

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 ATLAS: CONSTRAINTS-AWARE MULTI-AGENT COL- LABORATION FOR REAL-WORLD TRAVEL PLANNING

Anonymous authors

Paper under double-blind review

ABSTRACT

While Large Language Models (LLMs) have shown remarkable advancements in reasoning and tool use, they often fail to generate optimal, grounded solutions under complex constraints. Real-world travel planning exemplifies these challenges, evaluating agents' abilities to handle constraints that are explicit, implicit, and even evolving based on interactions with dynamic environments and user needs. In this paper, we present *ATLAS*, a general multi-agent framework designed to effectively handle such complex nature of constraints awareness in real-world travel planning tasks. *ATLAS* introduces a principled approach to address the fundamental challenges of constraint-aware planning through dedicated mechanisms for dynamic constraint management, iterative plan critique, and adaptive interleaved search. *ATLAS* demonstrates state-of-the-art performance on the TravelPlanner benchmark, improving the final pass rate from 23.3% to 44.4% over its best alternative. More importantly, our work is the first to demonstrate quantitative effectiveness on real-world travel planning tasks with live information search and multi-turn feedback. In this realistic setting, *ATLAS* showcases its superior overall planning performance, achieving an 84% final pass rate which significantly outperforms baselines including ReAct (59%) and a monolithic agent (27%).

1 INTRODUCTION

Constraint awareness and compliance is a fundamental aspect of intelligence, crucial for reasoning and problem-solving (Dechter, 2003; Holyoak & Simon, 1999). Solving real-world problems under constraints requires a delicate interplay of understanding requirements, searching for information, and synthesizing a solution that respects all rules. While Large Language Models (LLMs) have made rapid advancements in reasoning and tool use (Schick et al., 2023; Nakano et al., 2021), their reliability is still limited in practical tasks with complex, multifaceted constraints. Despite their capabilities, they often produce plans that are incoherent or invalid, a critical shortcoming for real-world deployment (Valmeekam et al., 2023; Kambhampati et al., 2024).

Existing research often sidesteps the core challenge. Some methods focus on constraint compliance but assume all necessary information is provided upfront (Parmar et al., 2025; Lee et al., 2025), while others incorporate search but presume all constraints are known in advance (Hao et al., 2025a). The more realistic and challenging scenario, where an agent must simultaneously search for context information and discover the constraints, remains largely unsolved. This intricacy is clear in a quintessential, daily task like travel planning. As shown in Figure 1, even state-of-the-art models like Gemini-2.5-Pro can satisfy a user's explicit requests (*e.g.*, budget, dates) yet fail on implicit commonsense rules, such as creating a logical itinerary or avoiding hallucinated details. The problem is further magnified in multi-turn conversations where user constraints dynamically evolve, a task where current LLMs and LLM agents still fall short (Xie et al., 2025).

To address this gap, we introduce a general multi-agent framework designed to systemically tackle three fundamental challenges in practical constraint-aware question answering tasks:

- *Constraint Construction*: Identifying the complete set of explicit and implicit constraints from user queries and search results without prior knowledge. We leverage LLMs' vast repository of world knowledge and commonsense reasoning (Zhao et al., 2023; Krause & Stolzenburg, 2023; Ismayilzada et al., 2023) to infer and codify a full set of constraints.

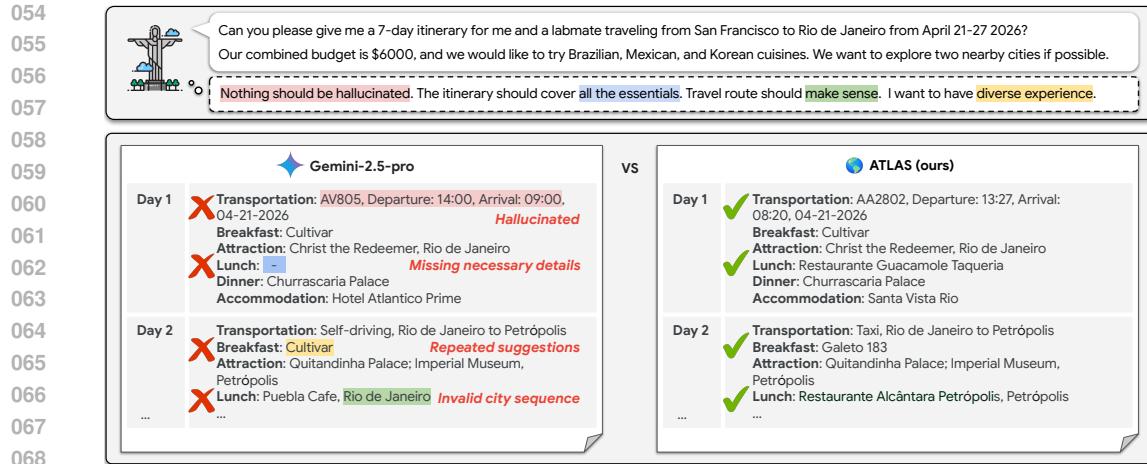


Figure 1: **Monolithic agent cannot solve real-world travel planning.** The true challenge in real-world travel planning is satisfying both explicit user requests and implicit, commonsense expectations (in dotted bubble ¹). Even advanced models like Gemini-2.5-Pro fall short, as seen in critical failures like omitting lunch after a 9 a.m. arrival or suggesting a restaurant in a different city. This highlights the vital need for a multi-agentic solution like ATLAS.

- *Constraints-Aware Answering*: Generating a coherent, valid solution that is verified to adhere to all identified constraints. For this, we implement an iterative refinement loop where one agent’s generation is rigorously verified against constraints by another, with targeted feedback guiding subsequent revisions (Gou et al., 2024; Choi et al., 2024).
- *Resolving Information Gap*: Diagnosing failures to determine if they stem from logical errors or insufficient information from search. We utilize an agent with high-level reasoning to diagnose the specific information gaps and recommend new search actions (Gou et al., 2025; Wu et al., 2025), effectively turning a dead-end into an opportunity to adaptively gather more information.

We demonstrate the effectiveness of our framework, ATLAS (Agent-based Travel planning with Live Adaptive Search), using travel planning tasks as a testbed, as it naturally embodies all three of these challenges. Our contributions are threefold: First, on the TravelPlanner benchmark (Xie et al., 2024), ATLAS presents superior performance than existing multi-agent baselines by up to 14% on the test set. Second, in multi-turn variants (Oh et al., 2025), ATLAS effectively adapts to evolving user feedback where other methods stagnate. Finally, we demonstrate its utility beyond sandbox settings by showing quantitative success in a live, dynamic setting that combines real-time web search with multi-turn interaction. In this realistic scenario, ATLAS achieves an 84% final pass rate with high factual grounding, while baselines like ReAct (59%) and a monolithic agent (27%) fall significantly behind.

Related Work. Most of existing approaches assume that all necessary information is readily available (Kambhampati et al., 2024; Yuan et al., 2025; Lee et al., 2025; Xie et al., 2025; Lu et al., 2025; Singh et al., 2024), or when integrating search tools, exhibit limited performance (Zhang et al., 2025), or lack rigorous evaluation (Chen et al., 2024). ATLAS is designed to fill these specific gaps by handling constrained travel planning with search, also with effective extension to beyond sandbox, open-domain, multi-turn setting. A detailed discussion of related work is in Appendix A.

2 PROBLEM SETUP

In this section, we introduce a formal definition of our target travel planning task as a generalized constrained question answering problem. In particular, given a user’s natural language query Q , we translate it into a *Constraint Satisfaction Problem* (CSP) (Mackworth, 1977; Brailsford et al., 1999b), $P = \langle X, D, C \rangle$. The components are defined as follows:

¹The commonsense examples here are adopted from the TravelPlanner benchmark (Xie et al., 2024).

- $X = \{x_1, x_2, \dots, x_n\}$ is a finite set of n *variables*. In travel planning, these represent the decisions to be made. For instance, X includes variables such as $\text{Day1}_{\text{Transportation}}$, $\text{Day1}_{\text{Accommodation}}$, $\text{Day1}_{\text{Dinner}}$, $\text{Day2}_{\text{Breakfast}}$, and so on (including all relevant plan details for each day).
- $D = \{D_{x_1}, D_{x_2}, \dots, D_{x_n}\}$ is a set of *domains*, where each D_{x_i} is the finite set of possible values for variable x_i . These domains are dynamically constructed from external information sources rather than given a priori. That is, the agent populates D from observations O yielded by executing a series of tool calls. For instance, the domain for the variable $\text{Day1}_{\text{Lunch}}$ would be the set of candidate restaurants available in the relevant city on Day 1, obtained via a live search.
- $C = \{c_1, c_2, \dots, c_m\}$ is a finite set of m *constraints* that must be satisfied. Each constraint $c_j \in C$ is a pair of $\langle \text{scope}(c_j), \text{rel}(c_j) \rangle$, where $\text{scope}(c_j) \subseteq X$ is the subset of variables involved in the constraint c_j , and $\text{rel}(c_j) \subseteq \prod_{x \in \text{scope}(c_j)} D_x$ is a relation specifying the allowed combinations of values for the variables in its scope. For instance, consider a constraint c_j that the restaurant for all meals must be different throughout a trip. The scope would be all meal-related variables, $\text{scope}(c_j) = \{\text{Day1}_{\text{Lunch}}, \text{Day1}_{\text{Dinner}}, \text{Day2}_{\text{Breakfast}}, \dots\}$. The relation $\text{rel}(c_j)$ would be $\text{rel}(c_j) = \{(r_1, \dots, r_k) \mid \forall i, j \in \{1, \dots, k\}, i \neq j \implies r_i \neq r_j\}$, which is the set of all k -tuples of restaurant assignments satisfying the constraint.

Within this CSP framework, we categorize the overall constraint set C into two subsets based on their source and nature (analogous to classical planning distinctions between goals and state constraints (Fikes & Nilsson, 1971)). (i) **Explicit Constraints** (C_E) are the requirements or preferences (*i.e.*, goals that the solution must satisfy) explicitly stated or implied by Q , such as budget limits, desired destination, or dates. C_E could also include any new constraints that arise from observations O , such as accommodations requiring minimum nights stay or maximum occupancy. (ii) **Implicit constraints** (C_I) are not explicitly given but stem from commonsense domain rules and physical realities, which are analogous to the state invariants in classical planning literature. All explicit and implicit constraints together form the complete constraint set for the problem: $C = C_E \cup C_I$. The objective of the *static* travel planning problem can now be stated formally.

Definition 2.1 (Static Travel Planning Objective). Given a CSP instance $P = \langle X, D, C \rangle$, a *complete* assignment is a function $\sigma : X \rightarrow \bigcup_{x \in X} D_x$ that maps every variable $x \in X$ to a value in its respective domain, *i.e.*, $\sigma(x) \in D_x$. A complete assignment σ is a *feasible* solution if it satisfies all constraints in C . That is, for every constraint $c_j \in C$, the combination of values assigned to the variables in its scope must be an allowed tuple in its relation:

$$\langle \sigma(x) \mid x \in \text{scope}(c_j) \rangle \in \text{rel}(c_j)$$

If a feasible solution σ exists, the problem is *satisfiable*. If no such assignment exists for the given domains D , the problem is *unsatisfiable*. The goal is to return a feasible solution if one is found, or an indication of unsatisfiability otherwise.

Evolving Constraints. The above static CSP represents a single-turn travel planning where a plan is generated in response to a one-time user query. In real-world scenarios, however, users may wish to refine the plan by providing feedback or by adding, removing, or modifying constraints in a multi-turn conversation (*e.g.*, adjusting the budget). The updated query often requires the system to gather further information, resulting in an augmented observation set and, ultimately, an evolving set of constraints. This dynamic nature transforms the problem from a static CSP into a *Dynamic CSP*, which can be viewed as a sequence of static CSPs, P^1, P^2, \dots, P^t , where each problem in the sequence is a transformation of the previous one (Mittal & Falkenhainer; Dechter & Dechter, 1988).

Definition 2.2 (Dynamic Travel Planning Objective). Let a multi-turn conversation produce a sequence of queries $\{Q^1, Q^2, \dots, Q^T\}$. For each turn $t \in \{1, \dots, T\}$, the agent obtains observations O^t and consequently forms a problem instance $P^t = \langle X, D^t, C^t \rangle$. A *solution trajectory* is a sequence of assignments $\{\sigma_t\}_{t=1}^T$ where each σ_t is a feasible solution for its corresponding problem P^t :

$$\forall t \in \{1, \dots, T\}, \forall c \in C^t : \langle \sigma_t(x) \mid x \in \text{scope}(c) \rangle \in \text{rel}(c)$$

Ultimately, the objective is to produce a final travel itinerary σ_T that is feasible for P^T . Intermediate σ^t serves as a (provisional) plan consistent with each intermediate problem P^t . This calls for a system that can manage an evolving set of constraints, generate solutions that satisfy them, and gather information according to the dynamics.

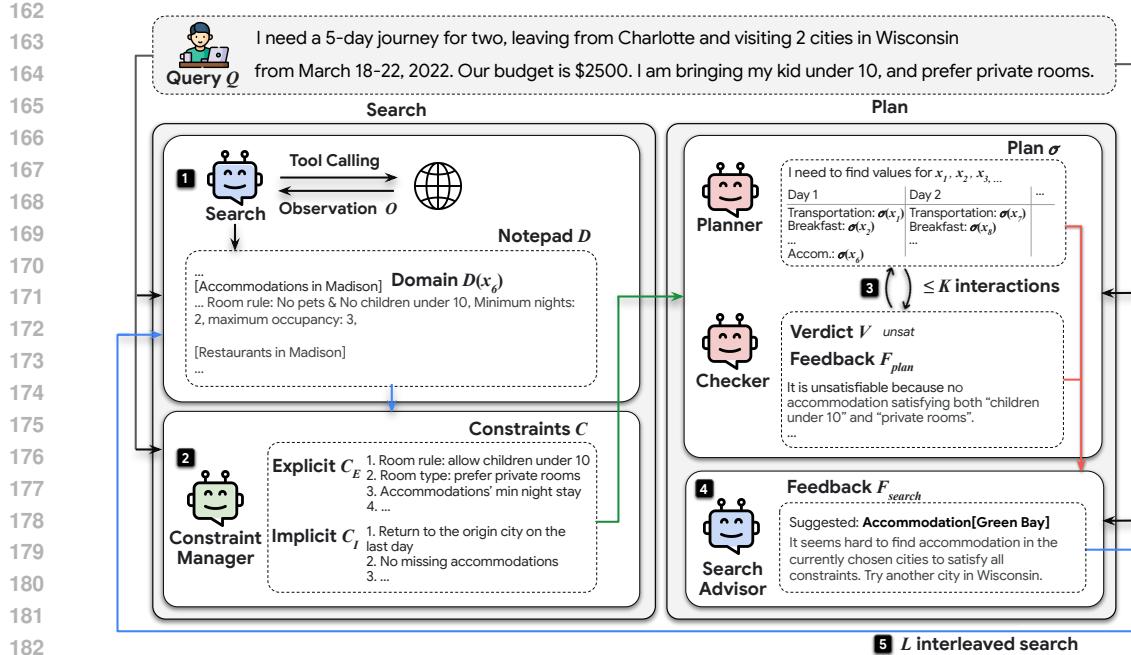


Figure 2: **An overview of our framework’s workflow on a task in TravelPlanner (Xie et al., 2024).** Initially, the Search Agent populates a domain of available options, while the Constraint Manager identifies all constraints that should be considered. These include explicit constraints from the user (e.g., must allow children > 10) and search results (e.g., minimum night stays), as well as implicit, commonsense constraints. The Planner then proposes a plan, which is iteratively validated by the Checker. If the Checker finds the problem is unsatisfiable, it triggers an interleaved search. The Search Advisor diagnoses the failure and provides feedback to guide a new, more informed search.

3 ATLAS: Agent-based TRAVEL PLANNING WITH LIVE ADAPTIVE SEARCH

Challenges in Constraints-Aware Planning. The design of ATLAS is directly motivated by three fundamental challenges inherent to constraint-aware planning with search. (i) Challenge 1: *Constraint construction* where the goal is to identify the complete set of implicit and explicit constraints. (ii) Challenge 2: *Planning under constraints*, reliably generating a valid plan that satisfies all identified constraint. (iii) Challenge 3: *Resolving information gaps* where the goal is to handle cases where a plan fails not due to a logical error, but due to insufficient information from the initial search. We refer the readers to Appendix B for the discussion on the connection of these challenges to the well-established planning literature in classical artificial intelligence (Brailsford et al., 1999a).

Notations. We now provide concrete descriptions of our framework. To model the system’s operation, we use $t = 1, \dots, T$ for the conversation turn, $\ell = 0, \dots, L$ for the interleaved search loop within a turn, and $k = 0, \dots, K$ for the interaction loop between the Planner and Checker agents. We use calligraphic notation to denote the space of all possible instances for these objects: \mathcal{Q} for queries, \mathcal{X} for variable sets, \mathcal{O} for observations, \mathcal{D} for domain sets, and \mathcal{C} for constraint sets. Each agent is defined as a typed function (summarized in Table 3). Figure 2 and Algorithm 1 illustrate the overview.

3.1 CONSTRAINT MANAGEMENT (CHALLENGE 1)

The first phase of the ATLAS pipeline is to establish the factual basis for planning and is handled by two agents: The *Search Agent* is responsible for all interactions with external environments via tool calls, while the *Constraint Manager* uses the collected information to identify the constraints.

Search (tool interaction). Given the user query Q^t , it retrieves a set of raw observations $\mathcal{O}^{t,\ell}$ from all tool calls, and then extracts a structured domain $D^{t,\ell}$ (e.g., the set of relevant piece of information, such as available flights or hotels, recorded in a notepad). This process can be refined iteratively. Search Agent may receive feedback $F_{\text{search}}^{t,\ell-1} \in \mathcal{F}_{\text{search}}$ from a previous failed planning attempt, guiding

216 it to search for new or different information to resolve the failure (as detailed in Section 3.3).
 217

$$218 \quad \text{Search} : \mathcal{Q} \times \mathcal{F}_{\text{search}} \rightarrow \mathcal{D}, \quad D^{t,\ell} := \text{Search}(Q^t, F_{\text{search}}^{t,\ell-1}) = (\Gamma \circ \Omega)(Q^t, F_{\text{search}}^{t,\ell-1}),$$

219 where $F_{\text{search}}^{t,0} = \emptyset$ by default at the start of each turn, $\Omega : \mathcal{Q} \times \mathcal{F}_{\text{search}} \rightarrow \mathcal{O}$ is the function that gathers
 220 raw observations from external environment, and $\Gamma : \mathcal{O} \rightarrow \mathcal{D}$ is the domain extraction function
 221 that filters and structures these observations into domains. We instantiate Search with standard
 222 ReAct-based tool calling module (Yao et al., 2023).

223 **Constraint construction.** Once the domains are populated, Constraint Manager identify and codify
 224 the complete set of constraints, $C^{t,\ell}$. This set is a combination of two types of rules: explicit
 225 constraints $C_E^{t,\ell}$ that are derived directly from the user query Q^t and the current domains $D^{t,\ell}$, and
 226 implicit constraints C_I that reflects fixed domain knowledge or commonsense rules that are often
 227 unstated (e.g., for vacation travels, it must return to the origin city).
 228

$$229 \quad \text{Constrain} : \mathcal{Q} \times \mathcal{D} \rightarrow \mathcal{C}, \quad C^{t,\ell} := \text{Constrain}(Q^t, D^{t,\ell}) = C_E^{t,\ell} \cup C_I, \quad C_E^{t,\ell} := \Pi(Q^t, D^{t,\ell}).$$

230 where $\Pi : \mathcal{Q} \times \mathcal{D} \rightarrow \mathcal{C}$ is the function for explicit-constraint extraction. We note that the Constraint
 231 Manager’s role is where LLMs are particularly effective. An LLM’s advanced natural language
 232 understanding allows it to expertly parse complex queries and search results to extract explicit
 233 constraints. Furthermore, its vast repository of world knowledge and commonsense reasoning enables
 234 it to infer the crucial implicit constraints that are necessary for creating a coherent and logical plan.
 235

236 3.2 PLAN VERIFICATION UNDER CONSTRAINTS (CHALLENGE 2)

237 The objective of this stage is to find a valid solution for the given CSP instance, $P^{t,\ell} = \langle X, D^{t,\ell}, C^{t,\ell} \rangle$.
 238 This is addressed with an iterative loop between two specialized agents: a *Planner* and a *Checker*.
 239

240 **Planning.** The Planner agent proposes a candidate solution, *i.e.*, an assignment $\sigma \in \Sigma$ where Σ
 241 is the space of all possible assignments. It may not find a complete and valid assignment (as in
 242 Definition 2.1) at the first attempt. Hence, to improve with each attempt, its decision is informed by
 243 the history of previously failed assignments and the feedback explaining why they failed:

$$244 \quad \text{Plan} : (\mathcal{X}, \mathcal{D}, \mathcal{C}) \times (\Sigma \times \mathcal{F}_{\text{plan}})^* \rightarrow \Sigma, \quad \sigma^{t,\ell,k} := \text{Plan}(X, D^{t,\ell}, C^{t,\ell}; \{(\sigma^{t,\ell,i}, F_{\text{plan}}^{t,\ell,i})\}_{i=1}^{k-1}),$$

245 where $F_{\text{plan}}^{t,\ell,i} \in \mathcal{F}_{\text{plan}}$ is the feedback on the i th attempted planning $\sigma^{t,\ell,i}$, and initially, $F_{\text{plan}}^{t,\ell,0} = \emptyset$.
 246 Such feedback is provided by the paired Checker agent as follows.
 247

248 **Constraint Checking.** The Checker agent verifies if the proposed assignment $\sigma^{t,\ell,k}$ satisfies
 249 every constraint in the set $C^{t,\ell}$. It produces two outputs: a verdict $V \in \mathcal{V}$, where $\mathcal{V} =$
 250 $\{\text{valid}, \text{invalid}, \text{unsat}\}$ and feedback F_{plan} describing any unsatisfied or unsatisfiable
 251 constraints.

$$252 \quad \text{Check} : (\mathcal{Q}, \mathcal{D}, \mathcal{C}, \Sigma) \rightarrow \mathcal{V} \times \mathcal{F}_{\text{plan}}, \quad (V^{t,\ell,k}, F_{\text{plan}}^{t,\ell,k}) := \text{Check}(Q^t, D^{t,\ell}, C^{t,\ell}, \sigma^{t,\ell,k}),$$

253 The outcome determines the next action. If $V^{t,\ell,k} = \text{invalid}$, $F_{\text{plan}}^{t,\ell,k}$ is sent back to the Planner
 254 to attempt a revision $\sigma^{t,\ell,k+1}$. If $V^{t,\ell,k} = \text{unsat}$, the feedback indicates a deeper issue (e.g.,
 255 insufficient options in $D^{t,\ell}$ or incompatibilities in $C^{t,\ell}$), which triggers the next major component of
 256 our framework: an interleaved search.
 257

259 3.3 INTERLEAVED SEARCH: RESOLVING INFORMATION GAPS (CHALLENGE 3)

260 When the Checker returns an *unsat* verdict, it signals that a valid plan is impossible with the current
 261 information. This triggers the *Search Advisor* agent to diagnose the underlying information gap. The
 262 Search Advisor analyzes the full context (*i.e.*, the user’s query, the current domains used for planning,
 263 the constraints, and the history of failed planning attempts) to pinpoint the root cause of the failure.
 264 It then generates a targeted feedback message, $F_{\text{search}}^{t,\ell}$, guiding on what new information should be
 265 collected to make the problem satisfiable:
 266

$$267 \quad \text{SearchAdvise} : (\mathcal{Q}, \mathcal{D}, \mathcal{C}, (\Sigma \times \mathcal{F}_{\text{plan}})^*) \rightarrow \mathcal{F}_{\text{search}}, \quad F_{\text{search}}^{t,\ell} := \text{SearchAdvise}(Q^t, D^{t,\ell}, C^{t,\ell}, H^{t,\ell,k}),$$

268 where $H^{t,\ell,k} := \{(\sigma^{t,\ell,i}, F_{\text{plan}}^{t,\ell,i})\}_{i=1}^k$ is the planning history so far. This task is well-suited for an
 269 LLM, which can perform high-level reasoning to diagnose the information gap and provide feedback

270 on search. For example, in Figure 2, as no available accommodations satisfy both the “children under
 271 10” and “private room” constraints in the currently chosen cities, it suggests searching for options in
 272 a different city. This new search directive is then fed back to the SearchAgent in Section 3.1, which
 273 obtains an augmented domains $D^{t,\ell+1}$ and a refreshed constraint set $C^{t,\ell+1}$, continuing the loop.
 274

275 3.4 MULTI-TURN EXTENSION 276

277 The single-turn ATLAS in Section 3 can be easily lifted to the multi-turn conversation setting with a
 278 sequence $\{Q^1, \dots, Q^T\}$. When the user updates the query $Q^t \rightarrow Q^{t+1}$, ATLAS does not start from
 279 scratch. Instead, it uses the final domain from the previous turn, $D^{t,L}$, as a cached memory of known
 280 options. The Constraint Manager then immediately processes the new query against this cached
 281 domains to generate an updated set of constraints, $C^{t+1,1}$. That is, at the start of the $(t+1)$ -th turn,
 282 the new CSP instance becomes,

$$283 P^{t+1,1} = \langle X, D^{t,L}, C^{t+1,1} \rangle, \quad C^{t+1,1} := C_E^{t+1,1} \cup C_I, \quad C_E^{t+1,1} = \Pi(Q^{t+1}, D^{t,L}).$$

285 With this CSP, ATLAS enters the Planner-Checker loop in Section 3.2. The goal is to find a valid plan
 286 using only the information it has already gathered from the previous turn. This is a crucial efficiency
 287 step, as it avoids unnecessary tool calls if the existing knowledge is already sufficient to satisfy the
 288 user’s new request. Only if this process fails—that is, if the Checker concludes with `unsat` even
 289 after K revision steps—does the system determine that the cached information is insufficient. At this
 290 point, it triggers the full interleaved search process in Section 3.3, calling the Search Agent to gather
 291 new information and resuming the complete single-turn orchestration with $\text{caps}(K, L)$.
 292

293 4 EXPERIMENTS

295 This section empirically validates our framework. First, we demonstrate its superior performance
 296 against competitive baselines on the standard benchmark setup along with a detailed analysis of the
 297 contribution of each core component in ATLAS (Section 4.1). Second, we extend our evaluation to
 298 multi-turn travel planning (Section 4.2). Finally, we demonstrate that ATLAS extends its superior
 299 performance to even more realistic settings with live web search and multi-turn feedback (Section 4.3).
 300 We first introduce the common experimental setup. Full implementation details are in Appendix D.1.

301 **Benchmark.** Our evaluations are built on the TravelPlanner benchmark (Xie et al., 2024), a standard
 302 for assessing travel planning methods in the literature (Lee et al., 2025; Kambhampati et al., 2024).
 303 It provides a sandbox environment with APIs for accommodations, restaurants, and transportation,
 304 etc.. This benchmark is suitable for our study because it is designed to test the capability of satisfying
 305 complex constraints under two categories: (i) *Hard constraints*, which are strict rules derived directly
 306 from the user query or search results, such as not exceeding the budget or adhering to accommodation
 307 rules; (ii) *Commonsense constraints*, are based on implicit, practical logic (see Table 4 for details).

308 **Evaluation Metrics.** We assess performance using the TravelPlanner benchmark’s four official
 309 metrics, all reported in %: (i) Delivery rate is the percentage of queries for which a plan is successfully
 310 delivered. (ii) Micro pass rate is the ratio of passed constraints to total constraints considered, for
 311 both commonsense and hard constraints. (iii) Macro pass rate is the percentage of delivered plans that
 312 pass all constraints of a specific type (commonsense or hard). (iv) Final pass rate is the percentage of
 313 delivered plans that satisfy *all* commonsense and hard constraints.


314 4.1 SINGLE-TURN TRAVEL PLANNING

316 **Baselines.** We highlight our setup requiring agents to perform tool-based information searches and
 317 discover constraints without any prior knowledge. In the considered setting, we compare our method
 318 against three key baselines: (i) ReAct (Yao et al., 2023), the standard for tool use; (ii) Reflexion (Shinn
 319 et al., 2023) and EvoAgent (Yuan et al., 2025), popular open-sourced sole-planning baselines in the
 320 literature (Xie et al., 2024), but augmented with ReAct-based search; (iii) PMC (Zhang et al., 2025),
 321 a multi-agent framework that relies on LLM-based task decomposition and delegation. To ensure a
 322 fair comparison, all methods are limited to maximum 120 tool calls. For ATLAS, we set $K = 3$ (the
 323 maximum check steps) and $L = 10$ (the interleaved search steps). We use Gemini-2.5-Pro (Comanici
 et al., 2025) and Claude-Sonnet-4 (20250514) (Anthropic, 2025) as base models.

324 Table 1: **ATLAS consistently achieves the highest performance on the TravelPlanner benchmark.**
325

326 327 328 329 330 331 332 333 334 335	326 327 328 329 330 331 332 333 334 335	326 327 328 329 330 331 332 333 334 335	326 327 328 329 330 331 332 333 334 335	326 327 328 329 330 331 332 333 334 335	326 327 328 329 330 331 332 333 334 335	Delivery \uparrow	Commonsense \uparrow	Hard Constraint \uparrow	Final Pass \uparrow
						326 327 328 329 330 331 332 333 334 335	326 327 328 329 330 331 332 333 334 335	326 327 328 329 330 331 332 333 334 335	326 327 328 329 330 331 332 333 334 335
336 337 338 339 340 341 342 343	336 337 338 339 340	336 337 338 339 340	ReAct	98.33	80.32	29.63	55.55	46.56	20.56
			ReAct+Reflexion	100.00	79.10	27.22	59.29	50.00	22.22
			ReAct+EvoAgent	100.00	78.06	23.89	57.86	40.56	12.22
			PMC	100.00	78.68	30.56	43.33	37.22	23.33
			ATLAS (ours)	100.00	88.54	48.33	82.62	74.44	44.44
	341 342 343	341 342 343	ReAct	100.00	79.38	22.78	56.19	38.89	11.67
			ReAct+Reflexion	99.44	74.79	18.33	45.48	28.33	10.00
			ReAct+EvoAgent	99.44	74.08	19.71	38.05	20.33	8.03
			PMC	96.67	76.11	21.67	39.52	30.56	14.44
			ATLAS (ours)	100.00	83.40	37.78	56.43	38.89	23.33
344 345 346 347 348 349 350 351 352 353	344 345 346 347 348	344 345 346 347 348	ReAct	98.10	78.96	26.00	55.37	47.80	19.50
			ReAct+Reflexion	99.90	77.94	25.90	65.85	56.70	22.70
			ReAct+EvoAgent	100.00	78.06	26.23	60.41	49.23	15.58
			PMC	100.00	79.37	28.30	57.10	46.10	21.08
			ATLAS (ours)	100.00	85.81	40.50	77.64	70.60	35.00
	349 350 351 352 353	349 350 351 352 353	ReAct	99.20	75.26	16.50	49.04	39.10	10.40
			ReAct+Reflexion	99.80	71.84	13.67	37.84	26.70	9.13
			ReAct+EvoAgent	98.89	67.01	10.00	33.71	20.42	6.11
			PMC	100.00	73.89	15.59	45.19	33.56	12.12
			ATLAS (ours)	100.00	78.88	31.00	49.43	42.00	18.00

Results. In Table 1, ATLAS consistently achieves the best performance across all metrics, including commonsense and hard constraint satisfaction. ATLAS outperforms PMC, another multi-agent frameworks, because its systemic orchestration—explicitly designed to handle fundamental challenges like constraint discovery, constraints-aware answering, and information gaps—is more reliable than depending on the emergent decomposition abilities of current LLMs. Furthermore, we find that simply adding search to advanced planners (*i.e.*, , Reflexion, EvoAgent) yields no benefit. In fact, complex planning on poor search results can degrade performance, as seen when ReAct+EvoAgent underperforms ReAct. This failure highlights the information gap created by a single, non-adaptive search and underscores the critical importance of our interleaved search mechanism, which adaptively gathers more context as needed. We present ablation studies on travel days and task difficulty levels in Appendix D.3.2 and a comprehensive cost analysis of all methods in Appendix D.4.

367 Figure 3: **Understanding the individual contribution of key components in ATLAS.** (a) compares
368 the full ATLAS framework with a variant where the Constraint Manager is disabled. In (b), the
369 baseline ($K = 0$) is a sequential search-then-plan pipeline by ReAct. In (c), the baseline ($L = 0$) is
370 ReAct augmented with three check steps after each search. Refer to Table 5 for full results.
371

372 **Analyzing Key Components of ATLAS.** In Figure 3, we perform an ablation study to verify that each
373 component of ATLAS successfully addresses its intended challenge. Analysis is on the validation set
374 using Gemini-2.5-Pro. First, Figure 3a confirms the importance of explicit constraint management
375 where disabling Constraint Manager causes 14.4% absolute drop in the macro hard constraint pass
376 rate. Second, to improve plan validity under constraints, ATLAS decouples planning from verification
377 using iterative revisions by Checker, and its effectiveness is evident in Figure 3b. A single check step
($K = 1$) boosts the final pass rate from 20.6% to 29.4%. However, the performance plateaus after

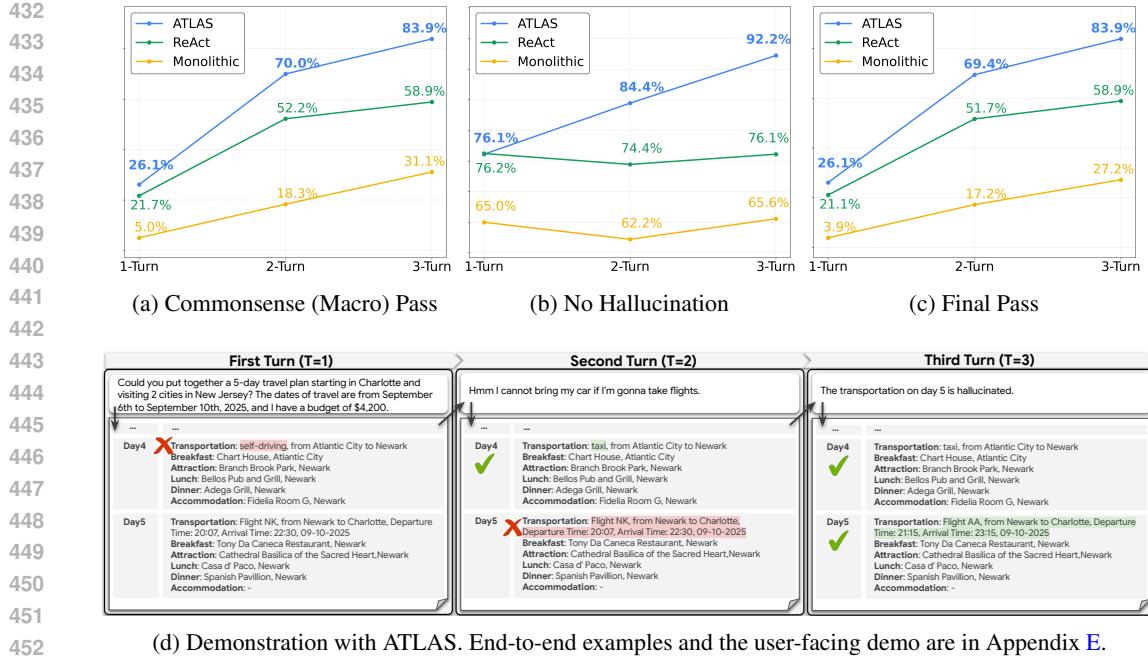
K = 3, suggesting that repeated checks yield diminishing returns when the root cause is information insufficiency from the search, making further checks inefficient². This limitation highlights the need for our final component: interleaved search. In Figure 3c, activating it on a plan that has already been revised three times increases the final pass rate from 31.1% to 44.4% with *L* = 5, confirming that adaptively resolving information gaps is critical for achieving higher reliability. Collectively, these results show that each component offers a targeted and significant contribution, validating our framework’s design. Additional analysis on failure cases is in Appendix D.3.1.

4.2 MULTI-TURN TRAVEL PLANNING

Setup. While TravelPlanner only simulates a single-turn travel planning, Flex-TravelPlanner (Oh et al., 2025) modify their validation set to simulate multi-turn travelplanning by omitting certain constraints from the original query to be introduced in subsequent turns. We follow their setup to create 2-turn and 3-turn variants of TravelPlanner benchmark, varying the type of new constraints (*local* like cuisine types or room types, or *global* like budget or the number of people) and the order in which they are introduced. We compare ReAct (*i.e.*, ours without any plan revisions or interleaved search, *K* = *L* = 0) and ATLAS with *K* = 3, *L* = 10, to validate the effectiveness of our framework in handling incremental constraints introduced over multiple turns.

Table 2: Main results on the Flex-TravelPlanner benchmark for multi-turn planning.

# Turns	Constraint Type (# of samples)	Method	Delivery ↑	Commonsense Pass ↑		Hard Constraint Pass ↑		Final Pass ↑
				Micro	Macro	Micro	Macro	
2-Turn	+ Local (189)	ReAct	100.00	86.51	45.83	66.79	42.86	30.16
		ATLAS	100.00	88.23	48.15	75.79	62.96	39.15
	+ Global (240)	ReAct	100.00	85.68	40.00	68.34	51.67	26.25
		ATLAS	100.00	87.55	48.75	75.97	64.16	39.59
3-Turn	+ Local-then-global (378)	ReAct	100.00	83.70	33.07	59.59	36.51	15.34
		ATLAS	100.00	87.96	49.21	73.58	53.97	33.60
	+ Global-then-local (378)	ReAct	100.00	84.06	32.80	59.43	36.24	17.20
		ATLAS	100.00	86.81	47.09	71.38	52.12	31.75


Results. In Table 2, we observe that ATLAS consistently outperforms ReAct across all multi-turn settings. As the number of turns and complexity increases, the performance gap widens. For instance, in the 2-turn setting with local constraints introduced, we observe 9% and 13% *absolute* final pass rate gain over ReAct, when local and global constraints are introduced, respectively. As the number of turns increase to 3-turn, we observe even larger performance gain; while ReAct only shows 15.34% or 17.20 % final pass rate, ours doubles the performance regardless of the order of constraint types introduced. Full detailed results with constraint type-wise breakdowns can be found in Table 7.

4.3 MULTI-TURN TRAVEL PLANNING WITH LIVE SEARCH

Setup. To validate ATLAS’s utility in a more practical setting, we evaluate it on a multi-turn travel planning with live web search. We adapt the TravelPlanner validation set by replacing its sandboxed tools with a Google Search tool, enabling agents to find real-time travel information³. To ensure data availability, all query dates are set to a one-month period starting from our experiment runtime (August 4th to 18th, 2025). A unique challenge of using a live search tool is the potential for the agent to hallucinate the search results. Hence, we introduce a *no hallucination rate*, a new metric measuring the percentage of plans where all information is not only derived from the search results but is also factually accurate. Factual accuracy is confirmed by an independent LLM judge equipped with its own search tool. For ATLAS , we set *K* = 3, *L* = 5. To simulate a realistic user interaction, we implement a multi-turn feedback loop. After an agent generates a plan, we provide corrective feedback for any constraint violations, which is added to the original query for the next turn, creating a set of evolving constraints (see Figure 4d). This is designed to model how a user collaborate with the system to *iteratively revise and improve a travel plan* which is a quite common scenario. Finally, to assess the value of our multi-agent system, we compare ATLAS against ReAct and a monolithic agent baseline that does not use multi-agent decomposition.

²In Figure 5 in the Appendix, we show that ATLAS effectively diagnoses such unsatisfiable cases and proceeds to the next interleaved search step rather than exhausting its check limits.

³e.g., www.google.com/travel. For detailed specification in the prompts, refer to Appendix F.2

(d) Demonstration with ATLAS. End-to-end examples and the user-facing demo are in Appendix E.

Figure 4: Live travel planning with multi-turn feedback. See Table 8 for full results.

Results. Figure 4 confirm the necessity of a multi-agent approach, as the monolithic agent presents significantly lower pass rates and more hallucinations. Between ReAct and ATLAS, the performance gap is modest initially, unlike in the sandbox settings of previous sections. We attribute this to the different nature of the two environments: the original benchmark’s sparse sandbox tests an agent’s ability to handle information gaps and discover a single, hidden solution, whereas the live environment’s abundant options make the initial task of finding any valid plan simpler, thereby reducing the immediate need for advanced search and revision capabilities. Nonetheless, the effectiveness of ATLAS emerges through the multiple turns where the user feedback acts as a series of evolving constraints. After three turns, ATLAS’s final pass rate improves from 26.1% to 83.9%, while ReAct and the monolithic agent stagnate at 58.9% and 27.2%, respectively. More importantly, ATLAS effectively uses feedback to reduce factual errors, achieving a no-hallucination rate of over 92%. In contrast, ReAct’s rate stagnates at 76%, showing it cannot learn from feedback to improve its factuality. This demonstrates that our proposed framework can effectively handle the evolving constraints and reliability demands of a dynamic, multi-turn planning process with live search.

5 CONCLUSION

In this paper, we formalized the general constrained planning tasks, and addressed its three fundamental challenges: dynamically managing a complete set of explicit and implicit rules, ensuring plan validity through iterative revision, and resolving information gaps via adaptive search. We introduced ATLAS, a multi-agent framework where specialized components systematically tackle each of these challenges. Using travel planning as a demanding testbed, ATLAS achieves state-of-the-art performance on the TravelPlanner benchmark and its multi-turn variants. Furthermore, we demonstrated its robust performance in a highly realistic setting with a live web environment and multi-turn feedback.

Future Work. Our work opens several exciting directions for reliable agents that can operate within the complex open-world constraints. While we used effective, simple instantiations for each component, future work could explore more advanced modules; *e.g.*, the Planner could incorporate parallel test-time scaling techniques for efficiency (Chen et al., 2025), or the Checker could be augmented with a formal CSP solver for more robust verification (Hao et al., 2025b). Beyond enhancing individual components, the framework itself could be applied to new domains requiring grounded, constraint-adherent solutions; *e.g.*, enforcing privacy policy compliance in agent guardrails (Xiang et al., 2025) or modeling personalized user preferences (Jiang et al., 2025; Li et al., 2025).

486 REFERENCES
487

- 488 Anthropic. System Card: Claude Opus 4 & Claude Sonnet 4. Anthropic, May 2025. URL <https://www-cdn.anthropic.com/4263b940cabb546aa0e3283f35b686f4f3b2ff47.pdf>. Accessed: August 25, 2025.
- 491 Christian Bessiere, Rémi Coletta, Barry O’Sullivan, and Myriam Paulin. Query-driven constraint
492 acquisition. In *Proceedings of IJCAI-07*, pp. 50–55, 2007.
- 494 Sally C. Brailsford, Chris N. Potts, and Barbara M. Smith. Constraint satisfaction problems:
495 Algorithms and applications. *European Journal of Operational Research*, 119(3):557–581,
496 December 1999a. ISSN 0377-2217. doi: [https://doi.org/10.1016/S0377-2217\(98\)00364-6](https://doi.org/10.1016/S0377-2217(98)00364-6). URL <https://www.sciencedirect.com/science/article/pii/S0377221798003646>.
- 498 Sally C. Brailsford, Chris N. Potts, and Barbara M. Smith. Constraint satisfaction problems:
499 Algorithms and applications. *European Journal of Operational Research*, 119(3):557–581,
500 December 1999b. ISSN 03772217. doi: 10.1016/S0377-2217(98)00364-6. URL <https://linkinghub.elsevier.com/retrieve/pii/S0377221798003646>.
- 503 Aili Chen, Xuyang Ge, Ziquan Fu, Yanghua Xiao, and Jiangjie Chen. TravelAgent: An AI Assistant
504 for Personalized Travel Planning, September 2024. URL <http://arxiv.org/abs/2409.08069> [cs].
- 506 Jiefeng Chen, Jie Ren, Xinyun Chen, Chengrun Yang, Ruoxi Sun, and Sercan Ö Arik. SETS:
507 Leveraging Self-Verification and Self-Correction for Improved Test-Time Scaling, February 2025.
508 URL <http://arxiv.org/abs/2501.19306>. arXiv:2501.19306 [cs].
- 510 Jihye Choi, Nils Palumbo, Prasad Chalasani, Matthew M Engelhard, Somesh Jha, Anivarya Kumar,
511 and David Page. Malade: Orchestration of llm-powered agents with retrieval augmented generation
512 for pharmacovigilance. In *Machine Learning for Healthcare Conference*. PMLR, 2024.
- 514 Gheorghe Comanici, Eric Bieber, Mike Schaeckermann, Ice Pasupat, Noveen Sachdeva, Inderjit
515 Dhillon, Marcel Blistein, Ori Ram, Dan Zhang, Evan Rosen, et al. Gemini 2.5: Pushing the frontier
516 with advanced reasoning, multimodality, long context, and next generation agentic capabilities.
517 *arXiv preprint arXiv:2507.06261*, 2025.
- 518 Rina Dechter. *Constraint Processing*. Morgan Kaufmann Publishers Inc., San Francisco, CA, USA,
519 2003. ISBN 1558608907.
- 521 Rina Dechter and Avi Dechter. Belief maintenance in dynamic constraint networks. In *Proceedings
522 of the Seventh AAAI National Conference on Artificial Intelligence*, AAAI’88, pp. 37–42. AAAI
523 Press, 1988.
- 524 George Ferguson, James Allen, and Brad Miller. Trains-95: Towards a mixed-initiative planning
525 assistant. In *Proceedings of AIPS-96*, pp. 70–77, 1996.
- 527 Richard E. Fikes and Nils J. Nilsson. Strips: A new approach to the application of theorem proving to
528 problem solving. *Artificial Intelligence*, 2(3):189–208, 1971. ISSN 0004-3702. doi: [https://doi.org/10.1016/0004-3702\(71\)90010-5](https://doi.org/10.1016/0004-3702(71)90010-5). URL <https://www.sciencedirect.com/science/article/pii/0004370271900105>.
- 531 Maria Fox and Derek Long. Pddl2.1: An extension to PDDL for expressing temporal planning
532 domains. *Journal of Artificial Intelligence Research*, 20:61–124, 2003.
- 534 Eugene C Freuder and Richard J Wallace. Suggestion strategies for constraint-based matchmaker
535 agents. In *International Conference on Principles and Practice of Constraint Programming*, pp.
536 192–204. Springer, 1998.
- 538 Boyu Gou, Zanming Huang, Yuting Ning, Yu Gu, Michael Lin, Weijian Qi, Andrei Kopanov, Botao
539 Yu, Bernal Jiménez Gutiérrez, Yiheng Shu, et al. Mind2web 2: Evaluating agentic search with
agent-as-a-judge. *arXiv preprint arXiv:2506.21506*, 2025.

- 540 Zhibin Gou, Zhihong Shao, Yeyun Gong, yelong shen, Yujiu Yang, Nan Duan, and Weizhu Chen.
 541 CRITIC: Large language models can self-correct with tool-interactive critiquing. In *The Twelfth*
 542 *International Conference on Learning Representations*, 2024. URL <https://openreview.net/forum?id=Sx038qxjek>.
- 543
- 544 Atharva Gundawar, Mudit Verma, Lin Guan, Karthik Valmeekam, Siddhant Bhambri, and Subbarao
 545 Kambhampati. Robust Planning with LLM-Modulo Framework: Case Study in Travel Planning,
 546 May 2024. URL <http://arxiv.org/abs/2405.20625>. arXiv:2405.20625 [cs].
- 547
- 548 Yilun Hao, Yongchao Chen, Yang Zhang, and Chuchu Fan. Large Language Models Can Solve
 549 Real-World Planning Rigorously with Formal Verification Tools, January 2025a. URL <http://arxiv.org/abs/2404.11891>. arXiv:2404.11891 [cs].
- 550
- 551 Yilun Hao, Yang Zhang, and Chuchu Fan. Planning anything with rigor: General-purpose zero-shot
 552 planning with llm-based formalized programming. In *The Thirteenth International Conference on*
 553 *Learning Representations*, 2025b.
- 554
- 555 Marti A. Hearst. Mixed-initiative interaction. *IEEE Intelligent Systems*, 14(5):14–23, 1999.
- 556
- 557 Keith J Holyoak and Dan Simon. Bidirectional reasoning in decision making by constraint satisfaction.
 558 *Journal of Experimental Psychology: General*, 128(1):3, 1999.
- 559
- 560 Richard Howey, Derek Long, and Maria Fox. VAL: Automatic plan validation, continuous effects and
 561 mixed initiative planning using PDDL. In *Proceedings of the 16th IEEE International Conference*
 562 *on Tools with Artificial Intelligence (ICTAI)*, pp. 294–301, 2004.
- 563
- 564 Mete Ismayilzada, Debjit Paul, Syrielle Montariol, Mor Geva, and Antoine Bosselut. CRoW:
 565 Benchmarking commonsense reasoning in real-world tasks. In Houda Bouamor, Juan Pino,
 566 and Kalika Bali (eds.), *Proceedings of the 2023 Conference on Empirical Methods in Natural*
 567 *Language Processing*, pp. 9785–9821, Singapore, December 2023. Association for Computational
 568 Linguistics. doi: 10.18653/v1/2023.emnlp-main.607. URL [https://aclanthology.org/2023.emnlp-main.607/](https://aclanthology.org/2023.emnlp-main.607).
- 569
- 570 Bowen Jiang, Zhuoqun Hao, Young-Min Cho, Bryan Li, Yuan Yuan, Sihao Chen, Lyle Ungar,
 571 Camillo J Taylor, and Dan Roth. Know me, respond to me: Benchmarking llms for dynamic user
 572 profiling and personalized responses at scale. *arXiv preprint arXiv:2504.14225*, 2025.
- 573
- 574 Subbarao Kambhampati, Karthik Valmeekam, Lin Guan, Mudit Verma, Kaya Stechly, Siddhant
 575 Bhambri, Lucas Paul Saldyt, and Anil B. Murthy. Position: LLMs can't plan, but can help planning
 576 in LLM-modulo frameworks. In *Proceedings of ICML 2024 (PMLR Vol. 235)*, pp. 22895–22907,
 577 2024.
- 578
- 579 Stefanie Krause and Frieder Stolzenburg. Commonsense reasoning and explainable artificial in-
 580 telligence using large language models. In *European Conference on Artificial Intelligence*, pp.
 581 302–319. Springer, 2023.
- 582
- 583 Kuang-Huei Lee, Ian Fischer, Yueh-Hua Wu, Dave Marwood, Shumeet Baluja, Dale Schuurmans,
 584 and Xinyun Chen. Evolving Deeper LLM Thinking, January 2025. URL <http://arxiv.org/abs/2501.09891> [cs].
- 585
- 586 Hao Li, Chenghao Yang, An Zhang, Yang Deng, Xiang Wang, and Tat-Seng Chua. Hello again!
 587 llm-powered personalized agent for long-term dialogue. In *Proceedings of the 2025 Conference of*
 588 *the Nations of the Americas Chapter of the Association for Computational Linguistics: Human*
 589 *Language Technologies (Volume 1: Long Papers)*, pp. 5259–5276, 2025.
- 590
- 591 Zhengdong Lu, Weikai Lu, Yiling Tao, Yun Dai, ZiXuan Chen, Huiping Zhuang, Cen Chen, Hao
 592 Peng, and Ziqian Zeng. Decompose, plan in parallel, and merge: A novel paradigm for large
 593 language models based planning with multiple constraints. *arXiv preprint arXiv:2506.02683*,
 594 2025.
- 595
- 596 Alan K. Mackworth. Consistency in networks of relations. *Artificial Intelligence*, 8(1):99–118,
 597 1977. ISSN 0004-3702. doi: [https://doi.org/10.1016/0004-3702\(77\)90007-8](https://doi.org/10.1016/0004-3702(77)90007-8). URL <https://www.sciencedirect.com/science/article/pii/0004370277900078>.

- 594 Sanjay Mittal and Brian Falkenhainer. 1990-Dynamic Constraint Satisfaction Problems.
 595
- 596 Reiichiro Nakano, Jacob Hilton, Suchir Balaji, Jeff Wu, Long Ouyang, Christina Kim, Christopher
 597 Hesse, Shantanu Jain, Vineet Kosaraju, William Saunders, et al. Webgpt: Browser-assisted
 598 question-answering with human feedback. *arXiv preprint arXiv:2112.09332*, 2021.
- 599 Juhyun Oh, Eunsu Kim, and Alice Oh. Flex-TravelPlanner: A Benchmark for Flexible Plan-
 600 ning with Language Agents, June 2025. URL <http://arxiv.org/abs/2506.04649>.
 601 arXiv:2506.04649 [cs].
 602
- 603 Mihir Parmar, Xin Liu, Palash Goyal, Yanfei Chen, Long Le, Swaroop Mishra, Hossein Mobahi,
 604 Jindong Gu, Zifeng Wang, Hootan Nakhost, Chitta Baral, Chen-Yu Lee, Tomas Pfister, and
 605 Hamid Palangi. PlanGEN: A Multi-Agent Framework for Generating Planning and Reasoning
 606 Trajectories for Complex Problem Solving, February 2025. URL <http://arxiv.org/abs/2502.16111>. arXiv:2502.16111 [cs].
 607
- 608 Ronald P. A. Petrick and Fahiem Bacchus. A knowledge-based approach to planning with incomplete
 609 information and sensing. In *Proceedings of AIPS-02*, pp. 212–222, 2002.
 610
- 611 Ronald P. A. Petrick and Fahiem Bacchus. Extending the knowledge-based approach to planning
 612 with incomplete information and sensing. In *Proceedings of ICAPS-04*, 2004.
- 613 Francesca Rossi and Allesandro Sperduti. Acquiring both constraint and solution preferences in
 614 interactive constraint systems. *Constraints*, 9(4):311–332, 2004.
 615
- 616 Timo Schick, Jane Dwivedi-Yu, Roberto Dessì, Roberta Raileanu, Maria Lomeli, Eric Hambro, Luke
 617 Zettlemoyer, Nicola Cancedda, and Thomas Scialom. Toolformer: Language models can teach
 618 themselves to use tools. *Advances in Neural Information Processing Systems*, 36:68539–68551,
 619 2023.
- 620 Noah Shinn, Federico Cassano, Ashwin Gopinath, Karthik Narasimhan, and Shunyu Yao. Reflexion:
 621 Language agents with verbal reinforcement learning. *Advances in Neural Information Processing
 622 Systems*, 36:8634–8652, 2023.
 623
- 624 Harmanpreet Singh, Nikhil Verma, Yixiao Wang, Manasa Bharadwaj, Homa Fashandi, Kevin
 625 Ferreira, and Chul Lee. Personal Large Language Model Agents: A Case Study on Tai-
 626 lored Travel Planning. In Franck Dernoncourt, Daniel Preoṭiu-Pietro, and Anastasia Shi-
 627 morina (eds.), *Proceedings of the 2024 Conference on Empirical Methods in Natural Lan-
 628 guage Processing: Industry Track*, pp. 486–514, Miami, Florida, US, November 2024. As-
 629 sociation for Computational Linguistics. doi: 10.18653/v1/2024.emnlp-industry.37. URL
 630 <https://aclanthology.org/2024.emnlp-industry.37/>.
 631
- Karthik Valmeekam, Matthew Marquez, Alberto Olmo, Sarath Sreedharan, and Subbarao Kambham-
 632 pati. On the planning abilities of large language models: A critical investigation. In *Proceedings
 633 of NeurIPS 2023*, 2023.
- 634 Junde Wu, Jiayuan Zhu, Yuyuan Liu, Min Xu, and Yueming Jin. Agentic reasoning: A streamlined
 635 framework for enhancing LLM reasoning with agentic tools. In Wanxiang Che, Joyce Nabende,
 636 Ekaterina Shutova, and Mohammad Taher Pilehvar (eds.), *Proceedings of the 63rd Annual Meeting
 637 of the Association for Computational Linguistics (Volume 1: Long Papers)*, pp. 28489–28503,
 638 Vienna, Austria, July 2025. Association for Computational Linguistics. ISBN 979-8-89176-
 639 251-0. doi: 10.18653/v1/2025.acl-long.1383. URL <https://aclanthology.org/2025.acl-long.1383/>.
 640
- Zhen Xiang, Linzhi Zheng, Yanjie Li, Junyuan Hong, Qinbin Li, Han Xie, Jiawei Zhang, Zidi Xiong,
 642 Chulin Xie, Carl Yang, Dawn Song, and Bo Li. GuardAgent: Safeguard LLM Agents by a Guard
 643 Agent via Knowledge-Enabled Reasoning, May 2025. URL <http://arxiv.org/abs/2406.09187>.
 644 arXiv:2406.09187 [cs].
 645
- Chengxing Xie and Difan Zou. A Human-Like Reasoning Framework for Multi-Phases Planning Task
 646 with Large Language Models, May 2024. URL <http://arxiv.org/abs/2405.18208>.
 647 arXiv:2405.18208 [cs].

- 648 Jian Xie, Kai Zhang, Jiangjie Chen, Tinghui Zhu, Renze Lou, Yuandong Tian, Yanghua Xiao, and
 649 Yu Su. TravelPlanner: A Benchmark for Real-World Planning with Language Agents, October
 650 2024. URL <http://arxiv.org/abs/2402.01622>. arXiv:2402.01622 [cs].
 651
- 652 Jian Xie, Kexun Zhang, Jiangjie Chen, Siyu Yuan, Kai Zhang, Yikai Zhang, Lei Li, and Yanghua
 653 Xiao. Revealing the Barriers of Language Agents in Planning. In Luis Chiruzzo, Alan Ritter,
 654 and Lu Wang (eds.), *Proceedings of the 2025 Conference of the Nations of the Americas Chapter
 655 of the Association for Computational Linguistics: Human Language Technologies (Volume 1:
 656 Long Papers)*, pp. 1872–1888, Albuquerque, New Mexico, April 2025. Association for Compu-
 657 tational Linguistics. ISBN 979-8-89176-189-6. URL [https://aclanthology.org/2025.
 658 naacl-long.93/](https://aclanthology.org/2025.nacl-long.93/).
- 659 Shunyu Yao, Jeffrey Zhao, Dian Yu, Nan Du, Izhak Shafran, Karthik Narasimhan, and Yuan Cao.
 660 ReAct: Synergizing Reasoning and Acting in Language Models. arXiv, March 2023. doi: 10.
 661 48550/arXiv.2210.03629. URL <http://arxiv.org/abs/2210.03629>. arXiv:2210.03629
 662 [cs].
- 663 Siyu Yuan, Kaitao Song, Jiangjie Chen, Xu Tan, Dongsheng Li, and Deqing Yang. EvoAgent:
 664 Towards Automatic Multi-Agent Generation via Evolutionary Algorithms, March 2025. URL
 665 <http://arxiv.org/abs/2406.14228>. arXiv:2406.14228 [cs].
- 666 Cong Zhang, Xin Deik Goh, Dexun Li, Hao Zhang, and Yong Liu. Planning with Multi-Constraints
 667 via Collaborative Language Agents. In Owen Rambow, Leo Wanner, Marianna Apidianaki,
 668 Hend Al-Khalifa, Barbara Di Eugenio, and Steven Schockaert (eds.), *Proceedings of the 31st
 669 International Conference on Computational Linguistics*, pp. 10054–10082, Abu Dhabi, UAE,
 670 January 2025. Association for Computational Linguistics. URL <https://aclanthology.org/2025.coling-main.672/>.
 671
- 672 Zirui Zhao, Wee Sun Lee, and David Hsu. Large language models as commonsense knowledge for
 673 large-scale task planning. *Advances in neural information processing systems*, 36:31967–31987,
 674 2023.
- 675 Huaixiu Steven Zheng, Swaroop Mishra, Hugh Zhang, Xinyun Chen, Minmin Chen, Azade Nova,
 676 Le Hou, Heng-Tze Cheng, Quoc V. Le, Ed H. Chi, and Denny Zhou. NATURAL PLAN: Bench-
 677 marking LLMs on Natural Language Planning, June 2024. URL <http://arxiv.org/abs/2406.04520>. arXiv:2406.04520 [cs].
 678
- 679
- 680
- 681
- 682
- 683
- 684
- 685
- 686
- 687
- 688
- 689
- 690
- 691
- 692
- 693
- 694
- 695
- 696
- 697
- 698
- 699
- 700
- 701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

APPENDIX

A EXTENDED RELATED WORK

Constrained question answering. Constrained question answering is a classic planning problem where a system must process a natural language query into variables, options, and relations, then search for a feasible assignment of variables that satisfies the objective. Recent work with LLMs has advanced this capability through various approaches, including test-time schemes that amplify reasoning through sampling, self-verification, and revision (Lee et al., 2025; Chen et al., 2025), LLM-modulo paradigms that pair LLMs with external verifiers/solvers (Kambhampati et al., 2024; Gundawar et al., 2024), or multi-agent orchestration that strengthens planning via division of roles and iterative verification (Parmar et al., 2025). However, these lines largely assume *sole-planning*, where all necessary information is presumed to be available upfront (Zheng et al., 2024). They focus on improving planning capability itself, rather than the critical, real-world challenge of acquiring the necessary context information, which is often beyond the LLM’s internal knowledge.

The challenge of search in practical planning. Real-world tasks like travel planning require both searching for viable options (e.g., flights, hotels) and composing them into a constraint-consistent plan. The TravelPlanner benchmark (Xie et al., 2024) provides a realistic sandbox with tools and millions of records to test this compound competence, revealing the task’s difficulty: even strong LLMs like GPT-4-Turbo achieve a near-zero final pass rate. While multi-agent frameworks show improvement, their performance still remains limited, with reported final pass rates often staying in the single digits (Xie & Zou, 2024; Yuan et al., 2025) and rarely exceeding 33% on simpler subsets of the benchmark (Zhang et al., 2025).

Limitations of existing approaches. There exist recent works that achieve much higher scores in this setting; for instance, a satisfiability modulo theories-backed approach reaches 93.9% with GPT-4 (Hao et al., 2025a). However, such performance hinges on having *prior, benchmark-specific knowledge* of all constraints and evaluation metrics (e.g., local constraints) into the solver. Such knowledge is unavailable in practical scenarios that require *open-world discovery* is required, where an agent must dynamically extract and reconcile constraints from varied sources. Furthermore, existing work is rarely evaluated in truly realistic settings. Prior approaches are demonstrated within a sandbox, not considering *live* information search or handling *multi-turn* user interaction. While recent benchmarks like Flex-TravelPlanner (Oh et al., 2025) provide a setup with dynamic, multi-turn constraints, they still operate within a sandbox and focus on exploring sole-planning performance. The critical investigation of constraint-aware planning with live search remains largely unaddressed.

Our positioning. To this end, we contribute a general multi-agent framework that addresses these gaps. Our work presents reliable performance on a complex planning task without relying on prior knowledge of the constraints. Furthermore, we are the first to validate our approach in a highly practical setting that combines live information search with multi-turn conversational feedback, showing that our framework extends effectively to handle the demands of real-world travel planning.

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

755

756 B CONNECTIONS TO CLASSICAL PLANNING AND CSP LITERATURE
757758 The design of ATLAS is motivated by challenges that are modern incarnations of well-studied prob-
759 lems in classical artificial intelligence, particularly in automated planning and Constraint Satisfaction
760 Problems (CSP). Here, we elaborate on the connections between our three core challenges and this
761 foundational literature.762 **Challenge 1: Constraint Construction.** The first challenge, identifying the complete set of implicit
763 and explicit constraints, mirrors the classic knowledge-acquisition bottleneck. In the CSP literature,
764 this is known as constraint acquisition, a line of work focused on learning or eliciting missing
765 constraints that are not explicitly stated in the initial problem definition. Early systems explored
766 interactive methods to acquire constraints from users, while later work developed techniques to
767 automatically learn them from examples or interaction, which is analogous to how ATLAS must infer
768 rules from a natural language query and search results (Freuder & Wallace, 1998; Bessiere et al.,
769 2007; Rossi & Sperduti, 2004).770 **Challenge 2: Constraints-Aware Planning.** The second challenge, generating a valid plan that
771 verifiably adheres to all known rules, follows a long-established principle in automated planning.
772 Classical systems often relied on a strict separation between a plan synthesizer (the generator) and
773 a plan validator (the checker). A plan would be generated and then formally validated against a
774 world model and a set of rules, often expressed in languages like PDDL (Fox & Long, 2003; Howey
775 et al., 2004). Our Planner-Verifier architecture directly implements this robust “generate-then-test”
776 paradigm, a technique now being adapted to improve the reliability and conformance of modern
777 LLMs (Gou et al., 2024; Choi et al., 2024).778 **Challenge 3: Resolving Information Gap.** The third challenge addresses failures caused by
779 insufficient information rather than logical errors. This problem was central to classical planning in
780 partially observable environments, where agents had to interleave planning with sensing actions to
781 gather new information about the world before proceeding (Petrick & Bacchus, 2002; 2004). This
782 concept also drove the development of mixed-initiative systems, where the most effective approach
783 involves alternating between proposing partial plans and fetching missing facts, often in collaboration
784 with a human user (Ferguson et al., 1996; Hearst, 1999). ATLAS’s adaptive interleaved search is a
785 direct implementation of this principle, enabling the agent to diagnose and resolve information gaps
786 on the fly.787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

810
811
812
C ADDITIONAL DESCRIPTIONS OF ATLAS

813 Function (Agent)	814 Input types	815 Output types	816 Role
817 Search	$Q^t, F_{\text{search}}^{t,\ell-1}$	$D^{t,\ell}$	818 Tool interaction & domain construction
819 Constrain	$Q^t, D^{t,\ell}$	$C^{t,\ell}$	820 Identify explicit & implicit constraints
821 Plan	$P^{t,\ell}, \{(\sigma^{t,\ell,i}, F_{\text{plan}}^{t,\ell,i})\}_{i=1}^{k-1}$	$\sigma^{t,\ell,k}$	822 Propose a candidate plan
823 Check	$Q^t, P^{t,\ell}, \sigma^{t,\ell,k}$	$V^{t,\ell,k}, F_{\text{plan}}^{t,\ell,k}$	824 Verify plan; provide feedback on violations
825 SearchAdvise	$Q^t, P^{t,\ell}, \{(\sigma^{t,\ell,i}, F_{\text{plan}}^{t,\ell,i})\}_{i=1}^k$	$F_{\text{search}}^{t,\ell}$	826 Diagnose unsatisfiability & suggest new search

Table 3: Typed function signatures for the agents in ATLAS. We use $P^{t,\ell}$ as a shorthand for the CSP instance $\langle X, D^{t,\ell}, C^{t,\ell} \rangle$. The indices t, ℓ, k represent the conversation turn, the (interleaved) search step, and the planner-checker interaction step, respectively.

We provide the algorithmic overview of ATLAS in Algorithm 1.

Algorithm 1 Multi-Turn Travel Planning with ATLAS

```

827 Require: Sequence of user queries  $\{Q^1, \dots, Q^T\}$ ; Max loops  $(L, K)$ 
828 1:  $D_{\text{cache}} \leftarrow \emptyset$                                  $\triangleright$  Initialize domain memory
829 2: for  $t = 1$  to  $T$  do                                 $\triangleright$  Loop over conversation turns
830 3:    $D^{t,1} \leftarrow D_{\text{cache}}$                                  $\triangleright$  Start with cached domain from the previous turn
831 4:   for  $\ell = 1$  to  $L$  do                                 $\triangleright$  Loop for interleaved search
832 5:      $C^{t,\ell} \leftarrow \text{Constrain}(Q^t, D^{t,\ell})$ 
833 6:      $P^{t,\ell} \leftarrow \langle X, D^{t,\ell}, C^{t,\ell} \rangle$ 
834 7:      $history_{\text{plan}} \leftarrow []$ 
835 8:      $V \leftarrow \text{invalid}$                                  $\triangleright$  Initialize verdict for this search loop
836 9:     for  $k = 1$  to  $K$  do                                 $\triangleright$  Inner loop for plan-and-check attempts
837 10:     $\sigma \leftarrow \text{Plan}(P^{t,\ell}, history_{\text{plan}})$ 
838 11:     $(V, F_{\text{plan}}) \leftarrow \text{Check}(Q^t, P^{t,\ell}, \sigma)$ 
839 12:     $history_{\text{plan}}.append((\sigma, F_{\text{plan}}))$ 
840 13:    if  $V = \text{valid}$  then
841 14:       $D_{\text{cache}} \leftarrow D^{t,\ell}$                                  $\triangleright$  Update memory with the successful domain
842 15:      break                                 $\triangleright$  Exit inner and outer loops for this turn
843 16:    else if  $V = \text{unsat}$  then
844 17:      break                                 $\triangleright$  Exit inner loop to trigger a new search
845 18:    end if
846 19:  end for
847 20:  if  $V = \text{valid}$  then
848 21:    Output solution  $\sigma$  and proceed to next turn.
849 22:    break
850 23:  else                                 $\triangleright$  If no solution found, diagnose failure to guide the next search
851 24:     $F_{\text{search}} \leftarrow \text{SearchAdvise}(Q^t, P^{t,\ell}, history_{\text{plan}})$ 
852 25:     $D^{t,\ell+1} \leftarrow \text{Search}(Q^t, F_{\text{search}})$                                  $\triangleright$  Get new domain for the next iteration
853 26:  end if
854 27: end for
855 28: end for

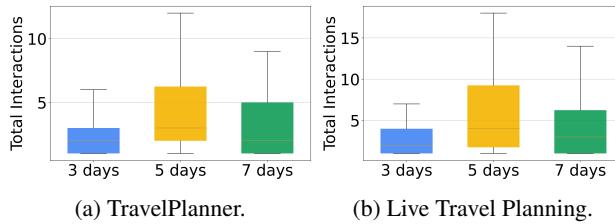
```

864 **D ADDITIONAL EXPERIMENTS**
865866 **D.1 ADDITIONAL DETAILS ON THE EXPERIMENTAL SETUP**
867868 **TravelPlanner (Xie et al., 2024).** This benchmark includes 180 queries for validation set, and
869 1000 queries for the test, where each query specifies explicit requests (e.g., trip duration, budget,
870 cuisine preferences, etc.) that define the constraints the final plan must satisfy. These are categorized
871 into: (i) *Hard constraints*, which are strict rules derived directly from the user query, such as not
872 exceeding the budget or adhering to a required cuisine types; (ii) *Commonsense constraints*, are
873 based on implicit, practical logic, such as ensuring a reasonable route during the given trip duration,
874 or planning a day’s activities in the same city. This benchmark provides a sandbox environment
875 including accommodations, restaurants, and transportation, and the agent is expected to search
876 information relevant to the query within the sandbox. Detailed descriptions on the constraint types
877 are in Table 4.
878879 **Table 4: Descriptions on the considered constraint.**
880

Legend in Figures	Description
Commonsense Constraint	
Conflicting Transportations	Transportation choices within the trip must be reasonable. For example, having both “self-driving” and “flight” would be considered a conflict.
Incomplete Information	No key information should be left out of the plan (e.g., lack of accommodation)
Unreasonable City Route	Changes in cities during the trip must be reasonable.
< Minimum Nights Stay	The number of consecutive days spent in a specific accommodation during the trip must meet the corresponding required minimum number of nights’ stay
Repeated Restaurants	Restaurant choices should not be repeated throughout the trip.
Hallucinated Details	All information in the plan must be within the closed sandbox; otherwise, it will be considered a hallucination.
Outside the Current City	All scheduled activities for the day must be located within that day’s city(s).
Hard Constraint	
Eval unqualified	Checking hard constraint is not meaningful since some details are missing or hallucinated.
Budget exceeded	The total budget of the trip
Cuisine	Cuisines include “Chinese”, “American”, “Italian”, “Mexican”, “Indian”, “Mediterranean”, and “French”.
Room Rule	Room rules include “No parties”, “No smoking”, “No children under 10”, “No pets”, and “No visitors”
Room Type	Room types include “Entire Room”, “Private Room”, “Shared Room”, and “No Shared Room”

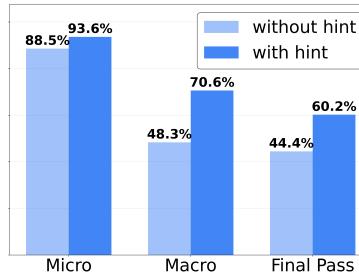
893 **TravelPlanner with Live Search.** We adapt the TravelPlanner benchmark to assess performance in a
894 realistic, open-domain setting. While retaining the queries from the validation set, we replace the
895 benchmark’s static, sandboxed data for accommodations, flights, restaurants, and attractions with
896 a live Google Search tool. This required modifying certain unrealistic constraints present in the
897 original data. For instance, accommodation attributes such as “Room type” (e.g., “private room”) and
898 “Room rule” (e.g., “No parties”) are not typically available through real-world search. Consequently,
899 we excluded these specific constraints from both our information-gathering prompts and the final
900 evaluation criteria to ensure a fair assessment under real-world conditions.
901902 **Additional Evaluation Metric in TravelPlanner with Live Search.** We note that live search
903 introduces a challenge not present in the sandbox setting: the search results themselves can be
904 hallucinated by the search agent. Hence, in addition to the evaluation metrics used in the sandbox
905 setting (Section 2), we introduce an additional metric to capture this aspect: *no hallucination rate*. It
906 measures the ratio of plans with all travel details being drawn from the *not hallucinated* search results,
907 to total plans attempted. To enable this, we require the search agent to output retrieved information
908 in a structured format, exactly the same as the sandbox data format for flights, accommodations,
909 restaurants, and attractions, and we use a separate LLM-based judge (with the same base model) to
910 verify whether each travel detail in the final plan exists on the web.
911912
913
914
915
916
917

918 D.2 ADDITIONAL RESULTS ON SINGLE-TURN TRAVEL PLANNING
919920 D.2.1 DETAILED RESULTS ON ABLATION STUDY
921922 Table 5: **Ablations on the key components of ATLAS**. Results are on the TravelPlanner validation
923 set using Gemini-2.5-pro.924 (a) Without vs with Constraint Manager using 5 check steps and 10
925 interleaved search steps.
926


	Delivery	Commonsense		Hard Constraint		Final Pass
		Micro	Macro	Micro	Macro	
w/o Constraint Manager	100.00	86.41	41.67	73.21	60.00	30.00
w/ Constraint Manager	100.00	88.54	48.33	82.62	74.44	44.44

931 (b) Varying the maximum number of verificataion
932 steps by Checker. Baseline is the sequential search-
933 then-planning by ReAct.

# Steps	Delivery	Commonsense		Hard Constraint		Final Pass
		Micro	Macro	Micro	Macro	
Baseline	95.56	77.36	26.11	47.14	38.89	17.78
+ 1 step	100.00	85.42	42.22	64.76	53.33	29.44
+ 3 steps	100.00	84.79	40.00	73.81	61.67	31.11
+ 5 steps	100.00	84.65	40.00	68.33	58.89	32.22


931 (c) Varying the number of interleaved search steps.
932 Baseline is ReAct augmented with three critiques
933 steps after each search.

# Steps	Delivery	Commonsense		Hard Constraint		Final Pass
		Micro	Macro	Micro	Macro	
Baseline	100.00	84.79	40.00	73.81	61.67	31.11
+ 1 step	100.00	86.81	45.56	80.71	71.67	40.56
+ 3 steps	100.00	87.57	46.11	87.57	73.33	42.78
+ 5 steps	100.00	88.12	47.78	84.76	76.67	44.44

948 Figure 5: **Distribution of the total number of check steps.** We set maximum three critique steps
949 per each search step including 10 additional interleaved search steps.950 As shown in Figure 5, even when we allow for a high maximum number of interactions (*i.e.*, 33
951 steps), ATLAS resolves most cases within 15 total interactions between Planner and Checker. This
952 indicates that ATLAS is mostly efficient at finding a valid solution before exhausting its limits. Based
953 on these trends, a strategic tuning of these hyperparameters is crucial for balancing performance and
954 cost in a real-world deployment.
955

972 D.2.2 WITHOUT VS WITH UNCONVENTIONAL BENCHMARK-SPECIFIC CONSTRAINTS
973974 In addition to Figure 6, we show the full results for all evaluation metrics in Table 6.
975976 **Table 6: ATLAS without vs with benchmark-specific unconventional requirements directly
977 provided to the Constraint Manager.**

979 Base Model	980 Constraint Manager	981 Delivery \uparrow	982 Commonsense \uparrow		983 Hard Constraint \uparrow		984 Final Pass \uparrow
			985 Micro	986 Macro	987 Micro	988 Macro	
981 Gemini-2.5-pro	without hint	100.00	88.54	48.33	82.62	74.44	44.44
	with hint	100.00	93.61	70.56	79.29	71.11	59.44
983 Claude-Sonnet-4	without hint	100.00	83.40	37.78	56.43	38.89	23.33
	with hint	100.00	85.42	48.33	60.71	47.22	33.33

995 Figure 6: Providing the two benchmark-specific rules as constraints to the Constraint Manager further
996 improves the performance, demonstrating our framework's ability to effectively use explicit guidance.
997998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

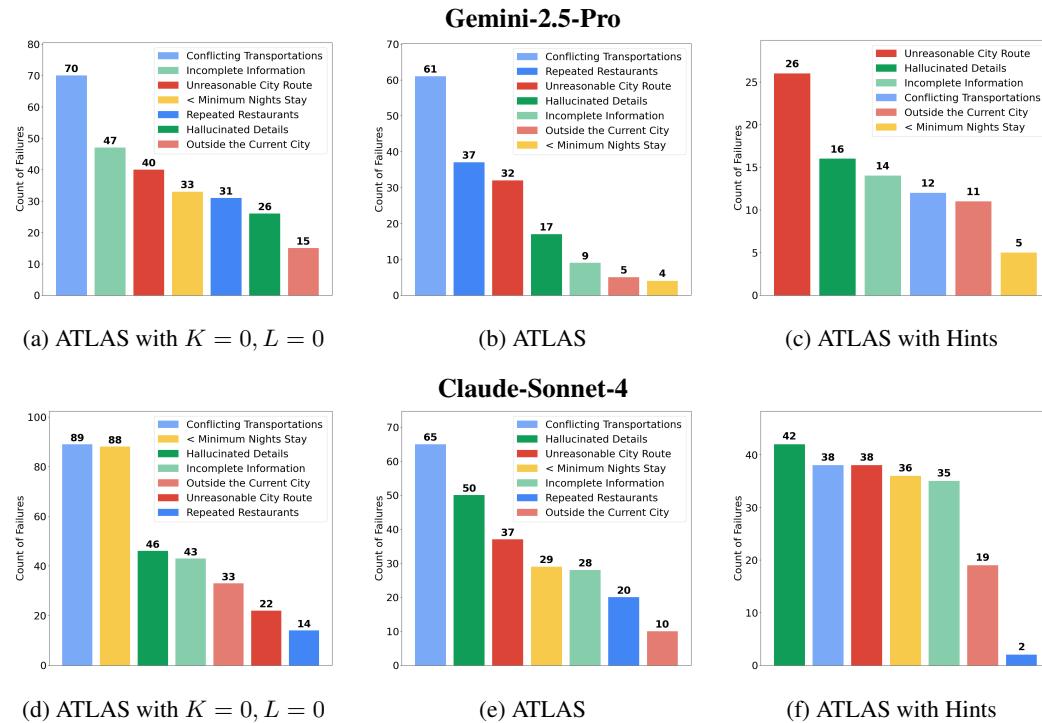
1026 D.3 MULTI-TURN TRAVEL PLANNING
10271028 **Flex-TravelPlanner.** In addition to Table 2, we provide the detailed results on Flex-TravelPlanner
1029 benchmark in Table 7.
10301031 Table 7: Results of ATLAS on the Flex-TravelPlanner benchmark.
1032

Constraint Type	Method	Delivery \uparrow	Commonsense \uparrow		Hard Constraint \uparrow		Final Pass \uparrow
			Micro	Macro	Micro	Macro	
2-Turn (Local)							
+ Cuisine (#48)	ReAct	100.00	79.43	31.25	70.95	47.92	22.92
	ATLAS	100.00	85.42	41.67	85.81	75.00	35.42
+ Room rule (#77)	ReAct	100.00	87.66	48.85	64.55	36.36	29.87
	ATLAS	100.00	89.29	51.95	66.79	53.25	38.96
+ Room type (#64)	ReAct	100.00	90.43	53.12	66.36	46.88	35.94
	ATLAS	100.00	89.06	48.44	79.09	65.62	42.19
2-Turn (Global)							
+ Number of People (#120)	ReAct	100.00	86.35	42.50	70.00	51.67	25.83
	ATLAS	100.00	87.50	50.83	77.50	65.83	41.67
+ Budget (#120)	ReAct	100.00	85.00	37.50	66.67	51.67	26.67
	ATLAS	100.00	87.60	46.67	74.44	62.50	37.50
3-Turn							
+ Local-then-global (#378)	ReAct	100.00	83.70	33.07	59.59	36.51	15.34
	ATLAS	100.00	87.96	49.21	73.58	53.97	33.60
+ Global-then-local (#378)	ReAct	100.00	84.06	32.80	59.43	36.24	17.20
	ATLAS	100.00	86.81	47.09	71.38	52.12	31.75

1051
1052 **Multi-Turn Travel Planning with Live Search.** In addition to Figure 4, we provide the full results
1053 on all metrics in Table 8.
10541055 Table 8: ATLAS Multi-turn feedback on live travelplanning.
1056

Method	Delivery \uparrow	Commonsense \uparrow		Hard Constraint \uparrow		No Hallucination \uparrow	Final Pass \uparrow
		Micro	Macro	Micro	Macro		
Monolithic	81.11	61.60	5.00	10.04	10.00	65.00	3.89
+ 1-turn	85.56	72.29	18.33	22.58	22.78	62.22	17.22
+ 2-turn	90.00	79.79	31.11	29.75	27.78	65.56	27.22
ReAct	100.00	80.28	21.67	50.54	51.67	76.22	21.11
+ 1-turn	100.00	91.18	52.22	62.01	62.78	74.44	51.67
+ 2-turn	99.44	92.15	58.89	67.38	67.22	76.11	58.89
ATLAS	100.00	82.08	26.11	64.87	62.78	76.11	26.11
+ 1-turn	100.00	94.79	70.0	77.06	75.56	84.44	69.44
+ 2-turn	100.00	96.81	83.89	86.38	86.11	92.22	83.89

1080
1081


D.3.1 FAILURE ANALYSIS OF ATLAS

1082
1083
1084
1085
1086
1087
1088

TravelPlanner. Constraint failure analysis reveals ATLAS’s effectiveness and the nature of its remaining errors (Figure 7). Compared to the simplest baseline with $K = L = 0$, ATLAS substantially reduces failures across all categories, especially in eliminating hallucinations and including necessary details (see light green and green bars in Figure 7a vs. 7b). It excels at enforcing constraints discovered from search results (e.g., an accommodation’s “minimum nights stay” rule from 33 to 4). This success stems from the Constraint Manager, which reasons over and identifies emergent rules from both the user query and retrieved data.

1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099

Despite these gains, two error types remained prominent: “Conflicting Transportations” and “Repeated Restaurants”. These reflect benchmark-specific rules, termed *unconventional hints* in Zhang et al. (2025), that may not necessarily align with real-world practices (e.g., a user cannot visit the same restaurant twice, or mix flights with self-driving). Adopting the setup by Zhang et al. (2025) that provide them as additional hints to their planning agent, we consider providing these as explicit constraints to our Constraint Manager. This change cause the final pass rate to jump from 44% to 60% in Figure 6, and the corresponding failure analysis (Figure 7c) confirms that these two error types were largely eliminated, and now remaining errors primarily due to the base model’s inherent reasoning limitations, such as creating illogical city routes or still hallucinating some details. This demonstrates that ATLAS is highly effective at ensuring constraint compliance, pushing performance to the limits of the base model’s capabilities.

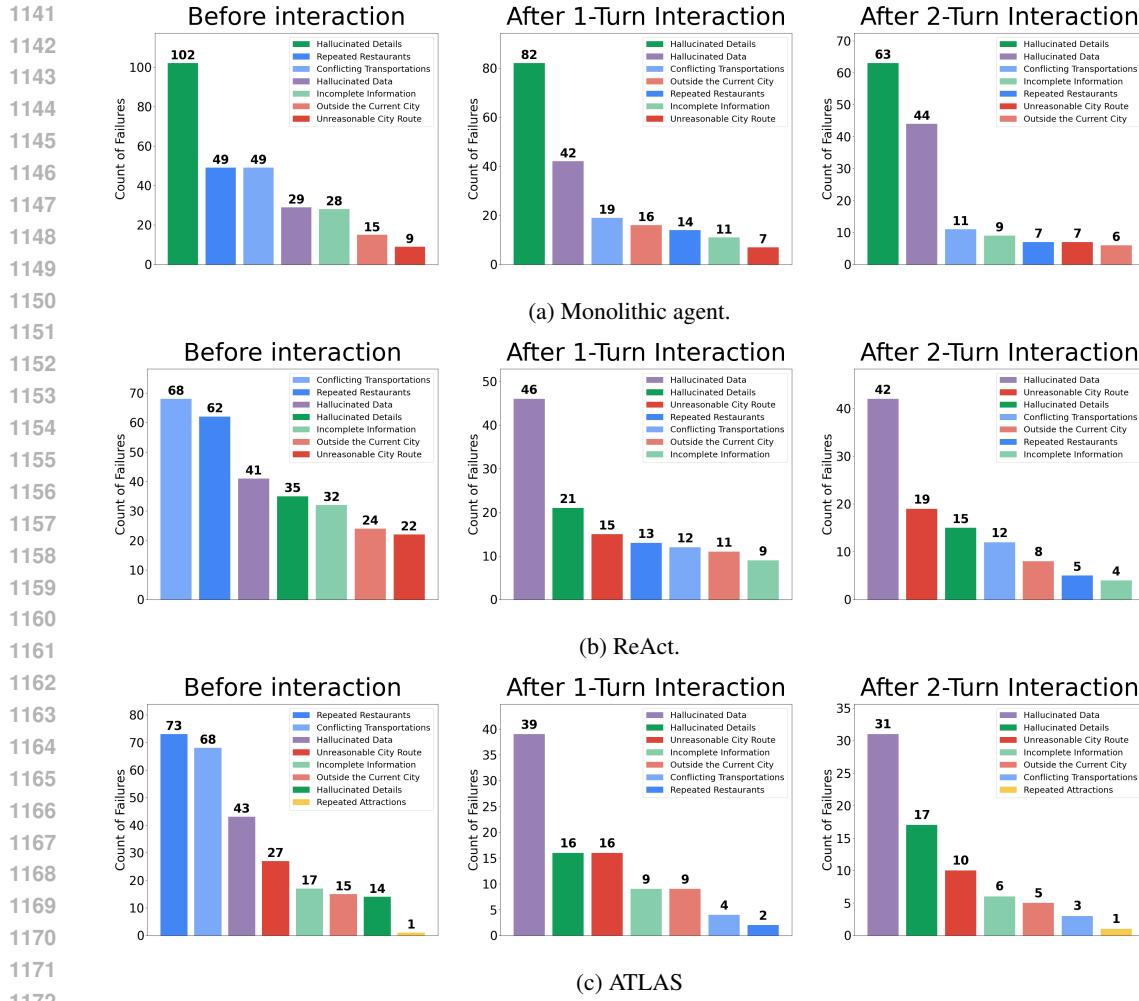

1100
1101
1102
1103
1104
1105
1106
1107
1108
1109

Figure 7: Breakdown of commonsense constraint failures. The figure illustrates the progressive reduction of errors from the (a) ATLAS without any check interactions or interleaved search (i.e., ReAct), to (b) ATLAS with $K = 3, L = 10$, and finally to (c) ATLAS supplied with additional benchmark-specific constraints, following Zhang et al. (2025). Results are on the TravelPlanner validation set using Gemini-2.5-pro (top) or Claude-Sonnet-4 (bottom).

1123

Multi-Turn Travel Planning with Live Search. We analyze the failure modes of each method in the multi-turn live search setting, observing how they address failures from the previous turn. As shown in Figure 8, simple constraint violations like repeated restaurant choices or conflicting transportation (light blue and blue bars) are easily resolved by all methods, since live search provides a virtually unlimited pool of alternatives.

1134 However, more complex failures reveal key differences. The monolithic agent consistently fails to
 1135 actually conduct the search to collect grounded context information rather than solely relying on its
 1136 internal knowledge (see green bars in Figure 8a). While ReAct uses search to present the searched
 1137 context information, it still hallucinates the details in its itinerary, a problem not effectively resolved
 1138 even with explicit feedback (purple bars in Figure 8b). In contrast, ATLAS successfully grounds its
 1139 plans in the search results and adheres to dynamic constraints from user feedback throughout turns.
 1140

1173 **Figure 8: Breakdown of commonsense constraint failure types on live travel planning.**

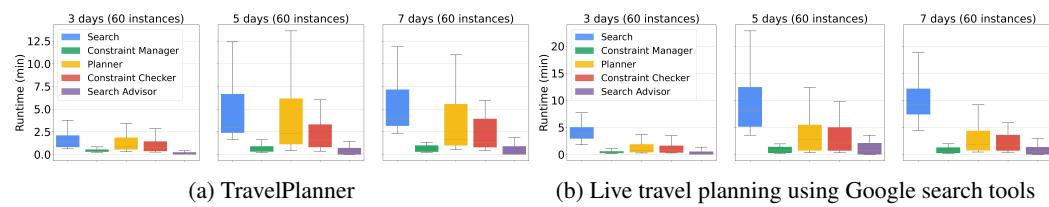
1174
 1175
 1176
 1177
 1178
 1179
 1180
 1181
 1182
 1183
 1184
 1185
 1186
 1187

1188 D.3.2 ABLATIONS ON TRAVEL DAYS AND LEVELS
11891190 Table 9: **Ablation results on travel days.** We compare ATLAS to baselines on the TravelPlanner
1191 validation set (60 instances per day subset).

1193 Base Model	1194 Subset	1195 Method	1196 Delivery \uparrow	1197 Commonsense \uparrow		1198 Hard Constraint \uparrow		1199 Final Pass \uparrow
				1200 Micro	1201 Macro	1202 Micro	1203 Macro	
1204 Gemini-2.5-Pro	1205 3 day	1206 ReAct	1207 100.00	1208 94.38	1209 65.00	1210 67.86	1211 51.67	1212 45.00
		1213 ReAct+Reflexion	1214 100.00	1215 93.12	1216 66.67	1217 77.86	1218 68.33	1219 53.33
		1220 ReAct+EvoAgent	1221 100.00	1222 92.08	1223 55.00	1224 67.86	1225 46.67	1226 30.00
	1227 5 day	1228 PMC	1229 100.00	1230 96.04	1231 71.67	1232 82.86	1233 70.00	1234 51.67
		1235 ATLAS	1236 100.00	1237 97.92	1238 83.33	1239 92.86	1240 86.67	1241 75.00
		1242 ReAct	1243 100.00	1244 75.83	1245 16.67	1246 49.29	1247 40.00	1248 11.67
1249 Claude-Sonnet-4	1250 7 day	1251 ReAct+Reflexion	1252 100.00	1253 74.58	1254 15.00	1255 49.29	1256 46.67	1257 13.33
		1258 ReAct+EvoAgent	1259 100.00	1260 71.88	1261 10.00	1262 45.71	1263 31.67	1264 3.33
		1265 PMC	1266 100.00	1267 69.58	1268 11.67	1269 25.71	1270 25.00	1271 11.67
	1272 5 day	1273 ATLAS	1274 100.00	1275 85.42	1276 33.33	1277 77.86	1278 70.00	1279 31.67
		1280 ReAct	1281 98.33	1282 73.54	1283 15.00	1284 51.43	1285 48.33	1286 11.67
		1287 ReAct+Reflexion	1288 100.00	1289 69.58	1290 0.00	1291 50.71	1292 35.00	1293 0.00
1294 Claude-Sonnet-4	1295 3 day	1296 ReAct+EvoAgent	1297 100.00	1298 70.21	1299 6.67	1300 60.00	1301 43.33	1302 3.33
		1303 PMC	1304 100.00	1305 70.42	1306 8.33	1307 21.43	1308 16.67	1309 6.67
		1310 ATLAS	1311 100.00	1312 82.29	1313 28.33	1314 77.14	1315 66.67	1316 26.67
	1317 5 day	1318 ReAct	1319 100.00	1320 88.96	1321 45.00	1322 68.57	1323 50.00	1324 28.33
		1325 ReAct+Reflexion	1326 100.00	1327 89.17	1328 36.67	1329 64.29	1330 40.00	1331 20.00
		1332 ReAct+EvoAgent	1333 100.00	1334 86.67	1335 28.33	1336 43.57	1337 31.67	1338 18.33
1339 Claude-Sonnet-4	1340 7 day	1341 PMC	1342 98.33	1343 90.00	1344 46.67	1345 67.86	1346 50.00	1347 30.00
		1348 ATLAS	1349 100.00	1350 95.62	1351 73.33	1352 76.43	1353 56.67	1354 46.67
		1355 ReAct	1356 100.00	1357 73.12	1358 6.67	1359 44.29	1360 35.00	1361 3.33
	1362 5 day	1363 ReAct+Reflexion	1364 98.33	1365 71.25	1366 15.00	1367 41.43	1368 25.00	1369 8.33
		1370 ReAct+EvoAgent	1371 98.33	1372 57.71	1373 1.67	1374 8.57	1375 6.67	1376 0.00
		1377 PMC	1378 93.33	1379 70.42	1380 11.67	1381 19.29	1382 15.00	1383 6.67
1384 Claude-Sonnet-4	1385 7 day	1386 ATLAS	1387 100.00	1388 80.21	1389 21.67	1390 44.29	1391 28.33	1392 11.67
		1393 ReAct	1394 100.00	1395 68.12	1396 5.00	1397 41.43	1398 30.00	1399 3.33
		1400 ReAct+Reflexion	1401 100.00	1402 63.96	1403 3.33	1404 30.71	1405 20.00	1406 1.67
	1407 5 day	1408 ReAct+EvoAgent	1409 98.33	1410 56.67	1411 0.00	1412 5.00	1413 3.33	1414 0.00
		1415 PMC	1416 98.33	1417 67.92	1418 6.67	1419 31.43	1420 26.67	1421 6.67
		1422 ATLAS	1423 100.00	1424 74.38	1425 18.33	1426 48.57	1427 31.67	1428 11.67

1242
 1243
 1244
 1245
 1246
 1247
 1248
 1249
 1250
 1251
 1252
 1253

1254 Table 10: **Ablation results on task difficulty levels.** We compare ATLAS to baselines on the
 1255 TravelPlanner validation set (60 instances per level subset).


Base Model	Subset	Method	Delivery \uparrow	Commonsense \uparrow		Hard Constraint \uparrow		Final Pass \uparrow
				Micro	Macro	Micro	Macro	
easy		ReAct	100.00	84.17	35.00	73.33	73.33	35.00
		ReAct+Reflexion	100.00	78.96	30.00	61.67	61.67	28.33
		ReAct+EvoAgent	100.00	76.04	16.67	55.00	55.00	15.00
		PMC	100.00	82.08	38.33	46.67	46.67	35.00
		ATLAS	100.00	87.50	45.00	83.33	83.33	43.33
Gemini-2.5-Pro	medium	ReAct	98.33	74.38	23.33	45.00	31.67	11.67
		ReAct+Reflexion	100.00	73.54	21.67	50.83	43.33	18.33
		ReAct+EvoAgent	100.00	72.71	18.33	41.67	33.33	11.67
		PMC	100.00	72.50	25.00	37.50	33.33	18.33
		ATLAS	100.00	83.54	38.33	77.50	70.00	35.00
hard		ReAct	100.00	85.21	38.33	57.50	35.00	21.67
		ReAct+Reflexion	100.00	84.79	30.00	62.92	45.00	20.00
		ReAct+EvoAgent	100.00	85.42	36.67	66.67	33.33	10.00
		PMC	100.00	81.46	28.33	45.42	31.67	16.67
		ATLAS	100.00	94.58	61.67	85.00	70.00	55.00
easy		ReAct	100.00	72.50	13.33	50.00	50.00	11.67
		ReAct+Reflexion	98.33	69.17	18.33	38.33	38.33	16.67
		ReAct+EvoAgent	98.33	64.38	5.00	16.67	16.67	5.00
		PMC	100.00	74.38	13.33	36.67	36.67	13.33
		ATLAS	100.00	81.25	33.33	53.33	53.33	30.00
Claude-Sonnet-4	medium	ReAct	100.00	73.54	18.33	44.17	35.00	11.67
		ReAct+Reflexion	100.00	70.21	15.00	30.00	21.67	6.67
		ReAct+EvoAgent	98.33	63.57	13.33	20.00	16.67	10.00
		PMC	93.33	73.12	21.67	31.67	28.33	16.67
		ATLAS	100.00	79.58	30.00	46.67	31.67	18.33
hard		ReAct	100.00	84.17	25.00	55.42	30.00	11.67
		ReAct+Reflexion	100.00	85.00	21.67	55.00	25.00	6.67
		ReAct+EvoAgent	100.00	72.92	11.67	19.17	8.33	3.33
		PMC	96.67	80.83	30.00	44.17	26.67	13.33
		ATLAS	100.00	89.38	50.00	62.08	31.67	21.67

1284
 1285
 1286
 1287
 1288
 1289
 1290
 1291
 1292
 1293
 1294
 1295

1296 D.4 COST ANALYSIS
1297

1298 To assess the real-world applicability of ATLAS, we conduct a detailed cost analysis of the framework.
1299 As shown in Figure 9, we measure the runtime for each agent on the TravelPlanner benchmark using
1300 Gemini-2.5-Pro as the base model (refer to Figure 10 for input/output token counts). For a three-day
1301 plan, the median runtime over 60 instances is approximately 6 minutes, and 15 minutes for 5- and
1302 7-day plans. This demonstrates that ATLAS can resolve most planning requests within a reasonable
1303 time frame.

1304 The analysis shows that the Planner agent is the most resource-intensive component, which is an
1305 inherent aspect of any complex planning task. In contrast, our constraint-related agents (*i.e.*, Checker
1306 and Constraint Manager) add minimal overhead relative to the significant performance gains they
1307 provide. Unsurprisingly, when live search is enabled, the Search agent becomes the primary driver of
1308 runtime, eclipsing the Planner (in Figure 9b). We also report the input and output token costs to each
1309 agent of ATLAS in Figure 10.

1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349

Figure 9: Wall clock runtime of ATLAS with Gemini-2.5-pro.

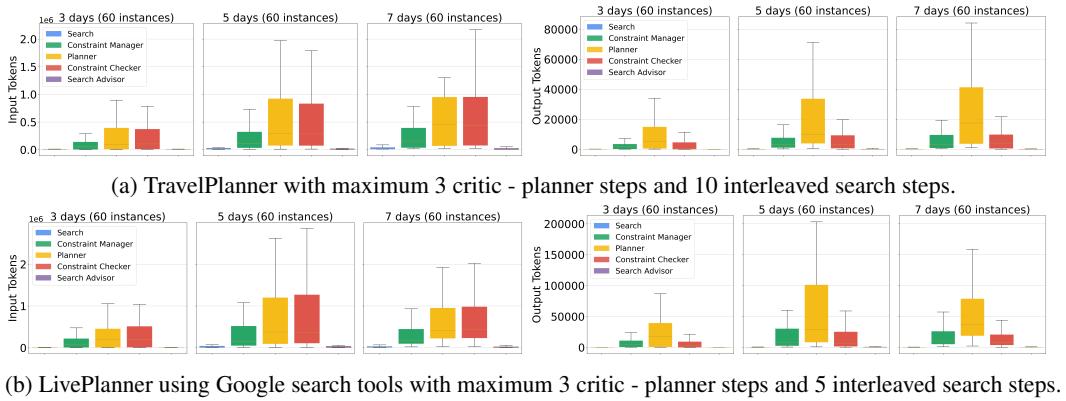


Figure 10: Token counts for ATLAS. Total number of input (left) and output (right) tokens per each module of our framework.

Table 11 shows the cost analysis on all method. Multi-agentic approaches indeed take longer and requires more token costs, but when comparing the median, we observe that ATLAS does not take significantly more costs than other multi-agent baselines (*i.e.*, search-augmented EvoAgent or PMC) for the significant improvement it brings to the performance.

Table 11: Cost analysis of ATLAS and baselines. We compare the total wall clock runtime and sum of all output tokens. Results are on the TravelPlanner validation set using Gemini-2.5-pro. We report the (25th, 50th (median), 75th) percentiles.

Method	3 day		5 day		7 day	
	Runtime (min)	# Token (K)	Runtime (min)	# Token (K)	Runtime (min)	# Token (K)
ReAct	(1.20, 1.41, 1.74)	(0.33, 1.07, 17.05)	(2.42, 2.79, 3.28)	(0.71, 1.38, 2.09)	(3.49, 3.83, 4.49)	(1.03, 1.78, 2.26)
ReAct+Reflexion	(1.52, 2.29, 3.52)	(0.62, 0.84, 1.09)	(2.46, 4.37, 6.15)	(1.27, 1.55, 2.35)	(2.96, 5.41, 8.64)	(1.78, 2.01, 2.56)
ReAct+EvoAgent	(3.10, 3.36, 3.80)	(6.51, 7.13, 7.94)	(6.26, 7.10, 9.01)	(15.87, 19.36, 21.81)	(7.92, 8.76, 14.20)	(20.17, 22.90, 26.08)
PMC	(2.57, 2.85, 3.10)	(5.90, 6.69, 7.10)	(5.77, 7.19, 10.31)	(11.44, 12.72, 14.12)	(7.00, 8.35, 12.27)	(15.05, 16.56, 19.13)
ATLAS (ours)	(2.42, 4.07, 6.49)	(1.49, 9.52, 20.52)	(4.80, 8.26, 26.22)	(5.53, 19.29, 63.03)	(5.47, 7.97, 19.88)	(5.27, 24.07, 43.86)

1350 **E EXAMPLE OUTPUTS OF ATLAS**
13511352 **E.1 END-TO-END EXAMPLES**
13531354 **E.1.1 TRAVELPLANNER**
13551356 **Example 1**

1358 Query: Please create a travel plan for me where I'll be departing
 1359 from Washington and heading to Myrtle Beach for a 3-day trip
 1360 from March 13th to March 15th, 2022. Can you help me keep this
 1361 journey within a budget of \$1,400?
 1362

1363 **Output from Constraint Manager**

1. The outbound flight from Washington to Myrtle Beach on March 13th, 2022 must be either flight F3792603 or F3927581.
2. The return flight from Myrtle Beach to Washington on March 15th, 2022 must be either flight F3791200 or F3926434.
3. The chosen accommodation in Myrtle Beach must be selected from the provided list and have a minimum stay requirement of 2 nights or less.
4. The house rules for the selected accommodation must be adhered to.
5. All restaurants visited in Myrtle Beach must be chosen from the provided list.
6. All attractions visited in Myrtle Beach must be chosen from the provided list.
7. The trip must start in Washington and return to Washington.
8. The destination city is Myrtle Beach.
9. The trip must take place from March 13th, 2022 to March 15th, 2022.
10. The total cost of the trip must not exceed \$1,400."

1379 **Output from Planner**

1381 Day 1:\nCurrent City: from Washington to Myrtle Beach\nTransportation: Flight Number: F3927581, from Washington to
 1382 Myrtle Beach, Departure Time: 11:03, Arrival Time: 13:31\nBreakfast: -\nAttraction: Myrtle Beach Boardwalk and Promenade,
 1383 Myrtle Beach\nLunch: First Eat, Myrtle Beach\nDinner: Catfish
 1384 Charlie's, Myrtle Beach\nAccommodation: Yellow submarine, Myrtle
 1385 Beach\nDay 2:\nCurrent City: Myrtle Beach\nTransportation: -\nBreakfast: d' Curry House, Myrtle Beach\nAttraction: Ripley's
 1386 Aquarium of Myrtle Beach, Myrtle Beach;SkyWheel Myrtle Beach,
 1387 Myrtle Beach.\nLunch: La Pino'z Pizza, Myrtle Beach\nDinner:
 1388 Nizam's Kathi Kabab, Myrtle Beach\nAccommodation: Yellow
 1389 submarine, Myrtle Beach\nDay 3:\nCurrent City: from Myrtle
 1390 Beach to Washington\nTransportation: Flight Number: F3791200,
 1391 from Myrtle Beach to Washington, Departure Time: 11:36, Arrival
 1392 Time: 13:06\nBreakfast: Turning Point Fast Food, Myrtle Beach
 1393\nAttraction: Myrtle Beach State Park, Myrtle Beach.\nLunch: -\nDinner: -\nAccommodation: -

1396 **Output from Checker**

1397 Decision: valid

1398 **Output from Search Advisor**

1399 -

1400 **Final delivered plan**

1401 {

```

1404
1405     "day": 1,
1406     "current_city": "from Washington to Myrtle Beach",
1407     "transportation": "Flight Number: F3927581, from Washington to
1408         Myrtle Beach, Departure Time: 11:03, Arrival Time: 13:31",
1409     "breakfast": "-",
1410     "attraction": "Myrtle Beach Boardwalk and Promenade, Myrtle
1411         Beach;",
1412     "lunch": "First Eat, Myrtle Beach",
1413     "dinner": "Catfish Charlie's, Myrtle Beach",
1414     "accommodation": "Yellow submarine, Myrtle Beach"
1415 },
1416 {
1417     "day": 2,
1418     "current_city": "Myrtle Beach",
1419     "transportation": "-",
1420     "breakfast": "d' Curry House, Myrtle Beach",
1421     "attraction": "Ripley's Aquarium of Myrtle Beach, Myrtle Beach;
1422         SkyWheel Myrtle Beach, Myrtle Beach;",
1423     "lunch": "La Pino'z Pizza, Myrtle Beach",
1424     "dinner": "Nizam's Kathi Kabab, Myrtle Beach",
1425     "accommodation": "Yellow submarine, Myrtle Beach"
1426 },
1427 {
1428     "day": 3,
1429     "current_city": "from Myrtle Beach to Washington",
1430     "transportation": "Flight Number: F3791200, from Myrtle Beach to
1431         Washington, Departure Time: 11:36, Arrival Time: 13:06",
1432     "breakfast": "Turning Point Fast Food, Myrtle Beach",
1433     "attraction": "Myrtle Beach State Park, Myrtle Beach;",
1434     "lunch": "-",
1435     "dinner": "-",
1436     "accommodation": "-"
1437 }
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

```

1458
1459
1460
1461
1462
1463
1464**Example 2 where interleaved search easily addresses the information gap**

1461 Query: Can you assist with a travel plan for one person departing
 1462 from Pittsburgh to Baltimore for 3 days, from March 4th to March
 1463 6th, 2022, with a maximum budget of \$1,200?

1464

Output from Search Agent after initial search step ($L = 0$)

```
1465     {
  1466        "index": 0,
  1467        "Short Description": "Driving from Pittsburgh to Baltimore",
  1468        "Content": "self-driving, from Pittsburgh to Baltimore, duration
  1469            : 3 hours 58 mins, distance: 400 km, cost: 20"
  1470     },
  1471     {
  1472        "index": 1,
  1473        "Short Description": "Accommodation in Baltimore",
  1474        "Content": ...
  1475     },
  1476     {
  1477        "index": 2,
  1478        "Short Description": "Attractions in Baltimore",
  1479        "Content": ...
  1480     },
  1481     {
  1482        "index": 3,
  1483        "Short Description": "Restaurants in Baltimore",
  1484        "Content": ...
  1485 }
```

Output from Constraint Manager at $L = 0$

1. The minimum stay for accommodation in Baltimore must be 2 nights or less.
2. The round trip transportation cost between Pittsburgh and Baltimore is \$40.
3. The trip must start from Pittsburgh and return to Pittsburgh.
4. The destination city is Baltimore.
5. The trip is for one person.
6. The trip must be for 3 days, from March 4th, 2022, to March 6th, 2022.
7. The total cost of the trip must not exceed \$1,200.",

Output from Planner at $L = 0, K = 0$

```
1496     Day 1:\nCurrent City: from Pittsburgh to Baltimore\nTransportation:
  1497        self-driving, from Pittsburgh to Baltimore\nBreakfast: -\
  1498        nAttraction: Inner Harbor, Baltimore\nLunch: Mr. Dunderbak's
  1499        Biergarten and Marketplatz, Baltimore\nDinner: Los Pablos,
  1500        Baltimore\nAccommodation: Contemporary Home Away from Home,
  1501        Entire house, Baltimore\n\nDay 2:\nCurrent City: Baltimore\
  1502        nTransportation: -\nBreakfast: Amalfi, Baltimore\nAttraction:
  1503        National Aquarium, Baltimore;Fort McHenry National Monument and
  1504        Historic Shrine, Baltimore.\nLunch: Salt, Baltimore\nDinner: The
  1505        Thai Bowl, Baltimore\nAccommodation: Contemporary Home Away
  1506        from Home, Entire house, Baltimore\n\nDay 3:\nCurrent City: from
  1507        Baltimore to Pittsburgh\nTransportation: self-driving, from
  1508        Baltimore to Pittsburgh\nBreakfast: Tibb's Frankie, Baltimore\
  1509        nAttraction: The Walters Art Museum, Baltimore.\nLunch:
  1510        RollsKing, Baltimore\nDinner: -\nAccommodation: -\n
```

Output from Checker at $L = 0, K = 1$ 1510
1511

Decision 1: unsatisfiable

```

1512
1513     Feedback 1: The plan is invalid because the transportation from
1514         Baltimore to Pittsburgh on Day 3 is not derived from the
1515         provided context information. This failure is due to the lack of
1516         information about the return trip in the context, which is
1517         necessary to fulfill the constraint of returning to the origin
1518         city."
1519
1520     Output from Search Advisor at  $L = 0$ 
1521
1522     Suggested actions:
1523     FlightSearch[Pittsburgh, Baltimore, 2022-03-04]
1524     NotebookWrite[Flights from Pittsburgh to Baltimore on 2022-03-04]
1525     FlightSearch[Baltimore, Pittsburgh, 2022-03-06]
1526     NotebookWrite[Flights from Baltimore to Pittsburgh on 2022-03-06]"
1527
1528     Output from Search Agent after the first interleaved search step ( $L = 1$ )
1529
1530     {
1531         "index": 0,
1532         "Short Description": "Driving from Pittsburgh to Baltimore",
1533         "Content": "self-driving, from Pittsburgh to Baltimore, duration
1534             : 3 hours 58 mins, distance: 400 km, cost: 20"
1535     },
1536     {
1537         "index": 1,
1538         "Short Description": "Accommodation in Baltimore",
1539         "Content": ...
1540     },
1541     {
1542         "index": 2,
1543         "Short Description": "Attractions in Baltimore",
1544         "Content": ...
1545     },
1546     {
1547         "index": 3,
1548         "Short Description": "Restaurants in Baltimore",
1549         "Content": ...
1550     },
1551     {
1552         "index": 4,
1553         "Short Description": "Flights from Pittsburgh to Baltimore on
1554             2022-03-04",
1555         "Content": ...
1556     },
1557     {
1558         "index": 5,
1559         "Short Description": "Flights from Baltimore to Pittsburgh on
1560             2022-03-06",
1561         "Content": ...
1562     }
1563
1564     Output from Constraint Manager at  $L = 1$ 
1565
1566     1. The accommodation in Baltimore must have a minimum stay
1567         requirement of 2 nights or less.
1568     2. The trip must start in Pittsburgh and end in Pittsburgh.
1569     3. The trip must be from March 4th, 2022, to March 6th, 2022.
1570     4. The trip is for one person.
1571     5. The total cost must not exceed $1,200.
1572     6. The destination city is Baltimore."
1573
1574     Output from Planner at  $L = 1, K = 0$ 
1575
1576     Day 1:\nCurrent City: from Pittsburgh to Baltimore\nTransportation:
1577         Flight Number: F3969954, from Pittsburgh to Baltimore, Departure
1578             Time: 16:51, Arrival Time: 17:49\nBreakfast: -\nAttraction: -\n

```

```

1566
1567     nLunch: -\nDinner: Mr. Dunderbak's Biergarten and Marketplatz,
1568     Baltimore\nAccommodation: Contemporary Home Away from Home,
1569     Entire house, Baltimore\n\nDay 2:\nCurrent City: Baltimore\
1570     nTransportation: -\nBreakfast: Amalfi, Baltimore\nAttraction:
1571     National Aquarium, Baltimore;Fort McHenry National Monument and
1572     Historic Shrine, Baltimore.\nLunch: Los Pablos, Baltimore\
1573     nDinner: Farzi Cafe, Baltimore\nAccommodation: Contemporary Home
1574     Away from Home, Entire house, Baltimore\n\nDay 3:\nCurrent City
1575     : from Baltimore to Pittsburgh\nTransportation: Flight Number:
1576     F3994096, from Baltimore to Pittsburgh, Departure Time: 21:45,
1577     Arrival Time: 22:44\nBreakfast: 28 Capri Italy, Baltimore\
1578     nAttraction: The Walters Art Museum, Baltimore.\nLunch: Tresind
1579     - Nassima Royal Hotel, Baltimore\nDinner: The Manhattan Fish
1580     Market, Baltimore\nAccommodation: -
1581
1582     Output from Checker at  $L = 1, K = 1$ 
1583
1584     Decision: valid
1585
1586     Final delivered plan
1587
1588     {
1589         "day": 1,
1590         "current_city": "from Pittsburgh to Baltimore",
1591         "transportation": "Flight Number: F3969954, from Pittsburgh to
1592             Baltimore, Departure Time: 16:51, Arrival Time: 17:49",
1593         "breakfast": "-",
1594         "attraction": "-",
1595         "lunch": "-",
1596         "dinner": "Mr. Dunderbak's Biergarten and Marketplatz, Baltimore
1597             ",
1598         "accommodation": "Contemporary Home Away from Home, Baltimore"
1599     },
1600
1601     {
1602         "day": 2,
1603         "current_city": "Baltimore",
1604         "transportation": "-",
1605         "breakfast": "Amalfi, Baltimore",
1606         "attraction": "National Aquarium, Baltimore;Fort McHenry
1607             National Monument and Historic Shrine, Baltimore;",
1608         "lunch": "Los Pablos, Baltimore",
1609         "dinner": "Farzi Cafe, Baltimore",
1610         "accommodation": "Contemporary Home Away from Home, Baltimore"
1611     },
1612
1613     {
1614         "day": 3,
1615         "current_city": "from Baltimore to Pittsburgh",
1616         "transportation": "Flight Number: F3994096, from Baltimore to
1617             Pittsburgh, Departure Time: 21:45, Arrival Time: 22:44",
1618         "breakfast": "28 Capri Italy, Baltimore",
1619         "attraction": "The Walters Art Museum, Baltimore",
1620         "lunch": "Tresind - Nassima Royal Hotel, Baltimore",
1621         "dinner": "The Manhattan Fish Market, Baltimore",
1622         "accommodation": "-"
1623     }

```

1620

Example 3 where plan is extensively revised

1621

1622

1623

Query: Can you create a travel plan for a group of 5 departing from Charlotte heading to Hilton Head, to be carried out over 3 days, from March 26th to March 28th, 2022? The budget for this trip is capped at \$7,000. We have a preference for Italian and French cuisines during our trip.

1627

1628

1629

Output from Search Agent after initial search step ($L = 0$)

1630

```
{
  "index": 0,
  "Short Description": "Transportation from Charlotte to Hilton Head",
  "Content": "self-driving, from Charlotte to Hilton Head,
    duration: 3 hours 49 mins, distance: 398 km, cost: 19"
},
{
  "index": 1,
  "Short Description": "Accommodation in Hilton Head",
  "Content": "
    NAME
    price      room type          house_rules
    minimum nights  maximum occupancy  review rate number
    city
    Williamsburg Home Away From Home! 164.0 Entire home/apt
    No pets          4.0
    3                  3.0 Hilton Head
    COZY Room @Williamsburg (10 mins to Manhattan) 605.0  Private
    room           No visitors          2.0
    1                  4.0 Hilton Head
    ...
},
{
  "index": 2,
  "Short Description": "Restaurants in Hilton Head",
  "Content": "
    Name  Average Cost
    Cuisines  Aggregate
    Rating      City
    Taste Of China      91          Tea, Seafood, Bakery,
    Fast Food          4.0 Hilton Head
    K Raga's           71          Tea, BBQ, Mediterranean,
    Desserts          2.9 Hilton Head
    New Town Pastry Shop - Park Plaza      51
    Tea, Cafe, Pizza, BBQ
    3.2 Hilton Head
    ...
},
{
  "index": 3,
  "Short Description": "Attractions in Hilton Head",
  "Content": "
    Name  Latitude
    Longitude
    Address
    Phone
    Website      City
    Coastal Discovery Museum 32.211485 -80.744025      70 Honey
    Horn Dr, Hilton Head Island, SC 29926, USA (843) 689-6767
    http://www.coastaldiscovery.org/ Hilton Head
    ...
}
```

```

1674
1675 Output from Constraint Manager at  $L = 0$ 
1676 1. The minimum stay for accommodation must be less than or equal to
1677 2 nights.
1678 2. The plan must include at least one restaurant that serves Italian
1679 cuisine and one that serves French cuisine.
1680 3. The mode of transportation must be self-driving.
1681 4. The trip must start in Charlotte and end in Charlotte.
1682 5. The trip must be for 5 people.
1683 6. The trip must take place from March 26th, 2022 to March 28th,
1684 2022.
1685 7. The total cost of the trip must not exceed $7,000.

1686 Output from Planner at  $L = 0, K = 0$ 
1687 Day 1:\nCurrent City: from Charlotte to Hilton Head\nTransportation:
1688 self-driving, from Charlotte to Hilton Head\nBreakfast: -\
1689 nAttraction: Harbour Town Lighthouse, Hilton Head\nLunch:
1690 Wrapster, Hilton Head\nDinner: Dhaba Ambarsariya, Hilton Head\
1691 nAccommodation: Hip, Vibrant, COLORFUL Downtown Manhattan 1 Bed,
1692 Hilton Head\n\nDay 2:\nCurrent City: Hilton Head\
1693 nTransportation: -\nBreakfast: Cafe Coffee Day, Hilton Head\
1694 nAttraction: Coastal Discovery Museum, Hilton Head; Coligny
1695 Beach Park, Hilton Head.\nLunch: Mr. Brown, Hilton Head\nDinner:
1696 Sikkim Fast Food, Hilton Head\nAccommodation: Hip, Vibrant,
1697 COLORFUL Downtown Manhattan 1 Bed, Hilton Head\n\nDay 3:\n
1698 Current City: from Hilton Head to Charlotte\nTransportation:
1699 self-driving, from Hilton Head to Charlotte\nBreakfast:
1700 Connoisseur, Hilton Head\nAttraction: Sea Pines Forest Preserve,
1701 Hilton Head.\nLunch: MR.D - Deliciousness Delivered, Hilton
1702 Head\nDinner: -\nAccommodation: -
1703
1704 Output from Checker at  $L = 0, K = 1$ 
1705 Decision: unsatisfiable
1706 Feedback: The plan is invalid because it includes transportation
1707 from Hilton Head to Charlotte on Day 3, which is not detailed in
1708 the provided context information. This failure is due to the
1709 context information being incomplete, as it lacks the necessary
1710 details for the return trip, which is required by the constraint
1711 that the trip must end in Charlotte.
1712
1713 Output from Search Advisor at  $L = 1$ 
1714 FlightSearch[Charlotte, Hilton Head, 2022-03-26]
1715 NotebookWrite[Flights from Charlotte to Hilton Head on 2022-03-26]
1716 FlightSearch[Hilton Head, Charlotte, 2022-03-28]
1717 NotebookWrite[Flights from Hilton Head to Charlotte on 2022-03-28]
1718
1719 Output from Search Agent after first interleaved search step ( $L = 1$ )
1720 {
1721   "index": 0,
1722   "Short Description": "Transportation from Charlotte to Hilton
1723   Head",
1724   "Content": "self-driving, from Charlotte to Hilton Head,
1725   duration: 3 hours 49 mins, distance: 398 km, cost: 19"
1726 },
1727 {
1728   "index": 1,
1729   "Short Description": "Accommodation in Hilton Head",
1730   "Content": "
1731     price          room type          house_rules
1732     minimum nights  maximum occupancy  review rate number
1733           city
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
2999

```

```

1728
1729     Williamsburg Home Away From Home! 164.0 Entire home/apt
1730             No pets 4.0
1731             3 3.0 Hilton Head
1732     COZY Room @Williamsburg (10 mins to Manhattan) 605.0 Private
1733     room No visitors 2.0
1734             1 4.0 Hilton Head
1735             ...
1736     },
1737     {
1738         "index": 2,
1739         "Short Description": "Restaurants in Hilton Head",
1740         "Content": "
1741             Name Average Cost
1742             Cuisines Aggregate
1743             Rating City
1744             Taste Of China 91 Tea, Seafood, Bakery,
1745             Fast Food 4.0 Hilton Head
1746             K Raga's 71 Tea, BBQ, Mediterranean,
1747             Desserts 2.9 Hilton Head
1748             New Town Pastry Shop - Park Plaza 51
1749             Tea, Cafe, Pizza, BBQ
1750             3.2 Hilton Head
1751             ...
1752     },
1753     {
1754         "index": 3,
1755         "Short Description": "Attractions in Hilton Head",
1756         "Content": "
1757             Name Latitude
1758             Longitude
1759             Address
1760             Phone
1761             Website City
1762             Coastal Discovery Museum 32.211485 -80.744025 70 Honey
1763             Horn Dr, Hilton Head Island, SC 29926, USA (843) 689-6767
1764             http://www.coastaldiscovery.org/ Hilton Head
1765             ...
1766     },
1767     {
1768         "index": 4,
1769         "Short Description": "Flights from Charlotte to Hilton Head on
1770             2022-03-26",
1771         "Content": "Flight Number Price DeptTime ArrTime
1772             ActualElapsedTime FlightDate OriginCityName DestCityName
1773             Distance
1774             F4055090 92 18:07 19:27 1 hours 20 minutes 2022-03-26
1775             Charlotte Hilton Head 207.0
1776             F4059890 95 13:01 14:22 1 hours 21 minutes 2022-03-26
1777             Charlotte Hilton Head 207.0"
1778     },
1779     {
1780         "index": 5,
1781         "Short Description": "Flights from Hilton Head to Charlotte on
1782             2022-03-28",
1783         "Content": "Flight Number Price DeptTime ArrTime
1784             ActualElapsedTime FlightDate OriginCityName DestCityName
1785             Distance F4056985 46 20:07 21:31 1 hours 24
1786             minutes 2022-03-28 Hilton Head Charlotte 207.0
1787             F4059921 45 14:52 16:04 1 hours 12 minutes 2022-03-28
1788             Hilton Head Charlotte 207.0"
1789     }
1790
1791     Output from Constraint Manager at L = 1
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801

```

- 1782
1. The selected accommodation in Hilton Head must have a minimum stay requirement of 2 nights or less.
 2. Meals must be chosen from the following restaurants that serve French or Italian cuisine: Sikkim Fast Food, Cafe Coffee Day, Dhaba Ambarsariya, Connoisseur, MR.D - Deliciousness Delivered, Mr. Brown, or Wrapster.
 3. The travel plan must use one of the two available modes of transport: self-driving or one of the specified flights.
 4. The trip must start in Charlotte and return to Charlotte.
 5. The trip must be for a group of 5 people.
 6. The trip must take place from March 26th, 2022, to March 28th, 2022.
 7. The total cost of the trip must not exceed \$7,000."

1794 **Output from Planner at $L = 1, K = 0$**

1795 Day 1:\nCurrent City: from Charlotte to Hilton Head\nTransportation:
 1796 self-driving, from Charlotte to Hilton Head\nBreakfast: -\nAttraction:
 1797 Coligny Beach Park, Hilton Head\nLunch: -\nDinner:
 1798 Dhaba Ambarsariya, Hilton Head\nAccommodation: Hip, Vibrant,
 1799 COLORFUL Downtown Manhattan 1 Bed, Hilton Head\n\nDay 2:\nCurrent City: Hilton Head\nTransportation: -\nBreakfast:
 1800 Wrapster, Hilton Head\nAttraction: Harbour Town Lighthouse,
 1801 Hilton Head; Coastal Discovery Museum, Hilton Head.\nLunch: Mr.
 1802 Brown, Hilton Head\nDinner: Sikkim Fast Food, Hilton Head
 1803 nAccommodation: Hip, Vibrant, COLORFUL Downtown Manhattan 1 Bed,
 1804 Hilton Head\n\nDay 3:\nCurrent City: from Hilton Head to
 1805 Charlotte\nTransportation: self-driving, from Hilton Head to
 1806 Charlotte\nBreakfast: Cafe Coffee Day, Hilton Head\nAttraction:
 1807 Sea Pines Forest Preserve, Hilton Head.\nLunch: Connoisseur,
 1808 Hilton Head\nDinner: -\nAccommodation: -

1809 **Output from Checker at $L = 1, K = 1$**

1810 Decision: invalid

1811 Feedback:

1. The transportation for Day 3, 'self-driving, from Hilton Head to Charlotte', is not supported by the provided context information. The context only includes details for self-driving from Charlotte to Hilton Head.

1816 **Output from Planner at $L = 1, K = 1$**

1817 Day 1:\nCurrent City: from Charlotte to Hilton Head\nTransportation:
 1818 self-driving, from Charlotte to Hilton Head\nBreakfast: -\nAttraction:
 1819 Coligny Beach Park, Hilton Head\nLunch: -\nDinner:
 1820 Dhaba Ambarsariya, Hilton Head\nAccommodation: Hip, Vibrant,
 1821 COLORFUL Downtown Manhattan 1 Bed, Hilton Head\n\nDay 2:\nCurrent City: Hilton Head\nTransportation: -\nBreakfast:
 1822 Wrapster, Hilton Head\nAttraction: Harbour Town Lighthouse,
 1823 Hilton Head; Coastal Discovery Museum, Hilton Head.\nLunch: Mr.
 1824 Brown, Hilton Head\nDinner: Sikkim Fast Food, Hilton Head
 1825 nAccommodation: Hip, Vibrant, COLORFUL Downtown Manhattan 1 Bed,
 1826 Hilton Head\n\nDay 3:\nCurrent City: from Hilton Head to
 1827 Charlotte\nTransportation: Flight Number: F4059921, from Hilton
 1828 Head to Charlotte, Departure Time: 14:52, Arrival Time: 16:04
 1829 nBreakfast: Cafe Coffee Day, Hilton Head\nAttraction: Sea Pines
 1830 Forest Preserve, Hilton Head.\nLunch: Connoisseur, Hilton Head
 1831 nDinner: -\nAccommodation: -

1831 **Output from Checker at $L = 1, K = 2$**

1832 Decision: invalid

1833 Feedback:

1. The transportation plan is not logical. The travelers self-drive to Hilton Head on Day 1 but take a flight back to Charlotte on

```

1836
1837     Day 3, which would result in their car being left behind in
1838     Hilton Head.
1839
1840     Output from Planner at  $L = 1, K = 2$ 
1841
1842     Day 1:\nCurrent City: from Charlotte to Hilton Head\nTransportation:
1843         Flight Number: F4059890, from Charlotte to Hilton Head,
1844         Departure Time: 13:01, Arrival Time: 14:22\nBreakfast: -\
1845         nAttraction: Coligny Beach Park, Hilton Head\nLunch: -\nDinner:
1846         Dhaba Ambarsariya, Hilton Head\nAccommodation: Hip, Vibrant,
1847         COLORFUL Downtown Manhattan 1 Bed, Hilton Head\n\nDay 2:\\
1848         nCurrent City: Hilton Head\nTransportation: -\nBreakfast:
1849         Wrapster, Hilton Head\nAttraction: Harbour Town Lighthouse,
1850         Hilton Head; Coastal Discovery Museum, Hilton Head.\nLunch: Mr.
1851         Brown, Hilton Head\nDinner: Sikkim Fast Food, Hilton Head\
1852         nAccommodation: Hip, Vibrant, COLORFUL Downtown Manhattan 1 Bed,
1853         Hilton Head\n\nDay 3:\nCurrent City: from Hilton Head to
1854         Charlotte\nTransportation: Flight Number: F4056985, from Hilton
1855         Head to Charlotte, Departure Time: 20:07, Arrival Time: 21:31\
1856         nBreakfast: Cafe Coffee Day, Hilton Head\nAttraction: Sea Pines
1857         Forest Preserve, Hilton Head.\nLunch: Connoisseur, Hilton Head\
1858         nDinner: -\nAccommodation: -\n
1859
1860     Output from Checker at  $L = 1, K = 3$ 
1861
1862     Decision: valid
1863
1864     Final delivered plan
1865
1866     {
1867         "day": 1,
1868         "current_city": "from Charlotte to Hilton Head",
1869         "transportation": "Flight Number: F4059890, from Charlotte to
1870             Hilton Head, Departure Time: 13:01, Arrival Time: 14:22",
1871         "breakfast": "-",
1872         "attraction": "Coligny Beach Park, Hilton Head;",
1873         "lunch": "-",
1874         "dinner": "Dhaba Ambarsariya, Hilton Head",
1875         "accommodation": "Hip, Vibrant, COLORFUL Downtown Manhattan 1
1876             Bed, Hilton Head"
1877     },
1878
1879     {
1880         "day": 2,
1881         "current_city": "Hilton Head",
1882         "transportation": "-",
1883         "breakfast": "Wrapster, Hilton Head",
1884         "attraction": "Harbour Town Lighthouse, Hilton Head;Coastal
1885             Discovery Museum, Hilton Head",
1886         "lunch": "Mr. Brown, Hilton Head",
1887         "dinner": "Sikkim Fast Food, Hilton Head",
1888         "accommodation": "Hip, Vibrant, COLORFUL Downtown Manhattan 1
1889             Bed, Hilton Head"
1890     },
1891
1892     {
1893         "day": 3,
1894         "current_city": "from Hilton Head to Charlotte",
1895         "transportation": "Flight Number: F4056985, from Hilton Head to
1896             Charlotte, Departure Time: 20:07, Arrival Time: 21:31",
1897         "breakfast": "Cafe Coffee Day, Hilton Head",
1898         "attraction": "Sea Pines Forest Preserve, Hilton Head;",
1899         "lunch": "Connoisseur, Hilton Head",
1900         "dinner": "-",
1901         "accommodation": "-"
1902     }

```

1890
1891

E.1.2 LIVE TRAVEL PLANNING WITH MULTI-TURN FEEDBACK

1892

First Turn

1893

1894

1895

1896

1897

1898

1899

1900

Query: Could you help me arrange a 7-day solo travel itinerary from Kona to California with a budget of \$5,800, intending to visit 3 distinct cities in California from September 7th to September 13th, 2025?

1901

Output from Constraint Manager

1902

1. The traveler must stay in Los Angeles from September 7th to September 9th, 2025.
2. The traveler must stay in San Francisco from September 9th to September 11th, 2025.
3. The traveler must stay in San Diego from September 11th to September 13th, 2025.
4. The three cities to be visited are Los Angeles, San Francisco, and San Diego.
5. The mode of transportation between cities in California must be self-driving.
6. The trip must start with a flight from Kona to Los Angeles on September 7th, 2025.
7. The trip must end with a flight from San Diego to Kona on September 13th, 2025.
8. The total trip duration is 7 days, from September 7th, 2025 to September 13th, 2025.
9. The total budget for the trip must not exceed \$5,800.
10. The trip is for a solo traveler.

1903

1904

1905

1906

1907

1908

1909

1910

1911

1912

1913

1914

1915

Final delivered plan

1916

1917

```
{
  "day": 1,
  "current_city": "from Kona to Los Angeles",
  "transportation": "Flight Number: HA, from Kona to Los Angeles,
    Departure Time: 15:19, Arrival Time: 23:51",
  "breakfast": "-",
  "attraction": "-",
  "lunch": "-",
  "dinner": "-",
  "accommodation": "Modern Homestay 2, Los Angeles"
},
{
  "day": 2,
  "current_city": "Los Angeles",
  "transportation": "-",
  "breakfast": "Humble Bird, Los Angeles",
  "attraction": "Griffith Observatory, Los Angeles;Hollywood Walk
    of Fame, Los Angeles;",
  "lunch": "Granville, Los Angeles",
  "dinner": "Chao Krung Thai, Los Angeles",
  "accommodation": "Modern Homestay 2, Los Angeles"
},
{
  "day": 3,
  "current_city": "from Los Angeles to San Francisco",
  "transportation": "self-driving, from Los Angeles to San
    Francisco",
  "breakfast": "La Pupusa Urban Eatery, Los Angeles",
  "attraction": "The Getty Center, Los Angeles;",
  "lunch": "-",
  "dinner": "Sweet Maple, San Francisco",
}
```

```

1944
1945     "accommodation": "Travelodge by Wyndham San Francisco Airport
1946         North, San Francisco"
1947     },
1948     {
1949         "day": 4,
1950         "current_city": "San Francisco",
1951         "transportation": "-",
1952         "breakfast": "Sweet Maple, San Francisco",
1953         "attraction": "Golden Gate Bridge, San Francisco;Fisherman's
1954             Wharf, San Francisco;",
1955         "lunch": "Bar Crudo, San Francisco",
1956         "dinner": "Zuni Cafe, San Francisco",
1957         "accommodation": "Travelodge by Wyndham San Francisco Airport
1958             North, San Francisco"
1959     },
1960     {
1961         "day": 5,
1962         "current_city": "from San Francisco to San Diego",
1963         "transportation": "self-driving, from San Francisco to San Diego
1964             ",
1965         "breakfast": "Flour + Water, San Francisco",
1966         "attraction": "Alcatraz Island, San Francisco;",
1967         "lunch": "-",
1968         "dinner": "Oscar's Mexican Seafood, San Diego",
1969         "accommodation": "Quaint And Cozy One Bedroom Unit With Patio,
1970             San Diego"
1971     },
1972     {
1973         "day": 6,
1974         "current_city": "San Diego",
1975         "transportation": "-",
1976         "breakfast": "Las Cuatro Milpas, San Diego",
1977         "attraction": "Balboa Park, San Diego;USS Midway Museum, San
1978             Diego;",
1979         "lunch": "Mitch's Seafood, San Diego",
1980         "dinner": "Puesto, San Diego",
1981         "accommodation": "Quaint And Cozy One Bedroom Unit With Patio,
1982             San Diego"
1983     },
1984     {
1985         "day": 7,
1986         "current_city": "from San Diego to Kona",
1987         "transportation": "Flight Number: HA, from San Diego to Kona,
1988             Departure Time: 11:17, Arrival Time: 14:19",
1989         "breakfast": "Kindred, San Diego",
1990         "attraction": "-",
1991         "lunch": "-",
1992         "dinner": "-",
1993         "accommodation": "-"
1994     }
1995
1996
1997

```

1998

Second Turn

1999

2000

Query: Could you help me arrange a 7-day solo travel itinerary from Kona to California with a budget of \$5,800, intending to visit 3 distinct cities in California from September 7th to September 13th, 2025?

2004

And this was the plan you generated previously.

Day 1: Current City: from Kona to Los Angeles Transportation: Flight Number: HA, from Kona to Los Angeles, Departure Time: 15:19, Arrival Time: 23:51 Breakfast: - Attraction: - Lunch: - Dinner: - Accommodation: Modern Homestay 2, Los Angeles Day 2: Current City: Los Angeles Transportation: - Breakfast: Humble Bird, Los Angeles Attraction: Griffith Observatory, Los Angeles; Hollywood Walk of Fame, Los Angeles. Lunch: Granville, Los Angeles Dinner: Chao Krung Thai, Los Angeles Accommodation: Modern Homestay 2, Los Angeles Day 3: Current City: from Los Angeles to San Francisco Transportation: self-driving, from Los Angeles to San Francisco Breakfast: La Pupusa Urban Eatery, Los Angeles Attraction: The Getty Center, Los Angeles. Lunch: - Dinner: Sweet Maple, San Francisco Accommodation: Travelodge by Wyndham San Francisco Airport North, San Francisco Day 4: Current City: San Francisco Transportation: - Breakfast: Sweet Maple, San Francisco Attraction: Golden Gate Bridge, San Francisco; Fisherman's Wharf, San Francisco. Lunch: Bar Crudo, San Francisco Dinner: Zuni Cafe, San Francisco Accommodation: Travelodge by Wyndham San Francisco Airport North, San Francisco Day 5: Current City: from San Francisco to San Diego Transportation: self-driving, from San Francisco to San Diego Breakfast: Flour + Water, San Francisco Attraction: Alcatraz Island, San Francisco. Lunch: - Dinner: Oscar's Mexican Seafood, San Diego Accommodation: Quaint And Cozy One Bedroom Unit With Patio, San Diego Day 6: Current City: San Diego Transportation: - Breakfast: Las Cuatro Milpas, San Diego Attraction: Balboa Park, San Diego; USS Midway Museum, San Diego. Lunch: Mitch's Seafood, San Diego Dinner: Puesto, San Diego Accommodation: Quaint And Cozy One Bedroom Unit With Patio, San Diego Day 7: Current City: from San Diego to Kona Transportation: Flight Number: HA, from San Diego to Kona, Departure Time: 11:17, Arrival Time: 14:19 Breakfast: Kindred, San Diego Attraction: - Lunch: - Dinner: - Accommodation: -

Let me also tell you the major issues on this plan.

The restaurant in day 4 breakfast is repeated. I want to try various restaurants and attractions.

The transportation is conflicting. If I travel by air or taxi, I cannot do self-driving at any point of the trip. Conversely, if I'm able to use a self-driving car, I will not require a taxi or a flight.

The breakfast in day 2 is invalid in the sandbox.

The accommodation information in day 1 is hallucinated.

Output from Constraint Manager

1. The transportation method must be consistent: either use self-driving for all inter-city travel or use flights/taxis, but not a mix of both.
2. All selected restaurants and attractions must be unique and not repeated.
3. The restaurant 'Humble Bird' must not be included in the plan.
4. The accommodation 'Modern Homestay 2' must not be included in the plan.

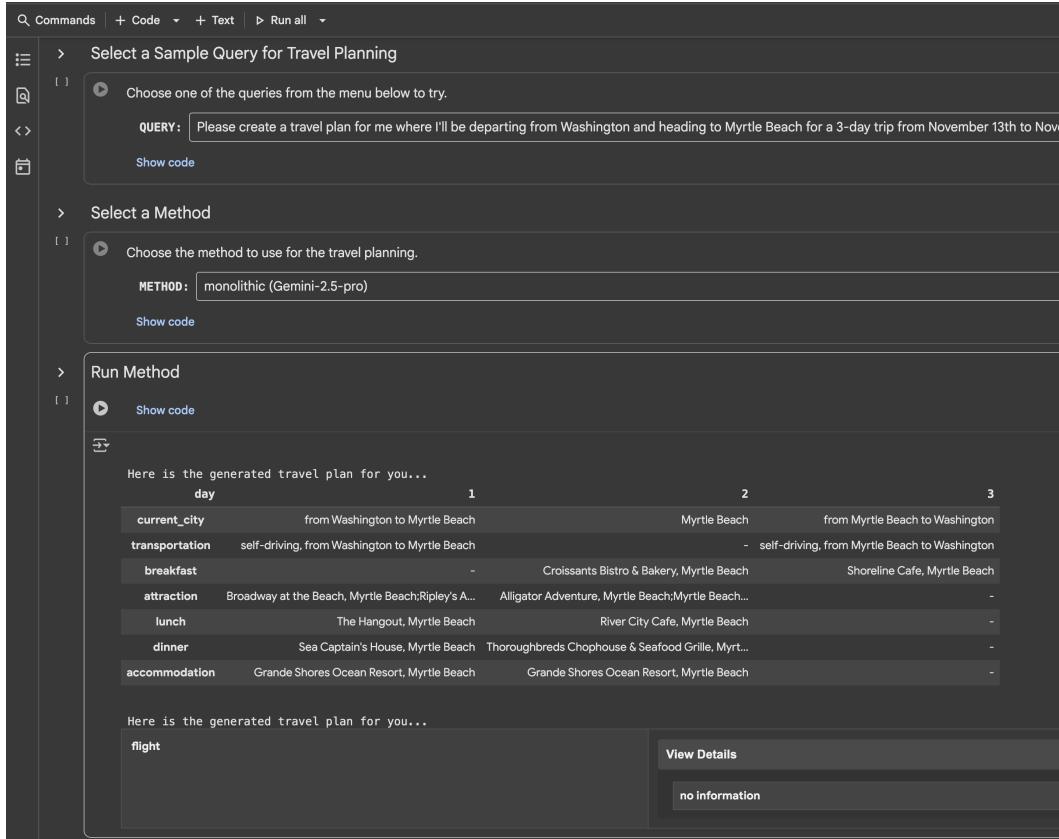
```

2052
2053 5. All flights, accommodations, restaurants, and attractions must be
2054     selected exclusively from the provided context information.
2055 6. The trip must start in Kona on September 7th, 2025 and end in
2056     Kona on September 13th, 2025.
2057 7. The itinerary must include visits to three distinct cities: Los
2058     Angeles, San Francisco, and San Diego.
2059 8. The total budget for the trip must not exceed $5,800.
2060 9. The trip is for a solo traveler.
2061 10. The trip must be a closed loop, starting from Kona and returning
2062     to Kona.
2063 11. Accommodation in Los Angeles must be booked from September 7th
2064     to September 9th, 2025.
2065 12. Accommodation in San Francisco must be booked from September 9th
2066     to September 11th, 2025.
2067 13. Accommodation in San Diego must be booked from September 11th to
2068     September 13th, 2025.
2069
2070 Output from Search Advisor
2071
2072 GoogleSearchFlight[Los Angeles, San Francisco, 2025-09-09]
2073 NotebookWrite[Flights from Los Angeles to San Francisco on
2074     2025-09-09]
2075 GoogleSearchFlight[San Francisco, San Diego, 2025-09-11]
2076 NotebookWrite[Flights from San Francisco to San Diego on 2025-09-11]
2077
2078 Final delivered plan
2079
2080 {
2081     "day": 1,
2082     "current_city": "from Kona to Los Angeles",
2083     "transportation": "Flight Number: HA, from Kona to Los Angeles,
2084         Departure Time: 15:19, Arrival Time: 23:51",
2085     "breakfast": "-",
2086     "attraction": "-",
2087     "lunch": "-",
2088     "dinner": "-",
2089     "accommodation": "Modern Hostel, Los Angeles"
2090 },
2091 {
2092     "day": 2,
2093     "current_city": "Los Angeles",
2094     "transportation": "-",
2095     "breakfast": "La Pupusa Urban Eatery, Los Angeles",
2096     "attraction": "Griffith Observatory, Los Angeles;Hollywood Walk
2097         of Fame, Los Angeles;",
2098     "lunch": "Granville, Los Angeles",
2099     "dinner": "Chao Krung Thai, Los Angeles",
2100     "accommodation": "Modern Hostel, Los Angeles"
2101 },
2102 {
2103     "day": 3,
2104     "current_city": "from Los Angeles to San Francisco",
2105     "transportation": "Flight Number: HA, from Los Angeles to San
2106         Francisco, Departure Time: 22:34, Arrival Time: 23:59",
2107     "breakfast": "Holbox, Los Angeles",
2108     "attraction": "The Getty Center, Los Angeles;",
2109     "lunch": "Niku X, Los Angeles",
2110     "dinner": "The Brothers Sushi, Los Angeles",
2111     "accommodation": "Travelodge by Wyndham San Francisco Airport
2112         North, San Francisco"
2113 },
2114 {
2115     "day": 4,
2116     "current_city": "San Francisco",
2117     "transportation": "-",
2118 }

```

```

2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159


    "breakfast": "Sweet Maple, San Francisco",
    "attraction": "Golden Gate Bridge, San Francisco;Fisherman's
                  Wharf, San Francisco;",
    "lunch": "Bar Crudo, San Francisco",
    "dinner": "Zuni Cafe, San Francisco",
    "accommodation": "Travelodge by Wyndham San Francisco Airport
                      North, San Francisco"
  },
  {
    "day": 5,
    "current_city": "from San Francisco to San Diego",
    "transportation": "Flight Number: Southwest, from San Francisco
                      to San Diego, Departure Time: 11:00, Arrival Time: 12:35",
    "breakfast": "Flour + Water, San Francisco",
    "attraction": "Alcatraz Island, San Francisco",
    "lunch": "-",
    "dinner": "Oscar's Mexican Seafood, San Diego",
    "accommodation": "Quaint And Cozy One Bedroom Unit With Patio,
                      San Diego"
  },
  {
    "day": 6,
    "current_city": "San Diego",
    "transportation": "-",
    "breakfast": "Las Cuatro Milpas, San Diego",
    "attraction": "Balboa Park, San Diego;USS Midway Museum, San
                  Diego",
    "lunch": "Mitch's Seafood, San Diego",
    "dinner": "Puesto, San Diego",
    "accommodation": "Quaint And Cozy One Bedroom Unit With Patio,
                      San Diego"
  },
  {
    "day": 7,
    "current_city": "from San Diego to Kona",
    "transportation": "Flight Number: HA, from San Diego to Kona,
                      Departure Time: 11:17, Arrival Time: 14:19",
    "breakfast": "Kindred, San Diego",
    "attraction": "-",
    "lunch": "-",
    "dinner": "-",
    "accommodation": "-"
  }
}

```

2160
2161

E.2 DEMO

2162 We present a comparative demonstration of the user-facing interface for monolithic agent
 2163 baseline (Figure 11) vs. ATLAS (Figure 12), given the same real-world travel planning
 2164 query: “Please create a travel plan for me where I’ll be departing
 2165 from Washington and heading to Myrtle Beach for a 3-day trip from
 2166 November 13th to November 15th, 2025. Can you help me keep this
 2167 journey within a budget of \$1,400?”. We will release the demo upon acceptance.

2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213

Figure 11: Screenshot of demo running monolithic agent for real-world travel planning. Displaying the generated plan and the summary of search results by the monolithic agent (Gemini-2.5-Pro).

```

2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267

```

Commands | + Code | + Text | > Run all

> Select a Sample Query for Travel Planning

Choose one of the queries from the menu below to try.

QUERY: Please create a travel plan for me where I'll be departing from Washington and heading to Myrtle Beach for a 3-day trip from November 13th to November 16th within a budget of \$1,400?

Show code

> Select a Method

Choose the method to use for the travel planning.

METHOD: atlas

Running ATLAS and displaying generated plan

Run Method

Show code

Flights APT loaded.
Attractions loaded.
Accommodations loaded.
Restaurants loaded.
GoogleDistanceMatrix loaded.
PlannerAgent gemini-2.5-pro loaded.
CriticAgent (Plan) gemini-2.5-pro loaded.
Cities loaded.
GoogleSearchAgent gemini-2.5-flash loaded.
CriticAgent (Act) gemini-2.5-pro loaded.

Running ATLAS 🛫.....
This may take some time (up to 15 minutes). Go grab a coffee ☕ and come back!

--- Initial Step ---
Running action: Planner!Please create a travel plan for me where I'll be departing from Washington and heading to Myrtle Beach for a 3-day trip from November 13th to November 16th within a budget of \$1,400?
The plan is determined to be unsatisfiable by the Constraint Checker. Skip to the next interleaved search step.

SearchAdvisor: GoogleSearchAccommodation[accommodations in Myrtle Beach]

--- Interleaved Step 1 ---
Running action: Planner!Please create a travel plan for me where I'll be departing from Washington and heading to Myrtle Beach for a 3-day trip from November 13th to November 16th within a budget of \$1,400?

Here is the generated travel plan for you...

day	1	2	3
current_city	from Washington to Myrtle Beach	Myrtle Beach	from Myrtle Beach to Washington
transportation	self-driving, from Washington to Myrtle Beach	-	self-driving, from Myrtle Beach to Washington
breakfast	-	Crave Italian Oven & Bar, Myrtle Beach	RipTydz Oceanfront Grille & Rooftop Bar, Myrtle Beach
attraction	Myrtle Beach Boardwalk and Promenade, Myrtle Beach	Ripley's Aquarium of Myrtle Beach, Myrtle Beach	Broadway at the Beach, Myrtle Beach
lunch	Damon's Grill, Myrtle Beach	The Original Benjamin's Calabash Seafood, Myrtle Beach	Damon's Grill, Myrtle Beach
dinner	Sea Captain's House, Myrtle Beach	Wicked Tuna, Myrtle Beach	-
accommodation	Marina Inn At Grande Dunes, Myrtle Beach	Marina Inn At Grande Dunes, Myrtle Beach	-

Displaying the summary of search results by ATLAS

Self-driving from Washington to Myrtle Beach						
Attractions in Myrtle Beach						
Restaurants in Myrtle Beach						
Accommodations in Myrtle Beach						
View Details						
View Details						
View Details						
View Details						

Figure 12: Screenshots of demo running ATLAS for real-world travel planning. Displaying the generated plan and the summary of search results by ATLAS.

2268 F PROMPTS
22692270 F.1 TRAVELPLANNER
2271

2272 For the Search agent and the Planner agent, we basically follow the prompts as provided in [Xie et al.](#)
2273 (2024) for the search agent and the Planner agent ⁴. We provide the full prompts for the agents in
2274 our framework: Constraint Manager, Constraint Checker, and Search Advisor. In their prompts, the
2275 list of tools and example plan are exactly as provided in the original prompts of the TravelPlanner
2276 benchmark.

2277 **Prompt used for Constraint Manager**

2279 You are an expert in logical reasoning whose task is to list out
2280 constraints that the user must adhere to when creating a travel
2281 plan.

2282 Given a query AND context information, these constraints can be any
2283 relevant factors that may be explicitly identifiable from them.
2284 The query may explicitly specify some constraints, but you
2285 should also consider those that can be inferred from the
2286 context information. Do NOT include constraints that cannot be
2287 explicitly formulated from query and the context information;
2288 for example, do not consider the feasibility of the plan --
2289 i.e., whether the schedule is practical enough for the user to
2290 pull off.

2291 Additional notes:

- 2292 1. Use the city name exactly as provided; for instance,
2293 "Washington" refers to the one in Seattle, WA, not "Washington
2294 D.C". Do not infer a different city. Only use cities directly
2295 relevant to the query, and do not include nearby cities with
2296 airports or those in the general vicinity.
- 2297 2. The trip must be a closed loop. Even though it is unclear from
2298 the user query whether it should return to the origin city,
2299 always assume that it should.

2300 As your output, enumerate a list of constraints that the user must
2301 adhere to when creating a travel plan. Output must be in a
2302 structured format with numbered constraints. Keep it succinct
2303 and only list the constraints and do not add any additional
2304 statements. Prioritize the constraints that are not drawn from
2305 the query, but that are additionally specified from the context
2306 information.

2307 query: [query inserted here]

2308 context information: [context information inserted here]

2309 constraints:

2310 **Prompt used for Checker**

2311 You are an expert in logical reasoning whose task is to act as a
2312 critic.

2313 You are paired with a travel planner, and will be given a query and
2314 the plan generated by the travel planner.

2315 You are given the context information, a collection of travel
2316 information that were referred to when the travel planner
2317 created the plan.

2318 You are given constraints, which are a list of rules that the plan
2319 must comply with.

2320 ⁴"ZEROSHOT.REACT_INSTRUCTION" and "PLANNER_INSTRUCTION", respectively from here:
2321 <https://github.com/OSU-NLP-Group/TravelPlanner/blob/main/agents/prompts.py>

2322
2323
2324
2325

You are also given previous planning attempts and your feedback on them, which will provide you with holistic insights into the planning process so far.

2326
2327

Your goal is to evaluate the travel plan created by the planner, ONLY on the following aspects:

1. VERY IMPORTANT: every detail in the plan must be derived from the provided information.
2. VERY IMPORTANT: for each day, any necessary applicable details on transportation, restaurant, attraction, and accommodation should not be missing. Note that transportation duration is a secondary concern: While long transportation durations (e.g., exceeding 20 hours) might occur, do not let them be the primary basis for rejecting a plan or skipping essential elements like accommodation.
3. Every part of the plan must adhere to the provided constraints, whenever applicable.
4. Each day permits the assignment of no more than one transportation method and one accommodation. All travelers must stay in the one accommodation together and not split up into multiple accommodations. When it comes to accommodation, don't worry about maximum occupancy constraint.
5. Overall travel sequence and all details in the plan should align with commonsense. However, when it comes to the feasibility of the plan, focus more on the completeness of the plan (e.g., are all necessary plan details included?) rather than meticulously scrutinizing the exact feasibility of transportation durations, for example. Small variations in travel time should not be a major point of criticism.

2347

Make sure to only evaluate the travel plan based on the above aspects.

2348
2349

You must not evaluate on the format of the travel plan, as the planner is required to follow a specific format.

2350
2351
2352
2353

No transportation is needed when not moving between cities.

All price is for one person, and all accommodation price is per night.

2354
2355

When evaluating accommodation rules, please adhere to the following principles:

1. Implicit Allowance: Unless a rule explicitly states a prohibition, assume that the activity or feature is permitted. Do not infer restrictions based on the absence of explicit permission.
2. Strict Filtering for Prohibitions: When a user expresses a preference or requirement, strictly filter out any accommodations that explicitly state a prohibition against that preference. Avoid overthinking or applying overly broad interpretations to these prohibitions. Focus solely on direct contradictions.

2365
2366
2367

Planning failures may stem from the planner's limitations in utilizing existing information, or from the incompleteness of the provided context information.

2368
2369

If it is the planner's fault, you should provide feedback on the specific reasons why the plan is invalid.

2370

If it is the fault of the provided context information, you should identify the case as unsatisfiable and provide feedback on what further information was needed to make the plan valid. Or if it repeats the same failure type as previous planning attempts, you should also identify the case as unsatisfiable.

2374
2375

```

2376
2377     Output your critic results in a structured JSON format with two
2378     fields as in the example: (1) decision and (2) feedback.
2379     (1) For decision, it must be valid, invalid, or unsatisfiable.
2380     (2) When the decision is valid, do not provide any feedback. When
2381     it's invalid, enumerate the reasons for your decision. When the
2382     decision is unsatisfiable, it means that the plan cannot be
2383     successfully generated based on the provided context
2384     information mainly due to insufficient information. In this
2385     case, it is not you and the planner's fault, but rather has to
2386     be resolved by collecting more information, so you should
2387     provide feedback on what further information was needed to make
2388     the plan valid.
2389     Keep your output concise and don't include suggestions for the
2390     improvement, focusing on the missing information in the travel
2391     plan or the constraints that are not satisfied.

2392     **** Example 1 ****
2393     Decision: invalid
2394     Feedback: 1. The accommodation choice is missing for Day 1.
2395     2. The plan includes a restaurant choice that is not in the
2396     provided context information.
2397     3. The minimum nights for the accommodation 'Affordable Spacious
2398     Refurbished Room in Bushwick!, Charlotte' is 2, but it is only
2399     booked for 1 night on Day 1.
2400     4. The plan violates the constraint that the mode of transportation
2401     must be self-driving for the entire trip, as a flight is chosen
2402     for Day 1.
2403     5. The city sequence does not make sense.
2404     **** Example 1 Ends ****

2405     **** Example 2 ****
2406     Decision: unsatisfiable
2407     Feedback: The plan is invalid because it does not include any
2408     transportation for Day 1, which is necessary for the trip.
2409     However, this failure was because there is no transportation
2410     information for Day 1 in the provided context information,
2411     hence further information collection is required.
2412     **** Example 2 Ends ****

2413     query: [query inserted here]
2414     context information: [context information inserted here]
2415     constraints: [outputs from Constraint Manager inserted here]
2416     previous planning attempts and your feedback: [previous planning
2417     attempts and corresponding feedback inserted here]
2418     travel plan: [current plan to be validated inserted here]
2419     critic:

```

Prompt used for Search Advisor

```

2420     You are an expert in logical reasoning whose task is to act as a
2421     critic.
2422     You are paired with an assistant who will take actions to collect
2423     information related to transportation, dining, attractions, or
2424     accommodation for planning a vacation trip. Each action by the
2425     assistant only calls one function once, each of which MUST be
2426     one of the following types:
2427
2428     [List of tools inserted here...]
2429     ****

```

2430

2431 Let me also give you an example of a good travel plan, to inform
 2432 you of the output format from the Planner. The symbol '-'
 2433 indicates that information is unnecessary.

2434

[Example plan insterted here...]

2435

2436 You will be given a query and the actions and observations taken so
 2437 far. You are also given previous planning attempts made based
 2438 on the observed information along with the feedback.

2439

These planning attempts have failed and the accompanied feedback
 2439 explains why they failed.

2440

Now your task, as a critic, is to identify any gaps in the
 2441 information collected so far and suggest additional actions to
 2442 gather the necessary information. See if any of the previous
 2443 planning failures are because that was the only possible plan
 2444 outcome given the limited previous information, and the planner
 2445 could have done better only if the assistant had collected more
 2446 information.

2447

Your output is the list of actions that should be taken for further
 2448 comprehensive information collection and potentially to help
 2449 address the previous planning failures. Remember, the actions
 2450 should be one of the specified actions described above, and you
 2451 should not suggest any actions that go beyond the scope of
 2452 those actions or have already been taken.

2453

IMPORTANT NOTES:

2454

1. Your priority is to ensure that all comprehensive information on transportation, dining, attractions, and accommodation are collected and recorded in Notebook so that the Planner can use them.
2. Prevent redundant information gathering. Do not suggest calling actions that would collect information already present in the previously gathered data. If correct actions were taken but the observed information remains insufficient, do NOT repeatedly ask for similar actions until enough information is gathered.
3. If you believe all relevant information has been collected, suggest calling the Planner tool with the query. In this scenario, do not propose further actions, as previous planning failures might stem from the Planner's limitations in utilizing existing information, rather than a lack of it.
4. Use the city name exactly as provided; for instance, "Washington" refers to the one in Seattle, WA, not "Washington D.C". Or do not infer a different city; when calling actions, only use cities directly relevant to the query, and do not include nearby cities with airports or those in the general vicinity.
5. When gathering information on a specific topic from calling an action call, the presence of at least one relevant and satisfying piece of information is considered sufficient, meaning information collection for that topic is successful. It is not necessary for the majority of observed items to satisfy the query's specifications; the existence of a single suitable option is enough. The precise identification of that relevant piece within the observed information are the responsibility of the Planner, not the information extraction process.

2455

Regarding accommodations, please adhere to the following principles:

2456

1. **Implicit Allowance:** Unless a rule explicitly states a prohibition, assume that the activity or feature is permitted. Do not infer restrictions based on the absence of explicit permission.
2. **Strict Filtering for Prohibitions:** When a user expresses a preference or requirement, strictly filter out any

2484
2485
2486
2487
2488

2489 accommodations that explicitly state a prohibition against that
2490 preference. Avoid overthinking or applying overly broad
2491 interpretations to these prohibitions. Focus solely on direct
2492 contradictions.

2493
2494
2495
2496
2497

2498 Remember, you want to efficiently gather all necessary information.
2499 You should not suggest actions that collect information that
2500 goes beyond the scope of the query or that is not relevant to
2501 the query.

2502 Keep your output succinct.

2503 Do not include any Action Number in your suggested actions: for
2504 example, if you suggest 'GoogleDistanceMatrix[Twin Falls, Salt
2505 Lake City, self-driving]', just output it directly, not in the
2506 form of 'Action 1: GoogleDistanceMatrix[Twin Falls, Salt Lake
2507 City, self-driving]'.
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537

2538 F.2 LIVE TRAVEL PLANNING
2539

2540 For live travel planning, instead of the sandbox tools, we use the Google Search based tools to retrieve
2541 live information on flights, accommodations, restaurants, and attractions. For the Search agent, we
2542 use the same prompt as in TravelPlanner, but the list of tools is replaced with those in “Prompt listing
2543 the tools used for live travel planning”. Search Advisor also uses the same prompt as in TravelPlanner,
2544 but the list of tools is replaced with those in “Prompt listing the tools used for live travel planning”.

2545 **Prompt listing the tools used for live travel planning**
2546

2547 (1) GoogleSearchFlight[Origin, Destination, Date]:
2548 Description: A flight information retrieval tool that uses Google
2549 Search.
2550 Parameters:

2551 Origin: The city you'll be flying out from.

2552 Destination: The city you aim to reach.

2553 Date: The date of your travel in YYYY-MM-DD format.

2554 Example: GoogleSearchFlight[New York, London, 2025-10-01] would
2555 fetch flights from New York to London on October 1, 2025.

2556 (2) GoogleDistanceMatrix[Origin, Destination, Mode]:

2557 Description: Estimate the distance, time and cost between two
2558 cities. DO NOT use this tool to find the transportation inside
2559 a city. Don't worry about the transportation inside a city as a
2560 part of your travel planning.

2561 Parameters:

2562 Origin: The departure city of your journey. It must be just a city
2563 name, not other names like airport name, without including
2564 state code, etc.

2565 Destination: The destination city of your journey. It must be just
2566 a city name, not other names like airport name, without
2567 including state code, etc.

2568 Mode: The method of transportation. Choices include 'self-driving'
2569 and 'taxi'.
2570

2571 Example: GoogleDistanceMatrix[Paris, Lyon, taxi] or
2572 GoogleDistanceMatrix[Paris, Lyon, self-driving] would provide
2573 driving distance, time and cost between Paris and Lyon.

2574 (3) GoogleSearchAccommodation[searchQuery]:

2575 Description: Discover accommodations in your desired city using
2576 Google Search.

2577 Parameters: searchQuery - the rephrased query that only includes
2578 necessary details about the accommodation search.

2579 Example: GoogleSearchAccommodation[Find accommodations in Rome from
2580 2025-10-01 to 2025-10-05 for 2 guests. We require
2581 accommodations in the form of private rooms.] would present a
2582 list of accommodations in Rome from October 1 to October 5,
2583 2025, for 2 guests.

2584 (4) GoogleSearchRestaurant[searchQuery]:

2585 Description: Explore dining options in a city of your choice using
2586 Google Search.

2587 Parameters: searchQuery - The rephrased query that only includes
2588 necessary details about the restaurant search.

2589 Example: GoogleSearchRestaurant[Find restaurants in Tokyo. I want
2590 to try Korean and Japanese cuisines.] would show a curated list
2591 of restaurants in Tokyo.

2592 (5) GoogleSearchAttraction[City]:

2593 Description: Find attractions in a city of your choice using Google
2594 Search.

2595 Parameters: City - The name of the city where you're seeking
2596 attractions.

2592
 2593 Example: GoogleSearchAttraction[London] would return attractions in
 2594 London.
 2595
 2596 (6) CitySearch[State]
 2597 Description: Find cities in a state of your choice.
 2598 Parameter: State - The name of the state where you're seeking
 2599 cities.
 2600 Example: CitySearch[California] would return cities in California.
 2601
 2602 (7) NotebookWrite[Short Description]
 2603 Description: Writes a new data entry into the Notebook tool with a
 2604 short description. This tool should be used immediately after
 2605 FlightSearch, AccommodationSearch, AttractionSearch,
 2606 RestaurantSearch or GoogleDistanceMatrix. Only the data stored
 2607 in Notebook can be seen by Planner. So you should write all the
 2608 information you need into Notebook.
 2609 Parameters: Short Description - A brief description or label for
 2610 the stored data. You don't need to write all the information in
 2611 the description. The data you've searched for will be
 2612 automatically stored in the Notebook.
 2613 Example: NotebookWrite[Flights from Rome to Paris in 2022-02-01]
 2614 would store the information of flights from Rome to Paris in
 2615 2022-02-01 in the Notebook.
 2616
 2617 (8) Planner[Query]
 2618 Description: A smart planning tool that crafts detailed plans based
 2619 on user input and the information stored in Notebook.
 2620 Parameters:
 2621 Query: The query from user. Make sure that this is exactly the same
 2622 query given from the user, not a paraphrased one.
 2623 Example: Planner[Give me a 3-day trip plan from Seattle to New
 2624 York] would return a detailed 3-day trip plan.
 2625 You should use as many as possible steps to collect enough
 2626 information to input to the Planner tool.
 2627
 2628 In the input arguments, use the city name exactly as provided; for
 2629 instance, "Washington" refers to the one in Seattle, WA, not
 2630 "Washington D.C". Or do not infer a different city. Only use
 2631 cities directly relevant to the query, and do not include
 2632 nearby cities with airports or those in the general vicinity.
 2633
 2634
 2635

Prompt for live flight search

2636
 2637
 2638 site: www.google.com/travel/flights OR site:
 2639 www.expedia.com/Flights.
 2640 Request: [request from the search agent inserted here]
 2641
 2642 Given the search results, extract all necessary flight information
 2643 and output in the requested format.
 2644 The output should be in a structured format with the following
 2645 columns: FlightNumber, Price, DepTime, ArrTime,
 2646 ActualElapsedTime, FlightDate, OriginCityName, DestCityName.

2646
 2647 Try not to miss any fields. For 'FlightNumber', it's okay to just
 2648 use the airline code (like DL) if inevitable, without the full
 2649 flight number (like DL5375).
 2650 No field should be left blank or None.
 2651
 2652 Prioritize the cheapest flights.
 2653 All price is for one person.
 2654
 2655 When there is no available flight option at all, you must return
 'no information'.
 2656
 2657 Here are the examples of the desired output. Value for each column
 should be clearly separated by a semicolon and a tab.
 2658 === Example 1 begins ===
 2659 FlightNumber; Price; DepTime; ArrTime;
 2660 ActualElapsedTime; FlightDate; OriginCityName;
 DestCityName
 2661 F3502691; 240; 18:48; 20:51; 2 hours 3 minutes;
 2662 2022-03-02; Buffalo; Atlanta
 2663 F3514187; 322; 06:51; 08:40; 1 hours 49
 minutes; 2022-03-02; Buffalo; Atlanta
 2664 F3555201; 265; 12:44; 14:33; 1 hours 49
 minutes; 2022-03-02; Buffalo; Atlanta
 2665
 2666 === Example 1 ends ===
 2667
 2668 === Example 2 begins ===
 2669 no information
 2670 === Example 2 ends ===
 2671
 2672 DO NOT include anything else but only the collected information
 exactly structured as requested above.
 2673 Formatted output:
 2674

Prompt for live accommodation search

2675
 2676
 2677 site: www.expedia.com/Hotels OR site: www.airbnb.com OR site:
 2678 www.booking.com.
 2679 Request: [request from the search agent inserted here]
 2680
 2681 Given the search results, extract all necessary accommodation
 information and output in the requested format.
 2682 The output should be in a structured format with the following
 2683 columns: name, price, maximum_occupancy, rating, city.
 2684 Try not to miss any fields, but if inevitable, it's okay to leave
 2685 the 'maximum_occupancy' and 'rating' fields to be None.
 2686 Prioritize the cheapest accommodations.
 2687
 2688 When there is no available accommodation option at all, you must
 return 'no information'.
 2689 All price is for one person per night.
 2690
 2691 Here are the examples of the desired output. Each field should be
 separated by a semicolon and a tab.
 2692 === Example 1 begins ===
 2693 name; price; maximum_occupancy; rating; city
 2694 Hilton Hotel; 212.0; 2; 3.0; Tucson
 2695 Marriott Marquis; 357.0; 2; 5.0; Tucson
 2696 Green Oasis; 118.0; 2; 3.0; Tucson
 2697 Beacon Grand; 58.0; 2; 3.0; Tucson
 2698 Sunny Cobble Hill; 107.0; 3; 2.0; Tucson
 2699 Hotel Zetta; 231.0; 2; 5.0; Tucson
 2700
 2701 === Example 1 ends ===

```

2700
2701
2702     === Example 2 begins ===
2703     no information
2704     === Example 2 ends ===
2705
2706     DO NOT include anything else but only the collected information
2707         exactly structured as requested above.
2708
2709     Formatted output:
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753

```

Prompt for live attraction search

```

site: www.tripadvisor.com/Attractions
Request: [request from the search agent inserted here]

Given the search results, extract all necessary attraction
information and output in the requested format.
The output should be in a structured format with the following
columns: name, address, phone, website, city. No field should
be left blank or None.
Please try to return at least 6 restaurants.
Prioritize the most popular attractions.

When there is no available attraction option at all, you must
return 'no information'.

Here are the examples of the desired output. Each field should be
separated by a semicolon and a tab.
==== Example 1 begins ====
Name;         Address;        Phone;        Website;        City\n
The Dallas World Aquarium;    1801 N Griffin St, Dallas, TX
75202, USA;    (214) 720-2224;    https://www.dwazoo.com/;
Dallas\n
The Sixth Floor Museum at Dealey Plaza;    411 Elm St, Dallas, TX
75202, USA;    (214) 747-6660;    https://www.jfk.org/;
Dallas\n
Reunion Tower;    300 Reunion Blvd E, Dallas, TX 75207, USA;
(214) 296-9950;    http://www.reuniontower.com/;    Dallas\n
Dallas Museum of Art;    1717 N Harwood St, Dallas, TX 75201,
USA;    (214) 922-1200;    https://www.dma.org/;    Dallas
==== Example 1 ends ====
==== Example 2 begins ====
no information
==== Example 2 ends ====
DO NOT include anything else but only the collected information
exactly structured as requested above.
Formatted output:

```

Prompt for live restaurant search

```

site: www.tripadvisor.com/Restaurants
Request: [request from the search agent inserted here]

Given the search results, extract all necessary restaurant
information and output in the requested format.
The output should be in a structured format with the following
columns: Name, AverageCost, Cuisines, Rating, and City.
For the average cost, if there is no direct price information,
depending on the price descriptions or dollar signs, and the

```

```

2754
2755     living cost of the city, you MUST determine the average cost as
2756     a specific number.
2757     Try not to miss any fields, but if inevitable, it's okay to leave
2758     the 'Rating' field to be None.
2759     Prioritize the most popular restaurants or highly rated restaurants.
2760     Please try to return at least 10 restaurants. If there is a
2761     specific request for cuisines, try to return at least 4
2762     restaurants of each cuisine.
2763
2764     When there is no available restaurant option at all, you must
2765     return 'no information'.
2766     All price is for one person.
2767
2768     Here are the examples of the desired output. Each field should be
2769     separated by a semicolon and a tab.
2770     === Example 1 begins ===
2771     Name;          AverageCost;      Cuisines;      Rating;      City
2772     Coconuts Fish Cafe;    97.0;      Mediterranean; 4.5;
2773     Dallas
2774     1918 Bistro & Grill;    87.0;      BBQ Seafood;   4.4;
2775     Dallas
2776     Yanki Sizzlers;      56.0;      Cafe French;   4.1;      Dallas
2777     Aravali Owls;        29.0;      Italian;       4.7;      Dallas
2778     === Example 1 ends ===
2779
2780     === Example 2 begins ===
2781     no information
2782     === Example 2 ends ===
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807

```

2808 **6 LARGE LANGUAGE MODEL USAGE FOR WRITING**
28092810 In this paper, we used LLMs, specifically Gemini and ChatGPT, strictly only as general-purpose
2811 writing tools. We provided draft text asking the models to correct any grammatical errors, refine the
2812 structure, or reduce the redundancy. All edited text was then manually verified and edited as needed.
2813 The LLMs were not used for generating any new content or references.2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861