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Abstract
To tackle the huge computational demand of
large foundation models, activation-aware com-
pression techniques without retraining have been
introduced. However, since these rely on cali-
bration data, domain shift may arise for unseen
downstream tasks. With an efficient calibration,
activation-aware pruning can be executed for ev-
ery prompt adaptively, yet achieving reduced com-
plexity at inference. We formulate it as a mixture
of micro-experts, called µ-MoE. Several experi-
ments demonstrate that µ-MoE can dynamically
adapt to prompt-dependent structured sparsity.

1. Introduction
Large foundation models (Touvron et al., 2023; Achiam
et al., 2023; Liu et al., 2023a) have shown excellent per-
formance across a variety of tasks (Wei et al., 2022; Katz
et al., 2024; Bubeck et al., 2023). Nonetheless, these models,
with billions of parameters, demand significant computa-
tional resources (Schwartz et al., 2020). Towards increasing
the accessibility of large language models (LLMs), a num-
ber of compression methods (Xu & McAuley, 2023; Zhu
et al., 2024; Bai et al., 2024a) have been introduced: e.g.,
partial activation (Jiang et al., 2024; Lin et al., 2024a), prun-
ing (Frantar & Alistarh, 2023; Sun et al., 2023; Bai et al.,
2024b; Hassibi et al., 1993), quantization (Frantar et al.,
2022; Lin et al., 2024b; Wang et al., 2024), knowledge
distillation (Hsieh et al., 2023; DeepSeek-AI et al., 2025;
Hwang et al., 2024), and rank reduction (Yuan et al., 2023;
Liu et al., 2024; Hwang et al., 2024; Saxena et al., 2024).

Test-time scaling (Chen et al., 2024b; Muennighoff et al.,
2025) is a paradigm to improve LLM performance by in-
creasing inference computation. We instead consider extra
test-time computing to reduce the total cost of inference
on the fly. Specifically, we use a pruning operation that
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dynamically selects important weights depending on each
prompt. We view it as a mixture of micro-experts, namely
µ-MoE, where, instead of a few massive experts, we may
have a massive number of single-parameter weight multi-
plier experts. We show that activation-aware pruning makes
this concept feasible. The contributions of this paper are
summarized below:

• We propose a mixture of micro-experts µ-MoE concept
to realize the finest-grained adaptation.

• We adopt low-complexity activation-aware pruning to
realize test-time LLM compression as µ-MoE.

• We tackle the domain shift issue caused by offline
calibration required for baseline static pruning.

• We demonstrate the benefit of µ-MoE over state-of-the-
art methods for several LLM benchmarks.

2. Micro-Grained Mixture of Experts (MoE)
Coarse to Micro-Grained MoE Figure 1 illustrates the
MoE framework from coarse-grained to micro-grained
scales. A coarse-grained MoE may involve multiple LLM
modules that activate depending on provided prompts. Most
MoEs use mid- to fine-grained architectures. For example,
Mixtral-8x7B (Jiang et al., 2024) has 8 multi-layer percep-
trons (MLPs) per layer, but select only 2 of them, realizing a
six-fold speedup at inference. Finest-grained experts would
be a single-parameter weight multiplier within the linear
modules of LLMs. We consider such a mixture of micro-
experts, referred to as µ-MoE.

µ-MoE employs test-time adaptation to reduce the total
test-time compute, i.e., online dynamic pruning to reduce
the number of active weights for inference computation.
Besides the computational efficiency, the online dynamic
pruning may potentially solve the domain shift issue caused
by mismatched calibration data used for activation-aware
offline static pruning as illustrated in Figure 2.

Activation-Aware Pruning As an alternative to
magnitude-based pruning, activation-aware prun-
ing (Williams & Aletras, 2023) leverages the statistics of
the activation features. Let X ∈ Rd×T be input activation
of embedding dimension d for token length T . The aim is
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Figure 1. Coarse to micro-grained MoE.
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Figure 2. Offline vs online pruning: dynamic pruning finds prompt-
dependent sparse structure at test time, preventing domain shift.

to minimize the approximation loss:

L = EX

[∥∥(W − Ŵ )X
∥∥2], (1)

where W ∈ Rd′×d is a weight matrix and Ŵ is its pruned
version such that only a fraction ρ of the weights are active:
∥Ŵ∥0 = ρ · dd′. SparseGPT (Frantar & Alistarh, 2023) is
such an activation-aware LLM pruning inspired by optimal
brain surgeon (Hassibi et al., 1993). It uses a scoring metric
for pruning:

Si,j = |Wi,j |2/
[
Chol[(X̄X̄⊤ + λI)−1]

]2
j,j
, (2)

where Chol[·] denotes the Cholesky factorization, X̄ ∈
Rd×Tc are Tc tokens of input activation features sampled
from calibration data. Here λ is a small damping factor.
Although SparseGPT achieves good pruning performance,
the computational cost to obtain the sparse matrix is at
least of cubic order due to the inverse Hessian calculation:
O[d3 + dd′Tc]. In addition, it needs extra computations to
update the non-zero weights with the Gaussian elimination.

Wanda (Sun et al., 2023) simplifies the metric by ap-
proximating with a diagonal correlation: X̄X̄⊤ + λI ≃
diag[X̄X̄⊤] . The modified score is written as:

S′
i,j = |Wi,j | · ∥X̄j,:∥2. (3)

It only activates weights within the top-ρ fraction in this
metric. The pseudo code in PyTorch is given below:

# W:(d’,d), X:(d,Tc), kc=int((1-rho) * d)
S = W.abs() * X.norm(p=2, dim=-1)
val, _ = torch.kthvalue(S, dim=-1, k=kc)
W = torch.where(S > val[:,None], W, 0)

Wanda requires only quadratic complexity O[3dd′+dTc] in-
cluding norm calculation, metric product, top-k search, and
comparators, yet achieves performance competitive with
SparseGPT. It yields semi-structured sparsity with a con-
stant number of active weights per row.

Remark 2.1. While the original Wanda uses torch.sort,
this sorting complexity of O[d′d log(d)] can be reduced
by torch.topk or torch.kthvalue. We note that torch.kthvalue
has a linear theoretical complexity. See Appendix B.

Instant Wanda Pruning as µ-MoE To realize µ-MoE,
we use test-time tokens X as an online calibration to prune
weights, rather than offline calibration tokens X̄ . When
the number of active weights is reduced, the inference com-
plexity of linear modules will be reduced from O[dd′T ] to
O[ρdd′T ]. However, it is meaningless if the cost to find
the top-ρ weights is higher than the reduced complexity.
Hence, SparseGPT is not suitable due to its cubic complex-
ity, while Wanda is a viable candidate. The total complexity
with online Wanda pruning is O[3dd′ + dT + ρdd′T ]. The
complexity ratio (compared to the original O[dd′T ]) is on
the order of:

3dd′ + dT + ρdd′T

dd′T
= ρ+

3

T
+

1

d′
≃ ρ, (T, d′ ≫ 1).

This suggests that instant Wanda pruning for every prompt
has almost no additional complexity compared to the origi-
nal full-weight operations for a large enough token length
(T ≫ 1) and embedding dimension (d′ ≫ 1). Moreover,
Wanda is known to be robust even with a single calibration
sample (Williams & Aletras, 2023), motivating us to use
test-time Wanda pruning for our µ-MoE.
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Table 1. Perplexity (↓) of OPT models with different pruning methods at 60–40% active weights. Red-highlighted cells indicate that
Wanda uses a matched calibration-test dataset. Bold-face letters indicate the best cases.

Active Weights 60% 50% 40%

Test Dataset WT2 PTB C4 Avg WT2 PTB C4 Avg WT2 PTB C4 Avg

OPT-125M (WT2: 27.7, PTB: 39.0, C4: 26.6, Avg: 31.1)

Magnitude Prune 43.9 71.9 39.8 51.9 90.9 168.6 71.9 110.4 533.2 906.3 349.9 596.5
Wanda (WT2 Calib) 30.8 44.2 30.3 35.1 37.1 56.3 37.5 43.6 65.4 106.5 37.5 81.6
Wanda (PTB Calib) 32.4 43.8 31.7 36.0 44.0 52.8 42.1 46.3 89.7 86.5 87.6 87.9
Wanda (C4 Calib) 30.7 44.4 29.3 34.8 39.1 57.1 34.8 43.7 75.1 104.3 60.4 80.0
µ-MoE 30.3 43.3 28.6 34.1 35.8 51.8 32.5 40.1 61.0 87.5 52.3 66.9

OPT-1.3B (WT2: 14.6, PTB: 20.3, C4: 16.1, Avg: 17.0)

Magnitude Prune 150.0 306.1 103.2 186.4 799.5 1438.1 298.5 845.4 6218.7 7303.5 2385.8 5302.7
Wanda (WT2 Calib) 16.6 23.6 18.8 19.6 18.9 28.3 22.4 23.2 25.6 43.2 34.1 34.3
Wanda (PTB Calib) 16.4 22.5 19.6 19.5 20.4 25.3 25.9 23.9 34.6 34.0 48.6 39.1
Wanda (C4 Calib) 16.0 23.4 18.0 19.1 18.9 27.7 20.8 22.5 27.5 43.4 28.7 33.2
µ-MoE 16.4 22.3 17.6 18.8 18.0 24.9 19.1 20.7 23.1 33.2 23.9 26.7

OPT-2.7B (WT2: 12.5, PTB: 18.0, C4: 14.3, Avg: 14.9)

Magnitude Prune 21.8 33.9 19.8 25.2 119.8 172.0 57.3 116.4 4282.4 4667.9 2263.1 3737.8
Wanda (WT2 Calib) 13.0 19.6 16.0 16.2 14.0 22.5 18.6 18.4 18.4 34.0 27.2 26.6
Wanda (PTB Calib) 13.2 18.8 16.6 16.2 15.4 20.4 19.7 18.5 26.1 27.2 34.3 29.2
Wanda (C4 Calib) 12.9 19.1 15.1 15.7 14.5 21.9 16.6 17.7 20.3 33.9 22.2 25.5
µ-MoE 13.1 18.6 14.8 15.5 13.8 19.9 15.6 16.4 18.5 31.6 20.9 23.6

OPT-6.7B (WT2: 10.9, PTB: 15.8, C4: 12.7, Avg: 13.1)

Magnitude Prune 16.3 23.9 17.0 19.1 532.2 281.6 257.4 357.1 9490.4 6743.4 6169.1 7467.6
Wanda (WT2 Calib) 11.0 17.2 14.2 14.2 12.0 19.0 16.3 15.8 15.1 25.0 22.8 21.0
Wanda (PTB Calib) 11.2 16.3 14.6 14.0 13.6 17.1 17.6 16.1 19.4 20.6 25.8 21.9
Wanda (C4 Calib) 10.9 16.4 13.3 13.5 11.9 17.9 14.3 14.7 15.3 23.6 18.2 19.0
µ-MoE 11.1 16.1 13.0 13.4 11.7 16.7 13.5 14.0 13.7 19.7 15.7 16.4

OPT-13B (WT2: 10.1, PTB: 14.5, C4: 12.1, Avg: 12.2)

Magnitude Prune 59.8 78.4 44.5 60.9 2960.9 5406.3 3432.5 3933.2 112900.6 28381.4 13734.1 51672.0
Wanda (WT2 Calib) 10.7 15.8 13.6 13.3 12.0 18.7 15.7 15.5 15.5 25.3 20.7 20.5
Wanda (PTB Calib) 10.9 15.2 14.2 13.4 13.4 16.8 17.4 15.9 20.6 20.5 24.6 21.9
Wanda (C4 Calib) 10.9 15.2 14.2 13.4 13.4 16.8 17.4 15.9 20.6 20.5 24.6 21.9
µ-MoE 10.6 15.0 12.3 12.7 11.5 16.4 12.9 13.6 14.3 20.2 14.6 16.4

3. Expriments
Experiments Setup We conduct experiments for LLM
benchmarks to evaluate the effectiveness of our method.
Our experiments are based on the same setting of
SparseLLM (Bai et al., 2024b) and their code base1. Follow-
ing existing work (Sun et al., 2023), we compress all linear
layers in LLM transformers to the target compression ratio.

For LLM experiments, we first consider the OPT model fam-
ily (Zhang et al., 2022) as it provides a wide range of model
scales from 125M to 175B. We measure perplexity score for
three popular benchmarks: raw-WikiText2 (WT2) (Merity
et al., 2016); the Penn Treebank (PTB) (Marcus et al., 1994);
and C4 (Raffel et al., 2020).

We also analyze visual tasks for the LLaVA-7B model (Liu
et al., 2023a), which consists of a language transformer

1https://github.com/BaiTheBest/SparseLLM

based on Vicuna and a vision transformer tower. We use
the official code base2 to evaluate the capability of the
multi-modal answer reasoning for two benchmarks: Sci-
enceQA (Lu et al., 2022); and TextVQA (Singh et al.,
2019). ScienceQA contains 21K vision-language multi-
choice questions for three subjects: natural, social, and
language science. Some fractions of questions have image
and/or text contexts, and the problem levels range from
grades 1 to 12. TextVQA makes LLMs to read and reason
about text in images to answer visual reasoning questions
for 28K images.

Impact of Model Size We first look into the impact of
LLM model sizes in Table 1, where perplexity of OPT mod-
els at active weight ratios of 60–40% are listed over 125M
through 13B scales. The perplexity results of the original
full-parameter LLM models are reported next to the names

2https://github.com/haotian-liu/LLaVA
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Table 2. Accuracy in percent (↑) on ScienceQA dataset of LLaVA-7B model with different compression methods for 40%–60% active
weights. Question subjects: natural science (NAT); social science (SOC); language science (LAN). Context modality: text (TXT); image
(IMG); or no context (NO). Grades: 1–6 (G1-6); 7–12 (G7-12). Wanda and SpargeGPT use TextVQA for calibration.

Subject Context Modality Grades

Method Active Weights NAT SOC LAN TXT IMG NO G1-6 G7-12 Avg

Original full 100% 72.47 69.18 65.73 73.51 68.82 65.99 72.72 65.19 70.03

Magnitude Prune 60% 65.80 63.33 55.82 66.96 64.15 56.03 66.34 56.16 62.70
SparseGPT 60% 67.05 65.47 55.91 68.52 66.73 57.21 66.12 59.72 63.83
Wanda 60% 67.79 63.10 63.54 67.94 63.31 62.79 67.66 60.71 65.17
µ-MoE 60% 68.56 65.35 65.73 69.94 64.35 65.09 69.35 63.22 67.15

Magnitude Prune 50% 40.63 46.01 39.91 37.05 36.94 43.90 45.70 34.15 41.57
SparseGPT 50% 55.02 48.14 53.55 55.43 54.19 52.96 54.92 50.10 53.20
Wanda 50% 59.33 56.81 56.09 60.07 56.32 56.03 60.54 53.33 57.96
µ-MoE 50% 63.23 59.17 53.45 64.37 59.69 54.43 63.36 53.53 59.84

Magnitude Prune 40% 0.31 0.22 0.00 0.24 0.25 0.21 0.18 0.26 0.21
SparseGPT 40% 42.81 27.90 40.36 43.60 37.08 38.40 40.16 37.05 39.05
Wanda 40% 32.99 28.23 34.73 30.16 31.68 35.47 33.22 31.05 32.45
µ-MoE 40% 45.16 35.21 37.64 44.62 37.43 40.07 43.28 37.24 41.12

Table 3. Accuracy in percent (↑) on TextVQA dataset of LLaVA-
7B model with different compression methods at 40–60% active
weights. Full-weight accuracy is 61.32%. Wanda and SparseGPT
use ScienceQA for calibration.

Active Weights 60% 50% 40%

Magnitude Prune 54.12 45.56 24.62
SparseGPT 53.37 47.42 28.27
Wanda 55.80 52.36 39.27
µ-MoE 57.16 54.65 46.97

of the models in the table. Magnitude-based pruning is
poor compared to offline Wanda pruning. While Wanda is
relatively robust over different calibration and test dataset,
mismatched calibration often suffers a marginal loss. Online
Wanda pruning at µ-MoE is found to be best for most cases
across LLM sizes and compression ratios.

Multi-Modal Reasoning Capability We next show the
accuracy of the LLaVA-7B model for the ScienceQA multi-
modal reasoning benchmark in Table 2. SparseGPT and
Wanda use TextVQA as the offline calibration data. It is
verified that our µ-MoE can outperform offline pruning
methods across diverse reasoning problems over most sub-
jects, contexts, and grades. Similar trends can be seen in
another visual reasoning benchmark in Table 3, where ac-
curacy results for TextVQA are listed. Here, Wanda and
SparseGPT use ScienceQA as the calibration dataset. In all
experiments, µ-MoE achieves better average performance
over state-of-the-art baselines, especially for cases with
fewer active weights. The results suggest that online dy-
namic pruning can realize a task-agnostic MoE by adapting
to every prompt given at test time.

Table 4. Complexity of OPT-17B models with µ-MoE.

Active Weights FLOPs MACs

100% 3.29T 1.64T
80% 3.21T 1.33T
60% 2.55T 999G
40% 1.90T 671G
20% 1.24T 342G

Computational Complexity We finally show the com-
plexity analysis in Table 4 for the OPT-17B models using
our µ-MoE dynamic pruning, based on the calflops3

library. We included counts of floating point operations
(FLOPs) and multiply-accumulate operations (MACs) for
ℓ2-norm, top-ρ value search, and comparators for instant
Wanda pruning. We use the token length of 128 for the
analysis. We found that the runtime complexity, especially
in MACs, is almost proportional to the number of active
weights.

4. Conclusion
We proposed a test-time pruning to realize mixture of micro-
experts: µ-MoE. With the low complexity of Wanda prun-
ing, online dynamic activation of massive single-parameter
micro-experts became feasible for every prompt. We demon-
strated that µ-MoE outperforms offline static pruning over
several LLM benchmarks. Studying the effect of fine-tuning
for µ-MoE is an interesting direction for future work.

3https://pypi.org/project/calflops/
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A. Related Work
Model Compression The field of model compression for LLMs has aimed at mitigating the substantial computation
and memory requirements (Zhu et al., 2024; Yuan et al., 2024). Such methods primarily fall into four categories: weight
quantization (Lin et al., 2024b; Frantar et al., 2022; Wang et al., 2024), network pruning (LeCun et al., 1989; Hassibi et al.,
1993; Frantar & Alistarh, 2023; Bai et al., 2024b), knowledge distillation (Hsieh et al., 2023; DeepSeek-AI et al., 2025;
Hwang et al., 2024), and rank reduction (Yuan et al., 2023; Liu et al., 2024; Hwang et al., 2024; Saxena et al., 2024; Saha
et al., 2024).

Static Pruning Model pruning (Blalock et al., 2020) methods generate a fixed reduced-parameter network. For example,
weight pruning includes magnitude pruning (Han et al., 2015), pruning-aware retraining (Frankle & Carbin, 2018) and
activation-aware pruning (Williams & Aletras, 2023). SparseGPT (Frantar & Alistarh, 2023) uses layer-wise optimal brain
surgeon (Dong et al., 2017; Hassibi et al., 1993; LeCun et al., 1989), and SparseLLM (Bai et al., 2024b) extends with joint
multilayer perceptron (MLP) compression. Wanda (Sun et al., 2023) (as further discussed in Appendix B) greatly simplifies
the pruning mechanism, and has been extensively adopted for LLM post-training compression. LLM pruner (Ma et al.,
2023) studied task-agnostic structured pruning. (Bansal et al., 2022; Liu et al., 2023c; Voita et al., 2023) have demonstrated
the existence of prompt-dependent and task-specific sparsity in LLMs.

Dynamic Pruning Dynamic networks (Lin et al., 2017; Liu & Deng, 2018; Hua et al., 2019; Gao et al., 2018; Chen et al.,
2019) selectively execute a subset of modules at inference time based on input samples. Typically, module selections are
based on reinforcement learning or gating networks. Adaptive dropout (Ba & Frey, 2013; Yang & Chen, 2025) is regarded
as a fine-grained dynamic network.

Mixture of Experts (MoE) MoE (Jiang et al., 2024; Lin et al., 2024a; Liu et al., 2024) dynamically selects a subset of
experts from a large pool. Instead of using LLM experts, fine-grained MoE (Krajewski et al., 2024; Xie et al.) uses relatively
small experts.. The success and widespread use of parameter-efficient fine-tuning (PEFT) (Hu et al., 2022; Chen et al.,
2024a; Edalati et al., 2022; Yeh et al., 2023; Bershatsky et al., 2024; Liu et al., 2023b; Koike-Akino et al., 2025), has enabled
mixture of adapters (Wu et al., 2024; Buehler & Buehler, 2024; Wang et al., 2022; Zhang et al., 2024) to become a viable
solution for task-agnostic MoE.

B. Wanda: Efficient Activation-Aware Pruning
Sorting Operation Wanda (Sun et al., 2023) is a light-weight yet effective pruning method, suitable for online dynamic
pruning. The original algorithm uses a sorting operation to find the top-k weights with high scores S′

i,j per row:

# W: (d’, d), X: (d, Tc), kc=int((1-rho) * d)
S = W.abs() * X.norm(p=2, dim=-1) # Score metric
_, idx = torch.sort(S, dim=-1) # Sorting scores
pruned = idx[..., :kc] # Select index having the kc smallest scores
W = torch.scatter(W, index=pruned, value=0) # Zero-out weights

Here, kc := (1 − ρ)d is the complement of k := ρd, which means that k corresponds to the number of active weights
(micro-experts) per output neuron, whereas kc corresponds to the number of inactive weights per output neuron.

Top-k Search Operation Note that selecting the top-k experts does not require a full sort operation. Because the sorting
operation is known to have a log-linear complexity order O[d′d log(d)], an immediate alternative is to use the top-k search
operation instead of sorting as below:

# W: (d’, d), X: (d, Tc), kc=int((1-rho) * d)
S = W.abs() * X.norm(p=2, dim=-1)
_, idx = torch.topk(S, dim=-1, k=kc, largest=False, sorted=False) # Select index having

the kc smallest scores without sorting
W = torch.scatter(W, index=idx, value=0)

This should have a reduced theoretical complexity of O[d′d log(dc)], using the heap-based method.

8



µ-MoE: Test-Time Pruning as Micro-Grained Mixture-of-Experts

The kth Value Search Operation Note that top-k search can be also accomplished based on QuickSelect method
searching for the kth largest value. Hence, another option is to find the kth largest value to threshold scores:

# W: (d’, d), X: (d, Tc), kc=int((1-rho) * d)
S = W.abs() * X.norm(p=2, dim=-1)
val, _ = torch.kthvalue(S, dim=-1, k=kc) # Find the kc-th smallest score
W = torch.where(S > val[:,None], W, 0) # Activate weights whose scores are above it

Note that torch.kthvalue returns the kcth smallest value, not the largest value. This should have the lowest theoretical
complexity of O[d′d] on average.

Runtime Analysis The practical complexity highly depends on its implementation on hardware. An empirical experiment
is shown in Figure 3, where the average runtime for Wanda pruning over different embedding size d is measured on Apple
M1 CPU and NVIDIA A100 GPU. It does not include the computation of linear affine transforms after weight pruning. We
see that torch.topk and torch.kthvalue can be moderately faster than torch.sort on the CPU, while there is no significant
difference on the GPU. Nevertheless, torch.topk and torch.kthvalue are found to be slightly advantageous for large weights
on the GPU. We also observe that the top-k search computation is insensitive to the active weight ratio ρ.

(a) 25% Active Weights (b) 50% Active Weights (c) 75% Active Weights

Figure 3. Wanda pruning complexity based on torch.sort/topk/kthvalue on CPU and GPU at ρ = 0.25, 0.50, 0.75.

C. LLM Models
The Open Pre-trained Transformers (OPT) (Zhang et al., 2022) is a suite of decoder-only pre-trained transformers ranging
from 125M to 175B parameters. It was claimed that OPT-175B is comparable to GPT-3, while requiring only 1/7th the
carbon footprint to develop. Table 5 shows model parameters for the OPT open LLM family.

Table 5. OPT model parameters (Zhang et al., 2022)
Models # layers L # heads h hidden size d head dim dh di = 4d Huggingface ID

125M 12 12 768 64 3072 facebook/opt-125m
350M 24 16 1024 64 4096 facebook/opt-350m
1.3B 24 32 2048 64 8192 facebook/opt-1.3b
2.7B 32 32 2560 80 10240 facebook/opt-2.7b
6.7B 32 32 4096 128 16384 facebook/opt-6.7b
13B 40 40 5120 128 20480 facebook/opt-13b
30B 48 56 7168 128 28672 facebook/opt-30b
66B 64 72 9216 128 36864 facebook/opt-66b

175B 96 96 12288 128 49152 —

D. LLM Experiment Results
Impact of Model Size Figure 4 plots the perplexity results averaged over the WT2, PTB, and C4 datasets for compressed
OPT models of 125M, 1.3B, and 13B scales. This partly corresponds to Table 1, while including a wider range of
compression ratios. We can see that the magnitude pruning is poor and activation-aware pruning works well. Online pruning
with µ-MoE can further improve the perplexity through prompt-wise adaptation, especially around 40%.
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(a) OPT-125M (b) OPT-350M (c) OPT-1.3B

(d) OPT-2.7B (e) OPT-6.7B (f) OPT-13B

Figure 4. Perplexity results averaged over WT2, PTB, and C4 datasets for compressed OPT models.

E. Datasets
Wikitext-2 (WT2) The WikiText language modeling dataset (Merity et al., 2016) is a collection of over 100 million tokens
extracted from the set of verified good and featured articles on Wikipedia. The dataset is available under the CC BY-SA-4.0
license. The wikitext-2-raw-v1 contains 36,718, 3,760, and 4,358 samples for train, validation, and test splits, respectively.
We use https://huggingface.co/datasets/mindchain/wikitext2.

Penn Treebank (PTB) The English Penn Treebank (PTB) corpus (Marcus et al., 1994) is one of the most known and used
corpus for the evaluation of models for sequence labeling. The dataset features a million words of 1989 Wall Street Journal
material. We use https://huggingface.co/datasets/ptb-text-only/ptb_text_only.

C4 C4 (Raffel et al., 2020) is based on a colossal, cleaned version of Common Crawl’s web crawl corpus. This is release
under the OCD-By license. We consider a subset “en”, containing 364,868,892 and 364,608 samples for train and validation
splits, respectively, while we use the first shard for each split in https://huggingface.co/datasets/allenai/
c4.

ScienceQA ScienceQA (Lu et al., 2022) is collected from elementary and high school science curricula (i.e., grades 1
through 12), and contains 21,208 multimodal multiple-choice science questions. Out of the questions in ScienceQA, 10,332
(48.7%) have an image context, 10,220 (48.2%) have a text context, and 6,532 (30.8%) have both. Most questions are
annotated with grounded lectures (83.9%) and detailed explanations (90.5%). The lecture and explanation provide general
external knowledge and specific reasons, respectively, for arriving at the correct answer. ScienceQA has rich domain diversity
from three subjects: natural science, language science, and social science. ScienceQA features 26 topics, 127 categories,
and 379 skills that cover a wide range of domains. It contains 12,726, 4,241, and 4,241 samples for train, validation, and
test splits in https://huggingface.co/datasets/derek-thomas/ScienceQA. This is released under the
CC BY-NC-SA 4.0 license.

TextVQA TextVQA (Singh et al., 2019) requires VLM models to read and reason about text in images to answer questions
about them. Specifically, models need to incorporate the new modality of text present in the images and reason over it to
answer TextVQA questions. TextVQA dataset contains 45,336 questions over 28,408 images from the OpenImages dataset.
We use https://huggingface.co/datasets/facebook/textvqa. This is licensed under CC-BY-4.0.
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