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ABSTRACT

Diffusion models have advanced generative AI significantly in terms of editing
and creating naturalistic images. However, efficiently improving generated image
quality is still of paramount interest. In this context, we propose a generic “natural-
ness” preserving loss function, viz., kurtosis concentration (KC) loss, which can
be readily applied to any standard diffusion model pipeline to elevate the image
quality. Our motivation stems from the projected kurtosis concentration property
of natural images, which states that natural images have nearly constant kurtosis
values across different band-pass versions of the image. To retain the “naturalness”
of the generated images, we enforce reducing the gap between the highest and
lowest kurtosis values across the band-pass versions (e.g., Discrete Wavelet Trans-
form (DWT)) of images. Note that our approach does not require any additional
guidance like classifier or classifier-free guidance to improve the image quality.
We validate the proposed approach for three diverse tasks, viz., (1) personalized
few-shot finetuning using text guidance, (2) unconditional image generation, and
(3) image super-resolution. Integrating the proposed KC loss has improved the
perceptual quality across all these tasks in terms of both FID, MUSIQ score, and
user evaluation.

1 INTRODUCTION

Multi-modal generative AI has advanced by leaps and bounds with the advent of the diffusion
model. Large-scale text-to-image diffusion models, e.g., DALLE Ramesh et al. (2022), Stable-
diffusion Rombach et al. (2022) etc. synthesize high-quality images in diverse scenes, views, and
lighting conditions from text prompts. The quality and diversity of these generated images are
astonishing since they have been trained on a large collection of image-text pairs and are able to
capture the visual-semantic correspondence effectively. Although the diffusion model-generated
images look realistic, a recent study has shown that the generated images can be distinguished from
natural images using state-of-the-art image forensic tools Corvi et al. (2023). This implies that
state-of-the-art generative models might be good at image editing, but often leave unnatural traces
and lack “naturalness” quality. This problem is more prevalent in the cases of few-shot finetuning of
large multi-modal diffusion models, e.g., “personalization” of text-to-image diffusion model. Popular
methods, e.g., DreamBooth Ruiz et al. (2022), Custom diffusion Kumari et al. (2022), etc. achieve
impressive subject-driven “personalized” image generation based on text prompts, but these have
several limitations, e.g., image quality degradation due to unnatural artifacts, etc. Image quality is
of utmost importance for other generative tasks as well, e.g., super-resolution, image restoration,
unconditional image generation, etc. Some examples of unnatural artifacts are shown in Fig. 1.

To improve image quality, several methods rely on guidance methods, e.g., classifier guidance, and
classifier-free guidance Dhariwal & Nichol (2021) etc. However, these methods require external
supervision and add complexity to the training process. Our goal is to improve the image quality
without any additional guidance, yet preserving the “naturalness” of the generated images by exploring
the well-known kurtosis concentration property of natural images Zhang & Lyu (2014). This property
states that natural images have nearly constant kurtosis (fourth order moment) values across different
band-pass (e.g., Discrete Cosine Transform (DCT), Discrete Wavelet Transform (DWT)) versions of
the images Zhang & Lyu (2014). Inspired by this property, we propose a novel kurtosis concentration
(KC) loss, which is generic and applicable to any diffusion based pipeline. More specifically, this
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Figure 1: Overview of DiffNat. We utilize the kurtosis concentration (KC) property of natural images, which
states the kurtosis values across different bandpass filtered (Discrete Wavelet Transform (DWT)) version of the
images tend to be constant (left). As can be observed in this figure, 50 percentile of the kurtosis values reside in
the blue box, which indicates the concentration of the kurtosis values. For natural images, this spread is relatively
smaller. Inspired by this observation, we propose a novel KC loss, which minimize the deviation of kurtosis
across different bandpass (DWT) versions of images. This loss can be applied to any diffusion pipleline with
the traditional reconstruction loss. Here, we consider DreamBooth Ruiz et al. (2022). DreamBooth generated
images might have unnatural artifacts, producing high kurtosis variance (large spread in the blue box) and higher
FID (right top). The FID over the DreamBooth dataset is reported here. Adding KC loss improves image quality
in terms of FID and reduces the kurtosis variance (right bottom).

loss minimizes the gap in the kurtosis of an image across band-pass filtered versions and thus enforce
the “naturalness” of the generated images.

This loss is general-purpose and does not even require any labels. It can be adapted to various genera-
tive tasks with minimal effort. In this work, we experiment with diverse tasks of: (1) personalized
few-shot finetuning of text-to-image diffusion model, (2) unconditional image generation, and (3)
image super-resolution.

Our major contributions are as follows:

• We introduce DiffNat - a framework for improving the image quality of diffusion models using
natural image statistics. Based on the kurtosis concentration property, we propose a novel loss
function by minimizing the gap of kurtosis values (i.e., the difference between maximum and
minimum kurtosis values) across the band-pass (in DWT domain) filtered version of the image. To
the best of our knowledge, we are the first to propose this loss based on natural image statistics.

• We provide theoretical insights into the proposed loss function for generating images with better
perceptual quality.

• We validate the proposed loss in diverse generative tasks, e.g., (1) personalized few-shot finetuning
of text-to-image diffusion model using text guidance, (2) unconditional image generation, and (3)
image super-resolution. Experiments suggest that incorporating the proposed loss improves the
perceptual quality in all these tasks across different benchmarks. We have validated the proposed
approach with a user study as well.

2 RELATED WORK

Deep Generative Models. Generative models (GANs Goodfellow et al. (2020), VAEs Kingma et al.
(2019), flow-based models Rezende & Mohamed (2015), and diffusion models Ho et al. (2020))
learn the probability distribution of given data, allowing us to sample new data points from the
distribution. Deep generative models have been used for modeling the distribution of faces Karras
et al. (2019), 3D objects Wu et al. (2016), videos by Vondrick et al. (2016), natural images by Karras
et al. (2019); Brock et al. (2018), etc for unconditional synthesis. Conditioning the generative models
on segmentation mask Isola et al. (2017), class label Mirza & Osindero (2014), text Tao et al. (2022)
enables us to have more control over the generated images. Generative models can be controlled
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using guidance from images, texts, etc. ILVR Choi et al. (2021) present an iterative way to guide the
image synthesis process using a reference image. Instance-conditioned GAN Casanova et al. (2021)
allows for generating semantic variations of a given reference image, by training using the nearest
neighbors of the reference image. Roich et al. (2022) fine-tune the generator around an inverted latent
code anchor, allowing for latent-based semantic editing on images that are out of the generator’s
domain.

Text-to-Image Generation and Editing. Generating high fidelity, diverse images using text inputs
has seen tremendous progress recently. Many approaches based on GANs have been proposed for
text-to-image generation Qiao et al. (2019); Tao et al. (2022); Liao et al. (2022); Zhu et al. (2019);
Ruan et al. (2021). More recent advances in text-based image synthesis (Stable Diffusion Rombach
et al. (2022), Imagen Saharia et al. (2022), etc) have been powered by diffusion models trained
on massive datasets. GAN-based text-based image editing approaches Crowson et al. (2022); Bau
et al. (2021); Abdal et al. (2022); Gal et al. (2021); Patashnik et al. (2021) have made significant
strides recently thanks to CLIP Radford et al. (2021). Diffusion-based text-to-image editing methods
Ruiz et al. (2022); Kumari et al. (2022); Gal et al. (2022) show better control and impressive editing
results. For “personalizing” these text-to-image models, Textual Inversion Gal et al. (2022) represent
a subject as a new "word" in the embedding space of a diffusion model, which is used in natural
language prompts for creating new images of the subject in novel scenes. DreamBooth Ruiz et al.
(2022) embeds the subject in the output domain of the model and the resulting unique identifier is
used to synthesize novel images of the subject in unseen contexts. Custom Diffusion Kumari et al.
(2022) extends this by enabling the composition of multiple new concepts with existing ones.

Natural Image Statistics. Natural images have interesting scale-invariance and noise properties Zo-
ran & Weiss (2009), which has been used for image restoration problems. Projected kurtosis concen-
tration property of natural images, i.e., natural images tend to have constant kurtosis values across
different band-pass (DCT, DWT) filtered version has been used for blind forgery detection Zhang &
Lyu (2014).

3 METHOD

Figure 2: Kurtosis of various distribu-
tions. Intuitively, kurtosis captures the
peakedness of the distribution.

In this section, we present the concept of the kurtosis concen-
tration loss, which can be applied to various generative tasks
for enhancing the quality of generated images. We start with
providing a basic understanding of the kurtosis concentration
property of natural images and how we leverage this property
to propose kurtosis concentration (KC) loss which enforces the
“naturalness” of the generated samples.

3.1 KURTOSIS CONCENTRATION PROPERTY

Definition 1 Kurtosis : Kurtosis is a measure of the “peaked-
ness” of the probability distribution of a random variable Zhang
& Lyu (2014). For a random variable x, its kurtosis is defined
as,

κ(x) =
µ4(x)

(σ2(x))2
− 3. (1)

where σ2(x) = Ex[(x − Ex(x))
2] and µ4(x) = Ex[(x − Ex(x))

4] is the second order and fourth
order moment of x. E.g., Gaussian random variable has kurtosis value 0.

Intuitively, kurtosis is a measure of the peakedness of a distribution. Kurtosis of well-known distribu-
tions is shown in Fig. 2. A positive kurtosis indicates that the distribution is more peaked than the
normal distribution and negative kurtosis indicates it to be less peaked than normal distribution Zhang
& Lyu (2014). Kurtosis is a useful statistic used for blind source separation Naik et al. (2014) and
independent component analysis (ICA) Stone (2002).

For a random vector x, we define the kurtosis of the 1D projection of x onto a unit vector w as
projection kurtosis, i.e., κ(wTx). This projection kurtosis is an effective measure for the statistical
properties of high-dimensional data. E.g., if x is a Gaussian, its projection over any w has a 1D
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Gaussian distribution. Therefore, its projection kurtosis is always zero, which exhibits the kurtosis
concentration (to a single value, i.e., zero) of Gaussian.

It is well-known that natural images can be modeled using zero-mean GSM vector Zoran & Weiss
(2009). Next, we analyze an interesting property of the GSM vector.

Lemma 1 A Gaussian scale mixture (GSM) vector x with zero mean has the following probability
density function:

p(x) =

∫ ∞

0

N (x; 0, zΣx)pz(z)dz (2)

and its projection kurtosis is constant with respect to the projection direction w, i.e.,

κ(wTx) =
3varz{z}
Ez{z}2

(3)

where Ez{z} and varz{z} are the mean and variance of latent variable z respectively.

Proof. The proof is provided in the supplementary material.

This result by Zhang & Lyu (2014) shows that projection kurtosis is constant across projection direc-
tions (e.g., wavelet basis), which provides a theoretical understanding of the kurtosis concentration
property, which we will discuss next.

Kurtosis Concentration Property: It has been observed that for natural images, kurtosis values
across different band-pass filter channels tend to be close to a constant value. This is termed as
kurtosis concentration property of natural images Zhang & Lyu (2014); Zoran & Weiss (2009). It can
be interpreted as an implication of Lemma 1, if we consider natural images as zero-mean GSM vector.
As a motivating example, we demonstrate the kurtosis concentration property of natural images in
Fig. 1. Next, we establish the relation between the projection kurtosis of the noisy version of the
image and the corresponding signal-to-noise ratio.

Lemma 2 If the noisy version of the natural image is denoted by, y = x + n, where x is a whitened
GSM vector (normalized natural image) and n is a zero-mean white Gaussian noise with variance
σ2I , x and n are mutually independent of each other, then the projection kurtosis of y, κ(wT y) can
be expressed as:

κ(wT y) = κ(wTx)
(
1− c

SNR(y)

)2

=
3varz{z}
Ez{z}2

(
1− c

SNR(y)

)2

(4)

where Signal-to-Noise Ratio (SNR) is defined as, SNR(y) = σ2(y)
σ2(n) and c is a constant.

Input GTGD + KC (SNR=20.4)GD (SNR =18.2)

Figure 3: Empirical evidence of proposition 1, i.e.,
minimizing KC loss denoise input signal. Here we take
standard guided diffusion (GD) model with and without
kurtosis loss for inference for 400 steps, and the denoised
outputs are shown. The model trained with KC loss
generates better quality images, which is also reflected
in higher SNR values. GT refers to ground truth.

Proof. The proof is provided in the supplemen-
tary material.

This result utilizes the fact that, natural im-
ages have constant projection kurtosis, stated
in Lemma 1. Next, we connect projection kur-
tosis minimization to denoising.

Proposition 1 Minimizing projection kurtosis
denoise input signal.

From Lemma 2, we can observe there exists an
inverse relation between the projection kurtosis
and image quality (SNR), therefore minimizing
projection kurtosis will increase SNR and the
image will be denoised better.

The primary objective of diffusion models is to learn denoising from a noisy image or latent embedding
in order to generate a clean image. Then by Lemma 2, the projection kurtosis minimization results
in better denoising (high SNR) of the reconstructed image. In the case of diffusion models, the
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Figure 4: Overview of DiffNat. The proposed kurtosis concentration loss can be integrated to any diffusion
based approach for various tasks (e.g., text-to-image generation (DreamBooth, Custom diffusion), super-
resolution image-to-image generation (Guided diffusion, k-diffusion), unconditional image generation (DDPM)).
In addition to the task specific losses, and general reconstruction loss, we incorporate the kurtosis concentration
loss (LKC ), which operates on the reconstructed images and minimize the kurtosis deviation (i.e., max[κ[{ci}] -
min[κ[{ci}]) across Discrete Wavelet Transform (DWT) filtered version of the reconstructed image, Here, c1, c2
.. are DWT filtered version of the reconstructed image and κ(x) denote kurtosis of x.

underlying denoising UNet is trained using mean squared error objective w.r.t the reconstructed
image and the clean image. During inference, the reconstructed image is iteratively denoised and
refined for T steps to generate the final image with higher quality. Therefore, adding an objective
to minimize the projection kurtosis of the reconstructed image, i.e., increasing the SNR (Lemma 2)
would effectively lead to better denoising at each step and the final image would be of improved
quality (shown in Fig. 3).

3.2 KURTOSIS CONCENTRATION (KC) LOSS

In this work, we leverage this property to introduce a novel loss function, viz., Kurtosis Concentration
loss (KC loss) for training deep generative models. Unlike prior approaches Zhang & Lyu (2014),
where the KC property has been used for noise estimation, source separation, etc., we utilize this
property of natural images as a prior to train generative models for generating images with better
perceptual quality. To validate our loss, we experiment with state-of-the-art generative models, i.e.,
diffusion models. Note that, our proposed loss can be integrated as a plug-and-play with any diffusion
pipeline. We describe the basic diffusion pipeline and KC loss as follows.

Suppose, we need to train or finetune a diffusion model fθ from input training images ({x}) with or
without a conditioning vector c. The conditioning vector could be text, image, or none (in case of
the unconditional diffusion model). The generated images obtained from fθ given an initial noise
map ϵ ∼ N(0, I), a conditioning vector c is given by xgen = fθ(x, ϵ, c). Typically, the diffusion
model is trained to minimize the l2 distance between the ground truth image (x) and the noisy image
(xgen) Dhariwal & Nichol (2021) or their corresponding latent in case of Latent Diffusion Model
(LDM) Rombach et al. (2022). Without loss of generality, we are referring that as reconstruction loss
(Lrecon) between the ground-truth image (x) and the generated image (xgen), denoted by,

Lrecon = Ex,c,ϵ[ ||xgen − x||22] (5)

Note that for LDM, this will be the l2 distance between the corresponding latents. Now, we will
describe the KC loss. Note, that the KC property holds across different bandpass transformed domains
(DCT, DWT, fastICA) and we choose DWT because it is widely used due to its hierarchical structure
and energy compaction properties E Woods & C Gonzalez (2008). Typically, DWT transforms
images into LL (low-low), LH (low-high), HL (high-low), HH (high-high) frequency bands and each
of the sub-bands contains several sparse details of the image. E.g., LL and HH subband contains
a low-pass and high-pass filtered version of the image respectively Zhang & Lyu (2014) as shown
in Fig. 5. The generated image xgen is then transformed using Discrete Wavelet Transform (DWT)
with kernels k1, k2, .., kn producing filtered images ggen,1, ggen,2, .., ggen,n respectively, such that,
ggen,i = Fki(xgen). Here, Fl denotes the discrete wavelet transform with kernel l.
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(a) Natural image (b) LL subband (c) LH subband (d) HL subband (e) HH subband

Figure 5: Wavelet transformed components of a natural image. LL and HH subband capture the
low-frequency and high frequency details.

Now, kurtosis values of these ggen,i should be constant by the kurtosis concentration property,
therefore, we minimize the difference between the maximum and minimum values of the kurtosis of
ggen,i’s to finetune the model using the loss,

LKC = Ex,c,ϵ[(max(κ({ggen,i}))− min(κ({ggen,i})))] (6)

Here, κ(x) is kurtosis of x. Note that, this loss is quite generic and can be applied to both image
or latent diffusion models for training. In the case of latent diffusion models, we need to transform
the latent to image space, before applying this loss. In case of applying this loss to any task T
(DreamBooth, super-resolution, unconditional image generation), the overall loss (L) function would
be, L = Ltask + Lrecon + LKC , where Ltask is the task-specific loss.

4 EXPERIMENTS

We evaluate the efficacy of the proposed loss for three tasks - (1) personalized few-shot finetuning
of diffusion model using text guidance, (2) unconditional image generation, and (3) image super-
resolution.

4.1 TASK 1: PERSONALIZED FEW-SHOT FINETUNING USING TEXT GUIDANCE

In this section, we address the problem of finetuning the text-to-image diffusion model from a few
examples for text-guided image generation in a subject-driven manner. Specifically, given only a
few images (e.g., 3-5) of a particular subject without any textual description, our task is to learn the
subject-specific details and generate new images of that particular subject in different conditions
specified by the text prompt. Suppose we are given four samples of a dog backpack. Now the
task is to finetune the text-to-image diffusion model given these four samples of the particular dog
backpack such that it learns the concept/subject etc. During inference, the model has to generate
images containing that particular dog backpack according to the text prompt.

To evaluate the efficacy of KC loss in this task, we build upon two popular methods, (1) Dream-
booth Ruiz et al. (2022), and (2) Custom diffusion Kumari et al. (2022). In particular, we add KC
loss to these frameworks while finetuning the denoising UNet to check whether the image quality
improves and demonstrate the quality of generated images improves.

Dataset and Metric. We follow the dataset and experimental setup used by DreamBooth Ruiz et al.
(2022). To evaluate the generated image quality with respect to the input image and the text prompt,
we also use the subject fidelity metrics proposed by DreamBooth - (1) DINO, (2) CLIP-I, and (3)
CLIP-T. We have also compared with another naturalness loss, i.e., LPIPS loss Zhang et al. (2018) as
a baseline.

DreamBooth Ruiz et al. (2022) finetunes the stable diffusion model using the standard reconstruction
loss and a prior preservation loss. However, it’s prone to overfitting and some unnatural artifacts can
be observed as shown in Fig. 1. For faster and lightweight training, custom diffusion Kumari et al.
(2022) finetunes only the cross-attention module of the text-to-image stable diffusion model. We
evaluate both approaches with/without KC loss on the same dataset for a fair comparison. When
adding the proposed KC loss to these approaches, we obtain performance improvements in visual
quality, i.e., FID Lucic et al. (2018), MUSIQ score Ke et al. (2021) as shown in Tab. 1. The qualitative
results are shown in Fig. 6. We follow the same setup for the dreambooth and custom diffusion
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Figure 6: Comparison of DreamBooth, Custom diffusion with/without KC loss. Adding KC loss improves
image quality for both DreamBooth and Custom diffusion, in terms of color vividness, contrast, and lighting
consistency.
baselines. Additionally, for KC loss, we decompose the reconstructed images using 27 ‘Daubechies’
filter banks, and get the average deviation of the kurtosis values as a loss function. More training
details will be provided in the supplementary material.

Table 1: Comparison of Personalized few-shot finetuning task

Method Image quality Subject fidelity Prompt fidelity

FID score ↓ MUSIQ score ↑ DINO ↑ CLIP-I ↑ CLIP-T ↑
DreamBooth Ruiz et al. (2022) 111.76 68.31 0.65 0.81 0.31
DreamBooth Ruiz et al. (2022) + LPIPS 108.23 68.39 0.65 0.80 0.32
DreamBooth + KC loss(Ours) 100.08 69.78 0.68 0.84 0.34
Custom Diff. Kumari et al. (2022) 84.65 70.15 0.71 0.87 0.38
Custom Diff. Kumari et al. (2022) + LPIPS 80.12 70.56 0.71 0.87 0.37
Custom Diff. + KC loss(Ours) 75.68 72.22 0.73 0.88 0.40

Figure 7: Subject fidelity assessment
by user study. The ratings ranges from
“0” being “extremely unlikely” to 10
being “extremely likely”. We observe
from the plot that most of the users find
DiffNat preserves subject fidelity. The
average rating is 5.8, which is “moder-
ately likely” to “highly likely”.

Human evaluation. Since the perceptual quality is quite sub-
jective, automatic metrics do not correlate well with the percep-
tual studies Zhang et al. (2018). To verify that the improved
scores actually correspond to better quality images, we evaluate
our approach using human preference study through Amazon
Mechanical Turk. Specifically, we performed two human eval-
uation tasks - (1) subject fidelity assessment and (2) image
quality ranking.

In the subject fidelity assessment, we conduct Two Alterna-
tive Forced choice (2AFC) experiment setup. In particular, we
show a pair of images containing the real image and the edited
image using KC loss and asked the user the question : “How
similar are these two objects?”, with 10 options ranging from
“extremely likely” to “extremely unlikely”( with “0” being “ex-
tremely unlikely” to 10 being “extremely likely”). We test this
with 423 samples with 10 human evaluations per sample, total-
ing 4230 tasks. We show the aggregate response in Fig. 7, which reveals that adding our proposed
loss retains subject fidelity in most cases.
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Next, we provide 30 examples of natural images and corresponding generated images using Dream-
booth, Custom diffusion, and our method, and asked the question : “which of the edited images
is of best visual quality considering factors including image quality and preserving the identity of
the original image?” We evaluate this by 50 users, totaling 1500 questionnaires and the aggregate
response reveals that DiffNat-generated images outperform the baselines by a large margin (i.e.,
50.4%,) where the available options are { ‘DiffNat’, ‘Dreambooth’, ‘Custom diffusion’, ‘None is
satisfactory’}, which shows that our approach outperforms the baseline approaches.

4.2 TASK 2: UNCONDITIONAL IMAGE GENERATION

Unconditional image generation does not require any text or image guidance. It simply tries to learn
the training data distribution through a generative model (here we focus on the diffusion model) and
generates samples similar to the training data distribution. Denoised Diffusion Probabilistic Model
(DDPM) Ho et al. (2020) is a parameterized Markov chain that is trained to generate matched data
distribution through variational inference. The denoising takes place in the image space and produces
better image quality compared to GANs.

DDPM DDPM + KC loss

Figure 8: Comparison of unconditional image gen-
eration (DDPM) with/without KC loss. Integrat-
ing KC loss significantly improve image quality,
whereas DDPM generated images have unnatural
image artifacts.

We incorporate our proposed KC loss in this
framework and obtain even better perceptual
quality on various diverse datasets in terms of
FID and MUSIQ score. The experimental re-
sults are shown in Tab. 2 and Fig. 8. Note that,
in this approach, we integrate the KC loss di-
rectly into image space, which shows the flex-
ibility of our proposed loss. We have experi-
mented with Oxford-flowers Nilsback & Zisser-
man (2006), celebAfaces Zhang et al. (2020)
and CelebAHQ Karras et al. (2017) datasets
and obtained consistent improvements on im-
age quality as shown in Tab. 2. Qualitative analysis in Fig. 8 verify that integrating KC loss improves
image quality in terms of details, contrast, and color vividness.

Table 2: Comparison of unconditional image generation task

Method Oxford flowers Celeb-faces CelebAHQ

FID score ↓ MUSIQ score ↑ FID score ↓ MUSIQ score ↑ FID score ↓ MUSIQ score ↑
DDPM Ho et al. (2020) 243.43 20.67 202.67 19.07 199.77 46.05
DDPM Ho et al. (2020) + LPIPS 242.62 20.80 201.55 19.21 197.17 46.15
DDPM + KC loss(Ours) 237.73 21.13 198.23 19.52 190.59 46.83

4.3 TASK 3: IMAGE SUPER-RESOLUTION

Input LD+KC loss GTLD

Figure 9: Image super-resolution quality improves
adding KC loss to k-diffusion (LD) framework. Gener-
ated images show better quality in terms of overall image
smoothness (first row), finer details like eyes (second
and third row).

Image super-resolution typically takes the form
of a conditional generation task, leveraging a
low-resolution image as an additional condition
for the diffusion model. In this study, we es-
tablish two state-of-the-art diffusion pipelines
as baselines for comparison. Guided diffusion
(GD) Dhariwal & Nichol (2021) directly takes
the low-resolution image as a condition and per-
forms the diffusion operation in the pixel space.
Additionally, we also explore the latent diffu-
sion model (LDM) Rombach et al. (2022) that
operates in the latent space of a pre-trained VQ-
VAE Esser et al. (2021). We introduce condi-
tioning by utilizing the latent embedding of the
low-resolution image with this model, referring
to it as conditional-LDM (cLDM).
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Note that, as GD operates in the pixel space, we directly add the proposed KC loss to the output of
the denoising UNet. Conversely, for cLDM, we initially convert the latent embedding to image space
using the pre-trained decoder and integrate the KC loss on the output of the decoder. For training,
we use the standard FFHQ dataset Karras et al. (2017), which contains 70k high-quality images.
Specifically, we address the task of ×4 super-resolution where the GT images are of resolution
256 × 256. We evaluate randomly sampled 1000 images from CelebA-Test dataset Karras et al.
(2017) under the same ×4-SR setting.

Table 3: Comparison of image super-resolution task

Method Image quality

FID score ↓ PSNR ↑ SSIM ↑ LPIPS ↓ MUSIQ score ↑
GD Dhariwal & Nichol (2021) 121.23 18.13 0.54 0.28 57.31
GD Dhariwal & Nichol (2021) + LPIPS 119.81 18.22 0.54 0.27 57.42
GD + KC loss(Ours) 103.19 18.92 0.55 0.26 58.69
LD. Karras et al. (2022) 95.83 19.16 0.56 0.26 59.57
LD. Karras et al. (2022) + LPIPS 92.77 19.42 0.57 0.25 59.82
LD + KC loss(Ours) 83.34 20.25 0.58 0.22 61.20

Since, the proposed KC
loss improves image qual-
ity, it is inherently appli-
cable for this task. We
integrate KC loss in the
SOTA super-resolution dif-
fusion models Dhariwal &
Nichol (2021); Rombach
et al. (2022), and obtained performance improvement in perceptual quality as shown in Tab. 3.
In the qualitative results shown in Fig. 10 and Fig. 9, we observe that adding KC loss improves the
image quality and finer details, e.g., eye structure, texture, lighting etc.

4.4 COMPARISON OF REAL VS SYNTHETIC DETECTION

Input GD GD+KC loss GT

Figure 10: Image super-resolution quality improves
adding KC loss to the guided diffusion (GD) framework.
Generated images show better quality in terms of overall
image details (first row), finer details like eyes (second
row), and overall color and brightness (third row).

To perform the robustness analysis of the pro-
posed loss, we also perform the following ex-
periment. We train a classifier (2-layer MLP on
top of pre-trained ResNet feature extractor) to
distinguish real vs synthetic, where ‘real’ comes
from natural image belongs to the DreamBooth
dataset and ‘synthetic’ comes from diffusion
model generated images from algorithm X or
X + KC loss. Here ‘X’ can be ‘DreamBooth’
or ‘Custom diffusin”. For testing, we select
non-overlapping test samples for both natural
and diffusion generated images. When tested
on DreamBooth and Custom diffusion, we ob-
serve that adding KC loss decrease the real vs
synthetic classification accuracy as shown in
Tab. 4. This indicates that generated images
are of superior perceptual quality, exhibiting a
greater degree of “naturalness” to both human
observers and machine algorithms alike.

5 CONCLUSION

Table 4: Comparison of real vs synthetic detection

Method Accuracy

DreamBooth Ruiz et al. (2022) 93.33%
DreamBooth Ruiz et al. (2022) + KC loss 66.66%
Custom Diffusion Kumari et al. (2022) 94.16 %
Custom Diffusion Kumari et al. (2022) + KC loss 92.5%

Although diffusion models have significantly
advanced in creating naturalistic images, these
images can have unnatural artifacts, especially
in the cases of few-shot finetuning of large-scale
text-to-image diffusion models. We leverage the
kurtosis concentration property of natural im-
ages to define a novel and generic loss function
in order to preserve the “naturalness” of generated images. Kurtosis concentration property suggests
that the kurtosis values across different bandpass versions of the natural image tend to be constant.
The proposed kurtosis concentration loss minimizes the gap between the maximum and minimum
value of the kurtosis across different DWT filtered versions of the image. We show this loss improves
image quality for diverse generative tasks - (1) personalized few-shot finetuning of text-to-image
diffusion model, (2) unconditional image generation, and (3) image super-resolution. We also conduct
human studies to validate our approach.
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A APPENDIX

In this supplementary material, we will provide the following details.

1. Training details.
2. Theoretical justification.
3. Additional experimental results.
4. Failure cases.
5. Computation complexity
6. Training time analysis
7. Kurtosis analysis
8. Convergence analysis
9. Qualitative analyis

10. Experiments on image super-resolution
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B TRAINING DETAILS

The training details of finetuning the diffusion model for various tasks have been provided here. For
personalized few-shot finetuning, we consider two methods - Dreambooth Ruiz et al. (2022) and
Custom diffusion Kumari et al. (2022). For fair comparison, we applied both the approaches on the
dataset and setting introduced by Dreambooth. The dataset contains 30 subjects (e.g., backpack,
stuffed animal, dogs, cats, sunglasses, cartoons etc) and 25 prompts including 20 re-contextualization
prompts and 5 property modification prompts. DINO, which is the average pairwise cosine similarity
between the ViT-S/16 DINO embeddings Caron et al. (2021) of the generated and real images. (2)
CLIP-I, i.e., the average pairwise cosine similarity between CLIP Radford et al. (2015) embeddings
of the generated and real images. To measure the prompt fidelity, we use CLIP-T, which is the average
cosine similarity between prompt and image CLIP embeddings.

For unconditional image generation, we have experimented on oxford flowers, CelebAfaces and
CelebAHQ datasets. Image quality has been measured by FID and MUSIQ score.

In case of image super-resolution, we experimented with guided diffusion Dhariwal & Nichol (2021)
and latent diffusion Karras et al. (2022) pipelines. We use FFHQ dataset for training, and test on a
subset of 1000 images from CelebAHQ test set for x4 super-resolution task. The hyperparameter
details are given in Tab. 5.

Table 5: Hyperparameters

Hyperparameter Values

Coefficient of Lrecon 1
Coefficient of Lprior 1
Coefficient of LKC 1

Learning rate 10−5

Batch size (Dreambooth, Custom diffusion) 8
Batch size (DDPM) 125

Batch size (GD) 16
Batch size (LD) 9

Text-to-image diffusion model Stable Diffusion-v1 Rombach et al. (2022)
Number of class prior images (Dreambooth, Custom diffusion ) 10

Number of DWT components 25

C THEORETICAL JUSTIFICATION

Here we provide theoretical analysis of the Lemmas mentioned in the main paper.

Lemma 3 A Gaussian scale mixture (GSM) vector x with zero mean has the following probability
density function:

p(x) =

∫ ∞

0

N (x; 0, zΣx)pz(z)dz (7)

and its projection kurtosis is constant with respect to the projection direction w, i.e.,

κ(wTx) =
3varz{z}
Ez{z}2

(8)

where Ez{z} and varz{z} are the mean and variance of latent variable z respectively.

Proof. Marginal distribution of the projection of x on non-zero vector w is given by,

pw(t) =

∫
x:wT x=t

p(x)dx

=

∫
z

pz(z)dz.

∫
x:wT x=t

1√
(2πz)d|det(Σx)|

exp(−xTΣ−1
x x

2z
)dx

=

∫
z

Nt(0, zw
TΣxw)pz(z)dz

13



Under review as a conference paper at ICLR 2024

Note that, the last equality holds from the marginalization property of Gaussian, i.e., X ≈ N (µ,Σ),
then, AX ≈ N (Aµ,AΣAT ).

The variance of wTx,

Et{t2} =

∫
z

pzdz

∫
t

t2Nt(0, zw
TΣxw)dz

= wTΣxw

∫
z

zpzdz

= wTΣxwEz{z}

The fourth order moment of wTx,

Et{t4} =

∫
z

pzdz

∫
t

t4Nt(0, zw
TΣxw)dz

= 3(wTΣxw)
2

∫
z

z2pzdz

= 3(wTΣxw)
2Ez{z2}

We utilize the property that Nt(0, σ
2) has a fourth order moment of 3σ4.

Finally, the kurtosis becomes,

κ(wTx) =
Et{t}4

Et{t}2
− 3

=
3Ez{z}2

Ez{z}2
− 3

=
3(Ez{z2} − Ez{z}2)

Ez{z}2

=
3varz{z}
Ez{z}2

Lemma 4 If the noisy version of the natural image is denoted by, y = x + n, where x is a whitened
GSM vector (normalized natural image) and n is a zero-mean white Gaussian noise with variance
σ2I , x and n are mutually independent of each other, then the projection kurtosis of y, κ(wT y) can
be expressed as:

κ(wT y) = κ(wTx)
(
1− c

SNR(y)

)2

=
3varz{z}
Ez{z}2

(
1− c

SNR(y)

)2

(9)

where Signal-to-Noise Ratio (SNR) is defined as, SNR(y) = σ2(y)
σ2(n) and c is a constant.

Proof. Here, we provide the proof of Lemma 1, mentioned in the main paper. Without loss of
generality, we strat by assuming, Exx = 0, since the mean can be easily subtracted from the data.
We also assume that n is a zero-mean white Gaussian noise with variance σ2I , x and n are mutually
independent of each other.

σ2(wTn) = wTEz{zzT }w = σ2wTw = σ2

σ2(wTx) = wTEx{xxT }w = wTΣxw

σ2(wT y) = σ2(wxy) + σ2(wTn) = wTΣxw + σ2

Since n is a white Gaussian, x and n are independent, then wTx and wTn Therefore,

σ2(wT y) = σ2(wTx) + σ2(wTn) (10)
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.

Similarly, for fourth order moment, using the additivity of cumulants of independent variables (since
x and n are independent) Papoulis & Unnikrishna Pillai (2002), we obtain,

κ(wT y)(σ2(wT y))2 = κ(wTx)(σ2(wTx))2 + κ(wTn)(σ2(wTn))2

= κ(wTx)(σ2(wTx))2
(11)

Since, For Gaussian, κ(n) = 0

By rearranging, we have,

κ(wT y) = κ(wTx).
(σ2(wTx)

σ2(wT y)

)2
= κ(wTx).

(σ2(wT y)− σ2

σ2(wT y)

)2
= κ(wTx).

(
1− c.

σ2

σ2(y)

)2
=

3varz{z}
Ez{z}2

.
(
1− c

SNR(y)

)2

Here, Signal-to-Noise Ratio (SNR) is defined as, SNR(y) = σ2(y)
σ2(n) .

D ADDITIONAL EXPERIMENTAL RESULTS

In Fig. 11, we visualize some of the DiffNat generated images using various text-prompts. The
generated images capture the context of the text-prompt and also retain naturalness. We have also
provided qualitative comparison w.r.t Dreambooth in Fig. 12.

E FAILURE CASES

We also present some of the failure cases of DiffNat in Fig. 13. E.g., our model fails to generate
images of “A [V] berry bowl with the Eiffel Tower in the background”, but actually generates images
with “the Eiffel Tower” in the berry bowl. Similarly, the model fails to generate “A cube shaped [V]
can”, since these object do not appear in the training set. The model also fails to generate “A [V] cat
on top of a purple rug in a forest” and instead generated some version of purple cat.

F COMPUTATION COMPLEXITY

Here we analyze the computational complexity of the proposed KC loss. Suppose, given a batch of N
images. We need to perform DWT of each images using k different filters. Since, DWT for ’haar’
wavelet can be done in linear time, the complexity of performing DWT with k filters can be done
in O(Nk) time. Now, calculating the difference between maximum and minimum kurtosis can be
done in linear time, therefore, the computational complexity of calculating KC loss is O(Nk). This
minimal overhead of computing KC loss can be observed in the training time analysis provided next.

G TRAINING TIME ANALYSIS

The run time analysis has been provided in Table. 6. Note that the experiments for Dreambooth,
Custom diffusion, DDPM have been performed on a single A5000 machine with 24GB GPU. We
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Figure 11: DiffNat generated images. The task is to learn a unique identifier (“A [V] dog backpack”)
of the training images and generate variations w.r.t. background, lighting conditions etc. The
generated images look natural in different background context, e.g., “A [V] dog backpack on the
beach/ with a city in the background etc”. The generated images are of high quality.
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Figure 12: Comparison of DreamBooth and DiffNat. DiffNat generated images have better visual
quality.
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Figure 13: Failure cases of DiffNat. Instead of generating “A [V] berry bowl with the Eiffel Tower in
the background”, our method generates image with the Eiffel Tower in the berry bowl. Also, while
generating “A [V] cat on top of a purple rug in a forest”, it generates a purple [V] cat, which shows
the color bias w.r.t the text-prompt of the model.

have performed guided diffusion (GD) and latent diffusion (LD) experiments on a server of 8 24GB
A5000 GPUs. The experimental results in Table. 6 show that incorporating KC loss induces minimum
training overhead.

H KURTOSIS ANALYSIS

To verify the efficacy of the proposed KC loss, we perform average kurtosis analysis in this section.
we compute the average kurtosis deviation of DWT filtered version of images from the dataset and
plot them in Fig. 15, Fig. 16 and Fig. 17. E.g., in case of dreambooth task, we compute the kurtosis
statistics of bandpass filtered version of natural images from Dreambooth dataset, images generated by
Dreambooth and images generated by DiffNat (i.e., adding KC loss) and plot it in Fig. 15. We observe
that the Dreambooth generated images (Fig. 15 (a)) have highest kurtosis deviation. The average
deviation is least for natural images (Fig. 15 (c)) and adding KC loss reduces the kurtosis deviation
(Fig. 15 (b)). Similar trends can be observed for DDPM (Fig. 16), guided diffusion (Fig. 17) as well.
Adding KC loss improves image quality has been verified both qualitatively and quantitatively in the
paper. This analysis verifies minimizing kurtosis loss improves diffusion image quality.

I CONVERGENCE ANALYSIS

The main idea of the diffusion model is to train a UNet, which learns to denoise from a random
noise to a specific image distribution. More denoising steps ensure a better denoised version of the
image, e.g., DDPM Ho et al. (2020), LDM Karras et al. (2022). In proposition 1 (main paper), we
show that minimizing projection kurtosis further denoise input signals. Therefore, KC loss helps
in the denoising process and improves the convergence speed. We have shown that adding KC loss
improves the loss to converge faster for Dreambooth task in Fig. 14.
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Figure 14: Loss curve convergence of Dreambooth.

(a) Average kurtosis of Dream-
booth images

(b) Avg. kurtosis (trained with
Dreambooth + KC loss)

(c) Average kurtosis of Natural
images

Figure 15: Average kurtosis analysis of Dreambooth, DiffNat and natural images over the dataset
used in Dreambooth. From this analysis, it is evident that Dreambooth generated images have higher
kurtosis deviation. Integrating KC loss reduces the kurtosis deviation to preserve the naturalness of
the generated images. Natural images have more concentrated kurtosis values.

(a) Average kurtosis of DDPM im-
ages

(b) Average kurtosis of images
trained with DDPM + KC loss

(c) Average kurtosis of Natural
images

Figure 16: Average kurtosis analysis of DDPM framework trained on Oxford flowers dataset. From
this analysis, it is evident that DDPM generated images have higher kurtosis deviation. Integrating
KC loss reduces the kurtosis deviation to preserve the naturalness of the generated images. Natural
images have more concentrated kurtosis values.
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Table 6: Training time analysis

Method dataset Training time

DreamBooth Ruiz et al. (2022) 5-shot finetuning 10 min 21s
DreamBooth Ruiz et al. (2022) + KC loss 5-shot finetuning 11 min 30s
Custom Diffusion Kumari et al. (2022) 5-shot finetuning 6m 43s
Custom Diffusion Kumari et al. (2022) + KC loss 5-shot finetuning 7m 11s
DDPM Ho et al. (2020) CelebAfaces 2d 8h 21m
DDPM Ho et al. (2020) + KC loss CelebAfaces 2d 9h 19m
DDPM Ho et al. (2020) CelebAHQ 21h 48m
DDPM Ho et al. (2020) + KC loss CelebAHQ 22h 40m
DDPM Ho et al. (2020) Oxford flowers 6h 17m
DDPM Ho et al. (2020) + KC loss Oxford flowers 6h 39m
GD Dhariwal & Nichol (2021) FFHQ 23h 10m
GD Dhariwal & Nichol (2021) + KC loss FFHQ 1d 1h 29m
LD Karras et al. (2022) FFHQ 20h 15m
LD Karras et al. (2022) + KC loss FFHQ 22h 40m

(a) Average kurtosis of GD gener-
ated images

(b) Average kurtosis of images
trained with GD + KC loss

(c) Average kurtosis of Natural
images

Figure 17: Average kurtosis analysis of guided diffusion (GD) framework trained on FFHQ dataset.
From this analysis, it is evident that GD generated images have higher kurtosis deviation. Integrating
KC loss reduces the kurtosis deviation to preserve the naturalness of the generated images. Natural
images have more concentrated kurtosis values.

J QUALITATIVE ANALYSIS

In this section, we provide more qualitative analysis to show that adding KC loss improves image
quality. Zoomed view of the generated images are shown to compare w.r.t the baselines in Fig. 18,
Fig. 19, Fig. 20, Fig. 21, Fig. 22, Fig. 23, Fig. 24, Fig. 25. Details are provided in the caption.

K EXPERIMENTS ON IMAGE SUPER-RESOLUTION

In this section, we provide more experimental results for image super-resolution task. This includes
quantitative results and human evaluation.

K.1 QUANTITATIVE RESULTS

In addition to the super resolution task (x4) shown in the main paper, we conduct experiments for x2
and x8 tasks as well in the same setting. The ground-truth images are of size 256 X 256. Therefore,
x2 task performs image super-resolution from 128 X 128 → 256 X 256 and x8 task performs image
super-resolution from 32 X 32 → 256 X 256 and the corresponding experiments are shown in Table 7
and Table 8 respectively. For training, we use standard FFHQ dataset Karras et al. (2017), and
evaluation is performed on CelebA-Test dataset Karras et al. (2017). We observe that adding KC
loss improves image quality quantitatively both for guided diffusion (GD) and latent diffusion (LD).
Qualitative results are shown in Fig. 22, Fig. 23, Fig. 24 and Fig. 25. Next, we also perform human
study to validate our approach.
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Dreambooth

Dreambooth
+ KC Loss

Figure 18: Qualitative comparison of with/without KC loss in Dreambooth. The bottom image (with
KC loss) shows better image quality and shadows (best viewed in color).

Table 7: Comparison of image super-resolution (x2) task

Method Image quality

FID score ↓ PSNR ↑ SSIM ↑ LPIPS ↓ MUSIQ score ↑
GD Dhariwal & Nichol (2021) 100.2 19.4 0.62 0.25 58.12
GD + KC loss(Ours) 80.9 20.2 0.66 0.20 59.91
LD. Karras et al. (2022) 82.45 21.2 0.64 0.24 60.23
LD + KC loss(Ours) 70.12 22.3 0.70 0.18 62.15

K.2 HUMAN EVALUATION

We conduct human evaluation of image super-resolution task to compare guided diffusion (GD)/
latent diffusion (LD) and adding KC loss to the corresponding counterpart (DiffNat). We provide
20 examples of natural images and corresponding generated images using GD, LD and our method
DiffNat (i.e., adding KC loss) and asked the following question to amazon mechanical turks: "which of
the generated images is of best visual quality considering factors include image quality and preserving
the identity of the original image?" Similar to Dreambooth task, we evaluate this by 50 users, totalling
1000 questionnaires. The available options are { ’DiffNat’, ’GD/LD’, ’None is satisfactory’ }. The
aggregate response shows that DiffNat generated images are of better image quality compared to
the baselines, as shown in Fig. 26. Therefore, we verified the improved image quality quantitatively,
qualitatively and through human evaluation as well. Note that, human evaluation is not applicable
for unconditional image generation task since there is no one-to-one correspondence between the
training images and the generated images. It will be ambiguous for the human observers to compare
quality between approaches. Therefore, we abstain ourselves from performing human evaluation for
this task. However, the quantitative and qualitative analysis exhibit the efficacy of our approach.
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Dreambooth

Dreambooth
+ KC Loss

Figure 19: Qualitative comparison of with/without KC loss in Dreambooth. The bottom image (with
KC loss) shows better image quality and reflections on the bowl full of berries (best viewed in color).

Table 8: Comparison of image super-resolution (x8) task

Method Image quality

FID score ↓ PSNR ↑ SSIM ↑ LPIPS ↓ MUSIQ score ↑
GD Dhariwal & Nichol (2021) 140.3 17.5 0.52 0.32 55.26
GD + KC loss(Ours) 125.5 18.7 0.56 0.27 57.33
LD. Karras et al. (2022) 103.2 18.7 0.59 0.25 58.62
LD + KC loss(Ours) 80.1 19.5 0.67 0.20 60.31
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Custom
Diffusion

+ KC
Loss

Custom
Diffusion

Figure 20: Qualitative comparison of with/without KC loss in Custom diffusion. The bottom image
(with KC loss) shows better image quality in terms of color vividness and contrast (best viewed in
color).
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Custom
Diffusion

Custom
Diffusion

+ KC
Loss

Figure 21: Qualitative comparison of with/without KC loss in Custom diffusion. The bottom image
(with KC loss) shows better image quality in terms of detail and smoothness (best viewed in color).

Input GTGD + KCGD

Figure 22: Qualitative comparison of with/without KC loss in guided diffusion (GD). The bottom
image (with KC loss) has better eye and hair details (best viewed in color).
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Input GTGD + KCGD

Figure 23: Qualitative comparison of with/without KC loss in guided diffusion (GD). The bottom
image (with KC loss) has better eye details and skin smoothness (best viewed in color).

Input GTLD + KC LD

Figure 24: Qualitative comparison of with/without KC loss in Latent diffusion (LD). The bottom
image (with KC loss) has higher similarity w.r.t the ground truth in terms of left eye and skin color
(best viewed in color).
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Input GTLD + KCLD

Figure 25: Qualitative comparison of with/without KC loss in Latent diffusion (LD). The bottom
image (with KC loss) has better eye details and skin smoothness (best viewed in color).

Figure 26: Human evaluation for image super-resolution task. DiffNat performs better than guided
diffusion (GD), latent diffusion (LD) in user study as well.
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