upper confidence bound technique in MAB, EQUAL promotes the potentially
low-quality, thus under-sampled clusters. Therefore, it improves the diversity of the extraction data.
This balance between exploration and exploitation effectively avoids reaching a local optimum.
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To summarize, we make the following contributions:

(1) We propose EQUAL, a novel framework for data extraction from documents to enhance LLMs
instruction tuning with high scalability.

(2) We incorporate an iterative MAB solution to first cluster the documents and extract data from
these clusters, achieving a good exploration-exploitation trade-off. We also propose a warm-up
strategy to align the features of documents and QA pairs.

(4) Extensive experiments on datasets (AutoMathText, KnowledgePile and StackOverflow) with more
than 1 million documents and 13 popular downstream tasks demonstrate that EQUAL significantly
outperforms baseline methods by saving 5-10× computation resources consumption while still
improving 2.5% in accuracy (train/test on Llama-3.1-8B, Qwen2.5-7B and Mistral-7B model).

2 PRELIMINARY

We first introduce the necessity of extracting and selecting QA pairs for instruction tuning, followed
by our problem definition.

Instruction tuning (a.k.a., supervised fine-tuning (SFT)) aims to adapt a base LLM to specific
domains or user needs, thereby enabling better performance on downstream tasks (Wang et al.,
2024b; 2023a; Zhang et al., 2023). Consequently, many studies on data selection for SFT (Li et al.,
2023b; Xia et al., 2024; Ni et al., 2024) emphasize selecting domain-beneficial data from a candidate
pool with reference to the target capabilities. This is because fine-tuning LLMs without careful
data selection—for instance, using QA pairs extracted indiscriminately from all documents in the
candidate set—can impede the model’s ability to acquire target capabilities. Empirical results from
prior works (Kim et al., 2023; Muennighoff et al., 2022; Wang et al., 2023b) demonstrate that LLMs
fine-tuned on targeted subsets of data outperform those trained on the full SFT dataset, underscoring
the importance of relevance-aware data selection.

QA Pair Extraction. To construct SFT data, given a large number of documents, people always
leverage advanced LLMs to extract and refine QA pairs. More specifically, LLMs such as Qwen2.5-
72B (Yang et al., 2024a) are utilized to extract QA pairs within documents. By incorporating
examples within the prompt, we guide the model to focus on the desired QA pairs while filtering out
markups, boilerplate, and other irrelevant content. Although Qwen2.5-72B demonstrates impressive
capabilities, the extracted QA pairs still exhibit issues such as improper formatting, missing answers,
or mismatched responses (Li et al., 2023a; Honovich et al., 2022; Chen et al., 2023). To address
these problems, we employ further refinement to these QA pairs using Qwen2.5-72B, which has
demonstrated significant enhancement in the quality of the extracted pairs (Xu et al., 2023). The
prompts for extraction and refinement are provided in Appendix V.

Overall, the entire extraction process requires each entire document as input and repeatedly calling
high-performance LLMs, which is rather expensive. Thus, in this paper, we focus on reducing the
number of documents to be extracted to save the cost while keeping high model accuracy. However,
how to improve the quality of each extracted pair within each document is orthogonal to this work.

Problem Definition. Formally, we study the problem of data extraction from a candidate document
pool Dc to extract QA pairs for instruction tuning. Formally, given Dc and a reference set Dr for
instruction tuning, the problem is to select a subset Db ⊂ Dc from which a set of QA pairs Q are
extracted to fine-tune an LLM M , aiming to minimize the loss of the updated model M ′ on Dr.

3 PROPOSED APPROACH.

3.1 THE EQUAL FRAMEWORK

Multi-Armed Bandit (MAB) (Vermorel & Mohri, 2005) is an effective framework that makes
decisions over time under uncertainty. This consists of N possible actions, each known as an arm.
Pulling an arm indicates sampling from this arm to capture its reward distribution more accurately.
This framework characterizes an agent that iteratively gains new knowledge by pulling arms that are
rarely visited (i.e., exploration) while using current knowledge to enhance its decisions by pulling
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Figure 2: The Overall Framework of EQUAL.

arms already with a high reward (i.e., exploitation). The agent aims to balance the exploration and
exploitation to maximize their overall reward throughout the given time span.

Bridging EQUAL and MAB. The overall process of EQUAL is illustrated in Fig 2 and Algorithm 1.
To reduce the computational cost, we first cluster all documents in the candidate dataset Dc (line 1)
such that the QA pairs extracted from each cluster are similar (Step-1 in Fig 2, see § 3.2 for details).
Thus, we can neglect these low-quality clusters to save the cost. To precisely measure the quality of
the cluster Ci, the most straightforward way is to extract all QA pairs and compare their distribution
with that of the reference data, measured by the optimal transport score (see § 3.3 for details), denoted
by OTi, but it is still very expensive. Hence, we iteratively sample from these clusters to estimate the
score. Our key idea is inspired by a natural connection between EQUAL and MAB.

At a high level, each cluster can be regarded as an arm of MAB. EQUAL iteratively selects a cluster,
samples some documents and extract pairs from it (i.e., pulling an arm). To be specific, as shown in
Step-2 of Figure 2, a cluster with a high estimated optimal transport score (ÔT i) tends to be selected.
The higher the score, the smaller difference between the distributions of QA pairs from this cluster
and the reference data. Moreover, clusters that are rarely visited (denoted by the sampling frequency
T (Ci)) tend to be selected as well to explore more diverse documents. Overall, putting ÔT i and
T (Ci) together, we use the document sampling (DS) score to measure the quality of a cluster, which
can achieve a good exploration-exploitation trade-off. Subsequently, as shown in Step-3, we obtain
these extracted pairs (line 5-7) and update the score ÔT i of the corresponding cluster (line 8). As
more pairs from cluster Ci are extracted, the estimated score ÔT i will become more accurate.

Next, we illustrate the details of the EQUAL framework.

DS Score Computation. Following the upper confidence bound (Auer, 2002) in the typical MAB
framework, we define the DS score DSj of the cluster Cj to effectively balance the exploration (i.e.,
data diversity) and exploitation (i.e., data quality) as follows.

DSj = ÔTj + α

√
2 ln

∑
Ck∈C T (Ck)

T (Cj)
(1)

where T (Cj) denotes the frequency of documents sampled from cluster Cj ,
∑

Ck∈C T (Ck) denotes
the total sampling times from all clusters. α is set as 1∑

Ck∈C T (Ck)+1 (Hao et al., 2019), which

provides higher weight to exploration in early stages, but in later stages, it provides higher weight to
exploitation (line 9-11).

Update the DS Score. In each iteration, a subset of documents Bi is sampled from the selected
cluster Ci with a high DS score, and a set of QA pairs Qi is then extracted from the documents in Bi.
The OT score of Ci will be updated as follows.

ÔTi = OT (∪Qi,Dr), T (Ci)+ = 1 (2)
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where ∪Qi denotes all the extracted QA pairs in cluster Ci obtained from the beginning and OT (·)
denotes the function of computing the OT score. Then we update the DS score of all clusters.

Algorithm 1: EQUAL Algorithm
Input: Candidate data pool Dc, reference set Dr,

extracted data ratio γ.
Output: Extracted data pool De.

1 C = Cluster(Dc);
2 De = ∅;
3 while |De| < γ |Dc| do
4 Select cluster Ci with the highest DS Score;
5 Sample Bi documents from Ci;
6 Extract QA pairs Qi from Bi;
7 De = De ∪Qi;
8 ÔTi = OT (∪Qi,Dr), T (Ci) += 1;
9 for Cj in C do

10 DSj = ÔTj + α

√
2 ln

∑
Ck∈C T (Ck)

T (Cj)
;

11 end
12 end
13 Return De;

Extracted Pairs Collection. As shown
in Figure 2, in each iteration, we add the
extracted QA pairs Qi to the extracted data
pool De. Finally, we use the pairs in the
pool to fine-tune the LLMs.

3.2 WARM-UP FOR CLUSTERING

Motivation. Considering that the original
documents contain much irrelevant content
with downstream applications, there exists
a discrepancy between the feature space
of document embeddings and that of the
QA pairs extracted from them. Obviously,
we hope that similar QA pairs fall into the
same cluster, but similar documents do not
necessarily indicate similar pairs if we clus-
ter purely based on feature embeddings of
documents. However, it is rather expensive
to extract all pairs and then cluster. There-
fore, to improve the clustering quality, we
propose to incorporate a warm-up step to
align the two feature spaces using contrastive learning (Khosla et al., 2020).

Feature Alignment. In the warm-up stage, we first randomly sample a small proportion of the
documents from the candidate data pool and use LLMs to extract QA pairs. Then, we fine-tune the
model (i.e., BAAI/bge-en-v1.5) used for document embedding to capture the deep connection
between the original documents and the extracted QA pairs. Specifically, we treat the sampled
documents and these extracted QA pairs as positive training examples (denoted by (d, q+)) for
contrastive learning. To generate negative examples q− for a document d, we conduct negative
sampling from all current QA pairs. Then we train with the following loss function:

L = −log
esim(d,q+)

esim(d,q+) +
∑

esim(d,q−)
(3)

where sim denotes the cosine similarity between the embedding of a document d and QA pair q. In
this way, documents containing similar QA pairs tend to be closer in the embedding space and are
thereby grouped together in the same cluster.

3.3 MEASURING CLUSTER BENEFITS

Heuristic methods (Xia et al., 2024; Xie et al., 2023) estimate the pointwise benefit of each data point
(i.e., its contribution to the target capabilities) and simply aggregate these benefits as cluster benefits,
implicitly assuming that each data point contributes independently of the others. However, this
assumption fails even in simple linear regression tasks, as systematically demonstrated in (Hu et al.,
2024). In contrast, EQUAL formulates targeted data selection as a distribution matching problem,
aiming to identify a subset of candidate data that closely matches the target distribution. Specifically,
EQUAL computing the distribution similarity of extracted data and reference data utilizing Optimal
Transport (OT) (Villani et al., 2009), which is widely adopted to compute the minimal cost of
transforming one distribution into another (more details in Appendix H). Specifically, the lower
the transportation cost, the closer the two distributions, indicating that the extracted data is more
beneficial for the target distribution.

In our scenario, suppose that the distribution of extraction data and reference set is µ and ν separately.
The transportation cost from µ to ν can be calculated by OT (µ, ν):

OT (µ, ν)
def
= inf

π∈Π(µ,ν)
E(eµ,eν)∼π[c(eµ, eν)] (4)
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where eµ and eν denote the embedding of extracted QA pairs qµ, qν from the two distributions,
Π(µ, ν) denotes the set of all joint distributions π(eµ, eν) with marginals µ(eµ) and ν(eν). Here,
c(eµ, eν) : X × X → R is the cost function for moving eµ to eν , where X denotes the entire

embedding space in EQUAL. To be specific, we use 1− eTµ eν
∥eµ∥∥eν∥ as the transportation cost between

eµ, eν , which is a popular choice to measure the semantic dissimilarity (Pennington et al., 2014).
Then given two distributions µ and ν, there are numerous possible mappings (i.e., π ∈ Π) between
pairs from these distributions. The cost for each mapping can be calculated by various c(eµ, eν)
within the mapping, and the OT score represents the minimum cost among all the mappings.

4 EXPERIMENT

In this section, we fine-tune the base models in different domains and conduct sufficient ablation
studies to demonstrate the efficiency and effectiveness of EQUAL. More experiments such as enlarging
the model size and the diversity of downstream tasks is provided in the Appendix I.

4.1 EXPERIMENT SETUP

Training Settings. We evaluate EQUAL using two foundational models (i.e., LLAMA-3-8B,
Qwen2.5-7B and Mistral-7B) and two training settings, i.e., full fine-tuning (FULL) and Low-
Rank Adaption (LoRA). In both training scenarios, the batch size is set to 512 and the maximum
learning rate is set as 1 × 10−5 with a cosine decay schedule. For the FULL setting we train the
extracted data for 2 epochs on 32 H100 GPUs, while for the LoRA setting we train the extracted
data for 4 epochs on 16 H100 GPUs. For the warm-up stage, we randomly select 5% documents
from Dc to extract QA pairs and then use contrastive learning to fine-tune the original embedding
model BAAI/bge-en-v1.5 model, and then it is employed to generate document embeddings
for subsequent clustering.

Dataset Preparation. In our evaluation, we use AutoMathText (Zhang et al., 2024), Knowl-
edgePile (Fei et al., 2024) (Appendix I and M) and StackOverflow (created by us) datasets as
the candidate data pool Dc for mathematical, general and coding tasks respectively. AutoMathText
totally contains 4.9M documents, from which we select 1.4M ones by filtering documents with a
metadata score of lm_q1q2_score < 0.51 to exclude math-irrelevant content. We use the dataset after
filtering as the candidate data pool. StackOverflow is crawled by us from stackoverflow.com,
which contains 1.2M documents in total. Then we implement an n-gram filtering (Guo et al., 2024a)
to ensure that our training data is not contaminated by information from the downstream tasks. For
the reference (validation) set Dr, we respectively use the training set of GSM8K (Cobbe et al., 2021a)
and MBPP (Austin et al., 2021) for math and code domains, which are both widely used language
modeling tasks and often serve as a validation benchmark for instruction tuning. During the clustering
process, documents from Dc are clustered into 1,000 clusters using the k-means algorithm. The
number of clusters is automatically determined by the Elbow (Syakur et al., 2018) method in EQUAL.

Baselines. We compare EQUALwith several baselines. (1) Random. We randomly sample documents
to extract QA pairs from Dc for fine-tuning. (2) All(Mammoth). We fine-tune our model using the
QA pairs extracted from all the documents in candidate data pool Dc, which is the same method used
in Mammoth (Yue et al., 2024). (3) Rewriting (Yu et al., 2023) synthesize new QA pairs based
on existing QA pairs (specifically, the reference set Dr in our setting) using LLM. We synthesize the
same number of pairs as other baselines. (4) Avg-sim. We extract QA pairs from all documents in
Dc. Then we select QA pairs with the highest average similarities with the ones in Dr. For each QA
pair, we compute the embedding similarities between the pair and all pairs in Dr, and compute the
average. (5) Perplexity (Li et al., 2024b) extract QA pairs from all documents in Dc. Then we
select QA pairs with the highest perplexity scores. (6) Influence (Xia et al., 2024) extract QA
pairs from all documents in Dc. Then we select extracted QA pairs with the highest influence scores.
(7) LLM-scoring (Wettig et al., 2024) employs high-performing LLMs to evaluate the quality
score of documents. (8) Perplexity-MAB utilizes perplexity (Li et al., 2024b) score as the reward
of MAB to select documents for extracting QA pairs. (9) Influence-MAB utilizes influence (Xia
et al., 2024) score as the reward to select documents. (10) EQUAL is our full-fledged solution.

1lm_q1q2_score is a metadata attribute for each document in AutoMathText ranging from [0, 1], which
quantifies the document’s relevance, quality, and educational value in the context of mathematical intelligence.
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Table 1: Comparison with other algorithms in test accuracy (%) on AutoMathText and StackOverflow.
The best results are highlighted. We run each experiment for three times and report the average.

Model LLAMA-3-8B Mistral-7B
Domain Math Code Math Code
Methods GSM8K MATH FLOPs HUMANEVAL MBPP FLOPs GSM8K MATH FLOPs HUMANEVAL MBPP FLOPs
Base Model 55.19 23.04 - 31.1 51.9 - 45.10 14.80 - 23.2 41.8 -

Random LoRA 63.76 30.26 8.05 31.1 53.7 6.32 54.21 20.78 7.96 28.0 45.0 6.06
Avg-sim LoRA 65.64 30.12 114.79 31.7 52.6 65.53 51.33 21.86 113.49 28.1 45.1 65.45
Perplexity LoRA 63.61 30.94 134.35 31.1 54.6 71.07 51.40 22.18 134.18 25.6 44.4 70.9
Influnece LoRA 63.46 28.10 240.31 33.5 55.0 130.46 53.45 18.62 236.59 26.2 41.5 129.68
LLM-scoring LoRA 65.11 30.55 271.56 34.3 53.5 141.38 53.02 19.33 266.51 27.7 44.6 137.37
Rewriting LoRA 62.21 27.05 18.11 30.7 54.1 13.15 50.19 17.72 17.90 26.3 44.3 13.01
Perplexity-MAB LoRA 64.52 30.48 18.18 34.6 55.0 13.24 51.78 22.10 17.36 27.4 45.6 12.99
Influence-MAB LoRA 65.73 30.78 23.37 35.3 55.1 19.13 55.12 19.58 18.44 28.7 44.7 18.18

EQUAL(Ours) LoRA 67.32 31.86 17.75 36.0 55.3 12.99 57.54 23.56 17.57 31.3 46.7 12.64

Random FULL 68.92 32.46 8.83 42.7 52.3 7.19 61.41 25.76 8.74 31.1 44.2 6.84
Avg-sim FULL 70.35 33.18 115.66 46.1 53.2 66.31 61.88 26.16 114.44 37.8 45.1 63.20
Perplexity FULL 64.52 33.56 150.28 44.5 50.5 71.85 55.04 27.38 148.03 32.6 44.7 71.07
Influence FULL 65.20 29.64 256.94 39.6 53.7 131.24 56.18 22.08 248.97 35.6 45.6 129.51
LLM-scoring FULL 68.38 33.19 273.91 46.9 53.7 142.73 56.19 22.72 17.90 34.3 46.1 139.16
Rewriting FULL 64.47 30.62 18.71 43.4 50.6 13.78 57.21 22.67 18.33 33.3 43.6 13.67
Perplexity-MAB FULL 65.28 32.92 18.96 44.5 49.1 13.76 56.44 24.20 18.44 34.1 42.9 13.42
Influence-MAB FULL 67.78 32.86 25.62 46.3 53.5 19.91 60.42 24.44 19.30 34.8 44.0 18.79

EQUAL(Ours) FULL 73.01 35.10 18.55 49.4 56.3 13.50 67.73 28.28 18.18 39.1 50.6 13.07

Metric. We evaluate the quality of extracted data by accessing the LLM performance, which has
been fine-tuned with these data on several commonly used downstream tasks. (1) Math domain:
GSM8K (Cobbe et al., 2021a) and MATH (Hendrycks et al., 2021) are utilized for evaluating math
tasks. (2) Code domain: the fine-tuned LLM is evaluated on HUMANEVAL (Chen et al., 2021) and
MBPP (Austin et al., 2021) datasets. We also report FLOPs to quantify the total GPU cost across the
following three stages: data extraction, data selection, and model training, with details in Appendix F.

4.2 RESULT

Overall Performance. In Table 1, we acquire 5% documents (70k from AutoMathText and 60k from
StackOverflow) for each baseline. We can observe that EQUAL surpasses all the baseline methods on
accuracy across all models and downstream tasks. Specifically, when implementing Full fine-tuning
on Llama-3.1-8B, EQUAL achieves an accuracy improvement of 4.09% on GSM8k and 2.64% on
MATH compared with Influence, while saving approximately 5× w.r.t. the computational cost.
EQUAL surpasses Rewriting due to the fact that the QA pairs generated by Rewriting are quite
similar to those QA pairs in Dr, resulting in limited data diversity. Besides, the pairs directly generated
by LLMs might be error-prone due to the hallucinations. EQUAL outperforms Perplexity and
Perplexity-MAB because perplexity score is solely based on the inherent complexity of the QA
pairs to select extracted data without considering the downstream tasks. Besides, EQUAL outperforms
Influence and Influence-MAB because influence function is easily affected by the length of
the sequence (Xia et al., 2024), often leading to the selection of pairs with fewer tokens (more details
in Appendix G). Also, EQUAL outperforms LLM-score and Avg-sim because it selects data based
on the similarities between QA pairs, without considering the overall distribution. In terms of the
computational cost, we can observe that the FLOPs consumed by the Avg-sim, Influence and
Perplexity extraction method are notably high. This is due to their necessity of extracting
the QA pairs from all the documents in Dc, which incurs prohibitive cost. Additionally, since the
influence score used in Influence requires to compute gradients during back propagation, leading
to higher FLOPs consumption than EQUAL. In contrast, it can be seen that for the influence score
used in Influence and the perplexity score used in Perplexity, when combined with the MAB
framework, comparable results can be achieved at a lower computational cost, which demonstrates
the efficiency of the MAB strategy. The detailed performance of EQUAL on Qwen2.5-7B can be
found in the Appendix S.

Table 2 presents a comparison between EQUAL and Random using various QA pair extraction
ratios ranging from 5%, 10%, and 20% up to 100% (i.e., high-cost extraction from all documents).
Interestingly, we find that the extracting of just 5% of QA pairs for most tasks produces superior
results compared to the use of complete Dc. This demonstrates the effectiveness of EQUAL. Even for
the difficult task MATH, extracting QA pairs from only 20% to the documents in Dc can achieve
comparable performance to All(Mammoth) across all the training settings. This is because not all
the QA pairs extracted from all the documents in Dc might contribute to the target tasks.
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Table 2: Comparison with Random at different ratios.

Method
LoRA FULL

Math Code Math Code
GSM8K MATH FLOPs HUMANEVAL MBPP FLOPs GSM8K MATH FLOPs HUMANEVAL MBPP FLOPs

Random (5%) 63.76 30.26 8.05 31.1 53.7 6.32 67.40 32.46 8.83 42.7 52.3 7.19
Random (10%) 66.03 30.82 16.37 32.3 53.8 13.11 68.92 34.54 17.50 43.6 54.6 14.33
Random (20%) 65.05 31.76 32.14 33.5 54.1 25.97 70.05 36.18 34.61 44.1 55.0 27.78
All 65.43 32.90 155.6 34.8 55.3 122.5 70.28 40.02 164.9 45.6 56.0 137.8
EQUAL (5%) 67.32 31.86 17.75 36.0 55.3 12.99 73.01 35.10 18.55 49.4 56.3 13.50
EQUAL (10%) 68.10 31.66 25.21 38.8 56.0 19.51 74.46 38.19 27.38 50.1 56.0 19.76
EQUAL (20%) 68.69 33.43 40.11 39.6 55.5 33.17 74.40 41.40 43.67 49.6 56.4 33.51

(a) (b) (c)

Figure 3: (a) shows the clusters based on the original embedding model; (b) shows the clusters based
on the fine-tuned embedding model; (c) ablation study of cluster numbers and clustering algorithms.

4.3 ABLATION STUDY

In this section, we demonstrate the effectiveness of Warm-up phase, Multi-Armed Bandit (MAB)
and Document Sampling (DS) score through experiments conducted with no-warmup, no-MAB
and no-DS settings, which is shown in Table 3. Also, we conduct several ablation studies w.r.t. the
number of clusters, different clustering algorithms etc., and the results are illustrated in Figure 3.

Effectiveness of Warm-up Phase. As shown in Figure 3, points of the same color represent QA pairs
extracted from the documents in the same cluster. Figure 3a shows the clustering results obtained
by directly using the existing model to compute embeddings for each document, while Figure 3b
presents the results after fine-tuning the embedding model during warm-up phase. Since the original
documents contain many contents irrelevant to the extracted QA pairs, leveraging the document
embeddings directly to cluster will lead to the inconsistencies of QA pair embeddings within each
cluster. It can be observed that the warmup phase effectively aligns the embeddings of documents and
their corresponding QA pairs. Also, we also conduct the experiment no-warmup, which use the
original embedding model BAAI/bge-en-v1.5 to generate document embeddings for clustering.
Following this, similar to EQUAL, both the MAB framework and optimal transport are employed
to extract QA pairs iteratively based on the clusters. Table 3 illustrates that EQUAL surpasses
no-warmup across all experimental settings, demonstrating the effectiveness of the warm-up phase.

Table 3: Effectiveness of Warm-up phase, Multi-Armed Ban-
dit, Document Sampling (DS) score in EQUAL.

Domain Math Code

Method GSM8K MATH HUMANEVAL MBPP
no-warmup LoRA 64.05 30.82 32.8 54.1
no-MAB LoRA 66.13 30.55 33.3 53.3
no-DS LoRA 65.59 31.08 34.4 53.7
EQUAL LoRA 67.32 31.86 36.0 55.3
no-warmup Full 69.73 33.51 44.3 53.8
no-MAB Full 71.90 33.25 46.9 55.5
no-DS Full 70.77 33.40 47.6 54.6
EQUAL Full 73.01 35.10 49.4 56.3

Effectiveness of MAB. In this sec-
tion, we evaluate the performance of
MAB by contrasting it with a sim-
ple method called no-MAB, which ex-
tracts QA pairs directly from several
clusters with distributions similar to
the reference set without iterative ex-
traction like MAB. Specifically, we
start by sampling a small set of docu-
ments from each cluster and then ex-
tract QA pairs. Subsequently, opti-
mal transport is employed to assess
the similarity in distribution between
these pairs and the reference set, serv-
ing as the score for each cluster. Then, the documents within the top-scoring clusters are utilized
to extract QA pairs and fine-tune the LLM. As illustrated in Table 3, EQUAL outperforms no-MAB,
because during the data extraction process, the OT score for each cluster is updated dynamically based
on the previously extracted QA pairs, thereby enhancing the accuracy of the subsequent selection.
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Effectiveness of Document Sampling (DS) score. We evaluate the effectiveness of DS score by
comparing EQUAL with no-DS, which utilizes the average similarities with QA pairs in Dr as
the MAB reward. As shown in Table 3, EQUAL surpasses the no-DS across all the settings. This
indicates that DS score provides a more precise estimation of the distributional similarity between the
extracted data and the reference set, hence better aligning with downstream applications.

Number of Clusters. We use the Elbow (Syakur et al., 2018) method to identify the optimal cluster
numbers for AutoMathText and StackOverFlow datasets. In Figure 3(a), we plot the accuracy of
EQUAL with different cluster numbers. When the cluster number is around 1000 (the selected optimal
number for both datasets), the model consistently performs well. However, a very small number of
clusters (i.e., k = 50) leads to poor accuracy (2.90% and 2.05% lower accuracy on GSM8K and
MATH tasks) due to the high variance of QA pairs extracted from the documents in each cluster. Thus,
the QA pairs extracted from the sampled documents cannot well represent the cluster. Similarly, when
the cluster number is too high (i.e., k = 50, 000), there will be many clusters that are in fact contain
similar QA pairs, and thus it is hard to explore diverse clusters, thereby leading to the performance
degradation (2.56% and 1.79% lower accuracy).

Table 4: Impact of warm-up ratio on model accuracy.

Warm-up Ratio 0.1% 0.5% 1% 3% 5%
Accuracy 69.66% 71.87% 72.91% 72.96% 73.03%

Warmup Ratio. As shown in Table 4, we
analyzed the impact of the warm-up ratio
in EQUAL, varying it from 0.1%, 1% to 5%
of the candidate document pool Dc. Our
experiments confirm that using a 1% warm-
up ratio of the corpus achieves comparable performance with 5% under lower computation cost.

Figure 4: Ablation study of different extractor model.

Extractor Model. In this part, we
evaluate the performance of EQUAL
using extractor models of varying
sizes, as well as with closed-source
extractor models. Specifically, instead
of the Qwen2.5-72B model used in
our paper, we performed extraction
with the weaker-extraction Qwen2.5-
7B and the closed-source Qwen-Flash
models. As shown in Figure 4, replac-
ing the Qwen2.5-72B extractor with the Qwen2.5-7B model or the closed-source Qwen-Flash model
leads to small shifts in absolute performance (a decrease for Qwen2.5-7B and an increase for Qwen-
Flash), attributable to differing linguistic and reasoning abilities, the relative improvement trend
introduced by EQUAL remains consistent. This indicates that the key strength of our method lies in
its ability to mine high-quality QA pairs from large-scale web data, rather than in the ability of the
extractor itself.

Clustering Algorithms. Moreover, we evaluate the performance of EQUAL by other typical clustering
algorithms including BIRCH (Zhang et al., 1996) and DBSCAN (Ester et al., 1996). The details of
selecting optimal clustering parameters can be found in the Appendix D. As illustrated in Figure 3(b),
EQUAL is robust to clustering algorithms on downstream tasks.

4.4 FURTHER EXPERIMENTS

Table 5: Performance comparison with advanced baselines.

Method AIME24 AIME25 LiveCodeBench CodeElo FLOPs
Random 33.1% 26.0% 23.2% 7.29% 50.65
s1k 40.7% 32.7% 26.7% 9.30% 197.87
OpenThoughts 40.1% 33.1% 26.1% 9.55% 238.20
EQUAL 42.7% 34.2% 27.6% 10.05% 65.17

Chain-of-thought (CoT) Data Gen-
eration. In this section, we consider a
setting where, for each QA pair, a cor-
responding chain-of-thought (CoT) ra-
tionale is distilled from a more capa-
ble teacher model. In this CoT distilla-
tion scenario, we apply our proposed
method EQUAL and directly compare it against the state-of-the-art synthetic data generation meth-
ods OpenThoughts and s1k under the same conditions (details of the experimental settings and
baseline implementations are provided in Appendix T.). As shown in Table 5, EQUAL achieves the
best performance while incurring the lowest computational cost (excluding the heuristic Random).
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This advantage stems from performing document-level selection before QA pair extraction and CoT
generation, demonstrating the generalizability of EQUAL.

Table 6: Comparison with baselines under advanced
setting.

Method AIME24 AIME25 LiveCodeBench CodeElo
Random 33.1% 26.0% 23.2% 7.29%
Avg-sim 37.1% 30.7% 24.7% 8.04%
Perplexity 37.4% 31.9% 24.9% 8.29%
Influence 35.3% 29.6% 23.2% 7.04%
LLM-scoring 37.6% 31.3% 25.1% 8.54%
Rewriting 39.3% 30.1% 24.2% 7.79%
EQUAL 42.7% 34.2% 27.6% 10.05%

Experiments on Qwen Model. More-
over, following common practice in re-
cent studies, we conduct experiments
on math tasks with Qwen2.5-Math-7B-
Instruct (Yang et al., 2024a) and on code
tasks with Qwen2.5-Code-7B-Instruct (Hui
et al., 2024) (see Appendix T for full exper-
imental details). For evaluation, we include
the AIME24 (Zhang & Math-AI, 2024) and
AIME25 (Zhang & Math-AI, 2025) bench-
marks to assess mathematical reasoning,
together with LiveCodeBench (Jain et al., 2024) and CodeElo (Quan et al., 2025) to measure code
generation performance. As shown in Table 6, EQUAL consistently outperforms all baselines in this
setting, further highlighting its robustness and strong generalization across model families and target
capabilities.

5 RELATED WORK

Data Synthesis using LLMs. In data synthesis, LLMs are commonly used to generate complex and
high-quality data (Zhang & Yang, 2023; Yang et al., 2024b) training data. For example, (Luo et al.,
2023; Yu et al., 2023) construct LLMs pipeline to revise existing training data, thus enhancing the
quality and complexity. (Sun et al., 2024; Wang et al., 2024a) conduct principle-driven prompting,
which inserts some well-crafted principles into prompts to guide the LLMs for synthesis. (Guo et al.,
2024b; Li et al., 2024c) iteratively synthesize important instruction tuning data and train the model
with the newly synthesized data in each round. However, the data generated by these methods often
exhibits low diversity, as few-shot prompts tend to make the newly generated data very similar to
the original data (Li et al., 2024a; Ding et al., 2024). To address this, researchers have proposed
several techniques to generate diverse data. For instance, (Yu et al., 2024a; Gupta et al., 2023) use
various prompts to synthesize diverse data. (Yoo et al., 2021) integrates different existing training
data to generate more diverse data. (Divekar & Durrett, 2024) uses retrieval augmentation to enhance
data diversity by feeding LLMs different retrieved contents. Closer to our work, (Yue et al., 2024)
synthesizes QA pairs from vast web documents to enhance the diversity of synthetic data.

Data Selection for Instruction Tuning. High-quality data plays a critical role in instruction tun-
ing (Brown, 2020; Zhou et al., 2024; Xia et al., 2024). Simple approaches such as rule-based
methods (Soldaini et al., 2024; Penedo et al., 2023) and deduplication (Abbas et al., 2023) can
improve data quality but the improvement is limited due to simple heuristics. More sophisticated
methods like LLMs like GPT-4 assess data based on human-defined metrics but this is rather expen-
sive (Wettig et al., 2024). Perplexity-based methods (Marion et al., 2023; Li et al., 2024b) select data
samples that are difficult for the model to predict. But all above methods do not consider the target
distribution of downstream applications. The influence function can measure the impact of training
data on downstream model performance (Grosse et al., 2023; Xia et al., 2024), but is computationally
intensive and affected by the length of the sequence (Xia et al., 2024), leading to imprecise filtering.
(Shao et al., 2024; Yu et al., 2024b) develop a surrogate model trained on available high-quality
data to efficiently select data from the candidate dataset; however, its effectiveness is limited by the
generalizability of the model.

6 CONCLUSION

This paper present EQUAL, a scalable and effective method for instruction tuning data extraction.
EQUAL first use contrastive learning to unify the embedding feature spaces of the original documents
and the extracted QA pairs. Based on this, EQUAL clusters all candidate document and regards
each cluster as an arm of MAB framework due to uncertain distribution similarity scores, allowing
sampling from quality clusters to estimate distribution similarity scores accurately while maintaining
diversity.
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transparency and integrity throughout the research process.

REPRODUCIBILITY STATEMENT
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experiments are conducted with clearly specified datasets, model architectures, and hyperparameters.
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in the main text and supplementary materials. The codebase used for all experiments will be
released publicly upon publication, including scripts for training, evaluation, and data preparation.
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A THE USE OF LARGE LANGUAGE MODELS (LLMS)

In the preparation of this work, we used LLM as auxiliary tools in a limited capacity. Specifically,
LLMs assisted in drafting portions of the code and in refining the wording of certain sentences
for clarity and readability. All technical content, including the design of algorithms, experimental
methodology, analysis, and interpretations, was independently developed by the authors. The use
of LLMs was confined to language refinement and coding suggestions, and did not influence the
scientific contributions or results reported in this paper.

B LIMITATIONS

Although EQUAL incorporates filtering mechanisms to mitigate some biases, the underlying web
corpus may still contain culturally skewed content, which can subtly or unpredictably influence the
model’s behavior. Specifically, given the vast scale of web-crawled data, it is inevitable that some
documents may contain content that is inconsistent with human values (e.g., promoting anti-human
or extremist ideologies). Since the focus of our research lies in data selection for targeted capabilities
improvement, rather than to detect or filter data with inappropriate or biased content, we did not
include strict mechanisms to identify or remove such content, as this falls beyond the scope of
our study. Nevertheless, we fully acknowledge the importance of ethical data usage. We therefore
recommend that practitioners applying our method first ensure that their candidate data pool has
been screened for harmful or culturally biased content (e.g., using bias-detection models such as
bert-hateXplain), in order to prevent potential misuse of our approach.

C BROADER IMPACT

EQUALmitigates the bias introduced by over-reliance on synthetic or domain-specific data by sourcing
instruction tuning data from a broad and diverse web corpus. Its scalable and cost-efficient extraction
framework democratizes access to high-quality instruction tuning, enabling researchers with limited
resources to fine-tune large language models effectively. Moreover, the enhanced generalization of
models trained with EQUAL contributes to improved performance in socially impactful domains such
as education, healthcare, and public services.

D ABLATION STUDY OF CLUSTERING NUMBERS AND ALGORITHM

[Metric and Criteria.] We use the metric Within-Cluster Sum of Squares (WCSS) to select the best
cluster number using the well-known Elbow (Syakur et al., 2018) algorithm. WCSS is the sum of
squared distances between each data instance and its cluster center, i.e., WCSS=

∑k
i=1

∑
x∈Ci

∥x−
µi∥. At a high level, the criteria should be that within each cluster, data instances are close to each
other, based on which it is better for different cluster centers to be far away from each other. Based
on the criteria, the Elbow algorithm leverages the WCSS as a measurement to iteratively select an
appropriate cluster number, as follows.

[Specific hypermarameter selection strategy.] To be specific, Elbow begins with a small k, and with k
increasing, WCSS first decreases rapidly and then slows down. Then, we identify the "elbow point"
where the decreasing rate becomes slow as the best k. Thus, within each cluster, data points are
sufficiently close to one another. Furthermore, given that k remains modest, different cluster centers
tend to maintain a distance from each other.

Clustering algorithms. In terms of the clustering algorithms, we also added experiments to show that
EQUAL is not sensitive to clustering algorithms mainly because different algorithms have their own
strategies to select appropriate parameters, which follows the criteria mentioned above.

Specifically, we evaluate the performance of several typical clustering methods including
BIRCH (Zhang et al., 1996) and DBSCAN (Ester et al., 1996). Considering that the clustering
results are easily affected by the parameters of clustering algorithms, we use different methods
to select proper parameters. For DBSCAN, there are 2 key parameters: (1) eps(the radius of a
neighborhood w.r.t. some data points) and (2) minPts (a data point is considered as a core point if at
least minPts data points are within eps of it). They can be set using the method in (Schubert et al.,
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2017). For BIRCH (Zhang et al., 1996), we can use the Elbow (Syakur et al., 2018) algorithm or
Sihouette score (Shahapure & Nicholas, 2020) to determine the appropriate number of components.

E RESTATING THE IMPORTANCE OF OUR PROBLEM SETTING

In this paper, we focus on instruction tuning, also known as supervised fine-tuning (SFT). This phase
differs fundamentally from pre-training, whose objective is to build an unaligned foundation model.
In contrast, instruction tuning aims to adapt a base LLM to specific domains or user needs, thereby
enabling better performance on specialized downstream tasks (Wang et al., 2024b; 2023a; Zhang
et al., 2023).

Consequently, many studies on data selection for SFT (Li et al., 2023b; Xia et al., 2024; Ni et al., 2024)
emphasize selecting domain-relevant data from a candidate pool with reference to a downstream
task. This is because fine-tuning LLMs without careful data selection—for instance, using QA pairs
extracted indiscriminately from all documents in the candidate set—can impede the model’s ability to
acquire specialized capabilities. Empirical results from prior works (Kim et al., 2023; Muennighoff
et al., 2022; Wang et al., 2023b) demonstrate that LLMs fine-tuned on targeted subsets of data
outperform those trained on the full SFT dataset, underscoring the importance of relevance-aware
data selection.

F FLOPS CALCULATION

FLOPs is the number of floating point operations performed by GPUs. Many state-of-the-art methods
[1,2,3] use it to measure the consumption of GPU computing resources. In our experiments, FLOPs
is collected directly in the data selection process using the Python code:
import torch
import torch.nn as nn
from torch.profiler import profile, ProfilerActivity

model = nn.Linear(1024, 512).cuda()
input_data = torch.randn(128, 1024).cuda()
with profile(activities=[ProfilerActivity.CPU,
ProfilerActivity.CUDA],

with_flops=True) as prof:
model(input_data)

print (prof.key_averages().table(sort_by="flops", row_limit=10))

G LENGTH OF SELECTED DATA

Table 7: The average length of extracted QA pairs with different methods (i.e., Influence,
Perplexity and EQUAL(Ours))

Length Random Influence Perplexity EQUAL(Ours)
Prompt 48.99 37.86 49.58 58.38
Output 470.05 222.94 1235.90 438.69
Total 519.04 260.80 1285.48 497.07

For synthesized QA pair data, recent research (Wang et al., 2022) has shown that having diverse
lengths is more beneficial. Short synthesized SFT data may degrade performance due to lacking
sufficient context (Taori et al., 2023), while excessively long data can introduce irrelevant content,
diminishing the learning signal (Arora et al., 2016).

H DETAILED EXPLANATION FOR OPTIMAL TRANSPORT

Optimal transport (OT) is a widely used metric to measure the distribution similarity of semantic
vectors in NLP problems (Wang et al., 2022; Chen et al., 2019), which is particularly effective when
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the support regions of different distributions have relatively large deviations. In our scenario, the
support regions(i.e., possible values of the semantic vector) of extracted QA pairs and the target
application often diverge due to varying data sources. Thus, traditional divergences, such as KL
divergence, are unsuitable because they tends to approach infinity in this situation (Bhardwaj et al.,
2021).

Also, in EQUAL, OT computation incurs far less cost than QA pair extraction, which dominates the
expense of the entire pipeline. This is mainly because extracting QA pairs requires running multiple
LLM inferences (e.g., with Qwen2.5-72B) for each document.

Step FLOPs
Clustering 2.31
Extracting 5% QA pairs for warm-up 6.94
Fine-tuning the contrastive learning model 0.41
OT calculation 0.06
Extracting 5% QA pairs 6.94
Fine-tuning the LLM on 5% QA pairs 1.89
Total 18.55

Besides, although computing the OT incurs some overhead, it could be negligible compared to the
substantial cost savings from avoiding millions of LLM calls. Our experiments (Table 1, Section 4.2)
show that EQUAL outperforms baselines while reducing QA extraction documents by 5 to 10 times.

I ENLARGE THE MODEL SIZE

In this section, we enlarged the model sizes from 7B/8B to 20B. As shown in the Table 8, we observe
that EQUAL still performs better than other baselines on accuracy because we select high-quality data
considering the distribution similarity as a whole. Moreover, EQUAL has good scalability compared
with other baselines because we use the MAB framework to quickly identify the data instances that
are beneficial to the downstream tasks.

Table 8: Enlarge model size and more downstream tasks

Method GSM8K MATH FLOPs HUMANEVAL MBPP FLOPs MMLU BBH FLOPs

Base 76.16 25.56 – 49.6 63.0 – 67.1 70.3 –
Random 77.33 27.61 11.23 59.7 63.8 9.67 68.7 71.3 17.65
Avg-sim 77.97 28.33 121.25 61.4 63.0 67.73 67.6 70.4 231.02
Perplexity 76.65 31.16 156.70 62.5 63.8 73.25 68.3 72.0 302.51
Influence 76.38 29.67 511.96 62.2 64.6 373.51 70.3 73.8 976.96
Rewriting 77.51 30.55 21.38 63.3 64.7 16.96 69.7 73.3 28.10
Perp.-mab 77.76 31.90 21.35 63.2 63.7 17.01 69.1 72.2 28.23
Infl.-mab 76.70 30.73 32.76 64.7 64.1 28.46 70.6 73.7 46.53
EQUAL 80.38 33.78 21.03 67.3 66.7 16.65 73.1 76.3 27.46

J STATISTICAL SIGNIFICANCE

In this section, we show the statistical significance of our EQUAL in Table 9.

K IMPACT AND OPTIMIZATION STRATEGIES OF EMBEDDING MODELS ON QA
ALIGNMENT QUALITY

In EQUAL, the quality of alignment between documents and QA pairs could be influenced by
the embedding model used. Currently, there have been some pretrained embedding models (e.g.,
jinaai/jina-embeddings-v3, BAAI/bge-large-en-v1.5, OpenAI embeddings and we use BAAI/bge-
large-en-v1.5) that demonstrate strong performance across multiple domains. Recent studies show
that even in specialized fields such as mathematics and programming, the model’s ability to capture
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Table 9: Statistical Significance.

Methods Exp-1 Exp-2 Exp-3 Avg ± std
Random 68.76 68.83 69.17 68.92 (0.22)
Avg-sim 70.08 70.24 70.73 70.35 (0.34)
Perplexity 63.98 64.97 64.61 64.52 (0.50)
Influence 65.33 65.25 65.02 65.20 (0.16)
Rewriting 64.38 64.56 64.49 64.47 (0.09)
Perplexity-MAB 65.19 65.35 65.30 65.28 (0.08)
Influence-MAB 68.49 67.68 67.17 67.78 (0.67)
EQUAL (ours) 72.51 72.70 73.78 73.01 (0.69)

general semantics is effective enough to obtain good performance. Furthermore, in EQUAL, to
improve the embedding model in specific domains, we fine-tune the embeddings on domain-specific
QA pairs through the contrastive learning component. This lightweight fine-tuning can significantly
enhance representation quality without introducing substantial computational overhead. Although
embedding computation does incur some cost, this step is performed offline in our pipeline, allowing
the computational burden to be amortized across the entire dataset. In our experiments, this cost is
well justified by the downstream performance gains achieved through improved clustering. Overall,
while the embedding model plays a critical role, we find its practical impact on clustering quality to
be manageable, and the resulting improvements in QA alignment more than justify the associated
computational expense.

L SAMPLING STRATEGY

In this section, we analyze the impact of different document sampling strategies on downstream
performance. In the main text, we primarily adopted Random Sampling as the default strategy for
extracting documents from the selected cluster. To thoroughly evaluate the robustness of EQUAL, we
have conducted additional experiments to evaluate the following three more sophisticated sampling
strategies:

Stratified Sampling (Neyman, 1992): Within this strategy, the selected cluster is further partitioned
into multiple groups based on their embeddings. Then, a fixed number of samples are drawn from
each group, which enables the model to learn from a more comprehensive distribution.

Density Sampling (Palmer & Faloutsos, 2000): We prioritize documents located in high-density
regions of the cluster, which is achieved by calculating the local density of each document (e.g., the
inverse of k-nearest neighbor distance), with the goal of obtaining the most "typical" documents
within the cluster.

Diversity Sampling (Carbonell & Goldstein, 1998): Within the selected cluster, we use Maximum
Marginal Relevance (MMR) to prioritize documents with the greatest dissimilarity to each other. This
strategy aims to maximize the internal diversity of a single cluster.

Methods GSM8K Accuracy HUMANEVAL Accuracy
Random 68.7% 75.2%

Stratified 68.9% 75.5%
Density 69.4% 75.7%

Diversity 69.1% 75.3%

The experimental results show that Stratified Sampling, Density Sampling and Diversity
Sampling achieve slightly higher downstream performance compared to Random Sampling. This
suggests that selecting more representative or central documents within a high-quality cluster, as
identified by the MAB framework, can marginally improve the efficacy of the extracted data.

However, the performance gain is relatively modest. We attribute this to the inherent nature of our
clustering process. After our contrastive learning warm-up step, documents within the same cluster
are already highly similar in terms of their potential to generate QA pairs aligned with the target
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distribution. The clustering step effectively groups documents with homogeneous characteristics,
meaning that the variance of QA pair quality within a single cluster is relatively low. This finding
reinforces the importance of our two-stage approach: first, using clustering to create homogeneous
groups, and second, using MAB to perform a high-level, cluster-wise exploration-exploitation trade-
off.

M OPEN-ENDED TASKS

To demonstrate the generalizability of EQUAL, we conducted an additional experiment on multiple
open-ended tasks.

Specifically, we first sampled 500,000 web documents from the KnowledgePile dataset (a well used
dataset for general knowledge), forming a heterogeneous and broad candidate data pool Dc. Then, we
conduct our experiments on Mistral-7B. To better simulate a multi-task instruction tuning scenario,
we construct a mixed reference set Dr for EQUAL’s selection, combining several publicly available
instruction tuning datasets:

• Summarization: Summarization task instructions selected from AlpacaFarm (Dubois et al.,
2023).

• Rewriting: Text rewriting and style transfer task instructions selected from Unnatural
Instructions (Honovich et al., 2022).

• Brainstorming: Brainstorming and ideation task instructions selected from the “brainstorm-
ing” and “ideation” categories of FlanV2 (Longpre et al., 2023).

For evaluation, we use AlpacaEval (Dubois et al., 2024), a GPT-4-based benchmark for assessing
a model’s performance on open-ended instruction following tasks (e.g., summarization, rewriting,
creative writing) and the primary evaluation metric is the model’s win rate (Dubois et al., 2024)
against the baseline (i.e., the original Mistral-7B base model), as judged by GPT-4 based on response
quality.

Methods/Win rate(%) Summarization Rewriting Brainstorming Average
Random 70.9 70.9 54.7 65.5
Avg-sim 73.5 71.2 56.3 67.0

Perplexity 75.1 73.3 57.6 68.7
Influence 74.0 73.5 57.4 68.3

LLM-scoring 76.2 74.0 58.3 69.5
Rewriting 75.5 74.2 57.9 69.2

Perplexity-MAB 73.5 73.1 56.5 67.7
Influence-MAB 72.0 71.8 55.7 66.5

EQUAL 78.1 77.1 60.5 71.9

The results clearly indicate that the EQUAL method is particularly effective for open-ended tasks and
substantially improves the target model’s capability to manage multiple tasks concurrently. Specifi-
cally, the model fine-tuned with EQUAL achieved an average win rate of 71.9% on AlpacaEval,
significantly outperforming the random selection baseline (+6.4%) and the Perplexity-MAB baseline
(+4.2%). This provides strong evidence that EQUAL can effectively identify the most valuable content
from a large document pool to simultaneously enhance multiple open-ended task capabilities.

Specifically, in these experiments, we focus on open-ended tasks—such as summarization, rewriting,
and brainstorming, which lack clearly defined ground-truth answers. To address the challenge of
evaluating such tasks, we follow the approach proposed in AlpacaEval, which leverages powerful
large language models (LLMs) to assess generated responses without relying on reference outputs.
Specifically, both our fine-tuned model and a baseline model (i.e., the original base model used
in our experiments) are prompted with the same open-ended questions. A high-performing LLM
(e.g., GPT-4) is then used to compare their responses and determine which one is better. Following
AlpacaEval, we report the win rate of our model over the baseline across all open-ended questions
as our primary accuracy metric. Importantly, the default evaluation dataset in AlpacaEval does not
cover the tasks of summarization, rewriting, or brainstorming. Therefore, we used (See et al., 2017;
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Wieting & Gimpel, 2017; Lin et al., 2019) as the evaluation datasets for these three tasks, respectively,
in our experiments.

N DIVERSITY ANALYSIS

In this section, we directly assess diversity to further validate the effectiveness of EQUAL. Specifically,
we measure the lexical diversity and semantic diversity among the extracted QA pairs.

1. Lexical Diversity: We compute Type-Token Ratio (TTR) and Measure of Textual Lexical Diversity
(MTLD) over the QA pairs extracted by each method. As shown in the table below, EQUAL achieves
the highest TTR and MTLD scores, indicating richer vocabulary usage in the extracted QA pairs.

Methods TTR MTLD
Random 55% 62.0%

Perplexity 46% 53.3%
Influence 42% 49.1%

EQUAL 52% 61.7%

2. Semantic Diversity: We compute the average pairwise semantic similarity among embeddings
(using BAAI/bge-en-v1.5) within the final extracted dataset. Lower average similarity indicates
higher semantic diversity. The results in the table below indicate that the QA pairs extracted by
EQUAL exhibit greater semantic diversity.

Methods Cosine Similarity
Random 50%

Perplexity 56%
Influence 59%

EQUAL 51%

These results demonstrate that EQUAL constructs a more lexically and semantically diverse instruction
dataset.

O COMPARE WITH OTHER DATASETS

To directly evaluate the quality of data constructed by EQUAL, we compare it against four leading
math-focused instruction-tuning datasets — MathInstruct[1], MetaMathQA[2], XwinMath[3], and
OpenMathInstruct[4] — using full fine-tuning on LLaMA-3-8B under identical settings. As shown in
the table below, EQUAL achieves the highest accuracy on both the GSM8K and MATH benchmarks,
while maintaining comparable FLOPs to other methods, demonstrating its effectiveness. Specifically,
all the four baselines use LLM to rewrite and augment the QA seed data, but limited data diversity
leads to their inferior performance compared to EQUAL.

[1] Mammoth: Building math generalist models through hybrid instruction tuning

[2] Metamath: Bootstrap your own mathematical questions for large language models

[3] Common 7b language models already possess strong math capabilities

[4] Openmathinstruct-1: A 1.8 million math instruction tuning dataset

Methods GSM8K MATH FLOPs
MathInstruct 67.30% 31.33% 18.25
MetaMathQA 69.23% 33.02% 17.76
XwinMath 69.72% 33.79% 17.97

OpenMathInstruct 70.03% 33.53% 18.31
EQUAL 73.01% 35.10% 18.55
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P REFERENCE DATA SIZE

Intuitively, more reference data leads to more accurate estimation of the target distribution. However,
in this section, we would like to clarify that as long as the reference data roughly capture the
distribution, EQUAL can perform effectively in practice. This is consistent with the results reported
in other papers on this issue — (Xia et al., 2024; Li et al., 2023b; Wang et al., 2023b) all perform
well using only dozens of validation examples. To further validate this, we conducted an additional
experiment on the math task using full fine-tuning of LLaMA-3-8B by varying the size of the
reference set. The results are summarized in the table below:

#-Reference data 20 50 100 500 1000 1500
Accuracy 73.01% 73.08% 73.15% 73.21% 73.27% 73.33%

As shown in the table, the performance of EQUAL improves consistently with the increase in the
number of examples in the reference set. Note that EQUAL achieves good results with just 20
reference examples, reaching an accuracy of 73.01%—nearly matching the 73.33% obtained with
1500 examples. Furthermore, we also extended our analysis to more complex and diverse benchmarks
such as MATH. The results show that, for more challenging dataset, the OT-based distance estimation
indeed requires 150 reference samples to reach stable and effective performance. In practice, such
reference sets are often readily available (e.g., training set in benchmark tasks), making our method
broadly applicable.

#-Reference data 20 50 75 150 500 1000 1500
Accuracy 34.37% 35.10% 35.76% 36.11% 36.19% 36.23% 36.40%

Q PERFORMANCE ON MORE DIFFICULT TASKS

In this section, we evaluate the effectiveness of EQUAL on the more challenging math benchmarks
AIME2024 and OLYMPIABENCHMATH, as well as the code benchmarks HUMANEVAL+ and LCB.
The results are presented below:

Methods AIME2024 OLYMPIABENCHMATH HUMANEVAL+ LCB
Llama-3-8B 1.1% 3.7% 31.1% 3.6%

Llama-3-8B-Instruct 8.3% 14.4% 60.4% 9.7%
EQUAL 10.1% 17.3% 61.8% 10.4%

R BASELINE IMPLEMENTATION DETAILS

In our paper, the perplexity scores are computed using an off-the-shelf language model (i.e., our target
model) that has not been fine-tuned on the reference set. Here, we include perplexity scores computed
on a model fine-tuned with the reference set as an informative additional baselines. Specifically,
we introduced an improved baseline called perplexity-ref. In this approach, we first finetune
the perplexity model on the reference set Dr, enabling it to better capture the specific domain
characteristics of the downstream task. We then use this finetuned model to compute perplexity
scores for all QA pairs extracted from the candidate pool to further finetune the model.

Experimental results show that perplexity-ref outperforms the standard perplexity
method. This is because the finetuned model is more aligned with the downstream task, mak-
ing the perplexity scores more indicative of the relevance of the data. However, perplexity-ref
does still not perform better than our proposed EQUAL, as it treats data points independently and fails
to capture the underlying relationships between them, which in turn leads to reduced data diversity.

Besides, in our experiments, we used the same method as LESS (Xia et al., 2024) to calculate the
influence scores on our target model. The reference set and test set are consistent with that used in
our EQUAL method. The training set consists of QA pairs extracted from all documents, from which
we select the top 5% with the highest influence function scores calculated against the reference set.
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Methods GSM8K MATH HUMANEVAL MBPP
Perplexity 64.52% 33.56% 44.5% 50.5%

Perplexity-ref 69.10% 34.46% 47.6% 54.6%
EQUAL 73.01% 35.10% 49.4% 56.3%

S EXPERIMENTS ON QWEN MODEL

We conducted additional experiments using the Qwen2.5-7B model. The results in the table below
show that our proposed method consistently improves performance on Qwen2.5-7B, demonstrating
its strong generalization across different model architectures.

Methods GSM8K MATH FLOPs HUMANEVAL MBPP FLOPs
Random 86.1% 59.6% 8.51 66.7% 75.2% 6.73
Avg-sim 87.6% 65.2% 111.73 68.7% 75.9% 64.15

Perplexity 86.1% 66.7% 146.52 69.1% 76.1% 72.22
Influence 85.6% 61.0% 251.28 66.9% 75.3% 131.65
LLM-scoring 86.9% 67.1% 17.61 69.6% 76.4% 137.96
Rewriting 87.1% 61.3% 19.06 67.2% 75.2% 14.56

Perplexity-MAB 86.4% 67.0% 18.23 69.7% 76.6% 14.19
Influence-MAB 85.9% 61.6% 18.19 67.8% 75.5% 14.72

EQUAL 89.6% 71.3% 17.76 73.3% 78.0% 13.30

T COT DATA GERERATION.

In this section, we further consider an experimental setting where, for each document selected from
the candidate pool, we extract its QA pair and distill a corresponding chain-of-thought (CoT) for
that pair using a stronger teacher model. In this CoT distillation scenario, we apply our EQUAL and
directly compare it against OpenThoughts and s1k as follows:

1) OpenThoughts: We first extract QA pairs from all candidate documents and employ QwQ-32B
to generate chain-of-thought answers for each question, and then use the resulting data to train our
target model.

2) s1K: We first extract QA pairs from all candidate documents and use QwQ-32B to generate
chain-of-thought answers for them. Subsequently, we follow the s1K methodology to select a small
subset of QA pairs by filtering for quality, difficulty, and diversity.

3) EQUAL: We employ a multi-armed bandit strategy to iteratively identify clusters that are most likely
to yield high-quality CoT data points. We then restrict expensive QwQ-32B calls to the documents in
these high-value clusters only to extract QA pairs and generate chain-of-thought answers for them.

Methods AIME24 AIME25 LiveCodeBench CodeElo FLOPs
Random 33.1% 26.0% 23.2% 7.29% 50.65
s1k 40.7% 32.7% 26.7% 9.30% 197.87

OpenThoughts 40.1% 33.1% 26.1% 9.55% 238.20
EQUAL 42.7% 34.2% 27.6% 10.05% 65.17

As shown in the table above, aside from the heuristic method Random, EQUAL attains the best perfor-
mance with the lowest computational cost (i.e., FLOPs), primarily because it performs document-level
selection before QA extraction and CoT generation. Specifically, instead of extracting QA pairs
from all documents, EQUAL treats document clusters as arms in a multi-armed bandit and iteratively
selects the most promising ones for QA extraction and CoT generation. This exploration–exploitation
scheme focuses extraction on clusters that yield larger gains on targeted capabilities, cutting LLM
extraction cost while preserving or even improving final task performance.
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U KEY DIFFERENCE BETWEEN EQUAL AND EXISTING METHODS

In Existing methods, when an LLM is prompted with only a few seed examples, it tends to produce
instructions that are locally similar to those seeds (i.e., few-shot examples), which limits diversity. In
contrast, all QA pairs generated by EQUAL are extracted from a large, heterogeneous web corpus
(AutoMathText, KnowledgePile, StackOverflow) that contains rich knowledge beyond the seeds.
Thus, whereas existing methods literally “stay close” to the seed examples in input space, EQUAL
selects real, naturally occurring QA pairs from an independent corpus and uses the seeds solely as a
guidance signal.

Furthermore, EQUAL prevents the generated QA pairs from collapsing onto a few high-OT clusters
by modeling document selection as a multi-armed bandit (MAB) strategy with an upper-confidence-
bound (UCB) style exploration term. Clusters that have been sampled less often receive a larger bonus
and are thus more likely to be selected. This explicitly promotes under-sampled clusters, encouraging
us to explore new regions of the document space instead of repeatedly pulling only the highest-OT
cluster, which further increases the diversity of the generated QA pairs.

Together, our method avoids generating QA pairs that are near-duplicates of the original seed examples
by merely rewriting a small set of seed examples. Instead, we selecting naturally generated QA pairs
from large, heterogeneous corpora whose distribution matches the target tasks.

V PROMPTS FOR QA PAIR EXTRACTION

In this section, we present the prompts we used for extraction tasks across different domains.

V.1 CODING TASK

Code

SYSTEM:
You are given a set of pre-processed documents, each of which may contain natural question-answer (Q-A) pairs.
Your task is to identify and extract these pairs while ignoring unrelated content such as ads, markup, or boilerplate
text.
Input:
Each document contains multiple sections of text. Some of these sections may have clear questions followed by
answers, while others may be irrelevant (e.g., ads or noise).
Output:
Extract the Q-A pairs found within each document. A valid Q-A pair must consist of a clearly defined question
and its corresponding answer. If no natural Q-A pair exists in the document, return void for that document. In the
document, in order to describe the problem more clearly, the questioner usually attaches some useful information
(e.g., code or explaination) to make it easier for others to better understand the problem. You need to extract this
part of the content that needs to be complete as well.
Here are some examples:
# Example 1
Content:
Sorting lines date-wise and time-wise using Python from a .txt file. I have just written a Python code to extract
data from around 700 text files into one file called out_data.txt. The contents of the out_data.txt file
look something like this:

d a t e t i m e , V_1 , V_2 , V_3 , V_4 , V_5 , V_6 , V_7
2013 −03 −17 1 8 : 0 1 : 4 8 . 3 7 2 , 1 0 0 , 8 8 4 , 7 7 6 , 0 0 9 , 6 5 5 3 , f f f f , 9 8 7
2013 −03 −17 1 8 : 0 2 : 0 3 . 8 2 8 , 8 7 6 , 6 3 2 , 8 8 7 , 0 0 8 , 5 4 2 3 , 8 7 9 , 4 4 3
2013 −05 −17 2 0 : 1 3 : 5 2 . 4 8 8 , 5 4 3 , 9 8 7 , 2 3 3 , 1 1 2 , 0 9 8 , 3 4 4 , 1 2 3
2013 −08 −17 2 3 : 0 9 : 0 8 . 1 7 1 , 6 6 7 , 9 8 8 7 , 9 8 9 7 , 0 9 8 7 6 , 0 9 8 7 , 0 9 8 , 0 9 8 7
2013 −01 −17 3 5 : 0 6 : 0 4 . 1 7 2 , 2 6 7 , 9 8 7 , 6 8 9 7 , 9 8 7 6 , 1 2 8 7 , 3 4 9 8 , 2 9 8 7
. . .

There are a total of 5,783,374 lines in the out_data.txt file, and each line (after the header) begins with the
datetime value.
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However, the problem I have is that the code I wrote extracts the data from each individual file and adds it to my
out_data.txt file, but the lines are not in the order of date-time as you can see above. I was hoping to get my
lines to be in date-time order because I need to plot this data. Any help will be highly appreciated !
Here is my current code:
import re # Regular expressions
import glob # File management and reading

if __name__ == "__main__": # Opening for Python
all_header = [] # List declaration
all_values = [] # List declaration
i = 0
with open('out_data.txt', 'w') as of: # Output file

for infile in glob.glob("/Users/name/Desktop/raw_data/*.txt"): # Input
file↪→
with open(infile) as fobj:

print(f"Processing file {infile}")
for line in fobj:

data = line.split() # Split each line into individual tokens
if len(data) == 2 and re.search(r'(\d+-\d+-\d+)', data[0]): #

Regular expression to identify date and time↪→
header = ['datetime'] # Column name datetime
values = [data[0] + " " + data[1]] # date+time as one

value↪→
else:

header = [d for d in data if data.index(d) % 2 == 0]
values = [d for d in data if data.index(d) % 2 != 0]

all_header.extend(header)
all_values.extend(values)
if not header:

if i == 0:
of.write(','.join(all_header))

i += 1
of.write("\n")
of.write(','.join(all_values))
all_header = []
all_values = []

of.write("\n")
of.write(','.join(all_values))

EXPECTED RESULT

The expected result from the example data given above would be:

d a t e t i m e , V_1 , V_2 , V_3 , V_4 , V_5 , V_6 , V_7
2013 −01 −17 3 5 : 0 6 : 0 4 . 1 7 2 , 2 6 7 , 9 8 7 , 6 8 9 7 , 9 8 7 6 , 1 2 8 7 , 3 4 9 8 , 2 9 8 7
2013 −03 −17 1 8 : 0 1 : 4 8 . 3 7 2 , 1 0 0 , 8 8 4 , 7 7 6 , 0 0 9 , 6 5 5 3 , f f f f , 9 8 7
2013 −03 −17 1 8 : 0 2 : 0 3 . 8 2 8 , 8 7 6 , 6 3 2 , 8 8 7 , 0 0 8 , 5 4 2 3 , 8 7 9 , 4 4 3
2013 −05 −17 2 0 : 1 3 : 5 2 . 4 8 8 , 5 4 3 , 9 8 7 , 2 3 3 , 1 1 2 , 0 9 8 , 3 4 4 , 1 2 3
2013 −08 −17 2 3 : 0 9 : 0 8 . 1 7 1 , 6 6 7 , 9 8 8 7 , 9 8 9 7 , 0 9 8 7 6 , 0 9 8 7 , 0 9 8 , 0 9 8 7

However, I could not figure out how to include the sort element in the code or if there is any other way to achieve
this.

SOLUTION USING PANDAS

You can use pandas. A simple example would be as follows:
import pandas as pd
import glob

df_list = []
for infile in glob.glob("/Users/name/Desktop/raw_data/*.txt"):

df_list.append(pd.read_csv(infile, parse_dates=['datetime']))
df = pd.concat(df_list).sort_values(by='datetime')
df.to_csv('out_data.txt', index=False)
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SOLUTION USING CSV

An alternative method is:
import csv

with open("out_data.txt", "r") as f:
reader = csv.reader(f, delimiter=",")
header = next(reader)
sortedlist = sorted(reader, key=lambda x: x[0])

with open("sorted.txt", "w") as f:
writer = csv.writer(f, lineterminator="\n")
writer.writerow(header)
writer.writerows(sortedlist)

SOLUTION USING BASH

As an alternative, you can also use Bash:

head −1 o u t _ d a t a . t x t > s o r t e d . t x t
t a i l +2 o u t _ d a t a . t x t | s o r t − t , −k1 >> s o r t e d . t x t

Hope this helps.

Q:
I’ve just written a Python code to extract data from around 700 text files into one file called out_data.txt.
The contents of the out_data.txt file look something like this:

d a t e t i m e , V_1 , V_2 , V_3 , V_4 , V_5 , V_6 , V_7
2013 −03 −17 1 8 : 0 1 : 4 8 . 3 7 2 , 1 0 0 , 8 8 4 , 7 7 6 , 0 0 9 , 6 5 5 3 , f f f f , 9 8 7
2013 −03 −17 1 8 : 0 2 : 0 3 . 8 2 8 , 8 7 6 , 6 3 2 , 8 8 7 , 0 0 8 , 5 4 2 3 , 8 7 9 , 4 4 3
2013 −05 −17 2 0 : 1 3 : 5 2 . 4 8 8 , 5 4 3 , 9 8 7 , 2 3 3 , 1 1 2 , 0 9 8 , 3 4 4 , 1 2 3
2013 −08 −17 2 3 : 0 9 : 0 8 . 1 7 1 , 6 6 7 , 9 8 8 7 , 9 8 9 7 , 0 9 8 7 6 , 0 9 8 7 , 0 9 8 , 0 9 8 7
2013 −01 −17 3 5 : 0 6 : 0 4 . 1 7 2 , 2 6 7 , 9 8 7 , 6 8 9 7 , 9 8 7 6 , 1 2 8 7 , 3 4 9 8 , 2 9 8 7
. . .

There are a total of 5,783,374 lines in the out_data.txt file, and each line (after the header) begins with the
datetime value.
However, the problem I have is that the code I wrote extracts the data from each individual file and adds it to my
out_data.txt file, but the lines are not in the order of datetime as you can see above. I was hoping to get
my lines to be in datetime order because I need to plot this data.
Any help will be highly appreciated.

A:
import re # regular expressions
import glob # file management and reading

if __name__ == "__main__": # opening for Python
all_header = [] # list declaration
all_values = [] # list declaration
i = 0
with open('out_data.txt', 'w') as of: # output file

for infile in glob.glob("/Users/name/Desktop/raw_data/*.txt"): # input
files↪→
with open(infile) as fobj:

print("processing file {}".format(infile))
for line in fobj:

data = line.split() # split each line into individual tokens
if len(data) == 2 and re.search(r'(\d+-\d+-\d+)', data[0]): #

identify date↪→
header = ['datetime'] # column name
values = [data[0] + " " + data[1]] # combine date and time

27



1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2026

else:
header = [d for d in data if data.index(d) % 2 == 0]
values = [d for d in data if data.index(d) % 2 != 0]

all_header.extend(header)
all_values.extend(values)
if not header:

if i == 0:
of.write(','.join(all_header))

i += 1
of.write("\n")
of.write(','.join(all_values))
all_header = []
all_values = []

of.write("\n")
of.write(','.join(all_values))

EXPECTED RESULT:
From the example data given above, the output should be:

d a t e t i m e , V_1 , V_2 , V_3 , V_4 , V_5 , V_6 , V_7
2013 −01 −17 3 5 : 0 6 : 0 4 . 1 7 2 , 2 6 7 ,987 ,6897 ,9876 ,1287 ,3498 ,2987
2013 −03 −17 1 8 : 0 1 : 4 8 . 3 7 2 , 1 0 0 ,884 ,776 ,009 ,6553 , f f f f ,987
2013 −03 −17 1 8 : 0 2 : 0 3 . 8 2 8 , 8 7 6 ,632 ,887 ,008 ,5423 ,879 ,443
2013 −05 −17 2 0 : 1 3 : 5 2 . 4 8 8 , 5 4 3 ,987 ,233 ,112 ,098 ,344 ,123
2013 −08 −17 2 3 : 0 9 : 0 8 . 1 7 1 , 6 6 7 ,9887 ,9897 ,09876 ,0987 ,098 ,0987

USING PANDAS:
You can use the Pandas library for simplicity. Here is an example:
import pandas as pd
import glob

df_list = []
for infile in glob.glob("/Users/name/Desktop/raw_data/*.txt"):

df_list.append(pd.read_csv(infile, parse_dates=['datetime']))
df = pd.concat(df_list).sort_values(by='datetime')
df.to_csv('out_data.txt', index=False)

USING CSV MODULE:
You can also perform an ordinary (dictionary order) sort as follows:
import csv

with open("out_data.txt", "r") as f:
reader = csv.reader(f, delimiter=",")
header = next(reader)
sortedlist = sorted(reader, key=lambda x: x[0])

with open("sorted.txt", "w") as f:
writer = csv.writer(f, lineterminator="\n")
writer.writerow(header)
writer.writerows(sortedlist)

USING BASH:
Alternatively, you can use the following Bash commands:

head -1 out_data.txt > sorted.txt
tail +2 out_data.txt | sort -t, -k1 >> sorted.txt

Hope this helps!
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V.2 MATHEMATICAL TASK

Math

System:
You are an excellent AI assistant who is good at constructing question-answer (Q-A) pairs. Your task is to construct
some math Q-A from the original documents.
Input:
Each document contains multiple sections of text. Some of these sections may contain mathematical content which
can be used to construct Q-A pairs.
Output:
Identify valid content and construct Q-A pairs. A valid Q-A pair must consist of a clearly defined question and its
corresponding answer. Specially, the questions should be solvable that provide valid and complete pre-conditions;
and the answers need to satisfy the Chain of Thought (CoT) format, which instructs the responder to solve the
question step by step. If the content in the document is not suitable for Q-A construction, return void for that
document.
Here is an example:
User: As I mentioned certain scientific terms in my previous post, I would like to go in-depth on those concepts,
beginning with terminal velocity, it being the most fundamental concept in my post.
So what is terminal velocity?
Terminal velocity is the velocity of an object when the drag force (dependent on the fluid the object is travelling
through) acting upon it is equal to the downward force of gravity acting upon it. Simply put, when the air resistance
of a falling object cancels out the gravitational force which is pulling it downwards and accelerating it.
So how do these forces affect the motion of the object? The forces cancelling each other out make the object
remain at a constant rate of motion.
You may ask why does the object still move when the forces cancel each other out. This is due to the fact that
in the beginning the force of gravity still manages to overcome the drag force, allowing the object to gain speed
(accelerate) initially. But as the object increases in velocity, the drag force increases. This effect can also be seen in
the case of friction (Drag and friction are pretty much the same thing). Let’s assume that a boy is dragging a heavy
box, full of files, across a distance of 100 meters. Now, we will imagine this scenario in two different ways: firstly,
in the case whereby the boy is walking slowly, and in the second, whereby the boy is running. So in the first case,
the boy walks; when he reaches the end, he feels the bottom of the box, where the box and the floor meet, it still
feels the same as before. Now in the second case, he runs; he once again feels the bottom of the box, this time it
feels warmer than before.
So what can we infer from this scenario?
Before I reveal the answer, I would like to state a few properties of friction:

• Friction opposes motion
• Friction causes wear and tear
• Friction produces heat when kinetic energy is converted into thermal energy

So what can we infer? In the second scenario, there was more heat; therefore, we can assume that there was more
frictional force produced in the second case.
Now let’s go back to what I mentioned previously, air resistance increases (Drag Force) as the object’s velocity
increases. As seen in the example above, we can tell that this statement is true.
Recap:

• Terminal velocity is the velocity an object is at when the gravitational force acting upon it is equal to the
drag force acting upon it in the opposite direction, therefore cancelling out all forces and resulting in a
resultant force of 0.

• The drag force acting upon the object increases as the object accelerates due to the downward force of
gravity.

Ok, so let’s move on to the math behind terminal velocity and some examples of it.
The formula for terminal velocity is as follows:

Vt =

√
2mg

ρACd

where:
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• m = Mass of falling object
• g = Acceleration of the object due to gravity
• ρ = Density of fluid through which the object is travelling
• A = Projected area of the object
• Cd = Drag Coefficient

Example:
Assuming I drop a metal cube which has a mass of 3 kg and has a projected area of 1m2 on Earth 90◦ downward,
through air at a temperature of 25◦C, what would the terminal velocity of the cube be?
All we have to do is input all the values into the formula. The acceleration due to gravity on Earth is 9.81m/s2.
The density of air at 25◦C is 1.1839 kg/m3 and the drag coefficient of a cube is 1.05 facing downward.
The result is:

Vt = 6.881101581m/s.
That’s terminal velocity for you!
I would like to thank Mr. Tan Ping Hock and Mr. Yao Zhi Wei Adrian, my current and previous physics teachers
respectively, for clearing my doubts about certain concepts within this topic of terminal velocity!
Thanks for reading!
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