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Abstract

Graph neural networks (GNNs) have recently been shown to
be vulnerable to adversarial attacks, where slight perturba-
tions in the graph structure can lead to erroneous predictions.
However, current robust models for defending against such
attacks inherit the transductive limitations of graph convo-
lutional networks (GCNs). As a result, they are constrained
by fixed structures and do not naturally generalize to unseen
nodes. Here, we discover that transductive GCNs inherently
possess a distillable robustness, achieved through a wave-
induced resonance process. Based on this, we foster this reso-
nance to facilitate inductive and robust learning. Specifically,
we first prove that the signal formed by GCN-driven mes-
sage passing (MP) is equivalent to the edge-based Laplacian
wave, where, within a wave system, resonance can naturally
emerge between the signal and its transmitting medium. This
resonance provides inherent resistance to malicious perturba-
tions inflicted on the signal system. We then prove that merely
three MP iterations within GCNs can induce signal reso-
nance between nodes and edges, manifesting as a coupling
between nodes and their distillable surrounding local sub-
graph. Consequently, we present Graph Resonance-fostering
Network (GRN) to foster this resonance via learning node
representations from their distilled resonating subgraphs. By
capturing the edge-transmitted signals within this subgraph
and integrating them with the node signal, GRN embeds these
combined signals into the central node’s representation. This
node-wise embedding approach allows for generalization to
unseen nodes. We validate our theoretical findings with ex-
periments, and demonstrate that GRN generalizes robustness
to unseen nodes, whilst maintaining state-of-the-art classi-
fication accuracy on perturbed graphs. Appendices can be
found on arXiv version: https://arxiv.org/abs/2312.08651

Introduction
In recent years, graph neural networks (GNNs), through the
capabilities afforded by inductive learning, have emerged as
the most potent instruments for node classification tasks.
Nevertheless, earlier transductive models, such as graph
convolutional networks (GCNs) (Kipf and Welling 2017),
have inadvertently introduced vulnerabilities to adversar-
ial attacks within the GNN framework. It has been ob-
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served that perturbed graphs derived from GCNs serv-
ing as surrogate models have the potential to compro-
mise the outputs of inductive GNNs when transferred. In
real-world applications, where trust and accuracy are non-
negotiable (Chen et al. 2021; Nadal et al. 2021; Zhao et al.
2022; Berberidis and Giannakis 2019; Xiao, Chen, and Shi
2019), such vulnerabilities can significantly jeopardize pub-
lic trust (Kreps and Kriner 2020), distort human decision-
making (Walt, Jack, and Christof 2019), and threaten human
well-being (Samuel et al. 2019). Addressing the vulnerabil-
ities introduced by transductive GCNs into the GNNs’ com-
munity is of paramount importance.

Distinct from discrete feature data like images or text,
graph data comprises a connected set of features through
its topological structure. This interconnectedness naturally
encourages the adoption of a global input-output mecha-
nism to establish a learning channel from features to la-
bels, a paradigm referred as transductive learning (Kipf
and Welling 2017; Defferrard, Bresson, and Vandergheynst
2016; Bruna et al. 2013), with GCNs epitomizing this ap-
proach. This very transductive nature of GCNs offers adver-
saries an ideal environment for launching attacks (Liu et al.
2022). Leveraging this global input-output pattern, given
sufficient computation, adversaries can invariably devise
perturbations that are both concealment and effective (Sun
et al. 2022). Given that adversaries exploit vulnerabilities
inherent to transductive models to compromise the GNNs’
communities, the formulation of a more robust transductive
model has ascended as the prevailing defensive approach.

To defense adversarial attacks, early research predomi-
nantly sought to fortify GCN’s tolerance to perturbations
by adversarial training through random edge drops (Dai
et al. 2018). Recently, a shift towards self-supervised train-
ing methods has been observed. These techniques sidestep
the trap set by adversaries, which bait the model into mis-
classifying specific inputs. Instead of singularly focusing on
enhancing the model’s robustness to a given label space,
they aim to expand the GCN’s overall robustness to poten-
tial perturbed graphs. Key representatives of these research
endeavors include: (1) In RGCN (Zhu et al. 2019), the Gaus-
sian distributions are employed to replace the node hidden
representations across each GCN layer, aiming to mitigate
the adversarial modifications’ impact. (2) By introducing a
singular value decomposition (SVD) filter before the GCN



processing, GCN-SVD (Entezari et al. 2020) is designed to
discard adversarial edges from the training dataset. (3) STA-
BLE (Li et al. 2022) introduces enhancements in GCN’s
forward propagation by incorporating functions that sporad-
ically reinstate edges which were approximately removed.
(4) EGNN (Liu et al. 2021) leverages graph smoothing tech-
niques to confine the permutation setting space, effectively
excluding the majority of non-smooth permutations.

However, current research, aiming to improve GCN-
based models into a robust transductive variant against
attacks, inadvertently carries over transductive-introduced
weaknesses (Hamilton, Ying, and Leskovec 2017). Specif-
ically, these models can’t handle unseen nodes and are lim-
ited to fixed structures, lacking generalization. This restricts
their applicability. If adversaries slightly adjust tactics, de-
fenders must retrain their models for safety. The cause is
that GCNs’ vulnerabilities are inherent. To enhance their ro-
bustness, these vulnerabilities require targeted solutions. De-
viating from the context of GCNs could hinder a thorough
analysis of attack mechanisms. This, in turn, would obstruct
the transition from transductive robust models to inductive
ones. Until we harness GCN’s inherent robustness for in-
ductive models, we will be stuck in a cycle of constantly
refining transductive ones to address vulnerabilities.

In addressing this conundrum, our exploration unveiled an
intriguing intrinsic source of robustness within the GCN it-
self. Without resorting to additional designs, merely deepen-
ing the standard 2-layer GCN to a 3-layer structure endows
it with an innate (albeit partial) robustness. Importantly, the
mechanism underpinning this robustness can be distilled. By
purposefully fostering this intrinsic mechanism, it has paved
the way for us to architect a robust inductive model. Em-
ploying this approach serves a dual purpose: On one hand, it
facilitates a precision-oriented confrontation against the per-
turbations devised specifically by adversaries for transduc-
tive structures, ensuring the efficacy of our defensive strate-
gies. On the other hand, it enables us to integrate this robust-
ness mechanism into inductive frameworks, thereby achiev-
ing a seamless melding of inductiveness and robustness.

Specifically, we demonstrate that the vibrations of node
signals within the GCN-driven message passing (MP) are
equivalent to the edge-based waves, formulated by wave
equations (Friedman and Tillich 2004; Shatah and Struwe
1993). Given this equivalence, it follows that GCNs inher-
ently possess the potential for resonance (Kovalyov 1989),
allowing them to harness the natural advantages of waves
in defending against perturbations (Blas and Jenkins 2022).
Then, we introduce a mathematical definition for the inten-
sity of such resonance in GCNs. This definition, which out-
lines the scope and weights of a node’s connections to its
neighbors, concurrently adheres to four principles: univer-
sality, adaptation via MP, node-independence, and topolog-
ical correlation. Subsequently, we demonstrated that for 3+
layer GCNs, an invariant mapping exists, translating GCNs’
outputs into resonance intensity, manifesting as nodes cap-
turing their surrounding local weighted structure.

Informed by these insights, we introduce the Graph
Resonance-fostering Network (GRN) for inductive learning.
The core of GRN is that it distills the structure resonating

with nodes as local resonance subgraphs. Then, within this
subgraph, GRN fosters the resonance by embedding both
the node’s signals and the signals transmitted through edges
as central node’s representation. This embedding approach
is generalizable across graph structures. If the surrounding
topology of a node (with unseen ones) can be clearly de-
termined to distill the local resonance subgraph, robust and
inductive graph learning is achieved. Our contributions are:

• We propose the first inductive and robust GNN.
• We prove that a 3-layer GCN inherently possesses an dis-

tillable robustness.
• We prove the equivalence between GCN-driven signal vi-

brations and edge-based waves.

Preliminaries
Notations We consider connected graphs G = (V, E) con-
sisting N = |V| nodes. Let A ∈ {0, 1}N×N be the ad-
jacency matrix. Let generic symbol L be the Laplacian in
its broadest sense. The feature and one-hot label matrix are
Z ∈ RN×d0 and Y ∈ RN×dL respectively. The edge con-
nected nodes vi and vj is written as (vi, vj) or (vj , vi). The
neighborhood Ni of a node vi consists of all nodes vj for
which (vi, vj) ∈ E . Let degi be the degree of node vi. The
feature vector and one-hot label of node vi are zi and yi.

GCN Under the topology L, with Z as the input, the out-
put at the k-th layer of a GCN is denoted as M(Z, k;L).
The k-th parameter matrix of M is W(k) ∈ Rdk×dk+1 .
Z(k) = [z

(k)
1 , . . . , z

(k)
N ] denotes the features in k-th MP.

Wave Equation The edge-based wave equation intro-
duces a relationship between a graph-based signal g =
WAVE(Z, k;L) and its topological structure. Let c be a con-
stant, it is defined as ∂2g

∂k2 = −Lkg · c (Friedman and Tillich
2004). Herein g can be instantiated as any discernible signal.

3-layer GCN Possesses Adversarial
Robustness via Wave-induced Resonance

Equivalence of GCN-driven MP and Wave Equation
Here we demonstrate that the signal vibrations driven by
GCNs, are equivalent to waves on graph topologies and can
be characterized by nonlinear wave equations.

Theorem 1. Let M(Z, k;L) and WAVE(Z, k;L) denote the
signals of the k-th MP and k-th wave respectively, under
the topological structure represented by L. It is established
that for the given k and M(·), there exists WAVE(·) satisfies
M(Z, k;L) = WAVE(Z, k;L),∀L ∈ L̂, where L̂ are the
Laplacian matrices of all attribute graphs.

This study draws an analogy between the node sig-
nals in GCN-driven MP and waves, considering edges as
the transmission medium. Research indicates that in sys-
tems producing waves, resonance can arise between waves
and their medium (Ahmad et al. 2023; Bykov, Bezus, and
Doskolovich 2019). Building on this understanding, we can
reaffirm our empirical observations about the GCN train-
ing pattern: in non-adversarial contexts, GCNs converge to



the most natural, or congruent with ground truth, signal MP
paradigm during training. Under this premise, the messages
transmitted by nodes and edges in the graph manifest a nat-
ural coupling state, maintaining a benign mapping relation-
ship M : G → Y. The key to optimizing M is the reso-
nance between node signals Z(ℓ) and edge signals E(ℓ). In
adversarial situations, adversaries manipulate node signals
by rewiring edges, which inadvertently induces unnatural,
i.e., noncongruent with ground truth, MP patterns. Under
this scheme, the benign resonance is disrupted, resulting in
a malignant mapping relationship M : G′ → Y′, where G′

and Y′ is the perturbed graph and label, respectively.

Mathematical Definition of Resonance in GCN Main-
taining benign resonance becomes an intuitive defensive
mechanism as it intrinsically resists unnatural perturbations.
To actualize control over this resonance, thereby purpose-
fully fostering resonance within the GCN, we subsequently
delineate a detailed definition of this resonance. Thus, this
definition should comply with the following conditions: 1)
Every node within a graph should possess a computable
resonance intensity, 2) the resonance intensity of all nodes
should evolve in accordance with MP, 3) each node should
maintain an independent resonance intensity, and 4) the
stronger a node’s connection to its surrounding topology, the
greater its perceived resonance intensity.

To devise a methodology compliant with the desired con-
ditions, we consider node vi and utilize its latent representa-
tion (Kula 2015) z̄(k)i =

∑
j z

(k)
i,j to quantify the intensity of

the node signals. Furthermore, we use Ti, the count of edges
among nodes in Ni, to measure the connectivity strength
specific to the edges at the given nodes. Then, we use the
total number pi =

∑
j A

2
i,j of walks of length 2 originat-

ing from vi to any node in G, to quantity the magnitude of
connectivity density that vi exhibits in the structure.

Accordingly, we propose the following definition to quan-
tify the resonance intensity at node vi:

Definition 1. The resonance intensity of vi on k-th MP is

R(vi; k)
def.
= z̄

(k)
i Ti + 2pi + 8degi. (1)

The unique of defining resonance intensity can be articu-
lated as follows: it not only allows for an interpretable quan-
tification of the resonance on different nodes, but it is also
directly observable within MP. This implies that under such
a definition, the resonance intensity of any node at any given
MP epoch on a graph can be independently calculated, ob-
viating the need for the GCN computational paradigm.

Resonance arises in 3rd MP Definition 1 facilitates the
quantification of resonance for any signal function on any
graph, irrespective of whether or not it is driven by GCN.
Nonetheless, an intriguing finding has been proven: the wave
system constructed by GCN inherently and involuntarily
arises resonance, which is outlined in the theorem:

Theorem 2. Let z̄(k)i be the latent signal formed by GCN-
driven MP, we have:

R(vi; k) ∝ 64z̄
(k+3)
i − 32. (2)

Theorem 2 unveils an intriguing phenomenon: for k ≥ 3,
there subsists an invariant mapping, which transposes the
GCN-driven signal into a resonance intensity that bears no
correlation with the GCN paradigm. Given that Definition 1
has established the resonance intensity as a measure of the
coupling strength between nodes and structure within the
graph, we can thus characterize it as the degree of coupling.
Consequently, it can be asserted that prior to 3rd MP itera-
tion, the GCN appears to have yet to delve into the coupling
paradigm between nodes and structure within the graph.
However, subsequent to the 3rd MP, due to the persistent
presence of the invariant mapping, it can be construed that
the GCN has fortuitously assimilated the coupling paradigm
within the graph during the 3rd MP, and perpetuates this
paradigm into subsequent MPs.

Vast Perturbation Search Space of 3-layer GCN In light
of the current absence of an effective method for quantifying
the combined adversarial robustness of a specific graph and
a GCN learning from said graph, we propose an intuitive
approach. For a graph G, comprised of |V| edges and rep-
resented by the adjacency matrix A, and a GCN M with
K layers, where the perturbation budget is denoted as r,
the number of matrix multiplication-based forward propa-
gations required by the attack model can be construed as the
highest attack cost. In this context, the number of subgraphs
is independent of node features, hence we employ A as the
independent variable for the attack cost function, denoted as
Cost(A, r,K). We then present the following theorem:
Theorem 3. For any specified graph with a node set V and
an adjacency matrix A, in conjunction with a K-layer GCN,
and a maximum perturbation r, the following holds:

Cost(A, r,K) ≤

 C(|V|, r), if K < 3

(K − 1)C
(

|V|K−1

2
, r
)
, otherwise,

(3)

where C(·, ·) denotes the number of combinations.
It’s revealed that adversaries face the same computational

cost for matrix multiplication-based forward propagations
when K = 1 or 2. However, for K ≥ 3, the cost dramatically
increases, largely due to C( |V|K−1

2 , r). As an example, with
the Cora dataset (|V| = 5429) and a 1% perturbation rate
(r = 54), the cost for K = 3 becomes exponentially larger.
Thus, attacking a 3-layer GCN presents a vast search space
for adversaries. This insight extends Theorem 2’s real-world
applications and our previous findings: a 3-layer GCN can
naturally create resonance robustness. With our defined res-
onance, we can further boost this robustness proposefully.

Graph Resonance-fostering Network
Principle Overview We employ GRN to enhance the res-
onance of the GCN. The underlying concept of the GRN is
articulated as follows. Definition 1 exhibits that for a node
vi, there exists a local graph structure that resonates, known
as the local resonance subgraph (LRS) for node vi, denoted
as Gi = (VGi

, EGi
), used to represent the maximal sub-

graph structure that node vi can capture. During end-to-end
training, both the node signals Z(ℓ), and the signals transmit-
ted through edges E(ℓ) concurrently vibrate within the LRS.



Consequently, for vi, if a learnable parameter W(ℓ) capa-
ble of jointly embedding MP’s result AGi

Z
(ℓ)
Gi

, and E
(ℓ)
Gi

,
into vi’s output representation, this aggregation intention-
ally accomplishes a learnable resonance, generating a local-
level embedding. This identical aggregate pattern is applied
across all nodes to facilitate a mapping, thereby achieving a
global-level forward propagation within the GRN.

In summary, a single forward propagation of the GRN is:

z
(ℓ+1)
i = σ(MEAN(CONCAT(AGi

Z
(ℓ)
Gi

,E
(ℓ)
Gi

)W(ℓ))). (4)

Next, we provide explicit definitions for Gi and Eℓ
Gi

.

Gi: Local Resonance Subgraph As per Definition 1,
LRS comprises three components: 1) edges formed amongst
all first-order neighbors, as counted by Ti, with these edges’
weights equal 1; 2) edges formed between it and all 2nd-
(inevitably includes 1st-) order neighbors, as counted by
pi, with these edges’ weights equal 2; 3) edges between
it and all first-order neighbors, as counted by degi, with
these edges’ weights equal 8. Consequently, the LRS can be
viewed as a weighted graph, in which the weights of edges
serve as attention for the joint combination of Z(ℓ) and E(ℓ).
An illustrative example of the LRS is presented in Figure 1.

Counted by degi

Weight=8

Counted by pi

Weight=2

Counted by Ti

Weight=1 Weight=2+8=10

Graph

Weight=1+2=3

LRSThree components of LRS
Definition.1 Combine

Figure 1: An illustration of local resonance subgraph.

E
(ℓ)
Gi

: Edge-transmitted Signals In the MP driven by ad-
jacency matrices, only signals at the nodes are observable,
while the signals transmitted across each edge remain imper-
ceptible. To ascertain the quantified signals on every specific
edge within Gi, we first obtain the global edge-transmitted
signals Eℓ

G . Then, Eℓ
Gi

is subsequently derived through a
sampling procedure on Eℓ

G using the edge indices within Gi.
Specifically, within Eℓ

G , the edge-transmitted signals on
(vj , vk) are denoted as eℓj,k. For ℓ > 0, eℓj,k is defined
via a sequential procedure: 1) The edge (vj , vk) in G is
deleted, producing a new graph Gj,k with its adjacency ma-
trix AGj,k . 2) A new forward propagation is executed in the
same layer on Gj,k, obtaining a feature matrix Z

(ℓ)

Gj,k . This
matrix does not contain any messages transmitted through
the edge (vj , vk). Consequently,

Z
(ℓ)

Gj,k = AGj,kZ(ℓ−1)W(ℓ−1). (5)

The feature of node vj in Z
(ℓ)

Gj,k denoted as z
(ℓ)

Gj,k,j
, is ob-

tained. 3) In Gj,k, there is no edge between the nodes
(vj , vk). Hence, the feature transmitted from node vk to vj

(i.e., e(ℓ)j,k) is calculated by subtracting the feature obtained

through the re-propagation on Gj,k (i.e., z(ℓ)
Gj,k

i ,j
) from the

original feature (i.e., z(ℓ)). Similarly, the signal transmitted
through the pair (vj , vk) could be interpreted as the aver-
age of the mutually transmitted signals. At ℓ = 0, since MP
has not been initiated, e(ℓ)j,k would ideally be 0. For end-to-
end training, it is defined as a random infinitesimal value. In
conclusion, E(ℓ)

Gi
is determined as

E
(ℓ)
Gi

= CONCAT

({
e
(ℓ)
j,k : vj , vk ∈ Gi

})
,

s.t. e(ℓ)
j,k =

 z(ℓ) −
z
(ℓ)

Gj,k,j
+z

(ℓ)

Gj,k,k

2
, if ℓ > 0

ϵ, where ϵ ∼ U(0, 1× 10−7) , if ℓ = 0
. (6)

Figure 2 illustrates the computation of e(ℓ)j,k.
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Figure 2: Schematic diagram illustrating the computation of
the edge-transmitted signal between nodes vj and vk.

Simplifying the Computational Overhead of E(ℓ)
Gi

Equa-
tion (5) explicates the method of re-propagation on Gj,k.
Given that there are |V| ways to choose (vj , vk), it neces-
sitates the computation of |V| matrix multiplications (where
Z

(ℓ−1)
W = Z(ℓ−1)W(ℓ−1) remains the same for all (vj , vk)

selections and can be considered a constant matrix), thereby
constituting the primary computational cost of E(ℓ)

Gi
. Here,

we provide a computational method equivalent to Equa-
tion (5), reducing the |V| times to once.

Proposition 1. By indexing and rearranging Z
(ℓ−1)
W by rows

j and k to obtain a matrix Q(Z
(ℓ−1)
W ; j, k) ∈ RN×dℓ−1 ,

Z
(ℓ)

Gj,k = AZ
(ℓ−1)
W −Q

(
Z

(ℓ−1)
W ; j, k

)
. (7)

Evidently, a single matrix multiplication, i.e., AGZ
(ℓ−1)
W ,

is sufficient to iterate over all (vj , vk) and yield the results.

Learning the Parameters Each layer of GRN only con-
tains trainable parameters W(ℓ), and each has a distinct out-
put representation Z(ℓ). Thus, in accordance with the re-
quirements of the downstream task, GRN can accommodate
either supervised or unsupervised loss functions, thereby
tuning their weight matrices. Specifically, we denote the dis-
crepancy function as D(·, ·). In semi-supervised scenarios,
the loss function is Js(z

(K)
i ) = D(z

(K)
i ,yi); in unsuper-

vised scenarios (Müller 2023), Ju(z
(K)
i ) = D(z

(K)
i , {yj :

vj ∈ Ni}). Depending on the downstream applications,
D(·, ·) can take various forms, such as cross-entropy, etc.
The general workflow of GRN is illustrated in Figure 3.
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Figure 3: The general workflow of GRN.

Experiments
Datasets Our findings are evaluated on five real-world
datasets widely used for studying graph adversarial at-
tacks (Sun et al. 2020; Liu et al. 2022; Zhu et al. 2019; En-
tezari et al. 2020; Li et al. 2022), including Cora, Citeseer,
Polblogs, and Pubmed.

Baselines Comparison defending models. We compare
GRN with other defending models including: 1) RGCN
which leverages the Gaussian distributions for node rep-
resentations to amortize the effects of adversarial attacks,
2) GNN-SVD which is applied to a low-rank approxima-
tion of the adjacency matrix obtained by truncated SVD,
3) Pro-GNN (Jin et al. 2020) which can learn a robust
GNN by the intrinsic properties of nodes, 4) Jaccard (Wu
et al. 2019) which defends attacks based on the mea-
sured Jaccard similarity score, 5) EGNN (Liu et al. 2021)
which filters out perturbations by l1- and l2-based graph
smoothing. Attack methods. The experiments are designed
under the following attack strategies: 1) Metattack (Zügner
and Günnemann 2018), a meta-learning based attack, 2)
CLGA (Sixiao et al. 2022), an unsupervised attack, 3) RL-
S2V (Dai et al. 2018), a reinforcement learning based attack.

Pinpointing the Layer of Resonance In Theorem 2, we
establish an equivalence relation between the k-th and the
k+3-th layer’s output latent representations, as derived from
Equations (1) and (2). This elucidates that when k = 0, the
3-th layer involuntarily captures local structures, thereby in-
ducing resonance. To facilitate experimental variable con-
trol, we first demonstrate the equivalence relation under
varying “gap layer numbers” (denoted as kgap). If the equiv-
alence between Equations (1) and (2) only holds when
kgap ≥ 3, it substantiates the validity of Theorem 2. Specifi-
cally, we first train a 5-layer GCN, then obtain the resonance
intensity denoted as Rdef (k) = z̄

(k)
i Ti + 2pi + 8degi, and

the actual observed signal denoted as Rreal(k + kgap) =

64z̄
(k+kgap)
i −32, for each epoch. Given these observational

variables, we delineate their transformations over the learn-
ing process using lists {Rdef (k)} and {Rreal(k+kgap)} re-
spectively. Each list chronicles its corresponding variable’s
fluctuations across all epochs. Subsequently, we standardize
(using the standardize function STD(·)) the sequences under
different kgap and calculate the absolute difference to obtain

a difference sequence:

dk,kgap = |STD({Rdef (k)})− STD({Rreal(k + kgap)})|. (8)

The parameter dk,kgap
, serving as an indicator variable,

accurately encapsulates the discrepancy between Rdef (k)
and Rreal(k+kgap). The experimental results are illustrated
in Figure 4. Owing to the large number of nodes, we dis-
play the mean value (central line) and standard deviation
(shadow areas) of all nodes. As epochs progress, d0,3 grad-
ually converges to zero. After the initial several epochs, it
significantly diverges from d0,1 and d0,2. This validates the
intriguing phenomenon mentioned in Theorem 2: a correla-
tion has been established between the signal at the 3-th layer
and the graph’s initial signal and structure. Subsequent ex-
perimental results echo the aforementioned findings, thereby
affirming the correctness of Theorem 2 when k > 0.
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Figure 4: Values of dk,kgap under different k and kgap set-
tings. The dk,kgap encapsulates the resonance situation be-
tween the k-th layer and the k + kgap-th layer. A smaller
value indicates a stronger resonance.

Attack Success Rate Cliff-like declines on 3-layer GCN
Intuitively, the complexity of an attack tends to increase with
the number of GCNs’ layer. Observing the pattern of attack
success rate (ASR) declines as the number of GCN layers
increases helps validate our claim that the 3-layer GCN, de-
rived from resonance, can significantly enhance robustness.
Specifically, we start by initializing 10 GCNs with the num-
ber of layers ranging from 1 to 10. Next, we conduct ex-
periments on 4 datasets using 3 typical attacks, setting the
perturbation rate uniformly at 20%. We then train a surro-
gate model for each GCN separately, placing perturbations
in the dataset, and clearing these perturbations after each at-
tack. We repeat each attack five times and report the average
ASR accuracy (depicted by the lines) and variation range
(represented by the shaded areas). The results, as shown in
Figure 6, clearly reveal a steep drop in ASR at the 3-layer
GCN. However, further layer addition seems unable to sig-
nificantly reduce the ASR, as the additional layers maintain
the same resonance pattern as the 3-layer GCN to achieve
adversarial robustness. These findings articulate the concept



(a) Visualizations of embedding of G, GLRS and Grandom.
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(c) Classification accuracy of G, GLRS and Grandom using MG under different perturbation rates.

Figure 5: Experimental results of LRS-constructed graph GLRS in relation to G

of distilling the resonance from GCNs and fostering this res-
onance to design a inductive approach.
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Figure 6: GCN’s layer count and ASR relation.

How Robust of LRS-constructed Graphs Derived from
a transductive model, the LRS captures distinct resonance
regions and transforms a localized, unweighted graph (also
perceivable as a graph with unitary weights) into a weighted
one. The implementation of the LRS within the GRN en-
ables the demarcation of a learnable resonance scope for in-
ductive learning. Consequently, it becomes essential to vali-
date the efficacy of the LRS through its embedding precision
within the transductive model.

We initiate by presenting results obtained under non-
adversarial conditions. We sum the LRS of all nodes in G
and apply min-max scaling to all weights, thus creating a
global weighted graph GLRS . Then, we train a standard 2-
layer GCN MG on Cora dataset (denoted as G) and visu-
alize its well-trained representations. Then, we feed GLRS

into MG to generate its visualization. Lastly, for compar-
ison, we create a random-weighted graph Grandom whose
edge distribution is the same as G, and input it into MG to
get the corresponding visualization. As Figure 5(a) shows,
under identical weights, the representations of different cate-
gories in GLRS are tighter than those in G. This suggests that
introducing LRS brings beneficial global weights, which en-
hance the model’s performance in non-adversarial scenarios.

Then, we explored the similarity between G and GLRS .
Using strength distribution, akin to degree distribution for
unweighted graphs (Zügner, Akbarnejad, and Günnemann
2018), we found the two weighted graphs are notably sim-
ilar. Figure 5(b) confirms this, showing a stark difference
from Grandom. Therefore, GLRS maintains the traits of G.

We next assessed the classification accuracy of GLRS

under adversarial attacks using varying Metattack pertur-
bation rates pr = r

|E| . Figure 5(c) shows that as pr in-
creases, GLRS’s accuracy consistently edges out G. This sug-
gests that the LRS introduces a resonance in the transductive
model, marginally boosting its adversarial robustness.

Generalizable Robustness of GRN We assess the adver-
sarial robustness of the 3-layer GRN under generalization
demands by comparing its accuracy against other baselines
on perturbed graphs. We partition a subset of the dataset as
training set with proportions (also named “seen” rate) sr as
20%, 40%, and 60%. The data within these proportions are
deemed “seen” by the GRN, while the remaining data is cat-
egorized as “unseen”. Utilizing Metattack as our attack ap-
proach, we adopt the standard 2-layer GCN as the surrogate
model. By adjusting pr, we derive the corresponding per-
turbed graphs. Then, we evaluate the classification perfor-
mance of the baselines on these graphs, placing an emphasis
on the accuracy upon model convergence. For each setting,



Dataset pr (%) Defense Baselines GRN

RGCN GNN-SVD Pro-GNN Jaccard EGNN sr=20% sr=40% sr=60%

Cora

0 83.49±0.57 81.14±0.79 85.01±0.40 81.74±0.36 85.00±0.40 83.74±1.68 86.79±2.27 87.75±0.93
5 77.20±0.47 78.29±0.63 80.10±0.22 80.56±1.30 82.24±0.49 81.48±0.83 86.04±3.15 86.24±1.54

10 72.65±0.40 70.81±1.77 74.45±0.28 75.07±1.28 76.38±0.35 79.51±1.62 81.38±2.58 82.03±1.48
20 59.31±0.27 56.67±1.22 64.68±0.75 73.54±0.94 69.82±0.71 73.79±1.91 74.14±1.93 74.81±1.52

Citeseer

0 71.81±0.71 70.42±0.39 74.94±0.40 73.82±0.56 74.92±0.66 75.69±0.69 78.19±1.30 83.26±0.73
5 71.22±0.61 68.86±0.47 72.45±0.88 71.41±0.65 73.60±0.45 75.40±0.95 77.54±1.04 81.66±0.70

10 67.53±0.60 68.70±0.89 70.16±1.05 70.09±0.48 73.66±0.37 73.81±1.10 77.04±1.51 80.32±0.49
20 63.20±1.70 57.95±1.48 55.84±1.28 67.22±1.32 65.91±1.20 71.06±1.20 72.72±1.28 77.21±0.64

Pubmed

0 84.57±0.39 83.25±0.35 84.96±0.08 84.87±0.10 85.94±0.10 80.26±0.43 85.51±0.66 87.27±0.67
5 81.25±0.50 82.90±0.26 83.00±0.10 82.32±0.11 83.89±0.09 77.86±0.35 81.92±0.59 83.36±0.62

10 78.96±0.43 80.35±0.21 80.82±0.20 80.77±0.11 82.13±0.15 76.62±0.55 79.29±0.60 80.99±0.58
20 71.33±0.40 73.57±0.15 74.16±0.16 73.41±0.12 76.01±0.19 74.98±0.64 76.87±0.60 77.15±0.56

Polblogs

0 94.87±0.19 95.08±0.22 95.45±0.12 95.03±0.57 95.70±0.34 95.42±0.56 94.88±0.43 94.97±0.31
5 73.28±0.18 88.86±0.58 90.98±0.69 90.97±0.61 89.97±1.25 90.18±0.43 91.22±0.38 89.37±0.46

10 70.91±0.37 80.38±0.85 85.60±1.08 85.93±1.39 83.66±1.81 86.30±0.70 85.43±0.68 85.07±0.54
20 57.97±0.41 55.33±2.07 73.52±0.53 70.47±1.27 75.87±0.88 82.03±0.79 81.96±0.72 81.56±0.18

Table 1: Classification accuracy (%) on the perturbed graph. pr is the perturbation rate and sr is the “seen” rate.

we executed 10 iterations, tabulating both the average out-
come and its variability. Table 1 reports the results.

From the data, both clean and perturbed graphs show
GRN with a sr = 60% generally surpasses the baseline in
accuracy. There are three exceptions: 1) For the Pubmed
dataset at pr = 10%, this is due to EGNN using graph
smoothing to enhance adversarial robustness. In this case,
perturbations may be more pronounced in a certain area, and
EGNN could leverage this by smoothing concentrated per-
turbation patterns. However, these incidents are rare, and as
pr increases, GRN’s accuracy returns to its peak. 2) With the
Polblogs dataset at pr = 0%, GRN is slightly behind EGNN
by 0.28%. Yet, as pr rises, the decline in GRN’s accuracy
is the least noticeable among all baselines, ensuring its top
position. 3) An intriguing pattern emerging from the Pol-
blogs dataset is the non-proportional relationship between
the GRN’s sr and its accuracy. The peculiarity of the Pol-
blogs dataset is that its nodes lack intrinsic features. Typi-
cally, scholars have used node degrees as proxies for these
absent attributes. This substitution results in the inherent at-
tributes of Polblogs leaning towards uniformity. Expanding
the training set’s scale exacerbate the oversmoothing phe-
nomenon, culminating in diminished accuracy.

Ablation Studies GRNs combine edge-transmitted signal
E

(ℓ)
Gi

and node signal Z(ℓ)
Gi

for node vi’s representation. We
initiate an ablation study to delve into this process. First,
we embed only Z

(ℓ)
Gi

, naming the model GRNZ. This ap-
pears similar to a 2-depth GraphSAGE with mean aggre-
gation, indicating potential vulnerability to adversarial at-
tacks. We then examine the combination order of E(ℓ)

Gi
and

Z
(ℓ)
Gi

. The default GRN order is GRNE,Z. We test GRNZ,E

(reversed order) and GRNshuf (shuffled rows). Results (Ta-
ble 2) show GRNZ underperforms, especially in adversarial
settings, emphasizing the importance of co-embedding both

signals. Precisions of GRNZ,E, GRNE,Z, and GRNshuf are
comparable due to the edge-transmitted signal, which, com-
bined with the node signal through shared parameters, re-
sults in consistent performance regardless of order. This sug-
gests that GRN has the capability to recognize a latent graph
structure, wherein edge-transmitted signals function as la-
tent node signals, contributing to adversarial robustness and
insensitivity to signal order.

D
at

as
et

pr (%) Standard Ablated models

GRNE,Z GRNZ,E GRNshuf GRNZ

C
or

a

0 87.75 87.14±0.81 87.28±0.92 87.74±0.72
5 86.24 86.18±0.75 86.34±0.98 85.56±0.87
10 82.03 82.81±0.84 82.54±1.05 79.07±0.90
20 74.81 74.53±0.80 74.42±1.36 63.54±1.30

C
ite

se
er 0 83.26 83.07±0.64 83.52±0.92 82.23±0.97

5 81.66 81.49±0.71 81.45±0.95 79.47±1.10
10 80.32 80.10±0.65 80.46±1.17 74.39±1.44
20 77.21 76.95±1.26 76.84±1.53 69.05±1.86

Table 2: Classification accuracy (%) of ablated models.

Conclusions
We addressed critical concerns surrounding the transductive
nature of existing robust graph learning models. We began
by establishing the equivalence between GCN-driven MP
and edge-based waves. Subsequently, we demonstrated that
a 3-layer GCN capitalizes on the unique resonance intrin-
sic to waves to achieve robustness. Delving deeper, we for-
malized this resonance as a coupling between a node and its
surrounding local structure. We then introduced an inductive
graph learning model, GRN. Experimental results not only
corroborated our theoretical insights but also highlighted the
exemplary robustness of the proposed GRN model.
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Proofs
Proof of Theorem 1 Node signals vibrate from high to
low dimensions during MP, which is implemented through
embedding. To ensure the uniformity of node signal dimen-
sions during the MP process, we introduce a invertible trans-
fer function, denoted as Td0 : Rdk → Rd0 ,∀dk ≤ d0,
to standardize the dimensions of Z(ℓ) and Z(0). This func-
tion can extend the process of the k-th MP to Z(k−1) MP−→
Z(k)

Td0−→ Z̄(k), where Z̄(k) = [Z(k)|0N×(d0−dk)]. This pro-
cess can be interpreted as all embeddings induced by MP are
completed in Rd0 . i.e., embedding into dk dimensions at the
k-th MP, and the subsequent d0 − dk dimensions collapse
to zero. Indeed, with this approach, MP can be viewed as
signal propagation in a space of equal dimensions.

The edge-based Laplacian wave equation is (also intro-
duced in main text):

∂2g

∂ℓ2
= −Lℓg · c, (9)

where c is a constant. In this context, we instantiate g as the
signal Z̄(ℓ). Then we define c as a signal amplitude matrix:

Definition 2. The amplitude in k-th MP is Sk ∈ Rd0×d0

represents the transmission amplitude of signals in different
dimensions. It is a variable matrix that defines the adjustable
parameters of the graph-based function at different times. It
performs an equal-dimensional transformation of the signal
through right multiplication.

The initial speed of the first-hop MP can thus be denoted
as S0. Consequently, we derive that ∂2Z̄(ℓ)

∂ℓ2 = LℓZ̄(0)Sℓ.
Hence, the element-wise fluctuation speed [1] of the signal
Z̄(ℓ) , denoted as Vk ∈ RN×d0 , can be described, and it has
the relationship

Vℓ =
∂Z̄(ℓ)

∂ℓ
= LℓZ̄(0)

∫
Sℓdℓ,

∂Vℓ

∂ℓ
= LℓZ̄(0)Sℓ. (10)

We regard Z̄(ℓ) as a sampling within the continuous signal
with a minimal step h, the wave described by Z̄(ℓ) can thus
be formalized as

Z̄(k+h) = Z̄(k) + hVk,Vk+h = Vk + hLkZ̄(0)Sk. (11)

One may write

Z̄(k+h) = Z̄(k) +Vk−h + LkZ̄(0)Sk−h

= Z̄(k) +Vk−2h + LkZ̄(0)Sk−2h + LkZ̄(0)Sk−h,
(12)

and this discrete representation iterating with a step size of
h can be written in a continuous expression:

lim
h→0

Z̄(k+h) = Z̄(k) +V0 + LkZ̄(0)

∫ k−1

1

Sℓdℓ

= Z̄(k) + LkZ̄(0)

(∫ 1

0

Sℓdℓ+

∫ k−1

1

Sℓdℓ

)
= Z̄(k) + LkZ̄(0)

∫ k−1

0

Sℓdℓ. (13)

In order to establish a direct correlation between Z̄(k+h)

and Z̄(0), instead of via a chain-like propagation through
Z̄(k), Z̄(k−h), . . ., we introduce the Moore-Penrose (MP)
pseudoinverse [2] to simplify Equation (12). Specifically, we
introduce a dimension matrix Ck ∈ Rd0×d0 , which is asso-
ciated with Sk, calculated by

Ck =
(
LkZ̄(0)

)†(
LkZ̄(k) + LkZ̄(0)

∫ k−1

0

Sℓdℓ

)
.

(14)
Then, a direct connection between Z̄(k+1) and Z̄(0) can be
obtained as

Z̄(k) = LkZ̄(0)Ck, (15)

which delineates the general term formula for equal-
dimensional waves Z̄(ℓ). Given that Zℓ = T −1

d0
(Z̄(ℓ)),

the proposition henceforth is such that, if one were to
establish the validity of T −1

d0
(LkZ̄(0)Ck), signifying that

a Ck exists that would embedding the trailing d0 − dk
columns of LkZ̄(0) to be minimal value matrices (denoted
as Tdk|0 = [Tdk

|0N×(d0−dk)]), then a inverse mapping
could be constructed that would allow for the transition
from equal-dimensional waves Z̄(ℓ) to unequal-dimensional
waves Z(ℓ). To address this problem, we split Ck into two
segments: a left d × (dk) matrix Ck,L and a right d ×
(d0 − dk) matrix Ck,R. Given that, we have: LkZ̄(0)Ck =

[LkZ̄(0)Ck,L|LkZ̄(0)Ck,R]. Since Z̄(0) = Z(0), it thus
holds that Z̄(0) is of full column rank. Consequently, we
may conclude that for any arbitrary real matrix Tdk

, there
exist Ck,L such that LZ̄(0)Ck,L = Tdk

, while supporting
LkZ̄(0)0N×(d0−dk) = 0N×(d0−dk) holds. Therefore, there
exists a matrix

Ck = [Ck,L|0N×(d0−dk)], (16)

such that LZ̄(0)Ck = [Tdk
|0N×(d0−dk)] = Tdk|0, thereby

confirming the validity of T −1
d0

. Hence, Equation (15) can be
expressed inversely as

Z(k+1) = T −1
d0

(Z̄(k+1)) = LkZ(0)T −1
d0

(Ck) = LkZ(0)Ck,L.
(17)

Taking into account the dimension of variation under the
wave, and the independent amplitude correlation when the
signal fluctuates once, we apply rank-η truncated singu-
lar value decomposition (η-TSVD) [3] to Ck,L to approxi-
mately obtain k amplitude-correlated matrices. Given ∀d0 ≤
η ≤ dk, η-TSVD decomposes Ck,L as SVD

(η)
T (Ck,L) =

UkΛkVk, where Uk ∈ Rd0×η , Λk ∈ Rη×η , and Vk ∈
Rη×dk are matrices whose columns are the first η left singu-
lar vectors, the first η singular values, and the first η right
singular vectors of the Ck,L, respectively. We denote: 1)
UkΛk = Ĉk−1 ∈ Rd0×η; 2) Ûk−1, Λ̂k−1 and V̂k−1 as
the same of the above definitions; 3) Ĉk−2 = Ûk−1Λ̂k−1.
Since TSVD can decompose any real-valued matrix for any



valid η, we apply continuous η-TSVD to Ck,L, yielding:

SVD
(ηk)
T (Ck,L) = Ĉk−1Vk

SVD
(ηk−1)
T (Ĉk−1) = Ĉk−2Vk−1

. . .

SVD
(η2)
T (Ĉ2) = Ĉ1V2 (18)

Since TSVD provides an approximate equality with intro-
ducing a minimum error term:

O(Γ) = O

(
k−1∑
i=2

||Ĉi − Ĉi−1Vi||F + ||Ck,L − Ĉk−1Vk||F

)
,

(19)
we can summarize Equation (18), decomposing Ck,L into
a form of k continuous multiplication, to formalize the k
amplitude matrices introduced by k iterations of MP:

Ck,L = Ĉ1

k∏
i=2

Vk +O(Γ). (20)

Substituting Equation (20) into Equation (17), we obtain:

Z(k+1) = LkZ(0)Ĉ1

k∏
i=2

Vk (21)

Now, to endow the fluctuation equation represented by
Equation (21) with the capability of backpropagation, we
introduce k nonlinear activation function σ1, . . . σk, Subse-
quently, we instantiate Ĉ1,V2,V3, . . . ,Vk as k trainable
matrices. As we expounded in the preceding text, the dimen-
sions of these matrices merely need to satisfy the condition
of input-output decrement, and thus these dimensions can be
arbitrarily set. We denote X as the i-th trainable matrix by
given a decrement dimension d0, ηk, ηk−1, . . . , η3, η2, dk,
the aforementioned matrices can be instantiated as W1 =
Ĉ1 ∈ Rd0×ηk ,W2 = Vk ∈ Rηk×ηk−1 , . . .Wk = V2 ∈
Rη2×dk . In summary, by making Equation (21) trainable, we
obtain the following form of a trainable wave equation:

Z(k) = WAVE(Z, k;L)

= σk

(
L . . .

layer 2︷ ︸︸ ︷
σ2(Lσ1(LZ

(0)W1)︸ ︷︷ ︸
layer 1
...

W2) . . .Wk

)
︸ ︷︷ ︸

layer k

= M(Z, k;L). (22)

We note that Equation (22) is the trainable form of the
edge-based Laplacian wave equation (Equation (9)), and it
is also the forward propagation form of the GCN. Through
the derivation process we have provided, the equivalence be-
tween the GCN and the wave equation is thus substantiated.

Proof of Theorem 2 We first gives the vectorized repre-
sentation of the resonance intensity. For each pair of nodes
(vj , vk) in Ni, if there is an edge between vj and vk, then
this edge is counted in Ti. This is indicated by Aj,k = 1.
Therefore Ti equals the sum of Aj,k over all nodes pairs
(vj , vk) in Ni. Then, Ti can be obtained by three steps:

• First, the number of edges on all nodes pairs of G
(vj , vk) (not just pairs of neighbors of node vi) is∑

vj ,vk∈Ni
Aj,k.

• Then, to ensure that vj , vk ∈ Ni, we need to include
the terms Ai,j and Ak,i in the above summation. This is
because Ai,j = Ak,i = 1 if and only if vj and vk are
both neighbors of node vi, i.e., Ai,jAj,kAk,1 = 1 if and
only if vi, vj and vk form a triangle.

• Finally,
∑

i,j Ai,jAj,kAk,1 counts the number of tri-
angles that include node vi, This gives that Ti =∑

i,j Ai,jAj,kAk,i

Then, we have

z̄
(0)
i Ti = z̄

(0)
i

∑
vj ,vk∈Ni

Ajk =
∑
j,k

Ai,jAj,kAk,i

∑
l

Zi,l

=
∑
j

Ai,j

(
AA⊤

)
j,i

∑
l

Zi,l. (23)

Hence, according to Definition 1, one may write

R(vi; 0) = z̄
(0)
i Ti + 2pi + 8degi

=
∑
j

Ai,j

(
A2)

j,i

∑
l

Zi,l + 2
∑
j

(A2)i,j + 8
∑
j

Ai,j .

(24)

We denote by [1]N×1 ∈ RN×1 whose entries are all equal
to 1. We utilize right multiplication by [1]1×N for row-wise
summation of the matrix. Subsequently, we engage in the
augmentation of R(·) to its vectorized representation:

R′(vi; 0) = (A3Z0[1]N×1 + 2A2[1]N×1 + 8A[1]N×1)i (25)

Here, Z0 = [Z|0] ∈ RN×N represents the expansion of Z
into a square matrix Z0 by padding zeros on the right side
of Z. Moving forward, we incorporate the Sigmoid function
S(·) and elucidate its role through the matrix notation

B = S(AS(AZ)),C = S(AZ). (26)

Then we stipulate the minimum error function as

E(X) = − 1

288
X3 +O(X5), (27)

and denote following minimum error terms o1 = E(AZ),
o2 = E(AC), o3 = E(AB) and o = 1

16A
2o1[1]N×1 +

1
4Ao2[1]N×1 + o3[1]N×1. Utilizing the aforementioned no-



tation, we can deduce

1

64

(
A3Z0[1]N×1 + 2A2[1]N×1 + 8A[1]N×1

)
+ o+ [

1

2
]N×1

= [
1

2
]N×1 +

1

64
A3Z0[1]N×1 +

1

16
A2[

1

2
]N×1 +

1

4
A[

1

2
]N×1 + o

= [
1

2
]N×1 +

1

4
(
1

4
)2A3Z0[1]N×1 +

1

4

1

4
A2[

1

2
]N×1 +

1

4
A[

1

2
]N×1

+
1

4

1

4
A2o1[1]N×1 +

1

4
Ao2[1]N×1 + o3[1]N×1

= [
1

2
]N×1 +

1

4
A
(
[
1

2
]N×1 +

1

4
A[

1

2
]N×1 + (

1

4
)2A2Z0[1]N×1

+
1

4
Ao1[1]N×1 + o2[1]N×1

)
+ o3[1]N×1

= [
1

2
]N×1 +

1

4
A

(
[
1

2
]N×1 +

1

4
A
(
[
1

2
]N×1 +

1

4
AZ0[1]N×1

+ o1[1]N×1

)
+ o2[1]N×1

)
+ o3[1]N×1. (28)

For Equation (28), we extract [1]N×1 (there are countless
methods of extraction, this is because the right multiplica-
tion by [1]N×1 gives [ 12 ]N×1, indicating that the sum of each
row of an N × N matrix is 1

2 . Here, we consider the case
where all elements of this matrix have the average value
1

2N ), thereby deriving Equation (28) into:

1

64

(
A3Z0[1]N×1 + 2A2[1]N×1 + 8A[1]N×1

)
+ o+ [

1

2
]N×1

=

(
[
1

2N
]N×N +

1

4
A

(
[
1

2N
]N×N +

1

4
A
(
[
1

2N
]N×N +

1

4
AZ0

+ o1

)
+ o2

)
+ o3

)
[1]N×1. (29)

The matrix-based Taylor series expansion [4] for X is

S(X) = [
S(0)

N
]N×N + S′(0)X+

1

2
X2S′′(0)+

1

6
X3S′′′(0) +

1

24
X4S′′′′(0) +O(X)5). (30)

Since S(0) = 1
2 , S′(0) = 1

4 , S′′(0) = 0, S′′′(0) = − 1
48

and S′′′′(0) = 0, by substituting them into Equation (30),
we have

S(X) = [
1

2N
]N×N +

1

4
X+ 0

1

2
X2 − 1

48

1

6
X3 + 0

1

24
X4 +O(X5)

= [
1

2N
]N×N +

1

4
X− 1

288
X3 +O(X5)

= [
1

2N
]N×N +

1

4
X+ E(X). (31)

Hence, Equation (28), through astute algebraic manipula-
tion, can be metamorphosed into the form of a Taylor series
expansion, as delineated by Equation (31). In the ensuing
steps, we shall meticulously engage in the transformation of
the discrete constituents within Equation (28), with the aim

of perpetuating the advancement of its derivation

[
1

2N
]N×N +

1

4
A+ o1

= [
1

2N
]N×N +

1

4
AZ0 + E(AZ0) = S(AZ0) = C,

[
1

2N
]N×N +

1

4
A
(
[
1

2N
]N×N +

1

4
AZ0 + o1

)
+ o2

= [
1

2N
]N×N +

1

4
AC+ o2

= [
1

2N
]N×N +

1

4
AC+ E(AC) = S(AC) = B,

[
1

2N
]N×N +

1

4
A

(
[
1

2N
]N×N +

1

4
A
(
[
1

2N
]N×N +

1

4
AZ0

+ o1

)
+ o2

)
+ o3 = [

1

2N
]N×N +

1

4
AB+ o3

= S(AB) = S(AS(AS(AZ0))). (32)

Substituting Equation (32) into Equation (29), we can ul-
timately derive Equation (28) into

1

64

(
A3Z0[1]N×1 + 2A2[1]N×1 + 8A[1]N×1

)
+ o+ [

1

2
]N×1

= S(AS(AS(AZ0)))[1]N×1

= SUMrow(S(AS(AS(AZ0)))i,:), (33)

where SUMrow(·) denotes the operation of summing the el-
ements of each row in the input matrix. For Z0, irrespec-
tive of left multiplication by any matrix or application of
an element-wise activation function, its rightmost N − d0
columns persist as zero. As a result, when right-multiplied
by [1]N×1, (which effectively sums each row), the outcomes
for Z0 and Z are identical. This is because the zeroed
columns in Z0 do not contribute to the row sum. Conse-
quently, even when Z0 is reverted back to Z, Equation (33)
still holds. Then, it is perceptible that the yield of Equa-
tion (33) is emblematic of a 3rd MP scheme, propelled by
the GCN — wherein the GCN variant deployed abstains
from the consideration of self-loops, thereby adopting the
use of matrix A in lieu of L — and integrates the sig-
moid function as its activation. Therefore, we can write
M(Z, 3;A) = S(AS(AS(AZ))). Consequently, by ef-
fectuating the incorporation of Equation (32) into Equa-
tions (28) and (25), and electing to neglect the error mag-
nitudes o, we are enabled to derive the following expression

R′(vi; 0) ∝ 64SUMrow(M(Z, 3;A)i,:)− [32]N×1. (34)

Similarly, we have

R′(vi; 1) ∝ 64SUMrow(M(Z(1), 3;A))i,: − [32]N×1

= 64SUMrowM(Z, 4;A))i,: − [32]N×1. (35)

Hence, we can write

R′(vi; k) ∝ 64SUMrow(M(Z, k + 3;A))i,: − [32]N×1

= 64[z̄
(k+3)
i ]N×1 − [32]N×1. (36)

Through the transposition of Equation (36) into a scalar rep-
resentation (i.e., R(vi; k)), we are capacitated to consum-
mate the derivation of Equation (2).



Proof of Theorem 3 Adversaries employ the following
methodology to attack node vi: Initially, a target label y′

i
is defined, wherein y′

i and yi differ only in the label value
of the target nodes (regardless of single target or multiple
targets), which is altered to the target labels, while the la-
bels of all other nodes remain unchanged. Subsequently, by
modifying the graph structure, specifically A, with a budget
constraint r a new graph which with A′ as adjacency ma-
trix is obtained. The objective is to maximize the similarity
between the output and y′

i (i.e., minimize the loss between
them) after the forward propagation by M.

Ultimately, as the primary goal is to manipulate the one-
hot output [5], i.e., the magnitude relationship in the i-th
row of Z(K), an activation function is added only in the final
layer to compute the loss function with the label matrix [6].
Consequently, the optimization target of the adversaries can
be expressed as:

argmin
A′

MSE(σ(A′KZ

K∏
i=1

W(i)),Y′). (37)

For r, less than 5% of total edges is considered to be in-
conspicuous in common. Hence, given the necessity to min-
imize the perceptibility of the perturbation, r < 5%|V|.
Therefore, by introducing a sparse matrix P1 containing
only 0, 1, and -1, the perturbation process can be represented
as A′ = A+P1. Simultaneously, during training, as the ac-
tivation functions between layers have been disregarded (as
aforementioned, this does not affect the size relationship of
the output), the parameter matrices between different lay-
ers can be unified into a single parameter matrix. We denote
WK =

∏K
i=1 W

(i), hence, Equation (37) can be rewritten
as:

argmin
P1

MSE(σ((A+P1)
KZWK),Y′). (38)

Considering when K = 1, Equation (38) becomes:

argmin
P1

MSE(σ(AZW(1) +P1ZW
(1)),y′). (39)

To quantify the cost of the equation above, we consider
that in non-adversarial scenarios, the GCN can reach the
computational universality of the ground-truth labels, i.e.,
there always exists W and a minimal value σ such that
MSE(σ(AZW),Y) ≤ ϵ. Since P1 is perturbable, to main-
tain the concealment of the perturbations and minimize the
modification degree of the GCN parameters, i.e., W(1) =
W, it is only necessary to ensure that, with an identity acti-
vation σI(·), σI(P1ZW

(1)) is as close to a zero matrix as
possible. Thus, Equation (39) can be further simplified to:

argmin
P

MSE(σI(P1ZW
(1)), [0]N ). (40)

Upon observation, we consider P1 can represent a distinct
graph GP1 , which has the same number of nodes as G, with
most nodes being isolated. Perturbations can be viewed as
edges, where inserted edges (i.e., when an edge is inserted
between nodes vi and vj , P1i,j = 1) have a weight of 1, and
deleted edges (i.e., when an edge is deleted between nodes
vi and vj , P1i,j = −1) have a weight of −1. Therefore,

the equation can be approximated as another GCN train-
ing paradigm. The difference is that the training parameters
have changed from W to P1. At this point, since GP1 is
a disconnected subgraph of G with r edges, hence, when
K = 1, the maximum number of disconnected subgraphs
of G with r edges is the maximum number of forward prop-
agations that the attack model needs to compute. That is,
Cost(A, r, 1) ≤ C(|V|, r).

Proceeding to the case where K = 2, with P2 which
plays the same role of P1, Equation (38) can be reformu-
lated as follows:

argmin
P2

MSE(σ(A2ZW2+AP2ZW2+P2
2ZW2),Y

′).

(41)
Analogous to the scenario where K = 1, the objective of the
adversary for K = 2 can be simplified to:

argmin
P2

MSE(σI((2A+P2)P2ZW2), [0]N ). (42)

This expression can be interpreted as an extension of the
K = 1, case: an attack on a graph G2A with an adjacency
matrix as 2A The maximum number of forward propaga-
tions for the attacker is equal to the number of largest discon-
nected subgraphs in G2A, which is the same as the K = 1
case. We present illustrative examples of G, GP1 , GP2 and
G2A in Figure 7.

Isolated 

nodes
Weight=2Weight=2

Disconnected 

subgraph

Disconnected 

subgraph

Disconnected 

subgraph

Disconnected 

subgraph

Figure 7: For K = 1 and K = 2, the primary number of
forward propagations for the attacker is determined by GP1

and GP2 , irrespective of the graphs G and G2A that constitute
GP1 and GP2 .

The situation differs when K = 3. Specifically, Equa-
tion (38) for K = 3 is given by:

argmin
P3

MSE(σ(A3ZW3 +A2P3ZW3

+AP3
2ZW3 +P3

3ZW3),Y
′). (43)

In the above expression, it is required to ensure:

argmin
P

MSE(σI(A
2PZW3 +AP2ZW3 +P3ZW3), [0]N ).

(44)
It can be observed that for K = 3 the maximum number

of connected subgraphs in GP3 depends on the number of
edges in the graph GA2 , represented by A2, rather than the
number of edges in A (which is the case for K = 1 and K =
2). In A2, each element A2

i,j represents the number of paths
of length 2 from node vi to vj in GA2 . Therefore, the number
of non-zero elements in A2 can be at most V2, as each edge
can form a path of length 2 with the other V − 1 nodes.
Hence, the upper bound on the number of edges contained
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Figure 8: Additional Experimental results.

in GA2 is |V|2
2 . The maximum number of disconnected r-

edges subgraphs (i.e., GP3 ) is C( |V|2
2 , r).

Upon obtaining GP3 , it needs to be sent to the last
two terms, namely AP2ZW3 and P3ZW3 for computa-
tion. Considering that P3 is a sparse matrix, P3

3 is gen-
erally a zero matrix, implying that all nodes in the graph
GP3

3 formed by it are isolated. Consequently, the last two
terms can be reduced to one terms, meaning that after
obtaining GP3 , one more matrix multiplication-based for-
ward propagations are needed. In summary, Cost(A, r, 3) ≤
2C
(

|V|2
2 , r

)
.

Utilizing the same methodology, for K > 3, each decom-
position introduces a graph GAK−1 with AK−1 as the adja-
cency matrix, and a linearly increasing number of summa-
tion terms. Combining the above analysis, we can conclude
that the maximum number of edges in GAK−1 , grows ex-
ponentially, and the number of matrix multiplication-based
forward propagation summation terms determined by the
maximum number of disconnected subgraphs GPr in GAK−1

grows linearly. That is, when K ≥ 3, Cost(A, r,K) ≤
(K − 1)C

(
|V|K−1

2 , r
)

, which completes the proof.

Proof of Proposition 1 We adopt an intuitive approach
to simplify this computation. Given that Gj,k contains one
fewer edge than G (i.e., (vj , vk)), AGj,k and A differ in only
two elements, hence the subtraction A − AGj,k results in

a sparse matrix Dj,k, where the majority of elements are
zero except for the elements at the j-th row and k-th col-
umn, and k-th row and j-th column, which are 1. Given that
the parameters of W(ℓ−1) have been trained during the cal-
culation of the ℓ-th layer’s edge-transmitted signals, we use
Z

(ℓ−1)
W = Z(ℓ−1)W(ℓ−1) to represent the constant matrix in

the perspective of the ℓ-th layer. Then, Equation (5) simpli-
fies to

Z
(ℓ)

Gj,k = AZ
(ℓ−1)
W −Dj,kZ

(ℓ−1)
W . (45)

Given that Dj,k is a symmetric matrix with only two non-
zero values, the result of Dj,kZ

(ℓ−1)
W , defined as

Q(ZW(ℓ−1); j, k) = [0, . . . , [Z
(ℓ−1)
W ]k,:︸ ︷︷ ︸
j-th row

, . . . , [Z
(ℓ−1)
W ]j,:︸ ︷︷ ︸
k-th row

, . . . ,0]⊤,

(46)
does not need to be recalculated for each vj , vk, but can
instead be reassembled by indexing the rows of Z(ℓ−1)

W ac-
cording to the chosen of vj , vk, i.e.,

Through the method stated above, Equation (5) is eventu-
ally simplified to the conclusion of the Proposition 1 (Equa-
tion (7)). It can be observed that Equation (7) encompasses
all arbitrary selections of vj and vk, but only the Z

(ℓ−1)
W and

AGZ
(ℓ−1)
W term is required to be computed. Thus, during the

computation of edge-transmitted signals in GRN, we can re-
duce the initial |V| computations down to a single computa-
tion. Thereafter, when transitioning among different edges,



it is only necessary to conduct a column-wise concatenation
and substraction of the matrices.

Additional Experiments
In this section, we elucidate the behavior of layers aris-
ing from resonance across an expanded range of datasets.
Concurrently, we delineate the strength distribution of LRS-
constructed graphs drawn from additional datasets. The ex-
perimental framework employed here remains consistent
with the main body of the text. It is imperative to note that,
in the interest of maintaining methodological rigor and fair-
ness, these experiments were conducted based on random-
ized initializations that have been reset. Consequently, un-
der identical experimental conditions, there exists a slight
discrepancy between these results and those presented in
the primary narrative. Figures 8(a) and 8(b), which can be
conceptually viewed as extensions of Figures 4 and 5(b) re-
spectively, depict these outcomes. The conclusions derived
from the illustrated results demonstrate a congruence with
the central assertions delineated in the main discourse.
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