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Abstract

We report a novel observation about which scientific publications are cited more
frequently: those that are more textually similar to pre-existing publications. Using
bag-of-word document embeddings, we analyze quantitative trends for a large
sample of publication abstracts in the field of astrophysics (N ∼ 300, 000). When
new publications are ranked by how many similar publications already exist in
their neighborhood, the median number of citations per year that the upper 50th

percentile receives is ∼ 1.6 times the median of the lower 50th percentile. When
new publications are ranked by an alternative metric of dissimilarity to neighbors,
the median citations per year that the upper 50th percentile receives is ∼ 0.74
times the median of the lower 50th percentile. We discuss a number of hypotheses
that could explain these citation-similarity relationships relevant to the science of
science.

1 Introduction

Big data and modern computational infrastructure have made it possible for an interdisciplinary
science of science to achieve remarkable progress in illuminating fundamental principles underlying
aspects of contemporary science, including collaboration patterns, research novelty and problem
selection, career dynamics, social bias, incentive structure, team size, and citation dynamics [Fortunato
et al., 2018, and references therein]. The current study aims to contribute to the growing body of work
on pressures shaping scientific research, introducing two simple and general metrics for empirically
characterizing trends emerging from the semantic relationships between scientific documents.

Specifically, we explore how the similarity of new publications to prior research may relate to their
subsequent citation rates. Obtaining bag-of-word document embeddings for the abstracts of a large
sample of astrophysics articles, we use cosine similarity to approximate semantic similarity between
documents, and to formulate two simple metrics for describing the local geometry around publications
in this space. These metrics are (1) the density of a publication’s existing surrounding region, which is
proportional to the number of adjacent, pre-existing publications within a fixed distance in literature
space, and (2) the asymmetry of a publication, which quantifies how ‘far on the edge’ a publication is
with respect to its nearest neighbors.

We catalogue several empirical results. We find a positive relationship between the density of a
publication’s existing surrounding region and the citations it receives per year. We also find a negative
global relationship between the asymmetry of a publication and the citations it receives per year.
Intriguingly, however, citation rates can increase with asymmetry when research areas are below a
critical maximum density. These preliminary results suggest that, with some interesting exceptions,
publications that are more textually similar to pre-existing publications become cited more frequently.
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2 Quantifying emergent trends in scientific literature

2.1 Document embeddings

To construct the semantic1 representation space of scientific literature, we represent each publication
i in our dataset as a high-dimensional word vector (i.e., document embedding) pi ∈ Rn, so that the
textual similarity between two publications can be approximated by cosine similarity. We obtained
these document embeddings for each abstract using a bag-of-words approach, described briefly as
follows. First, we preprocess all abstracts by removing every token that is not a noun, verb, or
adjective, and then lemmatize and stem the remaining tokens. These tokens become the features
of our document vectors. For each publication, the values of these features are just the number of
occurrences of each token in its abstract. This results in vectors of roughly 10, 000 dimensions,
depending on the sample of publications. We normalize all vectors to unity. While advances in the
field of natural language processing support more sophisticated representations, to begin to explore
the utility of our framework, we opt for a more simple encoding which is a computationally cheap
(using sparse operations) measure of lexical overlap. Our embeddings are strongly correlated with a
natural measure of text overlap (β = 0.68, R2 = 0.50, p ≈ 0, see Figure 4 in Appendix A.

2.2 Publication metrics

We now introduce two simple metrics inspired by methods from data science and computational
physics. For each publication in our analysis, we compute measures of density and asymmetry with
respect to the publication’s k-nearest neighboring publications, which we refer to as the publication’s
neighborhood.

2.2.1 Density

We aim for density to quantify the extent to which a research area is already populated. It is defined as
a constant number of k publications divided by the minimum arc length enclosing all k publications
in the neighborhood. Formally, the density of a publication vector pi’s neighborhood is:

ρ(pi) =
k

arccos pi
⊤pk

, (1)

where k is a fixed number of neighboring publications to pi, and pk is the k-th nearest neighbor. We
norm all document vectors to be of length 1, which means the inner product between publication
vectors in Eq. 1 is equivalent to their cosine similarity. Consequently, ρ(pi) has the intuitive
interpretation that it quantifies the number of adjacent publications to pi per radian.

2.2.2 Asymmetry

Asymmetry represents how much a publication is on the edge/fringes of a selected area of literature.
We define the asymmetry of a publication to correspond to the magnitude of the net direction of
the k-nearest publication vectors within the publication’s neighbors. The asymmetry of a single
publication pi is defined:

α(pi) =
1

k

∥∥∥∥∥∥
k∑

j=1

pi − pj

|pi − pj|

∥∥∥∥∥∥ , (2)

where ∥·∥ is the Euclidean norm. If a publication has 0 asymmetry, it can be thought of as highly
‘prototypical’, being at the semantic center of its neighborhood.

2.3 Research question: relation to citation rate

Given these two metrics, which describe aspects of a publication’s relationships to similar previous
research, it is natural to ask how they might relate to citations. We assume that citations reflect

1Strictly speaking, bag-of-words vectors capture lexical, but not deeper semantic features of an article. For
example, synonyms (incorrectly) lead to orthogonality between embeddings. We thank an anonymous reviewer
for bringing this to our attention. Every subsequent use of ‘semantic similarity’ in this paper should therefore
interpreted in this narrower sense of ‘lexical overlap’. Future extensions will explore the effect of embeddings
that have been shown to encode fine-grained semantic content.
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fundamental currencies of scientific recognition, and that they can serve as an indicator (albeit a noisy
one) of the degree of attention or interest in a topic for a scientific community. In measuring the
relationships between these variables, we aim to quantitatively explore how the scientific recognition
of new research may be predicted by its textual similarity to previous research.

We define the citation rate of a publication to be the total number of citations it has received until
present, divided by the number of years since its entry date in ADS. 2 Note that citations are events
that only occur after an article was published. In order to quantify a publication’s similarity to
previous publications, and also to ensure that any emergent trends in our metrics with citations do
not trivially result as a matter of definition, we exclude all subsequently appearing publications from
analysis when calculating the density and asymmetry for each publication.

2.4 Data

Our dataset was generated using the NASA Astrophysics Data System (ADS, Kurtz et al. 2000)
because (i) access was free within reasonable rate limits and (ii) we limited ourselves to a field some
of our authors are familiar with. ADS tracks the metadata of wide variety of publications in physics
and astronomy, including all papers posted to the astrophysics section of arXiv (astro-ph). ADS
keeps track of all such publications, as well as references and citations within them.

2.4.1 Collecting publications

We surveyed ten “regions” of the astrophysics literature. Each region consists of an initial, “core”
publication, and over ten iterations of a similarity-based retrieval process, roughly 30, 000 publications
are retrieved from ADS based on their similarity to this core publication. For each region, this was
performed by projecting all retrieved publications into document-embedding space, and retrieving up
to 4, 000 new publications that are referenced by or cite these embedded publications, ordered by
their similarity to the initial core publication. Combining all ten regions, this resulted in a total initial
pool of 303, 229 publications. This procedure is described in detail in Appendix B. The ten regions
consist of one familiar paper to the authors and nine randomly chosen papers; see Appendix C for the
list of these papers.

2.4.2 Convergence testing

To make our dataset more representative of the true distribution of available astrophysics articles, we
consider only a subset of our initial sample of 303, 229 articles that has ‘converged’ with respect
to our search procedure. We check for this convergence by tracking the identity of papers in the
neighborhood of each publication as we iteratively add new papers to our sample. Selecting the
size of this neighborhood —the number k of nearest neighbors that must not change after multiple
expansions —is a free parameter. There is a trade-off in selecting its value: with too few neighbors,
density and asymmetry cease to be informative; requiring each neighborhood to include all data
points results in 0 total converged publications for analysis. We decided to select k = 16 neighbors
per publication, which yielded 27, 597 total publications for analysis. For a visual depiction of the
distribution of converged papers per neighborhood size), see Figure 5 in Appendix B.1.

3 Results

We compute density and asymmetry for the document embedding of each publication in our sample
of 27, 597 astrophysics articles from ADS, as well as the citations per year for each publication.
Analyzing the relationships between these variables yields several emergent trends, which are depicted
in Figure 1. If publications are ordered by the density of their neighborhoods, from least to most
dense, then number of citations per year that the upper 50th percentile receives is a median ∼ 1.6
times that of the lower 50th percentile. Second, if publications are ordered from least asymmetric
(i.e., very prototypical, at the ‘semantic center’ of their neighborhood) to most asymmetric (furthest
from the center), then the number of citations per year that the upper 50th percentile receives is a
median ∼ 0.74 times that of the lower 50th percentile. Least-squares regressions showed that density

2Future work may explore adjusted measures of citation rate; for example, excluding some years after
publication and before the present year, and using the median number of citations each year, rather than our
average, which is more sensitive to outliers.
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Figure 1: Trends for publication citation rates as a function of two metrics quantifying semantic
relationships to previously existing publications. Data plotted correspond to 27,597 astrophysics
abstracts, with metrics computed with respect to each of their nearest 16 neighbors in document-
embedding space. x-axis: values of our metrics, standardized to zero mean and unit variance. y-axis:
citations per year of the astrophysics publications (not standardized). Density ρ represents how
‘populated’ the region surrounding a publication is, via the number of adjacent publications per
radian (Eq. 1). Asymmetry α measures how ‘on the edge’ a publication is from the center of its
neighborhood, via the average of magnitude of semantic difference (Eq. 2). Black line: running
median line for all regions. Colored lines: running medians for different regions of astrophysics
literature surveyed, generated by choosing a random astrophysics publication and iteratively retrieving
similar ones (see Section 2.4.1). Gray region: 16th-84th percentile of distribution for combined
regions.
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Figure 2: Relationship between density and
asymmetry (not standardized) with respect to
citation frequency. Each point represents a pub-
lication; the center of the distribution is visual-
ized with contours to reduce overplotting. Color
indicates the average number of citations a pub-
lication received per year (see Section 2.3).
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Figure 3: Asymmetry vs. citation frequency for
publications with density values between ρ = 15
to ρ = 17 adjacent publications per radian. Each
point represents a publication; the dashed line
indicates the global median citations per year;
the black line shows the running median; gray
region delimits the 16th and 84th percentiles of
the distribution.

(β = 2.6, 95% CI = [1.7, 3.4], p < 7.4×10−10, R2 = 1.4×10−3) and asymmetry (β = −65.2, 95%
CI = [−101.0,−29.4], p < 3.5× 10−4, R2 = 4.6× 10−4) are significant predictors of citations per
year, although they cannot alone explain the high variability in citation frequencies. This variability
is expected, given that citation dynamics reflect highly complex processes. We also compared density
and asymmetry to each other to see how they might interact to predict citation rates (Figure 2).
For all values of asymmetry, citation rates tend to increase overall with density. Restricting to just
publications in the highest density areas (ρ = 18), we observe that citation rates tend to decrease
with asymmetry. Intriguingly, for publications in moderately high dense areas (ρ = 15 to ρ = 17),
citations tend to increase in asymmetry (see Figure 3).

4 Discussion

The overall relationships that density and asymmetry have with citation rates suggest that scientific
publications that are more textually similar to pre-existing publications tend to be cited frequently.
There is large variance in these trends, however, suggesting that density and asymmetry alone are poor
predictors of citation rates. This variance may come from many factors; most obviously, other causes
of citations that are not captured by our similarity-driven metrics, such as scientific and economic
value. Over and above these factors, we expect that variables like author seniority, institution, and
journal prestige can cause very similar papers to receive very different citation rates. Importantly, the
overall picture that similarity to previous research tends to result in more citations is complicated
by the fact that when research topics reach certain values of density, citation rates increase with
asymmetry. Future work should investigate this trend more closely.

Still, it remains to be explained why we observe the citation-similarity relationships at all. One
explanation might be that papers with similar language to existing ones are easier to identify. The
prior density and centrality of a paper’s topic, for example, may simply indicate the number of
researchers who can possibly discover and subsequently cite the paper. Given that scientific output
is growing exponentially Bornmann and Mutz [2015], we believe it is plausible that these observed
trends reflect the outcome of resource-constrained exploration of research problems.

Another salient possibility is that density and asymmetry capture the dynamics of tradition and
innovation in science. For example, if novel or innovative research is captured by highly asymmetric
papers in sparse regions, and traditional, more conservative science corresponds to papers located at
the center of densely populated topics, then the trends we observe would lend additional support to
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the idea of an ‘essential tension’ shaping science Kuhn [1959], Bourdieu [1975]. There is significant
quantitative evidence for such a tension between productive, conservative science and risky, innovative
breakthroughs Foster et al. [2015]. Meanwhile, Yin et al. [2023] find that when using neural-network
based document embeddings, the cosine dissimilarity of a new paper to existing papers correlates with
validated measures of scientific novelty. Under the assumption that our metrics reflect dimensions of
tradition and innovation, it is interesting that increasing asymmetry tends to yield higher citations at
moderate levels of research density, as we speculate this could indicate that there is selection pressure
for certain kinds of innovation in science, but only before a topic becomes too populated.

There are several important directions to extend the current study. The observed trends should be
checked for robustness across diverse scientific fields and larger scales, as permitted by e.g. Lo
et al. [2020], Garfield [1955]. Additionally, a comparison of results should be performed using
multiple contemporary methods for embedding scientific documents using state-of-the-art language
models (i.e. SciBERT, GPT-4, etc.), which are likely to represent not just textual similarity but richer
dimensions of conceptual relatedness Beltagy et al. [2019], OpenAI [2023]. Beyond replication, our
simple metrics provide a general framework to investigate research dynamics in novel ways. For
example, how do research density and asymmetry evolve over time, with respect to particular topics,
collaborations, and institutions? Can these metrics be refined to more precisely test hypotheses about
conservative vs. innovative science? Can they be used to create artifacts that are useful to practicing
scientists? We look forward to exploring these questions in future work.
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A Obtaining document embeddings

Here we describe the vectorization process we performed for each publication.

Using the freely available API https://ui.adsabs.harvard.edu/help/api/ and its associated
Python package https://ads.readthedocs.io/en/latest/, we obtain abstracts and metadata
for multiple publications at once.

To preprocess the abstracts, we use the default tokenizer from the Natural Language ToolKit (NLTK,
Bird et al. [2009]) on the text of each abstract to remove stop words and all tokens that are not
nouns, verbs or adjectives. This filters out high-frequency, uninformative words, but also numerical
and mathematical content, both of which are common in astrophysics abstracts. We then stem and
lemmatize the resulting list of tokens.

We then obtain the frequency counts of individual post-processed items. For an abstract with n total
unique items, we obtain a feature vector p ∈ Rn by assigning each feature fi the frequency of the ith
item in the abstract.

Since different abstracts will contain items not present in others, before using our vectors for similarity-
based retrieval or analysis, we ensure that all vectors in a sample of abstracts have the same dimension
by taking the union of all of their features, and then performing the frequency-based vectorization
process described above.

A.1 Correlation with text overlap

As a preliminary analysis of the quality of our simple bag-of-word vectors, we examined whether
cosine similarity between two document vectors was interpretable as a proxy for mere text overlap.
To investigate this, we randomly sampled 496, 506 astrophysics publications from ADS acccording to
the procedure described in Appendix C, and computed the pairwise cosine similarity and text overlap
between each document in this sample. We define the text overlap between two documents A and B
as

overlap(A,B) =
nshared

N
, (3)

where N is a normalization factor representing the total number of post-processed items between
the two documents, which we define as the geometric mean of the number of total items in each
documents, |A|, |B|:

N =
√

|A||B|. (4)
The number of shared items between A and B is

nshared =
∑
w∈W

min(count of w in A, count of w in B) (5)

where W is the union of all the post-processed items in A with all of the post-processed items in B.

An OLS regression revealed that cosine similarity was strongly correlated with textual overlap
(β = 0.68, R2 = 0.50, p ≈ 0); this fit is depicted in Figure 4.

B Data retrieval loop

Here we describe the procedure by which we iteratively built out the ten regions of literature used in
our analysis. Given each initial publication ‘center’ (i.e., one of the ten publications listed in Table 1),
we performed the following:
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Figure 4: Cosine similarity vs. text overlap for each pair of abstracts in a sample of 496, 506 randomly
chosen astrophysics publications. Color indicates counts of the distribution. The blue line indicates
the line of best fit.

1. Include in the region all publications that cite, or are referenced by, the central publication
(by importing them from ADS).

2. Project all publications in the region as document embeddings, and calculate the angle Ψ
between each publication and the central publication.

3. Designate all publications that cite, or are referenced by, the publication with the smallest Ψ
for inclusion in the region.

4. Repeat step 3), mutatis mutandis, for the publication with the second smallest Ψ, then
the third smallest Ψ, etc., until between 1000− 4000 new publications are designated for
inclusion to the region.

5. Import the designated publications from ADS, and include them in the region.

6. Repeat steps 2) - 5) nine additional times, for a total of ten expansions of the region.

9



1 10 100 103

# (k) of adjacent publications with no update
0

2000

4000

6000

8000

10000

12000

14000

# 
of

 c
on

ve
rg

ed
 p

ub
lic

at
io

ns

region ID, sample size
ID 0, n=538
ID 1, n=722
ID 2, n=6457
ID 3, n=1426
ID 4, n=1605
ID 5, n=4637
ID 6, n=1587
ID 7, n=6772
ID 8, n=3110
ID 9, n=813

Figure 5: Within our dataset of 250, 000 total publications, we measured the number of publications
that were not affected by additional searches for new related publications. x-axis: the number k of
nearest neighbors to each publication. y-axis: the total number of publications in our dataset such
that each does not experience a change in its k nearest neighbors after 3 consecutive iterations of our
search procedure. A black line is plotted at k = 16; its intersections with each region are the number
of converged publications, indicated in the legend.

B.1 Analysis of publication neighborhood vs. convergence

Figure 5 depicts the number of converged publications for analysis for neighborhood sizes 0 to 1000,
by region. The black line indicates our choice of k = 16 as the neighborhood size for our calculations
of density and asymmetry. All publications that were not converged were excluded from analysis.

C Initial publications

To select the initial, ‘seed’ publications for our ten regions (Table 1), we first choose a
random date, and randomly select a publication from the publications added to ADS on
that date. If there are no suitable publications we choose another random date and re-
peat this process. To select for astrophysics publications we filter to the arXiv classes
astro-ph.GA, astro-ph.CO, astro-ph.EP, astro-ph.HE, astro-ph.IM, astro-ph.SR.
We also filter on time by limiting our selections to between 1996 and 2018. Earlier than 1996, it
become increasingly likely that a date will not have new entries added, making the aforementioned
method of selecting random publications inefficient. We choose 2018 to allow for three full years to
have passed from entry date to time of analysis.
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Title Reference

Low-redshift Lyman limit systems as diagnostics of cosmological inflows and outflows Hafen et al. [2017]

Evidences for Collisional Dark Matter In Galaxies? Salucci and Turini [2017]

Cosmological tests of an axiverse-inspired quintessence field Emami et al. [2016]

Data Selection Criteria for Spectroscopic Measurements of Neutron Star Radii with X-ray Bursts Ozel et al. [2015]

Magnetically-induced outflows from binary neutron star merger remnants Siegel and Ciolfi [2015]

100 deg2 Mock Galaxy Cone for HI Surveys with the Early SKA Obreschkow and Meyer [2014]

The Cosmological Parameters 2010 Lahav and Liddle [2010]

Remarks on Statistical Properties of the Turbulent Interstellar Medium de Avillez and Breitschwerdt [2006]

Analysis of astronomical data from optical superconducting tunnel junctions de Bruijne et al. [2002]

Instabilities and Clumping in Type IA Supernova Remnants Wang and Chevalier [2001]

Table 1: The initial publications for our ten different regions of astrophysics literature.
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