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ABSTRACT

With a growing interest in sleep monitoring at home, sound-based sleep stag-
ing with deep learning has emerged as a potential solution. However, collecting
labeled data is restrictive in home environments due to the inconvenience of in-
stalling medical equipment at home. To handle this, we propose novel training
approaches using accessible real-world sleep sound data. Our key contributions
include a new semi-supervised learning technique called sequential consistency
loss that considers the time-series nature of sleep sound and a semi-supervised
contrastive learning method which handles out-of-distribution data in unlabeled
home recordings. Our model was evaluated on various datasets including a la-
beled home sleep sound dataset and the public PSG-Audio dataset, demonstrating
the robustness and generalizability of our model across real-world scenarios.

1 INTRODUCTION

Sleep is an essential factor for human health and well-being, and an in-depth comprehension of
sleep patterns and sleep stages is imperative for diagnosing and treating sleep disorders. There
exists a gold-standard polysomnography (PSG) for sleep assessment in hospitals (Bloch, 1997), but
it is inconvenient and costly, making sound-based solutions at home more preferable (Hong et al.,
2022). However, sleep stage annotations at home are limited because the PSG is mostly conducted
in hospitals. Moreover, the sound-based model validated in hospitals is not guaranteed to perform
the same at home because of various types of noise from residential environments. Therefore, to
enhance the representational power of sleep sound data recorded at home, it is crucial to make better
use of unlabeled home recordings by such techniques as semi-supervised learning (SSL).

Sound-based sleep staging involves identifying patterns in respiratory and body movement sounds.
The pattern characteristics are reflected over a long period of time, making it difficult to fully com-
prehend a sleep stage from just a single snapshot of sound. Thus, modeling sleep sound necessitates
a comprehensive understanding of the time-series nature of sleep sound, presenting a unique chal-
lenge in applying semi-supervised learning for time-series data. Additionally, the use of unlabeled
home recordings can result in the inclusion of out-of-distribution data (i.e. absence of a person,
two people in bed, and playing music), as they are self-conducted by participants using their own
smartphones in real-world environments without quality control measures.

In this work, we present a novel approach to address the unique challenges of modeling sleep
sound data captured in a real-world setting. Our key contributions include a new SSL technique,
called sequential consistency loss, which enhances the temporal correlation of the model when han-
dling time-series sleep sound data. In addition, we propose a semi-supervised contrastive learning
(SSCL) method to handle real-world data, which contains out-of-distribution (OOD) data. We thor-
oughly evaluate our approach on two datasets: a labeled home sleep sound dataset recorded using
portable PSG devices with 45 participants, and the PSG-Audio dataset (Korompili et al., 2021),
which includes a diverse range of participants and environments. Our results demonstrate the ro-
bustness and generalizability of our model across various real-world scenarios.
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Figure 1: Framework of our SleepFormer model with NS sequence of Mel spectrograms input.

Related work. Consistency-based SSL approach seeks to reduce the prediction discrepancy be-
tween various augmentations of a single data sample (Berthelot et al., 2019; Tarvainen & Valpola,
2017). Kim et al. (2020) introduced a structured consistency loss that considers the spatial corre-
lation between pixels in the segmentation task. Our methodology extends this idea by proposing a
novel consistency loss that accounts for the time-series properties of sleep data.

Contrastive learning is a technique for learning representations by maximizing the similarity be-
tween positive samples and minimizing the similarity between negative samples (Chen et al., 2020;
He et al., 2020; Khosla et al., 2020). Yang et al. (2022) utilized high-confidence unlabeled samples
for contrastive learning to address Out-of-Distribution (OOD) samples in a robust SSL scenario.
Our approach incorporates labeled samples as a reliable reference point since unlabeled samples
may contain a considerable proportion of OOD data.

2 METHOD

Preliminary. The sound-based sleep staging task which requires temporal analysis can be framed as
a sequence prediction task, where a sequence of Mel spectrogram samples, denoted by x = (xi)

Ns
i=1,

is used as an input to predict a corresponding sequence of sleep stage labels, y = (yi)
Ns
i=1, where xi

and yi are the ith sample of the sequences x and y respectively, and Ns is the number of samples in
the sequence. The sleep stage labels, yi, have four possible classes (Wake, REM, Light, Deep) rep-
resented as one-hot labels. The previous work (Hong et al. (2022)) tackles this problem by building
the sequence-to-sequence SoundSleepNet model, which consists of a backbone for low-level feature
extraction and a head for learning the temporal correlation between the Mel spectrograms. Built
upon it, we have replaced the backbone and head networks with MobileVitV2 (Mehta & Rastegari
(2022)) and ViT (Dosovitskiy et al. (2020)) respectively as shown in Fig.1, which we call Sleep-
Former. The model generates predictions for the sleep stage logits of the sequence ŷ = (ŷi)

Ns
i=1, and

the supervised baseline is trained exclusively using the cross-entropy loss (LSUP).

2.1 HARNESSING TIME-SERIES REAL-WORLD UNLABELED DATA

To achieve high performance in home environments, using unlabeled data (u = (ui)
Ns
i=1) from home

settings is crucial. This section outlines our semi-supervised method for handling real-world sleep
data, which exhibits both time-series and noisy characteristics.

Sequential Consistency Loss. To employ the consistency training, we create two different aug-
mented samples (ua

i , u
b
i ) from ui, and the model outputs the corresponding logits (ŷai , ŷ

b
i ). We first

take sample-wise consistency loss LC =
∑BuNs

i=1 JS(ŷai , ŷ
b
i ), where Jensen-Shannon divergence is

used and Bu is the batch size of unlabeled sequences. The consistency loss makes the model more
generalized for sample-wise prediction, but it can not exploit the temporal correlation in sleep sound
data and their corresponding labels. Therefore, we propose sequential consistency loss LSC that
matches the similarity of the prediction sequence as follows:

LSC =
∑Bu

s=1
(Ca

s −Cb
s)

◦2 ⊙W, (1)

where ◦ is Hadamard power and ⊙ is the element-wise multiplication of the two matrices which are
then averaged into a value. We adopt cosine similarity between the logits of ith and jth samples in
a sequence to catch the amount of sleep stage variation over time. Ca

s and Cb
s are Ns × Ns sym-

metric cosine similarities matrices of two different augmented sequences from the same sequence
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Figure 2: Illustration of two consistency losses
when NS = 6. It presents upper triangular ma-
trices of Ca and W for a better understanding.

Figure 3: Illustration of SSCL working mech-
anism. For instance, SSCL pulls u1 to anchor
x1 since u1 has high enough confidence for the
Deep class due to the clear and regular respira-
tory pattern. Otherwise, SSCL pushes u3 since
u3 has no evidence to be a Deep class (other
class or possibly OOD).

us. Moreover, we define the weighted mask matrix W = [wi,j |wi,j = (NS−1−|i−j|)(1−wmin)
NS−2 +

wmin]1≤i,j≤Ns that weighs close sample pairs more than far ones, where wmin indicates the min-
imum weight value for the furthest pair. Thus, the loss enforces the predictions of two different
augmentations from the same sequence to have a similar sequential trend. Fig.2 describes the whole
process of calculating the consistency losses.

Semi-supervised Contrastive Loss. In order to fully utilize the unlabeled data which possibly in-
cludes OOD samples, we adopt Class-aware Contrastive Semi-Supervised Learning (CCSSL) from
Yang et al. (2022), known as the state-of-the-art robust SSL method, which calculates the supervised
contrastive loss (Khosla et al. (2020)) between the unlabeled samples using the pseudo label, and
pushes the OOD samples from the in-class feature representation clusters. In a batch of Bu unla-
beled sequences with a total of N = BuNs samples, CCSSL considers two strong augmentations for
each unlabeled sample ui. Denoting by i ∈ I ≡ {1, . . . , 2N}, the index of an arbitrary augmented
sample, the contrastive loss of CCSSL is defined as LCCSSL =

∑
i∈I LCCSSL,i, where we have a loss

of the anchor i as

LCCSSL,i = − log
exp(zi · z∗i /τ)∑

j∈I 1i ̸=j exp(zi · zj/τ)
−

∑
k∈K(i)

ρi,k log
exp(zi · zk/τ)∑

j∈I 1j ̸=i exp(zi · zj/τ)
. (2)

Here, zi is an embedding of the anchor i, obtained through ViT (see Fig.1); z∗i = z(i+N) mod 2N is the
embedding of the other augmented sample originating from the same unlabeled sample; · denotes the
inner product; τ is a temperature; k ∈ K(i) represents the index of an augmented sample associated
with the same pseudo label; and ρi,k := max(ŷi)max(ŷk) is a re-weighting factor.

In the presence of heavily contaminated unlabeled data, the CCSSL can be unreliable, as OOD
samples from the unlabeled data can be sampled with high confidence, leading to confusion in class
clustering. To address this issue, we introduce Semi-Supervised Contrastive Learning (SSCL), a
method that leverages reliable labeled data as anchor points for class clustering. Considering the
labeled sample as an anchor, SSCL can use trustworthy positive and negative samples and achieve
better class clusters in an embedding space by pushing away the OOD samples from the in-class
embedding cluster. The contrastive loss for a labeled anchor m can be defined as:

LSSCL,m = −
∑

i∈P(m)
pm,i log

exp(zm · zi/τ)∑
j∈N (m) exp(zm · zj/τ)

, (3)

where m indicates the index of a sample in a batch of Bl labeled sequences; and pm,i := ym · ŷi
means the similarity of the predicted class for the i-th augmented unlabeled sample i and the m-th
anchor’s class ym. We only consider the pseudo labels with high confidence to construct positive
and negative samples, i.e., denote by P(m) = {i ∈ I|pm,i > τp} and N (m) = {j ∈ I|pm,i < τn}
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Table 1: Home-PSG test result of our proposed method
compared to the existing methods. C, SC, CC, SS, and
WA denote consistency, sequential consistency, CCSSL,
SSCL, and weight average, respectively.

Model C SC CC SS WA F1-score
SoundSleepNet 0.5718

0.6332
✓ 0.6597

SleepFormer ✓ ✓ 0.6751
✓ ✓ ✓ 0.6751
✓ ✓ ✓ ✓ 0.6780
✓ ✓ ✓ ✓ ✓ 0.6804

Table 2: Result of PSG-Audio (top)
and Lab-PSG (bottom). SleepFormer−
and SleepFormer+ denote the model
trained with only supervised learning
and the proposed SSL methods.

Model Accuracy F1-Score
SleepFormer− 0.6496 0.4832
SleepFormer+ 0.6933 0.5015

Model Accuracy F1-Score
SleepFormer− 0.7231 0.7000
SleepFormer+ 0.7302 0.7070

the set of positive and negative augmented unlabeled samples, respectively, where τp and τn are
filtering thresholds (Fig.3). As a result, the contrastive loss of SSCL can be obtained as LSSCL =∑BlNs

m=1 LSSCL,m, with the batch size of labeled sequence as Bl. Note that we detach the gradient of
the labeled embeddings zm in SSCL since the goal of SSCL is to push OOD samples in unlabeled
sequences far away from the labeled sample, not to train the labeled features. Finally, our overall
training loss can be summarized as:

L = LSUP + λCLC + λSCLSC + λCCSSLLCCSSL + λSSCLLSSCL, (4)

where λA is a weighing value for the corresponding loss LA.

3 EXPERIMENTS AND RESULTS

Data. The model is trained with labeled sleep sounds from 2574 in-lab PSG nights (Lab-PSG), and
2731 unlabeled sleep sounds self-collected by participants at home. The model was then evaluated
using three datasets: (i) Lab-PSG (454 nights), (ii) Home-PSG (45 nights), and (iii) PSG-Audio (282
nights). To check the performance of the model in a real-world setting, 45 volunteers underwent
PSG tests at home (Home-PSG), and the results were compared with the model’s predictions. The
generalization ability of the model was tested by evaluating its performance on the open dataset
PSG-Audio (Korompili et al., 2021), which predominantly comprises data from apnea patients.

Training Details. We set NS as 40 following that a sleep technician usually checks ±10 minute
when they allocate a label of each 30-second unit. We use labeled and unlabeled batch sizes (Bl, Bu)
as 4. The weighing value of each unsupervised loss, λC, λSC, λCCSSL, and λSSCL are 1.5, 0.1, 0.1,
and 0.1, respectively. For unsupervised training, the filtering threshold of τp, τn are 0.9 and 0.2.

Results. We assess the performance trends by incorporating semi-supervised learning methods one
by one, as shown in Tab.1. For the supervised baseline, SleepFormer achieved an F-1 score of
0.6332, which is an improvement of 0.0614 compared to SoundSleepNet. Adding consistency and
sequential consistency loss resulted in further improvement of 0.0419 (0.6332 → 0.6597 → 0.6751).
Interestingly, incorporating CCSSL didn’t improve the performance, but our SSCL significantly
boosted it to 0.6780. Finally, by averaging the weights of three models trained with different seeds,
we achieved a score of 0.6804, which is an improvement of 0.1085 compared to SoundSleepNet.

Additionally, we evaluated the test performance on PSG-Audio and Lab-PSG datasets, which rep-
resent unseen target and labeled source distributions, respectively (Tab. 2). Our proposed method
improved the accuracy by 0.0437 even on the unseen PSG-Audio dataset. It should be noted that
the F1-score on PSG-Audio is lower than that on our data due to the fact that the dataset mainly
consists of heavy apnea patients and is highly imbalanced in terms of sleep stage class distribution.
The improvement on Lab-PSG was relatively small since the supervised baseline already achieved
good performance on the labeled source distribution data.
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4 CONCLUSION

In this paper, we presented a semi-supervised learning approach for processing time-series sleep
sound data in real-world scenarios. Our proposed sequential consistency loss enhances the temporal
correlation of the model while the semi-supervised contrastive loss helps to improve the cluster of the
feature representation with labeled samples and effectively filter out out-of-distribution samples. Our
proposed method, built on top of SleepFormer, showed significant and consistent improvements in
test data from home environments, unseen target distributions, and even labeled source distributions.
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A APPENDIX

A.1 DEMOGRAPHICS OF THE PARTICIPANTS

Our paper used three different datasets: Lab-PSG dataset (2574 and 454 nights for train and test,
respectively), which is a clinical dataset from the sleep center of Seoul National University Bundang
Hospital (SNUBH). We gathered the Home-PSG test dataset (45 nights) from the adult volunteers
by setting the portable PSG device in their homes. With this, we successfully built the home-
environment test dataset with trustworthy labels. The demographics of the above two datasets are
described in Tab.3. In order to verify the generalizable performance of our model, we also used the
public sound-based PSG dataset, namely PSG-Audio dataset (Korompili et al., 2021). Demograph-
ics and AHI statistics of the PSG-Audio dataset are introduced in Korompili et al. (2021). Notice
that the proportion of severe apnea (30 ≤ AHI) in PSG-Audio is 88.7%, which is extremely high
compared to the Lab-PSG (14.6%, 10.6%) and Home-PSG (11.1%). Therefore, PSG-Audio can be
considered as a heavily imbalanced dataset, which significantly reduces the F-1 score while keeping
comparably good accuracy performance in Tab.2.

Table 3: Demographics of Lab-PSG and Home-PSG dataset.
Demographics Lab-PSG-Train Lab-PSG-Test Home-PSG
Age 52.6 ± 13.8 54.3 ± 13.6 44.7 ± 15.8
Male, n (%) 1841 (71.5%) 246 (54.2%) 19 (42.2%)
BMI, kg/m2 25.7 ± 3.9 25.4 ± 3.6 24.0 ± 3.9
AHI 22.8 ± 23.0 21.0 ± 19.5 11.8 ± 16.4
AHI < 5, n (%) 665 (25.8%) 115 (25.3%) 22 (48.9%)
5 ≤ AHI < 15, n (%) 613 (23.8%) 115 (25.3%) 11 (24.4%)
15 ≤ AHI < 30, n (%) 535 (20.8%) 112 (24.7%) 7 (15.6%)
30 ≤ AHI, n (%) 761 (29.6%) 112 (24.7%) 5 (11.1%)

A.2 TRAINING DETAILS

In our SleepFormer model architecture, we used the MobileVitV2-075 as the backbone and ViT-
tiny as the prediction head. To evaluate the performance of our model, we reported the test results
using its Exponential Moving Average (EMA) model. We used the ImageNet (Deng et al., 2009)
pretrained checkpoint available in the open-source library timm (Wightman, 2019). To match the
channel size of MobileVit-V2-075 (384) and ViT-tiny (192), we designed the customized interme-
diate block (LayerNorm (Ba et al., 2016) - Fully Connected - DropPath (Huang et al., 2016)). Other
training details and hyperparameters are summarized in Tab.4.

Table 4: Hyperparameters of training SleepFormer+ with the proposed SSL
Config
Optimizer AdamW
Optimizer momentum β1, β2 = (0.9, 0.999)
Weight decay 1E-3
Learning rate 3E-4
Warmup epochs 5
Training epochs 15
Drop path 0.2
EMA decay 0.996
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